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Enumeration reducibility

Definition
A ≤e B if there is a c.e. set W , such that

A = W (B) = {x | ∃D(〈x ,D〉 ∈W & D ⊆ B)} .

de(A) = {B | A ≤e B & B ≤e A}.
de(A) ≤ de(B) if A ≤e B.
0e = de(∅) consists of all c.e. sets.
de(A⊕ B) = de(A) ∨ de(B).
de(A)′ = de(LA ⊕ LA), where LA = {e | e ∈We(A)}.

De = 〈De,≤,∨,′ 0〉 is an upper semi-lattice with least element and jump
operation.
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What connects DT and De

Proposition

A ≤T B ⇔ A⊕ A is c.e. in B ⇔ A⊕ A ≤e B ⊕ B.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as T OT = ι(DT ).

(DT ,≤T ,∨,′ ,0T ) ∼= (T OT ,≤e,∨,′ ,0e) ⊆ (De,≤e,∨,′ ,0e)

Theorem (Selman)
A ≤e B if and only if every total enumeration degree above B is also
above A. T OT is an automorphism base for De.
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Defining the Turing jump operator

Theorem (Shore, Slaman)
The Turing jump operator is first order definable in DT .

1 The double jump is first order definable in DT : Slaman and
Woodin’s analysis of the automorphisms of the Turing degrees
and “involves explicit translation of automorphism facts in
definability facts via a coding of second order arithmetic”.

2 An additional structural fact: for every a �T 0′T there is g such that
a ∨ g = g′′.
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K-pairs in the enumeration degrees

Definition (Kalimullin)
A pair of sets A,B are called a K-pair if there is a c.e. set W , such that
A× B ⊆W and A× B ⊆W .

A trivial example is {A,U} and {U,A}, where U is c.e.
If A is a semi-recursive set, then {A,A} is a K-pair.

Theorem (Kalimullin)
A pair of sets A,B are a K-pair if and only if their enumeration degrees
a and b satisfy:

K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).
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K-pairs are invisible in the Turing universe

K-pairs are always quasi-minimal: the only total degree below
either of them is 0e.

A consequence of the existence of nontrivial K-pairs in De is that
the Slaman-Shore property fails, there is a degree a �e 0′e, such
that for every g, a ∨ g <e g′′.
There are no K-pairs in the structure of the Turing degrees.
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K-pairs and the definability of the enumeration jump

Theorem (Kalimullin)
0′e is the largest degree which can be represented as the least upper
bound of a triple a,b,c, such that K(a,b), K(b,c) and K(c,a).

Corollary (Kalimullin)
The enumeration jump is first order definable in De.

Theorem ( Ganchev, S)
For every nonzero enumeration degree u ∈ De, u′ is the largest among
all least upper bounds a ∨ b of nontrivial K-pairs {a,b}, such that
a ≤e u.
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Definability in the local structure of the enumeration
degrees

Theorem (Ganchev, S)
The class of K-pairs below 0′e is first order definable in De(≤ 0′e).

Definition
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and
b ≤ d, we have that a = c and b = d.

Theorem (Ganchev, S)
In De(≤ 0′e) a degree is total if and only if it is the least upper bound of
a maximal K-pair.

The class of total degrees is first order definable in De(≤ 0′e).
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Open question

We know that:
T OT ∩ De(≥ 0′e) is first order definable.

T OT ∩ De(≤ 0′e) is first order definable.

Question
Is T OT first order definable in De?

Recall that the total degrees are an automorphism base for De.

A positive answer would connect the problems of the existence of a
non-trivial automorphism in both structures.
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One step further in the dream world

Theorem (Ganchev,S)
For every nonzero enumeration degree u ∈ De,

u′ = max {a ∨ b | K(a,b) & a ≤e u} .

Suppose that a degree is total if and only if it is the least upper
bound of a maximal K-pair.
The relation x is c.e. in u would also be definable for total degrees
by :

∃a∃b(x = a ∨ b & K(a,b) & a ≤e u).

Then for total u, our definition of the jump would read u′ is the
largest total degree, which is c.e. in u.
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Definability via automorphism analysis in De

Slaman and Woodin: Definability in Degree Structures, 1995.

1 Coding theorem.
2 A characterization of an automorphism in terms of a countable

object.
3 A finite automorphism base.
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The Coding Theorem

Theorem (Slaman, Woodin)
Every countable relation on De can be uniformly coded by parameters.

The theory of De is computably isomorphic to second order arithmetic.

Definition
A countable relation R ⊆ Dn

e is e-presented beneath a set A if there is
a set W ≤e A such that
R =

{
(de(Wi1(A)), . . . ,de(Win (A))) | (i1, . . . , in) ∈W

}
.

Theorem (Ganchev, S)
Every countable relation on De(≤e 0′e) which is e-presented beneath a
half of a ∆0

2 K-pair can be uniformly coded by parameters below 0′e.
The theory of De(≤e 0′e) is computably isomorphic to first order
arithmetic.
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Effectively coding and decoding

Theorem (Effective Coding Theorem)
For every n there is a formula ϕn, such that for every countable relation
on enumeration degrees R ⊆ Dn

e which is e-presented beneath R
there are parameters p̄ ≤e de(R)′′ such that
R = {(x1, . . . ,xn) | De |= ϕn(x1, . . . ,xn, p̄)} .

Theorem (Decoding Theorem)
Let R ⊆ Dn

e be countable and coded by parameters p̄. Let de(P) be an
upper bound on these parameters. Then there is a presentation W of
R, such that W ≤e P5.
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Jump ideals in De

Definition
A set of enumeration degrees I ⊆ De is a jump ideal if it is downwards
closed, closed under least upper bound and closed under the jump
operation.

Denote by ϕ(u,u′) : u′ = max {a ∨ b | K(a,b) & a ≤ u} .

Theorem
Let I ⊆ De be a jump ideal. For every element u ∈ I we have the
following equivalence: I |= ϕJ (u,u′)↔ De |= ϕJ (u,u′).

If {a,b} are not a K-pair then there exists x ≤ a′ ∨ b′ such that
x 6= (x ∨ a) ∧ (x ∨ b).
If {a,b} are a K-pair and a ≤ u then b ≤ u′.

Corollary
If ρ is an automorphism of a jump ideal I then ρ(x′) = ρ(x)′.
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Example 1: Automorphisms act locally

Let 〈N,0, s,+, ∗,X 〉 be the standard model of arithmetic with one
additional predicate for membership in the set X .

1 Coding Theorem: The structure can be coded by parameters
below X ′′.

2 Decoding Theorem: Suppose the structure is coded by
parameters below P then the set X is enumeration reducible to P5.

Corollary
Let I ⊆ J be jump ideals in De. Let ρ : J → J be an automorphism of
J . Then ρ � I is an automorphism of I.

Fix x ∈ I. Consider R(X ) ∈ ρ(x). Find parameters p ≤ ρ(x)2 = ρ(x2)
which code 〈N,0, s,+, ∗,R(X )〉. Then ρ−1(p) ≤ x2 code the same
structure. Hence ρ(x) ≤ x7 and hence a member of I.
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Example 2: Automorphisms are locally presented

Let C ⊆ De be countable and e-presented beneath C. Let
〈N,0, s,+, ∗, C, ψ〉 be the standard model of arithmetic together with a
counting ψ : N→ C, arithmetically presented beneath C.

1 Coding Theorem: The structure can be coded arithmetically in C.
2 Decoding Theorem: Given two such structures,
〈N1,01, s1,+1, ∗1, C1, ψ1〉 and 〈N2,02, s2,+2, ∗2, C2, ψ2〉, both
coded by parameters below P. Then the relation
C1 → C2 =

{
(x,y) | x ∈ C1 & y ∈ C2 & ψ−1

1 (x) = ψ−1
2 (y)

}
is

arithmetically presented relative to P.

Corollary
Let I ⊆ J be jump ideals in De. Let ρ : J → J be an automorphism of
J . If I is countable and e-presented beneath I and I ∈ J then ρ � I is
arithmetically presented in I.
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Persistent automorphisms

Definition
Let I ⊆ De be countable jump ideal. An automorphism ρ : I → I is
called persistent if for every x ∈ De there is a countable jump ideal J
and an automorphism ρ1 : J → J such that {x} ∪ I ⊆ J and
ρ1 � I = ρ.

Theorem
Let I ⊆ J be countable jump ideals in De.
Every persistent automorphism of I can be extended to a persistent
automorphism of J .

Note: Every automorphism π of De restricted to a countable ideal I is
a persistent automorphism of I.
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Generic persistence

Definition
Let I ⊆ De be a jump ideal. An automorphism ρ : I → I is generically
persistent if for some generic extension V [G] in which I is countable, ρ
is persistent.

Theorem
1 Every automorphism π : De → De is generically persistent.
2 Let π be an automorphism of De in some generic extension V [G].

Then π ∈ L(R).
3 Every persistent automorphism of a countable ideal I ⊆ De can

be extended to an automorphism π of De.
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Arithmetically representing images of generic degrees

Theorem (Ganchev, Soskov)

Every automorphism of De is the identity on the cone above ∅4.

Uses a result by Richter in the Turing degrees: If the cone above a
is isomorphic to the cone above b in the structure of the Turing
degrees with jump operation then a2 ≤ b3.

Theorem
Let π be an automorphism of De. There exists an enumeration
operator Γ such that for every 8-generic total function g,
π(de(g)) = de(Γ(g ⊕ ∅4)).
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Arithmetically representing automorphisms of De

Corollary
Let π be an automorphism of De. There exists an arithmetic formula ϕ
such that ϕ(X ,Y ) is true if and only if π(de(X )) = de(Y ). There are
therefore at most countably many automorphisms of De.

By Rozinas every enumeration degree a is the meet of two total
degrees f1 and f2 uniformly reducible to a′′.
Every total enumeration degree f is the meet of two 8-generic
degrees uniformly reducible to f8.

Mariya I. Soskova ( Sofia University ) 20 / 26



Arithmetically representing automorphisms of De

Corollary
Let π be an automorphism of De. There exists an arithmetic formula ϕ
such that ϕ(X ,Y ) is true if and only if π(de(X )) = de(Y ). There are
therefore at most countably many automorphisms of De.

By Rozinas every enumeration degree a is the meet of two total
degrees f1 and f2 uniformly reducible to a′′.

Every total enumeration degree f is the meet of two 8-generic
degrees uniformly reducible to f8.

Mariya I. Soskova ( Sofia University ) 20 / 26



Arithmetically representing automorphisms of De

Corollary
Let π be an automorphism of De. There exists an arithmetic formula ϕ
such that ϕ(X ,Y ) is true if and only if π(de(X )) = de(Y ). There are
therefore at most countably many automorphisms of De.

By Rozinas every enumeration degree a is the meet of two total
degrees f1 and f2 uniformly reducible to a′′.
Every total enumeration degree f is the meet of two 8-generic
degrees uniformly reducible to f8.

Mariya I. Soskova ( Sofia University ) 20 / 26



Automorphism bases

Theorem
Let π be an automorphism of De. There exists an enumeration
operator Γ such that for every 8-generic total function g,
π(de(g)) = de(Γ(g ⊕ ∅4)).

Corollary

The structure of the enumeration degrees De has an automorphism
base consisting of:

1 A single total degree g.
2 A single quasiminimal degree a.
3 The enumeration degrees below 08

e.
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Assigning reals

Definition
Let T be a finitely axiomatizable fragment of ZFC with Σ1 replacement
and Σ1 comprehension;

An e-assignment of reals consists of
1 A countable ω-modelM of T .
2 A jump ideal I in De.
3 A bijection f : DMe → I , such that for all x,y ∈ DMe , ifM |= x ≥ y

then f (x) ≥ f (y).

Theorem
If (M, f , I) is an e-assignment of reals then DMe = I and f is an
automorphism of I.
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Extendably assigning reals

Definition
An e-assignment of reals (M, f , I) is extendable if for every z ∈ De
there exists an e-assignment of reals (M1, f1, I1) such that
DMe ⊆ D

M1
e , I ∪ {z} ⊆ I1 and f ⊆ f1.

Theorem
If (M, f , I) is an extendible e-assignment then there is an
automorphism π : De → De, such that for all x ∈ DMe , π(x) = f (x).
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Example 3: Interpreting automorphisms

Let (M, f , I) be an extendable e-assignment of reals.

1 We can interpret this structure in De.
2 Coding Theorem: This interpretation can be coded by finitely

many parameters p.
3 “p codes an extendable e-assignment of reals ” is a definable

property.

Theorem
Let g be the enumeration degree of an 8-generic g ≤e ∅8. Then the
relation Bi(c̄,d), stating that “c̄ codes a model of arithmetic with a
unary predicate for X and de(X ) = d” is definable in De using
parameter g. De is biinterpretable with second order arithmetic using
parameters.
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unary predicate for X and de(X ) = d” is definable in De using
parameter g. De is biinterpretable with second order arithmetic using
parameters.
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Definability in De

Corollary
Let R ⊆ (2ω)n be relation definable in second order arithmetic and
invariant under enumeration reducibility.

1 The relation R ⊆ Dn
e defined by

R(de(X1), . . . ,de(Xn))↔ R(X1, . . . ,Xn) is definable in De with one
parameter.
In particular T OT is definable with one parameter.

2 If R is invariant under automorphisms then R is definable without
parameters in De.
In particular the hyperarithmetic jump operation is first order
definable in De.
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The end

Thank you!
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