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Enumeration reducibility

Definition

A <¢ Bifthere is a c.e. set W, such that

A= W(B) = {x|3D((x,D) € W& D C B)}.
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Enumeration reducibility

Definition
A <¢ Bifthere is a c.e. set W, such that

A= W(B) = {x | 3D({x,D) € W& D C B)}.

® do(A)={B|A<cB& B <c A}

@ do(A) < de(B)if A<e B.

@ 0. = do(0) consists of all c.e. sets.

@ do(A® B) = de(A) Vv de(B).

@ de(A) = do(La® La), where Ly = {e| e € We(A)}.

Mariya I. Soskova ( Sofia University ) 2/26



Enumeration reducibility

Definition
A <¢ Bifthere is a c.e. set W, such that

A= W(B) = {x | 3D({x,D) € W& D C B)}.

@ do(A)={B| A< B& B <, A}

@ do(A) < de(B)if A<e B.

@ 0, = d¢(0) consists of all c.e. sets.

@ do(A® B) = de(A) Vv de(B).

@ do(A) = de(La @ Ly), where Ly = {€ | e € We(A)}.

De = (De, <,V,'0) is an upper semi-lattice with least element and jump
operation.
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What connects D+ and Dg

Proposition

A<rBo AdpAisce. inBos AdA<,BaB.
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The embedding ¢ : D1 — D, defined by +(dr(A)) = de(A D A),
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What connects D+ and Dg

Proposition
A<rBo AdpAisce. inBos AdA<,BaB. J

The embedding ¢ : D1 — D, defined by +(dr(A)) = de(A D A),
preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as TOT = «(Dr).
(DT7 ST: \/7/ s OT) = (TOT7 Se, \/7, ) Oe) - (De; Sey val ) 06)

Theorem (Selman)

A <¢ B if and only if every total enumeration degree above B is also
above A. TOT is an automorphism base for De.
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Defining the Turing jump operator

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in Dr.
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Defining the Turing jump operator

Theorem (Shore, Slaman)
The Turing jump operator is first order definable in Dr. J

@ The double jump is first order definable in D: Slaman and
Woodin’s analysis of the automorphisms of the Turing degrees
and “involves explicit translation of automorphism facts in
definability facts via a coding of second order arithmetic”.
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Defining the Turing jump operator

Theorem (Shore, Slaman)
The Turing jump operator is first order definable in Dr. J

@ The double jump is first order definable in D: Slaman and
Woodin’s analysis of the automorphisms of the Turing degrees
and “involves explicit translation of automorphism facts in
definability facts via a coding of second order arithmetic”.

@ An additional structural fact: for every a £ 0’ there is g such that
avg=g".
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IC-pairs in the enumeration degrees

Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that
AxBCWandAxBC W.
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IC-pairs in the enumeration degrees

Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that
AxBCWandAxBC W.

@ Atrivial example is {A, U} and {U, A}, where U is c.e.
@ If Ais a semi-recursive set, then {A, A} is a K-pair.

Theorem (Kalimullin)

A pair of sets A, B are a K-pair if and only if their enumeration degrees
a and b satisfy:

K(a,b) = (¥x € De)((a Vv x) A (b V Xx) =Xx).
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IC-pairs are invisible in the Turing universe

@ K-pairs are always quasi-minimal: the only total degree below
either of them is Oc.

Mariya I. Soskova ( Sofia University ) 6/26



IC-pairs are invisible in the Turing universe

@ K-pairs are always quasi-minimal: the only total degree below
either of them is Oc.

@ A consequence of the existence of nontrivial K-pairs in De is that
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IC-pairs are invisible in the Turing universe

@ K-pairs are always quasi-minimal: the only total degree below
either of them is Oc.

@ A consequence of the existence of nontrivial K-pairs in De is that
the Slaman-Shore property fails, there is a degree a £ 0}, such
that for every g,av g <ec g".

@ There are no K-pairs in the structure of the Turing degrees.
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KC-pairs and the definability of the enumeration jump

Theorem (Kalimullin)

0, is the largest degree which can be represented as the least upper
bound of a triple a, b, ¢, such that KC(a,b), K(b,c) and K(c,a).
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KC-pairs and the definability of the enumeration jump

Theorem (Kalimullin)

0, is the largest degree which can be represented as the least upper
bound of a triple a, b, ¢, such that KC(a,b), K(b,c) and K(c,a).

Corollary (Kalimullin)
The enumeration jump is first order definable in De.

Theorem ( Ganchey, S)

For every nonzero enumeration degree u € De, U’ is the largest among
all least upper bounds a \/ b of nontrivial K-pairs {a,b}, such that
a<eu.
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Definability in the local structure of the enumeration
degrees

Theorem (Ganchey, S)
The class of K-pairs below 07 is first order definable in De(< 07). J
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A K-pair {a,b} is maximal if for every KC-pair {¢,d} witha < ¢ and
b < d, we have thata =cand b = d.
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Definability in the local structure of the enumeration
degrees

Theorem (Ganchey, S)
The class of K-pairs below 07 is first order definable in De(< 07).

Definition

A K-pair {a,b} is maximal if for every KC-pair {¢,d} witha < ¢ and
b < d, we have thata =cand b = d.

Theorem (Ganchey, S)

In De(< 0}) a degree is total if and only if it is the least upper bound of
a maximal KC-pair.

The class of total degrees is first order definable in De(< 07).
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Open question

We know that:

@ TOT NDe(> 0y

) is first order definable.
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Open question

We know that:
@ TOT NDe(> 0,) is first order definable.
@ TOT NDe(<L 0,) is first order definable.

Question
Is TOT first order definable in Dg? J

Recall that the total degrees are an automorphism base for De.

A positive answer would connect the problems of the existence of a
non-trivial automorphism in both structures.
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One step further in the dream world

Theorem (Ganchev,S)
For every nonzero enumeration degree u € D,

u=max{avb|K(ab)&a<.u}.
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One step further in the dream world

Theorem (Ganchev,S)
For every nonzero enumeration degree u € D,
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@ Suppose that a degree is total if and only if it is the least upper
bound of a maximal K-pair.

@ The relation x is c.e. in u would also be definable for total degrees
by :
Jadb(x =aVvb& K(a,b) & a <, u).
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One step further in the dream world

Theorem (Ganchev,S)
For every nonzero enumeration degree u € D,

u=max{avb|K(ab)&a<.u}.

@ Suppose that a degree is total if and only if it is the least upper
bound of a maximal K-pair.

@ The relation x is c.e. in u would also be definable for total degrees
by :
Jadb(x =aVvb& K(a,b) & a <, u).
@ Then for total u, our definition of the jump would read u’ is the
largest total degree, which is c.e. in u.
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Definability via automorphism analysis in Dg

Slaman and Woodin: Definability in Degree Structures, 1995.

@ Coding theorem.

© A characterization of an automorphism in terms of a countable
object.

@ A finite automorphism base.

Mariya I. Soskova ( Sofia University ) 11/26



The Coding Theorem

Theorem (Slaman, Woodin)
Every countable relation on D, can be uniformly coded by parameters.
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The Coding Theorem

Theorem (Slaman, Woodin)

Every countable relation on D¢ can be uniformly coded by parameters.
The theory of De is computably isomorphic to second order arithmetic.

v

Definition
A countable relation R C D] is e-presented beneath a set A if there is
a set W <, A such that

R = {(de(W;(A)). - ... de(W,(A))) | (i1, ..., in) € W}.
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The Coding Theorem

Theorem (Slaman, Woodin)

Every countable relation on D can be uniformly coded by parameters.
The theory of De is computably isomorphic to second order arithmetic.

v

Definition
A countable relation R C D] is e-presented beneath a set A if there is
a set W <, A such that

R = {(de(W;,(A)), ... de(W;,(A)) | (i1, in) € W}.

Theorem (Ganchey, S)

Every countable relation on De(<¢ 0}) which is e-presented beneath a
half of a AS K-pair can be uniformly coded by parameters below 0.
The theory of De(<e 0}) is computably isomorphic to first order
arithmetic.
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Effectively coding and decoding

Theorem (Effective Coding Theorem)

For every n there is a formula v, such that for every countable relation
on enumeration degrees R C D which is e-presented beneath R
there are parameters p <. do(R)” such that

R ={(X1,...,Xn) | De = ¢n(X1,...,Xn,P)} .
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Effectively coding and decoding

Theorem (Effective Coding Theorem)

For every n there is a formula ¢p, such that for every countable relation
on enumeration degrees R C D which is e-presented beneath R
there are parameters p < do(R)" such that

R = {(X'I:"'vxn) | De ): SOn(xh---:xn,p)}-

Theorem (Decoding Theorem)

Let R C D} be countable and coded by parameters p. Let d¢(P) be an
upper bound on these parameters. Then there is a presentation W of
R, such that W < P°.
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Jump ideals in Dg

Definition

A set of enumeration degrees Z C D is a jump ideal if it is downwards
closed, closed under least upper bound and closed under the jump
operation.
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Jump ideals in Dg
Definition
A set of enumeration degrees Z C D is a jump ideal if it is downwards

closed, closed under least upper bound and closed under the jump
operation.

Denote by p(u,u’) : W =max{aVvb|K(a,b) & a < u}.
Theorem

LetZ C D, be a jump ideal. For every elementu € 7 we have the
following equivalence: T = ¢ 7(u,Uu’) < De E o7 (u,u’).

@ If {a,b} are not a K-pair then there exists x < a’ v b’ such that
X# (xva)A(xVb).
e If {a,b} are a K-pairanda < uthenb < u'.

Corollary
If p is an automorphism of a jump ideal Z then p(X') = p(X)'. J
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Example 1: Automorphisms act locally

Let (N,0, s, +, , X) be the standard model of arithmetic with one
additional predicate for membership in the set X.
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Let (N,0, s, +, , X) be the standard model of arithmetic with one
additional predicate for membership in the set X.

@ Coding Theorem: The structure can be coded by parameters
below X”.

© Decoding Theorem: Suppose the structure is coded by
parameters below P then the set X is enumeration reducible to P°.

Corollary

LetZ C J be jump ideals in De. Letp : J — J be an automorphism of
J. Then p | T is an automorphism of Z.
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Example 1: Automorphisms act locally

Let (N,0, s, +, , X) be the standard model of arithmetic with one
additional predicate for membership in the set X.

@ Coding Theorem: The structure can be coded by parameters
below X”.

© Decoding Theorem: Suppose the structure is coded by
parameters below P then the set X is enumeration reducible to P°.

Corollary

LetZ C J be jump ideals in De. Letp : J — J be an automorphism of
J. Then p | T is an automorphism of Z.

Fix x € Z. Consider R(X) € p(x). Find parameters p < p(x)? = p(x?)
which code (N, 0, s, +, *, R(X)). Then p~1(p) < x? code the same
structure. Hence p(x) < x’ and hence a member of Z.
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Example 2: Automorphisms are locally presented

Let C C D, be countable and e-presented beneath C. Let
(N,0,s,+,*,C,1) be the standard model of arithmetic together with a
counting v : N — C, arithmetically presented beneath C.
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Example 2: Automorphisms are locally presented

Let C C D be countable and e-presented beneath C. Let
(N,0,s,+,*,C,1) be the standard model of arithmetic together with a
counting v : N — C, arithmetically presented beneath C.
@ Coding Theorem: The structure can be coded arithmetically in C.
@ Decoding Theorem: Given two such structures,
(Ny,01, 81, +1,%1,C1,71) and (Np, 02, Sp, +2, *2, C2, ¢2), both
coded by parameters below P. Then the relation
C1 = Co={(xy) IXECi &y eC &y (X) =3 (y)} is
arithmetically presented relative to P.
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Example 2: Automorphisms are locally presented

Let C C D be countable and e-presented beneath C. Let
(N,0,s,+,*,C,1) be the standard model of arithmetic together with a
counting v : N — C, arithmetically presented beneath C.
@ Coding Theorem: The structure can be coded arithmetically in C.
@ Decoding Theorem: Given two such structures,
(Ny,01, 81, +1,%1,C1,71) and (Np, 02, Sp, +2, *2, C2, ¢2), both
coded by parameters below P. Then the relation
C1 = Co={(xy) IXECi &y eC &y (X) =3 (y)} is
arithmetically presented relative to P.

Corollary

LetT C J be jump ideals in De. Letp : J — J be an automorphism of
J. If T is countable and e-presented beneath | and | € 7 thenp | T is
arithmetically presented in I.
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Persistent automorphisms

Definition
Let Z C D¢ be countable jump ideal. An automorphism p:Z — Z is
called persistent if for every x € D, there is a countable jump ideal J

and an automorphism p¢ : 7 — J such that {x} UZ C J and
p1 1L =p.
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Theorem

LetZ C J be countable jump ideals in De.
Every persistent automorphism of Z can be extended to a persistent
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Mariya I. Soskova ( Sofia University ) 17 /26



Persistent automorphisms

Definition

Let Z C D¢ be countable jump ideal. An automorphism p:Z — Z is
called persistent if for every x € D, there is a countable jump ideal J
and an automorphism p¢ : 7 — J such that {x} UZ C J and

p1 1L =p. )

Theorem

LetZ C J be countable jump ideals in De.
Every persistent automorphism of Z can be extended to a persistent
automorphism of 7.

Note: Every automorphism = of D, restricted to a countable ideal 7 is
a persistent automorphism of Z.
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Generic persistence

Definition

Let Z C D, be a jump ideal. An automorphism p : Z — 7 is generically
persistent if for some generic extension V[G] in which Z is countable, p
is persistent.

Mariya I. Soskova ( Sofia University ) 18/26



Generic persistence

Definition
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Generic persistence

Definition

Let Z C D, be a jump ideal. An automorphism p : Z — 7 is generically
persistent if for some generic extension V[G] in which Z is countable, p
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Theorem
@ Every automorphism w : Dg — De is generically persistent.
@ Let w be an automorphism of De in some generic extension V[G].
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Generic persistence

Definition

Let Z C D, be a jump ideal. An automorphism p : Z — 7 is generically
persistent if for some generic extension V[G] in which Z is countable, p
is persistent.

v

Theorem
@ Every automorphism w : Dg — De is generically persistent.
@ Let w be an automorphism of De in some generic extension V[G].
Then € L(R).
© Every persistent automorphism of a countable ideal Z C D, can
be extended to an automorphism m of De.

Mariya I. Soskova ( Sofia University ) 18/26



Arithmetically representing images of generic degrees
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Arithmetically representing images of generic degrees

Theorem (Ganchev, Soskov)

Every automorphism of De is the identity on the cone above (*. J

@ Uses a result by Richter in the Turing degrees: If the cone above a
is isomorphic to the cone above b in the structure of the Turing
degrees with jump operation then a® < b3.

Theorem

Let m be an automorphism of De. There exists an enumeration
operator I' such that for every 8-generic total function g,
m(de(g)) = de(M(g @ 0%)).
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Arithmetically representing automorphisms of D,

Corollary

Let T be an automorphism of De. There exists an arithmetic formula ¢
such that (X, Y) is true if and only if n(de(X)) = de(Y). There are
therefore at most countably many automorphisms of De.

Mariya I. Soskova ( Sofia University ) 20/26



Arithmetically representing automorphisms of D,

Corollary

Let = be an automorphism of De. There exists an arithmetic formula
such that (X, Y) is true if and only if n(de(X)) = de(Y). There are
therefore at most countably many automorphisms of De.

@ By Rozinas every enumeration degree a is the meet of two total
degrees f; and f, uniformly reducible to a”.

Mariya I. Soskova ( Sofia University ) 20/26



Arithmetically representing automorphisms of D,

Corollary

Let = be an automorphism of De. There exists an arithmetic formula
such that (X, Y) is true if and only if n(de(X)) = de(Y). There are
therefore at most countably many automorphisms of De.

@ By Rozinas every enumeration degree a is the meet of two total
degrees f; and f, uniformly reducible to a”.

@ Every total enumeration degree f is the meet of two 8-generic
degrees uniformly reducible to f8.
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Automorphism bases

Theorem

Let m be an automorphism of De. There exists an enumeration
operator I such that for every 8-generic total function g,
m(de(g)) = de(M(g @ 0%)).
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Automorphism bases

Theorem

Let m be an automorphism of De. There exists an enumeration
operator I such that for every 8-generic total function g,
m(de(g)) = de(M(g @ 0%)).

Corollary

The structure of the enumeration degrees De has an automorphism
base consisting of:

@ A single total degree g.
© A single quasiminimal degree a.
© The enumeration degrees below 02.
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Assigning reals

Definition
Let T be a finitely axiomatizable fragment of ZFC with 4 replacement
and X ; comprehension;
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Assigning reals

Definition
Let T be a finitely axiomatizable fragment of ZFC with ¥ replacement
and X1 comprehension; An e-assignment of reals consists of
@ A countable w-model M of T.
© Ajumpideal Z in De.
@ A bijection f: DM — T, such that for all x,y € DY, it M =x >y
then f(x) > f(y).
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Assigning reals

Definition
Let T be a finitely axiomatizable fragment of ZFC with ¥ replacement
and X1 comprehension; An e-assignment of reals consists of
@ A countable w-model M of T.
© Ajumpideal Z in De.
@ A bijection f: DM — T, such that for all x,y € DY, it M =x >y
then f(x) > f(y).

Theorem

If (M, f,T) is an e-assignment of reals then D' = T and f is an
automorphism of T.
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Extendably assigning reals

Definition

An e-assignment of reals (M, f, Z) is extendable if for every z € D¢
there exists an e-assignment of reals (Mj, f,Z1) such that

DM C DM, Tu{z} CZ;and f C f.
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Extendably assigning reals

Definition
An e-assignment of reals (M, f, Z) is extendable if for every z € D¢

there exists an e-assignment of reals (Mj, f,Z1) such that
DM C DM, Tu{z} CZ;and f C f.

Theorem

If (M, f,T) is an extendible e-assignment then there is an
automorphism ©t : De — De, such that for all x € DY, n(x) = f(X).
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Example 3: Interpreting automorphisms

Let (M, f,Z) be an extendable e-assignment of reals.
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Example 3: Interpreting automorphisms

Let (M, f,Z) be an extendable e-assignment of reals.
@ We can interpret this structure in De.

@ Coding Theorem: This interpretation can be coded by finitely
many parameters p.

© “p codes an extendable e-assignment of reals ” is a definable
property.

Theorem

Let g be the enumeration degree of an 8-generic g <, (8. Then the
relation Bi(c,d), stating that ‘¢ codes a model of arithmetic with a

unary predicate for X and d¢(X) = d” is definable in De using
parameter g.
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Example 3: Interpreting automorphisms

Let (M, f,Z) be an extendable e-assignment of reals.
@ We can interpret this structure in De.
@ Coding Theorem: This interpretation can be coded by finitely
many parameters p.
© “p codes an extendable e-assignment of reals ” is a definable
property.

Theorem

Let g be the enumeration degree of an 8-generic g <, (8. Then the
relation Bi(c,d), stating that ‘¢ codes a model of arithmetic with a
unary predicate for X and d¢(X) = d” is definable in De using
parameter g. De is biinterpretable with second order arithmetic using
parameters.
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Definability in Dg

Corollary

Let R C (2¥)" be relation definable in second order arithmetic and
invariant under enumeration reducibility.
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@ The relation R C D2 defined by

R(de(X1),...,de(Xn)) <> R(Xi,..., Xn) is definable in De with one
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In particular T OT is definable with one parameter.
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Definability in Dg

Corollary

Let R C (2¥)" be relation definable in second order arithmetic and
invariant under enumeration reducibility.
@ The relation R C D2 defined by
R(de(X1),...,de(Xn)) <> R(Xi,..., Xn) is definable in De with one
parameter.
In particular T OT is definable with one parameter.
© IfR is invariant under automorphisms then R is definable without
parameters in De.

In particular the hyperarithmetic jump operation is first order
definable in De.
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The end

Thank you!

=} = = = E DaA®
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