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Definitions
We will say that a pair of degrees a1 and a2 form a splitting of a
if a1 < a and a2 < a but a1 ∪ a2 = a.
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Harrington’s non-splitting theorem

There exists a c.e. degree a < 0′ such that 0′ can not be split in
the c.e. degrees above a.
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The semi-lattice of the enumeration degrees

Definition

1. A set A is enumeration reducible to a set B (A ≤e B), if
there is a c.e. set Φ such that

n ∈ A ⇔ ∃D(〈n, [D]〉 ∈ Φ ∧ D ⊆ B).

2. A is enumeration equivalent to B (A≡eB) if A ≤e B and
B ≤e A.

3. Let de(A) = {B|A≡eB}.
4. (De, <,∪,′ ,0e) is the semi-lattice of the enumeration

degrees with jump operator.



Embedding the Turing degrees into the enumeration
degrees

There exists an order theoretic embedding ι : DT → De.
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Known Results: Cooper and M.S.
There exists a Π1 e-degree a < 0′

e such that there exist no
nontrivial cuppings of Π1 e-degrees in the Σ2 e-degrees above
a. 0′
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Known Results: Arslanov and Sorbi

Above every ∆2 e-degree a there exists a pair of ∆2 e-degrees
which form a splitting of 0′
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Main Result

Theorem
There is a Σ2 e-degree a such that 0′

e cannot be split in the Σ2
e-degrees above a.
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The requirements

We will construct a Σ2 set A and a Π1 set E such that:

I For all enumeration operators Ψ:

NΨ : E 6= ΨA

I For each pair of a Σ2 sets U and V and each enumeration
operator Θ:

PΘ,U,V : E = ΘU,V ⇒ (∃Γ,Λ)[K = ΓU,A ∨ K = ΛV ,A]



The P-strategy

PΘ,U,V : E = ΘU,V ⇒ (∃Γ,Λ)[K = ΓU,A ∨ K = ΛV ,A]

I We monitor the length of agreement l(E ,ΘU,V ) and act
only on expansionary stages.

I Construct an e-operator Γ so that
n ∈ K ↔ 〈n, (U ⊕ A) � γn〉 ∈ Γ.

I Correct errors in Γ by extracting γ(n) from A.



Σ2 sets and their approximations

Consider a Σ2 set U with approximating sequence {Us}s<ω. If
n /∈ U then n /∈ Us for infinitely many s.
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Lachlan and Shore’s Good approximations

We define a good approximations to the sets U, V and U ⊕ V
with following properties:

Σ2 Elements in the set are also in the approximations on all
but finitely many stages

Good Infinitely many good stages on which the approximation is
a subset of the set.

Exp If ΘU,V = E , then the length of agreement l(ΘU,V ,E)[s] is
unbounded.



The N -strategies

NΨ : E 6= ΨA

Below the l-outcome N ′ can follow a simple Friedberg-Muchnik
strategy:
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The N -strategies
Activity at P may injure a restraint imposed by N . The strategy
N acts only after x < l(ΘU,V ,E). The extraction of x from E
forces a change in U ⊕ V .
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The backup strategy
A backup strategy P constructs an operator Λ with ΛV ,A = K .
Strategy N will perform many attacks together with the backup
strategies. An unsuccessful attack for N is successful for N ′′.
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The Σ2 sets gang up together

U and V can trick us to believe that an attack is unsuccessful.
N ′′ suffers. P
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The main trick

Longer memory. Access the backup strategies only if all
previous attacks are unsuccessful.
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