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Definitions

We will say that a pair of degrees a; and a, form a splitting of a
ifa; <aanda, <abuta;Uas = a.

0/




Harrington’s non-splitting theorem

There exists a c.e. degree a < 0’ such that 0’ can not be split in
the c.e. degrees above a.




The semi-lattice of the enumeration degrees

Definition
1. A set Ais enumeration reducible to a set B (A <¢ B), if
there is a c.e. set ® such that

ne A< 3D((n,[D]) € » A D C B).
2. Ais enumeration equivalent to B (A=¢B) if A <¢ B and
B <. A
3. Let de(A) = {B|A=¢B}.

4. (De, <,U,, 0¢) is the semi-lattice of the enumeration
degrees with jump operator.



Embedding the Turing degrees into the enumeration
degrees

There exists an order theoretic embedding ¢ : D7 — De.
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Known Results: Cooper and M.S.

There exists a Ny e-degree a < 0, such that there exist no
nontrivial cuppings of Iy e-degrees in the ¥, e-degrees above

a. O/e
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Known Results: Arslanov and Sorbi

Above every A, e-degree a there exists a pair of A, e-degrees

which form a splitting of 0. o
e
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Main Result

Theorem
There is a X, e-degree a such that 0, cannot be split in the ¥
e-degrees above a.
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The requirements

We will construct a ¥, set A and a N4 set E such that:

» For all enumeration operators W:
Ny : E # VA

» For each pair of a ¥, sets U and V and each enumeration
operator ©:

Pouyv:E=0Y% = @rANK=rYAvK=nA"4



The P-strategy

Pouv:E=0%" = @ELAK =TYAVK = A4

» We monitor the length of agreement /(E,©Y"V) and act
only on expansionary stages.

» Construct an e-operator I' so that
neK— (n(UsA) [~ eT.

» Correct errors in I by extracting ~(n) from A.



Y » sets and their approximations

Consider a X, set U with approximating sequence {Us}s<.. If
n ¢ Uthen n ¢ Us for infinitely many s.
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Lachlan and Shore’s Good approximations

We define a good approximations to the sets U, Vand U V
with following properties:

Y» Elements in the set are also in the approximations on all
but finitely many stages
Good Infinitely many good stages on which the approximation is
a subset of the set.
Exp If @YV = E, then the length of agreement /(@Y:Y E)[s] is
unbounded.



The N -strategies

Ny : E # VA
Below the /-outcome N’ can follow a simple Friedberg-Muchnik
strategy:




The N -strategies

Activity at P may injure a restraint imposed by N. The strategy
N acts only after x < /(@YY E). The extraction of x from E
forces a change in U @ V.
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The backup strategy

A backup strategy P constructs an operator A with AVA = K.
Strategy A will perform many attacks together with the backup
strategies. An unsuccessful attack for A/ is successful for N”’.
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The ¥, sets gang up together

U and V can trick us to believe that an attack is unsuccessful.
A
N suffers. P Attack with x;

V,
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The main trick

Longer memory. Access the backup strategies only if all
previous attacks are unsuccessful.
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