A Non-Splitting Theorem in the Enumeration **Degrees**

Mariya I. Soskova

University of Leeds Department of Pure Mathematics

20.07.07

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 할 날 ! > 10 Q Q O

Definitions

We will say that a pair of degrees a_1 and a_2 form a splitting of a if $a_1 < a$ and $a_2 < a$ but $a_1 \cup a_2 = a$.

Harrington's non-splitting theorem

There exists a c.e. degree $\mathbf{a} < \mathbf{0}'$ such that $\mathbf{0}'$ can not be split in the c.e. degrees above **a**.

 Δ_2

The semi-lattice of the enumeration degrees

Definition

1. A set *A* is enumeration reducible to a set *B* $(A \leq_{e} B)$, if there is a c.e. set Φ such that

$$
n\in A \Leftrightarrow \exists D(\langle n,[D]\rangle \in \Phi \wedge D\subseteq B).
$$

KID KARIK KEIK ER KORA

- 2. *A* is enumeration equivalent to B ($A \equiv_{e} B$) if $A \leq_{e} B$ and *B* ≤*^e A*.
- 3. Let $d_e(A) = {B|A \equiv_e B}.$
- 4. (*De*, <,∪, 0 , 0*e*) is the semi-lattice of the enumeration degrees with jump operator.

Embedding the Turing degrees into the enumeration degrees

There exists an order theoretic embedding $\iota : D_T \to D_e$.

Known Results: Cooper and M.S.

There exists a Π_1 e-degree $\mathbf{a} < \mathbf{0}'_\mathbf{e}$ such that there exist no nontrivial cuppings of $Π_1$ e-degrees in the $Σ_2$ e-degrees above

a.

A EXA EX ELEMANO

Known Results: Arslanov and Sorbi

Above every Δ_2 e-degree **a** there exists a pair of Δ_2 e-degrees which form a splitting of O'_6 .

K ロトメ 御 トメ 君 トメ 君 ト (君) ヨーの Q Q -

Main Result

Theorem

There is a Σ_2 *e-degree* **a** *such that* $0'_e$ *cannot be split in the* Σ_2 *e-degrees above* **a***.*

The requirements

We will construct a Σ_2 set *A* and a Π_1 set *E* such that:

 \blacktriangleright For all enumeration operators Ψ :

$$
\mathcal{N}_{\Psi}:E\neq\Psi^{\mathcal{A}}
$$

For each pair of a Σ_2 sets U and V and each enumeration operator Θ:

$$
\mathcal{P}_{\Theta,U,V}:E=\Theta^{U,V}\Rightarrow (\exists\Gamma,\Lambda)[\overline{K}=\Gamma^{U,A}\vee\overline{K}=\Lambda^{V,A}]
$$

K E K K Æ K Æ K Æ K Æ H E V A C

The P-strategy

$$
\mathcal{P}_{\Theta,U,V}:E=\Theta^{U,V}\Rightarrow(\exists\Gamma,\Lambda)[\overline{K}=\Gamma^{U,A}\vee\overline{K}=\Lambda^{V,A}]
$$

 \blacktriangleright We monitor the length of agreement $I(E, \Theta^{U,V})$ and act only on expansionary stages.

KID KARIK KEIK ER KORA

- \triangleright Construct an e-operator Γ so that $n \in \overline{K} \leftrightarrow \langle n, (U \oplus A) \restriction \gamma_n \rangle \in \Gamma$.
- **I** Correct errors in Γ by extracting $\gamma(n)$ from A.

Σ_2 sets and their approximations

Consider a Σ_2 set U with approximating sequence $\{U_s\}_{s<\omega}$. If $n \notin U$ then $n \notin U_s$ for infinitely many s.

Even stages

Odd stages

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 Y) Q @

Lachlan and Shore's Good approximations

We define a good approximations to the sets *U*, *V* and *U* ⊕ *V* with following properties:

- Σ_2 Elements in the set are also in the approximations on all but finitely many stages
- Good Infinitely many good stages on which the approximation is a subset of the set.
	- Exp If $\Theta^{U,V} = E$, then the length of agreement $I(\Theta^{U,V}, E)[s]$ is unbounded.

K □ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ ト つんへ

The N -strategies

$$
\mathcal{N}_{\Psi}:E\neq\Psi^{\mathcal{A}}
$$

Below the *l*-outcome \mathcal{N}' can follow a simple Friedberg-Muchnik strategy:

The N -strategies

Activity at P may injure a restraint imposed by N . The strategy N acts only after $x < I(\Theta^{U,V}, E)$. The extraction of *x* from *E* forces a change in $U \oplus V$.

The backup strategy

A backup strategy $\mathcal P$ constructs an operator Λ with $\Lambda^{V,A} = \overline{K}.$ Strategy N will perform many attacks together with the backup strategies. An unsuccessful attack for ${\cal N}$ is successful for ${\cal N}''.$

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 Y) Q @

The Σ_2 sets gang up together

U and *V* can trick us to believe that an attack is unsuccessful. \mathcal{N}'' suffers. \mathcal{P}

(ロト (個) (目) (目) (目) 目目 のQ (V

The main trick

Longer memory. Access the backup strategies only if all previous attacks are unsuccessful.

(ロト (個) (目) (目) (目) 目目 のQ (V

Bibliography

S. B. Cooper, *Computability Theory*, Chapman & Hall/CRC Mathematics, Boca Raton, FL, 2004.

- R. I. Soare, *Recursively enumerable sets and degrees*, Springer-Verlag, Heidelberg, 1987.
- M. M. Arslanov, *Structural properties of the degrees below* **0** 0 , Dokl. Akad. Nauk. SSSR **283** (1985), 270–273.
- L. Harrington, *Understanding Lachlan's Monster Paper*, **Notes**
- 歸 A.H. Lachlan, R.A. Shore, *The n-rea Enumeration Degrees are Dense*, Arch. Math. Logic (1992)31 : 277-285.
- S.D. Leonhardi, *Generalized Nonsplitting in the Recursively Enumerable Degrees*
- R. Soare, *Notes on Lachlan's Monster Theorem*螶