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Outline

Turing reducibility between sets of natural numbers allows us to gauge
the algorithmic content of a mathematical object.
We illustrate how to assign a Turing degree to an object in three different
scenarios.
The methodology in each case yields a Turing degree only for a small set
of cases.
We introduce enumeration reducibility and describe its relationship to
Turing reducibility.
We revisit each scenario and look at it from the enumeration degree
perspective.
This perspective gives rise to a zoo of classes of enumeration degrees
whose interplay informs our understanding of the degree structure.
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The real numbers
What is the effective content carried by a real number?
I can approximate a real number r using discrete objects: the rationals.

Definition
A name for a real number r is a function nr that allows us to approximate r
with arbitrary precision: on input ε P Q` the name outputs a rational so that

|r ´ nrpεq| ă ε

Problem: A real r has infinitely many different names.

Solution: There is a computationally simplest name, because every name for r
computes its Dedekind cut Cr “ tq P Q | q ă ru ‘ tq P Q | q ą ru and if a
Turing degree computes Cr then it can compute a name for r.
So the Turing degree of a real r is degT pCrq.

Now we can talk about computable operations on real numbers: addition is an
example.
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Points in metric spaces
Definition
A computable metric space is a metric space pM,dq, equipped with a countable
dense sequence tmiuiăω on which the metric is computable as a function on
indices.

Examples: The following are computable metric spaces:
1 R with a listing of Q.
2 Cr0, 1s with a listing of the stepwise linear functions on rational intervals.
3 r0, 1sω with a listing of the rational sequences with finite support.

Definition
A name for a point r in a computable metric space pM,dq is a function
nr : Q` Ñ N such that dpr,mnrpεqq ă ε.

Theorem (Miller 04)
Not all r PM have a name of least Turing degree.
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Symbolic dynamics
The shift operator on 2ω erases the first bit of a sequence.

Definition
A subshift is a closed shift-invariant subspace X of 2ω. X is a minimal subshift
if no nonempty Y Ă X is a subshift.

The Turing degree of the subshift X is the least Turing degree that computes
a member of the subshift.

Example: The language LX of a subshift X is the set of finite subwords of
members of X. If X is minimal then every word in LX appears along every
member of X. If LX is c.e. then we can compute a member of X and so the
Turing degree of X is 0.

Theorem (Hochman, Vanier 2017)
There is a minimal subshift X with no member of least Turing degree.
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Computable structure theory
Let A be a countable structure in a computable language L. An L-structure
with universe ω that is isomorphic to A is called a copy of A.

Definition
The degree spectrum of a countable structure A is the collection SpecpAq of
the Turing degrees of the atomic diagrams of copies of A.

When SpecpAq has a least element, we call it the Turing degree of A.

Example: Consider a subgroup G of pQ,`q. There is a set of natural numbers
SpGq, the standard type of G that codes sufficiently much divisibility
information in G to determine its isomorphism type. Every set of natural
numbers is computably isomorphic to the standard type of some group G.

Theorem (Downey, Jockusch 1997)
The degree spectrum of G is precisely tdegT pY q | SpGq is c.e. in Y u.

Sets of this form do not always have a least element.
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Enumeration reducibility
Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: A Ď ω is enumeration reducible to B Ď ω (A ďe B) if there is a
uniform way to enumerate A from an enumeration of B.

Definition
A ďe B if there is a c.e. set W such that

A “ tn : pDeq xn, ey PW and De Ď Bu,

where De is the eth finite set in a canonical enumeration.

Theorem (Selman 1971)
A ďe B if and only if for every set X if B is c.e. in X then A is c.e. in X.

The degree structure De induced by ďe is called the enumeration degrees. It is
an upper semi-lattice with a least element (the degree of all c.e. sets).
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The total enumeration degrees
A ďT B ðñ A‘A ďe B ‘B.

We can embed DT in De by ιpdT pAqq “ depA‘Aq.
This embedding preserves the order and the least upper bound.

Definition
A Ď ω is total if A ďe A. A degree is total if it contains a total set.

The image of the Turing degrees under the embedding ι is exactly the set of
total enumeration degrees.

Nontotal enumeration degrees exist: any generic A Ď ω has nontotal degree.

Theorem (Cai, Lempp, Ganchev, Miller, and S)
The total enumeration degree are first order definable in De.
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Characterizing points in computable metric spaces

Theorem (Miller 2004)
Let m be a point in a computable metric space. There is a point α P r0, 1sω
such that computing a name for m is uniformly effectively equivalent to
computing a name for α.

For α P r0, 1sω, let Cα “
À

iPω Cαpiq. Enumerating Cα is exactly as hard as
computing a name for α and so degepCαq captures the effective complexity of
α.

Definition
The enumeration degree of a point m in a computable metric space is degepXq
if every enumeration of a X computes a name for m and every name for m
computes an enumeration of X.

Corollary
Every point in a computable metric space has an enumeration degree.
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The continuous enumeration degrees

Definition
An enumeration degree is called continuous if it is the degree of some point in
a computable metric space.

The degrees of points in R are the total enumeration degrees.
And so the continuous enumeration degrees strictly extend the total
enumeration degrees.
Every proof that there are nontotal continuous degrees involves nontrivial
topology.

Theorem (Andrews, Igusa, Miller, S)
A enumeration degree a is continuous if and only if it is almost total: if and
only if for total x ę a we have that x_ a is total.
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Computing members of minimal subshifts

Recall, that to compute a member of a minimal subshift all we needed was a
computable enumeration of its language.

Theorem (Jeandel)
A Turing degree a computes a member of the minimal subshift X if and only
if a can enumerate LX .

Once again we define the enumeration degree of X as the least degree a such
that every enumeration of a member in a computes a member of X.

X has Turing degree degT pAq if and only if X has enumeration degree
degepA‘Aq.

If X is minimal then degepLXq is the enumeration degree of X.
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The cototal enumeration degrees

Jeandel noticed something special: for a minimal subshift LX ďe LX .

An enumeration of LX allows us to eliminate branches that do not belong
to X in a stage by stage manner.

If w is word that appears along every branch that remains at stage s,
then w P LX .

The compactness of 2ω ensures that we won’t miss any word from the
language using this process of enumeration.

Definition
A set A is cototal if A ďe A. An enumeration degree is cototal if it contains a
cototal set.
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The cototal enumeration degrees

Definition
A set A is cototal if A ďe A. An enumeration degree is cototal if it contains a
cototal set.

Examples:
Total degrees are cototal, as they contain sets of the form A‘A.
Continuous degrees are cototal: recall that
Cα “

À

itq | q ă αpiqu ‘ tq | q ą αpiqu.
Note that q ă αpiq if and only if q ă s for some s ď αpiq.
There are quasiminimal cototal degrees.

Theorem (McCarthy)
Every cototal enumeration degree contain the language of some minimal
subshift.
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The enumeration degree of a structure
Definition
We say that a countable structure A has enumeration degree degepXq if every
enumeration of X computes a copy of A and every copy of A computes an
enumeration of X.

If A has Turing degree degT pXq then A has enumeration degree degepX ‘Xq.

Theorem
Every structure in each of the following classes has an enumeration degree.

1 (Calvert, Harizanov, Shlapentokh 07) Torsion-free abelian groups of finite.
2 (Frolov, Kalimullin, Miller 09) Fields of finite transc. degree over Q.
3 (Steiner 13) Graphs of finite valence with finitely many connected

components.
Further, every e-degree is the degree of a structure in each of these classes.

Note! If the enumeration degree of a structure A is non-total then A does not
have Turing degree.
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Descriptive complexity of degree spectra
Richter proved that if A has the c.e. embeddability condition then A does not
have enumeration degree unless it is 0e.

Fix a structure A and consider the set
D2ωpAq “ tX P 2ω|X computes a copy of Au.

Question
What is the descriptive complexity of D2ωpAq?

We can ask the same question about
DωωpAq “ tf P ω

ω|f computes a copy of Au.

Theorem (Montalban)
D2ωpAq is never the upward closure of an Fσ set in Cantor space unless it is an
enumeration cone.
DωωpAq is never the upward closure of an Fσ set in Baire space unless it is an
enumeration cone.
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E-pointed trees
Definition
A tree T Ď 2ăω (or Ď ωăω) with no dead ends is e-pointed if every branch in
T enumerates T .

McCarthy’s characterization of cototal degrees as degrees of minimal subshifts
passes through the notion of e-pointed trees in Cantor space.

Theorem (McCarthy 2018)
The following are equivalent for an enumeration degree a:

1 a is cototal.
2 a contains a uniformly e-pointed tree T Ď 2ăω, i.e. a tree T such that for

some enumeration operator Γ we have that T “ Γpfq for every branch f
in T Ď 2ăω.

3 a contains a uniformly e-pointed tree T Ď 2ăω with dead ends.
4 a contains an e-pointed tree T Ď 2ăω.
5 a contains an e-pointed tree T Ď 2ăω with dead ends.
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E-pointed trees in Baire space

We are left with the following question:

Question
What are the degrees of trees T Ď ωăω that are:

1 uniformly e-pointed;
2 e-pointed;
3 uniformly e-pointed with dead ends;
4 e-pointed with dead ends?

We know that they contain the cototal degrees, but could there be non-cototal
such degrees?
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Hyper-enumeration reducibility
Let A and B be sets of natural numbers.

Definition (Sanchis 1978)
A ďhe B (A is hyperenumeration reducible to B) if and only if there is a c.e.
set W such that

A “ tx | @f P ωωDnDvrxf æ n, x, vy PW & Dv Ď Bsu.

Sanchis proved that he-reducibility has natural properties:
1 Hyperenumeration reducibility is a pre-order on Ppωq, and so it induces

Dhe the hyper enumeration degrees.
2 It extends enumeration reducibility: furthermore, if A ďe B then
A ďhe B and A ďhe B.

3 A is Π1
1 in B if and only if A ďhe B ‘B.

4 A ďh B if and only if A‘A ďhe B ‘B.
5 There are non-hypertotal degrees, i.e. not all hyper enumeration degrees

contain a set of the form A‘A.
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Selman’s theorem fails in the hyper enumeration degrees

Theorem (Jacobsen-Grocott (tba))
There are sets A and B such that A ęhe B but for every X if B is Π1

1pXq then
A is Π1

1pXq.

Proof idea:

Josiah builds a uniformly e-pointed tree T Ď ωăω such that T ęhe T .

If T is Π1
1pXq then there is a branch f in T such that f ďh X.

But then T ďe f and so

T ďhe f ďhe f ďhe X ‘X.

In other words, T is Π1
1pXq.
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Hyper-cototal sets
Definition
A set A is hypercototal if and only if A ďhe A.

Every Π1
1 set is hypercototal.

O is not hypercototal because O is not Π1
1.

Theorem (GJMS)
The following are equivalent for an enumeration degree a

1 a contains a hypercototal set.
2 a contains a uniformly e-pointed tree T Ď ωăω with dead ends.
3 a contains an e-pointed tree T Ď ωăω with dead ends.

Theorem (GJMS)
If an enumeration degree a contains a 3-generic then a does not contain an
e-pointed tree (without dead ends) in Baire space.
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The complete picture
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Introenumerable enumeration degrees

Definition
A set A is introenumerable if A ďe S for every infinite set S Ď A.

A is uniformly introenumerable if there is an enumeration operator Γ such
that A “ ΓpSq for every infinite set S Ď A.

Note, Jockusch (1968) defined (uniform) intreonumerability differently:
he asked that A is c.e. in each of its infinite subsets. The uniform versions
coincide.
Every cototal degree contains a uniformly introenumerable set: for
example any uniformly e-pointed tree in Cantor space is uniformly
introenumerable.
If A is introenumerable then A is enumeration equivalent to the tree of all
injective enumerations of infinite subsets of A. This is an e-pointed tree in
Baire space with no dead ends.
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The complete picture

Using forcing we can show that:

Theorem (GJMS)
There is a uniformly introenumerable
set that does not have cototal degree.

Theorem (GJMS)
There is a uniformly Baire e-pointed
tree that does not have
introenumerable degree.

The remaining implications are open.
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Thank you!


