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A quick reminder
Definition
A ≤e B if there is a c.e. set W , such that

A = W (B) = {x | ∃D(〈x,D〉 ∈W & D ⊆ B)} .

The enumeration degree of a set A is
de(A) = {B | A ≤e B & B ≤e A}.
de(A) ≤ de(B) iff A ≤e B.
The least element: 0e is the set of all c.e. sets.
The least upper bound: de(A) ∨ de(B) = de(A⊕B).
The enumeration jump: de(A)′ = de(KA ⊕KA), where
KA = {〈e, x〉 | x ∈We(A)}.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕A), preserves
the order, the least upper bound and the jump operation.

(DT ,≤T ,∨,′ ,0T ) ∼= (T OT ,≤e,∨,′ ,0e) ⊆ (De,≤e,∨,′ ,0e)
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The importance of definability

Theorem (Slaman, Woodin)
The following are equivalent for D ∈ {DT ,De}:

1 D is rigid, i.e. has no nontrivial automorphisms.
2 The definable relations in D are the ones induced by degree-invariant

definable relations on sets in Second Order Arithmetic.
3 D is biinterpretable with Second Order Arithmetic.
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Definability in the enumeration degrees

Theorem (Kalimullin)
The enumeration jump is definable in De.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The total enumeration degrees are first order definable in De.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The image of the relation “c.e. in” under the standard embedding of De in DT

is first order definable in De.
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K-pairs

Definition
A pair of sets A and B are a K-pair if there is a c.e. set W , such that
A×B ⊆W and A×B ⊆W .

For example if LA = {σ ∈ 2<ω | σ ≤lex A} and RA = LA then
1 LA ≤e A (and RA ≤e A);
2 LA ⊕RA ≡e A⊕A;
3 LA and RA are a K-pair via W = {〈σ, τ〉 | σ ≤lex τ}.

Theorem (Kalimullin)
A and B are a K-pair if and only if de(A) = a and de(B) = b satisfy:

∀x(x = (a ∨ x) ∧ (b ∨ x)).
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Local and global structural interaction

Theorem (Slaman, S)
The structure of the enumeration degrees is rigid if any of the following
structures are:

1 The structureR of the c.e. Turing degrees.
2 The structure DT (≤ 0′)of the ∆0

2 Turing degrees.
3 The structure De(≤ 0′e) of the Σ0

2 enumeration degrees.
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Definability in De(≤ 0′e)

Theorem (Ganchev, S)
K-pairs are first order definable in De(≤ 0′e) . . .

Theorem (Cai, Lempp, Miller, S)
. . . by the same first order formula as in De.

Theorem (Ganchev, S)
1 The total enumeration degrees are definable in De(≤ 0′e).
2 The Low1 enumeration degrees are definable in De(≤ 0′e).

Corollary (Shore)
The Lown+1 and Highn total enumeration degrees are first order definable in
De(≤ 0′e).
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Total degrees in the local structure
Theorem (Selman)
a ≤ b if and only if every total e-degree above b is above a.

To what extent do the total enumeration degrees determine De(≤ 0′e)?

Selman’s theorem is not true locally: there are degrees a < 0′e such that the
only total enumeration degree in De(≤ 0′e) above them is 0′e.

Theorem (Soskov)
For every a ∈ De there is a total f ≥ a such that a′ = f ′.

Is Soskov’s jump inversion theorem true locally?

If it is true, then the jump classes would be fully definable in De(≤ 0′e):

a ∈ Lown+1 if and only if there is a total f ≥ a, such that f ∈ Lown+1

a ∈ Highn if and only if every total f ≥ a are in Highn
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Getting around the difficult question

Theorem (Ganchev, S)
For every nonzero degree a ≤ 0′e bounds a nonzero degree for which
Soskov’s jump inversion holds locally.
For every nonzero degree a ≤e 0

′
e there is a nonzero degree b ≤ a and a total

f , such that:
1 b ≤ f .
2 b′ = f ′.

Theorem (Ganchev, Sorbi)
Every nonzero enumeration degree a bounds a nontrivial initial segment of
enumeration degrees whose nonzero elements have all the same jump as a.
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Defining the jump classes in De(≤ 0′e)

Theorem (Ganchev, S)
All jump classes are first order definable in De(≤ 0′e).

a ∈ Lown+1 if and only if

for every nonzero b ≤ a

there is a nonzero x ≤ b and a total
f ≥ x, such that f ∈ Lown+1.

a ∈ Highn if and only if

there is a nonzero b ≤ a such that

for every nonzero x ≤ b all total f ≥ x are in Highn.
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Proof flavor

Theorem (Ganchev, S)
For every nonzero degree a ≤ 0′e bounds a nonzero degree for which
Soskov’s jump inversion hold locally.

Proof flavor:
Infinite injury construction, borrowing ideas from ‘Sacks Jump inversion’,
‘Good approximations of Σ0

2 sets’ , ‘The ability to “dump” elements in a
constructed set B = Γ(A) when they are not needed anymore’.

Theorem (Ganchev, Sorbi)
Every nonzero enumeration degree a bounds a nontrivial initial segment of
enumeration degrees whose nonzero elements have all the same jump as a.

Proof flavor: K-pairs.
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Jumps of K-pairs
Lemma (Kalimullin)
If A and B are a K-pair and neither A or B are c.e. then:

1 If C ≤e A then C and B are a K-pair.
2 A ≤e B ≤e A⊕ ∅′.

If A and B are a nontrivial K-pair then

A′ = KA ⊕KA ≤e A⊕ (B ⊕ ∅′) ≤e A⊕A⊕ ∅′ ≤e A
′.

So A′ ≡e A⊕B ⊕ ∅′. Similarly B′ ≡e A⊕B ⊕ ∅′.

If C ≤e A and C is not c.e. then C ′ ≡e B
′ ≡e A

′.

Finally consider an arbitrary non-low set A and the corresponding set LKA
.

1 LKA
≤e KA ≡e A;

2 L′
KA
≡e LKA

⊕RKA
⊕ ∅′ ≡e KA ⊕KA = A′.
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The end

Thank you!
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