Mariya I. Soskova

Introducing a New Characterization of the *Lowⁿ* Degrees A look inside Kenneth Harris' PhD Thesis Part 1

Mariya I. Soskova

University of Leeds Department of Pure Mathematics

14.11.2006

Mariya I. Soskova

Definition

Let $n \geq 1$. A set *A* is *low_n* if $A^{(n)} \equiv_T \emptyset^{(n)}$. A Turing degree *d* is *lowⁿ* if it contains a *lowⁿ* set.

 \triangleright Aim: Find some property that characterizes the *low*ⁿ degrees, which is easier to work with.

The strong quantifiers

Mariya I. Soskova

Definition

- 1. $(\exists^{\infty} x)P \Leftrightarrow (\forall y \exists x > y)P$ for infinitely many *x*.
- 2. $(\forall^{\infty} x)P$ ⇔ $(\exists y \forall x > y)P$ for almost all (all but finitely many) *x*.

KOD KOD KED KED E VOOR

\blacktriangleright $\forall \Rightarrow \forall \infty \Rightarrow \exists \infty \Rightarrow \exists$

 \blacktriangleright For *f*, *g*- total functions, *f* dominates *g* if

 $(\forall^{\infty} x)[f(x) > g(x)].$

 \blacktriangleright For *f*, *g*-total functions, *g* escapes *f*

 $(\exists^{\infty} x)[f(x) \leq g(x)].$

Mariya I. Soskova

The starting Point

Theorem *Martin's High Domination Theorem. A Turing degree a is high iff*

(∃*f* ≤ *a*)(∀*g* ≤ 0)[*f dominates g*].

Corollary *A Turing degree a is not high iff*

(∀*f* ≤ *a*)(∃*g* ≤ 0)[*g escapes f*].

- ▶ Can we use this to characterize the *low_n* degrees?
- \triangleright What additional properties should the escape functions have?

[A Characterization](#page-0-0)

The starting Point

Theorem *Martin's High Domination Theorem. A Turing degree a is high iff*

(∃*f* ≤ *a*)(∀*g* ≤ 0)[*f dominates g*].

Corollary *A Turing degree a is not high iff*

(∀*f* ≤ *a*)(∃*g* ≤ 0)[*g escapes f*].

- ▶ Can we use this to characterize the *low_n* degrees?
- \triangleright What additional properties should the escape functions have?

The starting Point

Theorem *Martin's High Domination Theorem. A Turing degree a is high iff*

(∃*f* ≤ *a*)(∀*g* ≤ 0)[*f dominates g*].

Corollary

A Turing degree a is not high iff

(∀*f* ≤ *a*)(∃*g* ≤ 0)[*g escapes f*].

- ▶ Can we use this to characterize the *low_n* degrees?
- \triangleright What additional properties should the escape functions have?

We will fix some standard effective coding of all finite tuples.

- \blacktriangleright E.g suppose we have some pairing function $\pi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Then we will code n_1, \ldots, n_k by $\langle n_1, \ldots, n_k \rangle = \pi(k, \pi(n_1, \ldots, \pi(n_{k-1}, n_k))).$
- \triangleright This gives us the means to consider only 1-ary relations. Any any *k*-ary relation $P(x_1, \ldots, x_k)$ will be represented by the relation $P'(n) \Leftrightarrow n = \langle n_1, \ldots, n_k \rangle \wedge P(n_1, \ldots, n_k).$

A DIA K B A SA A SA A SA A SA A SA SA SA BA

[A Characterization](#page-0-0)

Definition

Let *P* be any relation.

1. *P* is Σ_0 (Π₀) if it is computable.

2. *P* is Σ_{n+1} if there is a Π_n relation *Q* such that:

P(*x*) ⇔ ∃ $\overline{y}Q(\langle x,\overline{y}\rangle)$

3. *P* is Π_{n+1} if there is a Σ_n relation *Q* such that:

P(*x*) ⇔ ∀ $\overline{y}Q(\langle x,\overline{y}\rangle)$

4. P is ∆*n*+¹ iff P is Σ*n*+¹ and Π*n*+¹

[A Characterization](#page-0-0)

Mariya I. Soskova

Definition

Let *P* be any relation and *A* be any set.

- 1. *P* is $\Sigma_0^A(\Pi_0^A)$ if it is *A*-computable.
- 2. *P* is Σ_{n+1}^A if there is a Π_n^A relation *Q* such that:

P(*x*) ⇔ ∃ $\overline{V}Q(\langle x,\overline{y}\rangle)$

3. *P* is \prod_{n+1}^{A} if there is a Σ_n^A relation *Q* such that:

P(*x*) ⇔ ∀ $\overline{y}Q(\langle x,\overline{y}\rangle)$

4. P is Δ_{n+1}^A iff P is Σ_{n+1}^A and Π_{*n*+1}

[A Characterization](#page-0-0)

Mariya I. Soskova

- \triangleright Connect with a set *A* the relation $A(x) \Leftrightarrow x \in A$.
- \triangleright Note that *A* is c.e. iff the relation *A(x)* is Σ_1 .
- If *A* is a Σ_{2n+1} set, then there is a c.e. set W_e , s.t.

A(*x*) ⇔ (∃*y*_{2*n*−1})(∀*y*_{2*n*−2})(∃*y*₁)(∀*z*)[\langle *x*, *z*, *y*₁ *, y*_{2*n*+1}} ∈ *W*_e]

We will say that *A* has Σ_{2n+1} index *e*. If $B \in \Pi_{2n+1}$ then a Π_{2n+1} index for *B* is any Σ_{2n+1} index for *B*.

If *A* is a Π_{2n} set, then there is a c.e. set W_e , s.t.

 $A(x)$ \Leftrightarrow $(\forall y_{2n-2})(\exists y_{2n-3})(\exists y_1)(\forall z)[\langle x, z, y_1, \ldots, y_{2n-2}\rangle \in W_e]$

We will say that *A* has Π_{2n} index *e*. If $B \in \Sigma_{2n}$ then a Σ_{2n} index for *B* is any \prod_{2n} index for *B*.

[A Characterization](#page-0-0)

Mariya I. Soskova

- \triangleright Connect with a set *A* the relation $A(x) \Leftrightarrow x \in A$.
- \triangleright Note that *A* is c.e. iff the relation $A(x)$ is Σ_1 .
- If *A* is a Σ_{2n+1} set, then there is a c.e. set W_e , s.t.

A(*x*) ⇔ (∃*y*_{2*n*−1})(∀*y*_{2*n*−2})(∃*y*₁)(∀*z*)[\langle *x*, *z*, *y*₁ *, y*_{2*n*+1}} ∈ *W*_e]

We will say that *A* has Σ_{2n+1} index *e*. If $B \in \Pi_{2n+1}$ then a Π_{2n+1} index for *B* is any Σ_{2n+1} index for *B*.

If *A* is a Π_{2n} set, then there is a c.e. set W_e , s.t.

 $A(x)$ \Leftrightarrow $(\forall y_{2n-2})(\exists y_{2n-3})(\exists y_1)(\forall z)[\langle x, z, y_1, \ldots, y_{2n-2}\rangle \in W_e]$

We will say that *A* has Π_{2n} index *e*. If $B \in \Sigma_{2n}$ then a Σ_{2n} index for *B* is any \prod_{2n} index for *B*.

[A Characterization](#page-0-0)

Mariya I. Soskova

- \triangleright Connect with a set *A* the relation $A(x) \Leftrightarrow x \in A$.
- \triangleright Note that *A* is c.e. iff the relation $A(x)$ is Σ_1 .
- If *A* is a Σ_{2n+1} set, then there is a c.e. set W_e , s.t.

$$
A(x) \Leftrightarrow (\exists y_{2n-1})(\forall y_{2n-2})(\exists y_1)(\forall z)[\langle x, z, y_1 \ldots, y_{2n+1}\rangle \in W_e]
$$

We will say that A has Σ_{2n+1} index e. If $B \in \Pi_{2n+1}$ then a Π_{2n+1} index for *B* is any Σ_{2n+1} index for *B*.

If *A* is a Π_{2n} set, then there is a c.e. set W_e , s.t.

 $A(x)$ \Leftrightarrow $(\forall y_{2n-2})(\exists y_{2n-3})(\exists y_1)(\forall z)[\langle x, z, y_1, \ldots, y_{2n-2}\rangle \in W_e]$

We will say that *A* has Π_{2n} index *e*. If $B \in \Sigma_{2n}$ then a Σ_{2n} index for *B* is any \prod_{2n} index for *B*.

[A Characterization](#page-0-0)

Mariya I. Soskova

- \triangleright Connect with a set *A* the relation $A(x) \Leftrightarrow x \in A$.
- \triangleright Note that *A* is c.e. iff the relation $A(x)$ is Σ_1 .
- If *A* is a Σ_{2n+1} set, then there is a c.e. set W_e , s.t.

$$
A(x) \Leftrightarrow (\exists y_{2n-1})(\forall y_{2n-2})(\exists y_1)(\forall z)[\langle x, z, y_1 \ldots, y_{2n+1}\rangle \in W_e]
$$

We will say that A has Σ_{2n+1} index e. If $B \in \Pi_{2n+1}$ then a Π_{2n+1} index for *B* is any Σ_{2n+1} index for *B*.

If *A* is a Π_{2n} set, then there is a c.e. set W_e , s.t.

 $A(x)$ \Leftrightarrow $(\forall y_{2n-2})(\exists y_{2n-3})(\exists y_1)(\forall z)[\langle x, z, y_1, \ldots, y_{2n-2}\rangle \in W_e]$

We will say that *A* has Π_{2n} index *e*. If $B \in \Sigma_{2n}$ then a Σ_{2n} index for *B* is any \prod_{2n} index for *B*.

[A Characterization](#page-0-0)

Mariya I. Soskova

- \triangleright Connect with a set *A* the relation $A(x) \Leftrightarrow x \in A$.
- \triangleright Note that *A* is c.e. iff the relation $A(x)$ is Σ_1 .
- If *A* is a Σ_{2n+1} set, then there is a c.e. set W_e , s.t.

$$
A(x) \Leftrightarrow (\exists y_{2n-1})(\forall y_{2n-2})(\exists y_1)(\forall z)[\langle x, z, y_1 \ldots, y_{2n+1}\rangle \in W_e]
$$

We will say that *A* has Σ_{2n+1} index *e*. If $B \in \Pi_{2n+1}$ then a Π_{2n+1} index for *B* is any Σ_{2n+1} index for *B*.

If *A* is a Π_{2n} set, then there is a c.e. set W_e , s.t.

A(*x*) ⇔ (∀*y*_{2*n*−2})(∃*y*_{2*n*−3})(∃*y*₁)(∀*z*)[\langle *x*, *z*, *y*₁ . . . , *y*_{2*n*−2} $\rangle \in W_e$]

We will say that *A* has Π_{2n} index *e*. If $B \in \Sigma_{2n}$ then a Σ_{2n} index for *B* is any \prod_{2n} index for *B*.

[A Characterization](#page-0-0)

Mariya I. Soskova

- \triangleright Connect with a set *A* the relation $A(x) \Leftrightarrow x \in A$.
- \triangleright Note that *A* is c.e. iff the relation $A(x)$ is Σ_1 .
- If *A* is a Σ_{2n+1} set, then there is a c.e. set W_e , s.t.

$$
A(x) \Leftrightarrow (\exists y_{2n-1})(\forall y_{2n-2})(\exists y_1)(\forall z)[\langle x, z, y_1 \ldots, y_{2n+1}\rangle \in W_e]
$$

We will say that A has Σ_{2n+1} index e. If $B \in \Pi_{2n+1}$ then a Π_{2n+1} index for *B* is any Σ_{2n+1} index for *B*.

If *A* is a Π_{2n} set, then there is a c.e. set W_e , s.t.

$$
A(x) \Leftrightarrow (\forall y_{2n-2})(\exists y_{2n-3})(\exists y_1)(\forall z)[\langle x, z, y_1 \ldots, y_{2n-2}\rangle \in W_e]
$$

We will say that *A* has Π_{2n} index *e*. If $B \in \Sigma_{2n}$ then a Σ_{2n} index for *B* is any Π_{2n} index for *B*.

[A Characterization](#page-0-0)

Additional Tools

Mariya I. Soskova

^I Post's Theorem: For every *n* ≥ 1 and every *A*

- 1. $A^{(n)}$ is $\sum_{n=1}^{n}$ complete.
- 2. $X \in \Delta_{n+1}^A$ iff $X \leq_T A^{(n)}$.

 \triangleright Theorem. The following are equivalent

- 1. *A* is *lown*.
- 2. $\Sigma_n^A \subset \Pi_{n+1}$.
- 3. Π A_n ⊂ Σ_{*n*+1}.

Proof: $1 \Rightarrow 2$. *A* is *low*_n, hence $A^{(n)} \leq T 0^{(n)}$. Then *A* is $\Delta_{n+1}.$ If $B\in \Sigma^A_n,$ then $B\leq_m A,$ hence B is ∆*n*+¹ ⊂ Π*n*+1.

KOD KOD KED KED E VOOR

Additional Tools

Mariya I. Soskova

^I Post's Theorem: For every *n* ≥ 1 and every *A*

- 1. $A^{(n)}$ is $\sum_{n=1}^{n}$ complete.
- 2. $X \in \Delta_{n+1}^A$ iff $X \leq_T A^{(n)}$.

 \blacktriangleright Theorem. The following are equivalent

- 1. *A* is *lown*.
- 2. $\Sigma_n^A \subset \Pi_{n+1}$.
- 3. Π A_n ⊂ Σ_{*n*+1}.

Proof: $1 \Rightarrow 2$. *A* is *low*_n, hence $A^{(n)} \leq T 0^{(n)}$. Then *A* is $\Delta_{n+1}.$ If $B\in \Sigma^A_n,$ then $B\leq_m A,$ hence B is ∆*n*+¹ ⊂ Π*n*+1.

KOD KOD KED KED E VOOR

Additional Tools

Mariya I. Soskova

^I Post's Theorem: For every *n* ≥ 1 and every *A*

- 1. $A^{(n)}$ is $\sum_{n=1}^{n}$ complete.
- 2. $X \in \Delta_{n+1}^A$ iff $X \leq_T A^{(n)}$.

 \blacktriangleright Theorem. The following are equivalent

1. A is
$$
low_n
$$
.
2. $\sum_{n=1}^{n} \subset \prod_{n+1}$.

3. Π A_n ⊂ Σ_{*n*+1}.

Proof: 1 \Rightarrow 2. *A* is *low*_n, hence $A^{(n)} \leq T 0^{(n)}$. Then *A* is Δ_{n+1} . If $B \in \Sigma^A_n$, then $B \leq_m A$, hence B is $\Delta_{n+1} \subset \Pi_{n+1}$.

Mariya I. Soskova

The *Low*¹ Degrees

Definition

A set *A* has the uniform escape property (UEP) if there is a partial computable function *h*(*e*, *x*) such that whenever ϕ_e^A is total, then $h(e, x)$ is total and escapes domination from $\phi_{\mathbf{\varepsilon}}^{\mathbf{\mathcal{A}}}$, i.e:

$$
(\exists^\infty x)[\phi_e^A(x)\leq h(e,x)].
$$

A DIA K B A SA A SA A SA A SA A SA SA SA BA

A is low if and only if A has UEP.

Mariya I. Soskova

The *Low*¹ Degrees

Definition

A set *A* has the uniform escape property (UEP) if there is a partial computable function *h*(*e*, *x*) such that whenever ϕ_e^A is total, then $h(e, x)$ is total and escapes domination from $\phi_{\mathbf{\varepsilon}}^{\mathbf{\mathcal{A}}}$, i.e:

$$
(\exists^\infty x)[\phi^A_e(x)\leq h(e,x)].
$$

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Theorem *A is low if and only if A has UEP.*

Theorem

There is a computable function g such that for any Π² *set A with* Π² *index e:*

1.
$$
A(x) \Leftrightarrow W_{g(e,x)} = \omega
$$

2. $\neg A(x) \Leftrightarrow W_{g(e,x)}$ is finite.

Proof.

 \blacktriangleright *A* ∈ Π ₂ with index *e*, hence *A*(*x*) \Leftrightarrow $(\forall z)[\langle x, z \rangle \in W$ _e]

KORK ERKERY EL ARA

- ▶ Use the S_n^m -Theorem: $A(x) \Leftrightarrow (\forall z)[z \in W_{h(e,x)}]$
- \triangleright Define a *q* so that:

 $y \in W_{g(e,x)} \Leftrightarrow (\forall z \leq y)[z \in W_{h(e,x)}]$

[A Characterization](#page-0-0)

Theorem

There is a computable function g such that for any Π² *set A with* Π² *index e:*

1.
$$
A(x) \Leftrightarrow W_{g(e,x)} = \omega
$$

2. $\neg A(x) \Leftrightarrow W_{g(e,x)}$ is finite.

Proof.

 \blacktriangleright *A* ∈ Π₂ with index *e*, hence *A*(*x*) \Leftrightarrow $(\forall z)[\langle x, z \rangle \in W_{e}]$

KORK ERKERY EL ARA

▶ Use the S_n^m -Theorem: $A(x) \Leftrightarrow (\forall z)[z \in W_{h(e,x)}]$

 \triangleright Define a *q* so that: $y \in W_{g(e,x)} \Leftrightarrow (\forall z \leq y)[z \in W_{h(e,x)}]$ [A Characterization](#page-0-0)

Theorem

There is a computable function g such that for any Π² *set A with* Π² *index e:*

1.
$$
A(x) \Leftrightarrow W_{g(e,x)} = \omega
$$

2. $\neg A(x) \Leftrightarrow W_{g(e,x)}$ is finite.

Proof.

 \blacktriangleright *A* ∈ Π₂ with index *e*, hence *A*(*x*) \Leftrightarrow $(\forall z)[\langle x, z \rangle \in W_e]$

KORK ERKERY EL ARA

▶ Use the S_n^m -Theorem: $A(x) \Leftrightarrow (\forall z)[z \in W_{h(e,x)}]$

 \triangleright Define a *g* so that: $y \in W_{g(e,x)} \Leftrightarrow (\forall z \leq y)[z \in W_{h(e,x)}]$ [A Characterization](#page-0-0)

Theorem

There is a computable function g such that for any Π² *set A with* Π² *index e:*

1.
$$
A(x) \Leftrightarrow W_{g(e,x)} = \omega
$$

2. $\neg A(x) \Leftrightarrow W_{g(e,x)}$ is finite.

Proof.

 \blacktriangleright *A* ∈ Π₂ with index *e*, hence *A*(*x*) \Leftrightarrow $(\forall z)[\langle x, z \rangle \in W_e]$

KORK ERKERY EL ARA

- ▶ Use the S_n^m -Theorem: $A(x) \Leftrightarrow (\forall z)[z \in W_{h(e,x)}]$
- ► Define a *q* so that:

$$
y\in W_{g(e,x)}\Leftrightarrow (\forall z\leq y)[z\in W_{h(e,x)}]
$$

[A Characterization](#page-0-0)

Mariya I. Soskova

Every low set has UEP Basic Tools

 \blacktriangleright The Recursion Thoerem Let *s* be a total computable function. Then there is an e such that $W_e = W_{s(e)}.$

\triangleright Settling functions.

Let *W^e* be any c.e. set with standard approximation *We*,*s*. The settling function for *W^e* is the denoted by *m^e* and defined by

$$
m_e(x)=(\mu s)[x\in W_{e,s}].
$$

- \triangleright m_e is a partial computable function, uniformly in *e*.
- \triangleright *m_e* is total if and only if $W_e = \omega$

Every low set has UEP Basic Tools

 \blacktriangleright The Recursion Thoerem Let *s* be a total computable function. Then there is an e such that $W_e = W_{s(e)}.$

 \blacktriangleright Settling functions.

Let *W^e* be any c.e. set with standard approximation $W_{e,s}$. The settling function for W_e is the denoted by *m^e* and defined by

$$
m_e(x)=(\mu s)[x\in W_{e,s}].
$$

- \triangleright m_e is a partial computable function, uniformly in *e*.
- \triangleright *m_e* is total if and only if $W_e = \omega$

Mariya I. Soskova

Every low set has UEP

Let *A* be a low set. We will show that there is a total computable function k , such that if ϕ^A_e is total, then $W_{k(e)} = \omega$ and the settling function $m_{k(e)}$ escapes domination from $\phi_{\bm{e}}^{\bm{A}}$. Then we will define $h(e, x) = m_{k(e)}(x)$.

Will define $k(e)$ so that for all e if ϕ_e^A is total then $k(e)$ has the following properties:

$$
\text{Esc } (\exists^{\infty} x)(\exists s)[\phi_{e,s}^{A}(x) \downarrow < s \land x \notin W_{k(e),s}]
$$
\n
$$
\text{Tot } W_{k(e)} = \omega.
$$

Mariya I. Soskova

Every low set has UEP The main idea

- $\textsf{Esc } (\exists^\infty x)(\exists s)[\phi_{e,s}^A(x) < s \downarrow \land x \notin W_{k(e),s}]$
- Tot $W_{k(e)} = \omega$.
	- \blacktriangleright (Esc) is a Π_2^A predicate $V^A(e)$
	- \blacktriangleright *A* is *low*₁, hence Σ^A_2 ⊂ Π₂. It follows that Π A_2 ⊂ Π₂.
	- \triangleright Use the strong quantifier normal form theorem.

$$
V^A(e) \Leftrightarrow W_{g(u,e)} = \omega
$$

 $V^A(e, i) \Leftrightarrow (\exists^{\infty} x)(\exists s)[\phi^A_{e,s}(x) \downarrow < s \land x \notin W_{g(i,e),s}]$

- $V^A(\theta, i)$ is Π_2^A . But *A* is low, hence $\Sigma_1^A \subseteq \Pi_2$, and $\Pi_2^A \subseteq \Pi_2$.
- \blacktriangleright Let $V^A(e, i)$ have Π_2 -index *v*:

 $V^A(e, i) \Leftrightarrow (\forall z)[\langle i, e, z \rangle \in W_{V}]$

▶ Apply the S_n^m Theorem:

 $V^A(e, i) \Leftrightarrow (\forall z)[\langle e, z \rangle \in W_{s(v, i)}]$

- \triangleright Apply the recursion theorem \Rightarrow there is some *u*, such that $W_{s(v,u)} = W_u$
- \blacktriangleright $V^A(e, u)$ has Π_2 -index *u*.

[A Characterization](#page-0-0)

$$
V^A(e,i) \Leftrightarrow (\exists^\infty x)(\exists s)[\phi^A_{e,s}(x) \downarrow < s \land x \notin W_{g(i,e),s}
$$

 V^A (*e*, *i*) is Π^{*A*}. But *A* is low, hence Σ^{*A*} ⊆ Π₂, and $\Pi_2^A \subseteq \Pi_2$.

 \blacktriangleright Let $V^A(e, i)$ have Π_2 -index *v*:

 $V^A(e, i) \Leftrightarrow (\forall z)[\langle i, e, z \rangle \in W_{V}]$

▶ Apply the S_n^m Theorem:

 $V^A(e, i) \Leftrightarrow (\forall z)[\langle e, z \rangle \in W_{s(v, i)}]$

- \triangleright Apply the recursion theorem \Rightarrow there is some *u*, such that $W_{s(v,u)} = W_u$
- \blacktriangleright $V^A(e, u)$ has Π_2 -index *u*.

]

[A Characterization](#page-0-0)

$$
V^A(e,i) \Leftrightarrow (\exists^\infty x)(\exists s)[\phi^A_{e,s}(x) \downarrow < s \land x \notin W_{g(i,e),s}]
$$

- V^A (*e*, *i*) is Π^{*A*}. But *A* is low, hence Σ^{*A*} ⊆ Π₂, and Π_2^A ⊆ Π_2 .
- **Figure 1** Let $V^A(e, i)$ have Π_2 -index *v*:

 $V^A(e, i) \Leftrightarrow (\forall z)[\langle i, e, z \rangle \in W_{V}]$

▶ Apply the S_n^m Theorem:

 $V^A(e, i) \Leftrightarrow (\forall z)[\langle e, z \rangle \in W_{s(v, i)}]$

- \triangleright Apply the recursion theorem \Rightarrow there is some *u*, such that $W_{s(v,u)} = W_u$
- \blacktriangleright $V^A(e, u)$ has Π_2 -index *u*.

[A Characterization](#page-0-0)

$$
\mathsf{V}^{\mathsf{A}}(\mathsf{e},i) \Leftrightarrow (\exists^{\infty} \mathsf{x})(\exists \mathsf{s})[\phi^{\mathsf{A}}_{\mathsf{e},\mathsf{s}}(\mathsf{x}) \downarrow < \mathsf{s} \land \mathsf{x} \notin \mathsf{W}_{g(i,\mathsf{e}),\mathsf{s}}]
$$

- V^A (*e*, *i*) is Π^{*A*}. But *A* is low, hence Σ^{*A*} ⊆ Π₂, and Π_2^A ⊆ Π_2 .
- **Figure 1** Let $V^A(e, i)$ have Π_2 -index *v*:

 $V^A(e, i) \Leftrightarrow (\forall z)[\langle i, e, z \rangle \in W_{V}]$

▶ Apply the S_n^m Theorem:

 $V^A(e, i) \Leftrightarrow (\forall z)[\langle e, z \rangle \in W_{s(v, i)}]$

- \triangleright Apply the recursion theorem \Rightarrow there is some *u*, such that $W_{s(v,u)} = W_u$
- \blacktriangleright $V^A(e, u)$ has Π_2 -index *u*.

[A Characterization](#page-0-0)

$$
\mathsf{V}^{\mathsf{A}}(\mathsf{e},i) \Leftrightarrow (\exists^{\infty} \mathsf{x})(\exists \mathsf{s})[\phi^{\mathsf{A}}_{\mathsf{e},\mathsf{s}}(\mathsf{x}) \downarrow < \mathsf{s} \land \mathsf{x} \notin \mathsf{W}_{g(i,\mathsf{e}),\mathsf{s}}]
$$

- V^A (*e*, *i*) is Π^{*A*}. But *A* is low, hence Σ^{*A*} ⊆ Π₂, and Π_2^A ⊆ Π_2 .
- **Figure 1** Let $V^A(e, i)$ have Π_2 -index *v*:

 $V^A(e, i) \Leftrightarrow (\forall z)[\langle i, e, z \rangle \in W_{V}]$

▶ Apply the S_n^m Theorem:

$$
V^A(e, i) \Leftrightarrow (\forall z)[\langle e, z \rangle \in W_{s(v, i)}]
$$

► Apply the recursion theorem \Rightarrow there is some *u*, such that $W_{s(v,u)} = W_u$ \blacktriangleright $V^A(e, u)$ has Π_2 -index *u*.

[A Characterization](#page-0-0)

$$
\mathsf{V}^{\mathsf{A}}(\mathsf{e},i) \Leftrightarrow (\exists^{\infty} \mathsf{x})(\exists \mathsf{s})[\phi^{\mathsf{A}}_{\mathsf{e},\mathsf{s}}(\mathsf{x}) \downarrow < \mathsf{s} \land \mathsf{x} \notin \mathsf{W}_{g(i,\mathsf{e}),\mathsf{s}}]
$$

- V^A (*e*, *i*) is Π^{*A*}. But *A* is low, hence Σ^{*A*} ⊆ Π₂, and Π_2^A ⊆ Π_2 .
- **Figure 1** Let $V^A(e, i)$ have Π_2 -index *v*:

 $V^A(e, i) \Leftrightarrow (\forall z)[\langle i, e, z \rangle \in W_{V}]$

▶ Apply the S_n^m Theorem:

$$
V^A(e, i) \Leftrightarrow (\forall z)[\langle e, z \rangle \in W_{s(v, i)}]
$$

- **► Apply the recursion theorem** \Rightarrow there is some *u*, such that $W_{s(v,u)} = W_u$
- \blacktriangleright $V^A(e, u)$ has Π_2 -index *u*.

[A Characterization](#page-0-0)

Mariya I. Soskova

Every low set has UEP

Now let $V^A(e) = V^A(e, u)$.

 \blacktriangleright By definition

$$
V^A(e) \Leftrightarrow (\exists^\infty x)(\exists s)[\phi^A_{e,s}(x) \downarrow < s \land x \notin W_{g(u,e),s}].
$$

 \blacktriangleright By the strong quantifier normal form theorem:

$$
V^A(e) \Leftrightarrow W_{g(u,e)} = \omega.
$$

Mariya I. Soskova

Every low set has UEP

Lemma *If* ϕ_e^A *is total, then* $V^A(e)$ *.*

Proof.

Suppose not. Let *e* be such that ϕ_e^A is total and $\neg V^A(e)$.

- \blacktriangleright By (TSQNF) $W_{g(u,e)}$ is finite.
- \blacktriangleright Let $M = \max(W_{g(u,e)})$. Let $x > M$. Then by the totality of ϕ^A_e there is a stage *s*, such that $\phi^A_{e,s}(x) \downarrow < s$ and $x \notin W_{g(u,e),s}.$
- ► $(\exists^\infty x)(\exists s)[\phi^A_{e,s}(x)] < s \land x \notin W_{g(u,e),s}],$ hence V^A_e .

KORKARYKERKE POLO

Mariya I. Soskova

Every low set has UEP

Lemma *If* ϕ_e^A *is total, then* $V^A(e)$ *.*

Proof.

Suppose not. Let *e* be such that ϕ_e^A is total and $\neg V^A(e)$.

- \blacktriangleright By (TSQNF) $W_{g(u,e)}$ is finite.
- \blacktriangleright Let $M = \max(W_{g(u,e)})$. Let $x > M$. Then by the totality of ϕ^A_e there is a stage *s*, such that $\phi^A_{e,s}(x) \downarrow < s$ and $x \notin W_{g(u,e),s}.$
- ► $(\exists^\infty x)(\exists s)[\phi^A_{e,s}(x)] < s \land x \notin W_{g(u,e),s}],$ hence V^A_e .

K □ K K (同) K (三) K (三) K (三) K (〇) Q (〇)

Mariya I. Soskova

Every low set has UEP

Lemma *If* ϕ_e^A *is total, then* $V^A(e)$ *.*

Proof.

Suppose not. Let *e* be such that ϕ_e^A is total and $\neg V^A(e)$.

- \blacktriangleright By (TSQNF) $W_{g(u,e)}$ is finite.
- \blacktriangleright Let $M = \max(W_{g(u,e)})$. Let $x > M$. Then by the totality of ϕ^A_e there is a stage *s*, such that $\phi^A_{e,s}(x) \downarrow < s$ and $x \notin W_{g(u,e),s}.$
- ► $(\exists^\infty x)(\exists s)[\phi^A_{e,s}(x)] < s \land x \notin W_{g(u,e),s}],$ hence V^A_e .

K □ K K (同) K (三) K (三) K (三) K (〇) Q (〇)

Mariya I. Soskova

Every low set has UEP

Lemma *If* ϕ_e^A *is total, then* $V^A(e)$ *.*

Proof.

Suppose not. Let *e* be such that ϕ_e^A is total and $\neg V^A(e)$.

- \blacktriangleright By (TSQNF) $W_{g(u,e)}$ is finite.
- \blacktriangleright Let $M = \max(W_{g(u,e)})$. Let $x > M$. Then by the totality of $\phi^{\mathcal{A}}_{\bm{e}}$ there is a stage *s*, such that $\phi_{\boldsymbol{e},\boldsymbol{s}}^{\boldsymbol{A}}(x)\downarrow<\boldsymbol{s}$ and $x\notin W_{g(u,\boldsymbol{e}),\boldsymbol{s}}.$
- ► $(\exists^\infty x)(\exists s)[\phi^A_{e,s}(x)] < s \land x \notin W_{g(u,e),s}],$ hence V^A_e .

Mariya I. Soskova

Every low set has UEP

Lemma *If* ϕ_e^A *is total, then* $V^A(e)$ *.*

Proof.

Suppose not. Let *e* be such that ϕ_e^A is total and $\neg V^A(e)$.

- \blacktriangleright By (TSQNF) $W_{g(u,e)}$ is finite.
- \blacktriangleright Let $M = \max(W_{g(u,e)})$. Let $x > M$. Then by the totality of $\phi^{\mathcal{A}}_{\bm{e}}$ there is a stage *s*, such that $\phi_{\boldsymbol{e},\boldsymbol{s}}^{\boldsymbol{A}}(x)\downarrow<\boldsymbol{s}$ and $x\notin W_{g(u,\boldsymbol{e}),\boldsymbol{s}}.$
- ► $(\exists^\infty x)(\exists s)[\phi_{e,s}^A(x)]\downarrow < s \land x \notin W_{g(u,e),s}],$ hence V_e^A .

Every low set has UEP

Define
$$
h(e, x) = m_{g(u,e)}(x)
$$
.

Corollary

If φ *A e is total. Then h*(*e*, *x*) *is total and escapes domination from* ϕ_e^A .

Proof.

\n- \n
$$
\phi_e^A
$$
 is total \Rightarrow $V^A(e)$ \n
\n- \n $V^A(e) \Rightarrow W_{g(u,e)} = \omega$, hence $h(e, x)$ is total.\n
\n- \n $V^A(e)$ and $h(e, x)$ is total \Rightarrow $h(e, x)$ escapes domination from ϕ_e^A .\n
\n

Tot and Fin

Definition

- $Tot = \{e | \phi_e$ is total $\}$.
	- \triangleright *Tot* is Π_2 :

$$
Tot(e) \Leftrightarrow (\forall x)(\exists s)[\phi_{e,s}(x) \downarrow].
$$

 \triangleright *Tot* is Π_2 - complete. Let *A* be a Π_2 - set with Π_2 index *e*, then from the (SQNF):

$$
A(x) \Leftrightarrow W_{g(e,x)} = \omega \Leftrightarrow g(e,x) \in Tot.
$$

[A Characterization](#page-0-0)

Mariya I. Soskova

Mariya I. Soskova

Tot and Fin

- **Definition** *Fin* = { e |*dom*(ϕ_e) is finite }.
	- **Fin** is Σ_2 :

 $Fin(e) \Leftrightarrow (\exists x)(\forall y > x)(\forall s)[\phi_{e,s}(y)$ ↑.

- \blacktriangleright *Fin* is Σ_2 complete.
	- Let *A* be a Σ_2 set with Σ_2 index *e*, hence \overline{A} has Π_2 index *e* then from the (SQNF):

$$
\mathcal{A}(x) \Leftrightarrow \neg \overline{\mathcal{A}}(x) \Leftrightarrow
$$

*W*_{*g*(*e*,*x*)} is finite \Leftrightarrow *g*(*e*, *x*) ∈ *Fin*.