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Introduction

Definition
Let n ≥ 1. A set A is lown if A(n) ≡T ∅(n). A Turing degree
d is lown if it contains a lown set.

I Aim: Find some property that characterizes the lown
degrees, which is easier to work with.
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The strong quantifiers

Definition

1. (∃∞x)P ⇔ (∀y∃x > y)P - for infinitely many x .
2. (∀∞x)P ⇔ (∃y∀x > y)P - for almost all (all but

finitely many) x .

I ∀ ⇒ ∀∞ ⇒ ∃∞ ⇒ ∃
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Dart Vader vs Luke Skywalker

I For f , g- total functions, f dominates g if

(∀∞x)[f (x) > g(x)].

I For f , g- total functions, g escapes f

(∃∞x)[f (x) ≤ g(x)].
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The starting Point

Theorem
Martin’s High Domination Theorem.
A Turing degree a is high iff

(∃f ≤ a)(∀g ≤ 0)[f dominates g].

Corollary
A Turing degree a is not high iff

(∀f ≤ a)(∃g ≤ 0)[g escapes f ].

I Can we use this to characterize the lown degrees?
I What additional properties should the escape

functions have?
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A closer look at the Arithmetical Hierarchy

We will fix some standard effective coding of all finite
tuples.

I E.g suppose we have some pairing function
π : N× N → N. Then we will code n1, . . . nk by
〈n1, . . . , nk 〉 = π(k , π(n1, . . . π(nk−1, nk ))).

I This gives us the means to consider only 1-ary
relations. Any any k -ary relation P(x1, . . . xk ) will be
represented by the relation
P ′(n) ⇔ n = 〈n1, . . . , nk 〉 ∧ P(n1, . . . , nk ).
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A closer look at the Arithmetical Hierarchy

Definition
Let P be any relation.

1. P is Σ0 (Π0) if it is computable.
2. P is Σn+1 if there is a Πn relation Q such that:

P(x) ⇔ ∃yQ(〈x , y〉)

3. P is Πn+1 if there is a Σn relation Q such that:

P(x) ⇔ ∀yQ(〈x , y〉)

4. P is ∆n+1 iff P is Σn+1 and Πn+1
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A closer look at the Arithmetical Hierarchy

Definition
Let P be any relation and A be any set.

1. P is ΣA
0 (ΠA

0 ) if it is A-computable.
2. P is ΣA

n+1 if there is a ΠA
n relation Q such that:

P(x) ⇔ ∃yQ(〈x , y〉)

3. P is ΠA
n+1 if there is a ΣA

n relation Q such that:

P(x) ⇔ ∀yQ(〈x , y〉)

4. P is ∆A
n+1 iff P is ΣA

n+1 and Πn+1



A Characterization

Mariya I. Soskova
A closer look at the Arithmetical Hierarchy

I Connect with a set A the relation A(x) ⇔ x ∈ A.
I Note that A is c.e. iff the relation A(x) is Σ1.
I If A is a Σ2n+1 set, then there is a c.e. set We, s.t.

A(x) ⇔ (∃y2n−1)(∀y2n−2)(∃y1)(∀z)[〈x , z, y1 . . . , y2n+1〉 ∈ We]

We will say that A has Σ2n+1 index e.
If B ∈ Π2n+1 then a Π2n+1 index for B is any Σ2n+1
index for B.

I If A is a Π2n set, then there is a c.e. set We, s.t.

A(x) ⇔ (∀y2n−2)(∃y2n−3)(∃y1)(∀z)[〈x , z, y1 . . . , y2n−2〉 ∈ We]

We will say that A has Π2n index e. If B ∈ Σ2n then a
Σ2n index for B is any Π2n index for B.
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Additional Tools

I Post’s Theorem: For every n ≥ 1 and every A
1. A(n) is ΣA

n - complete.
2. X ∈ ∆A

n+1 iff X ≤T A(n).
I Theorem. The following are equivalent

1. A is lown.
2. ΣA

n ⊂ Πn+1.
3. ΠA

n ⊂ Σn+1.

Proof: 1 ⇒ 2. A is lown, hence A(n) ≤T 0(n). Then A
is ∆n+1. If B ∈ ΣA

n , then B ≤m A, hence B is
∆n+1 ⊂ Πn+1.
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The Low1 Degrees

Definition
A set A has the uniform escape property (UEP) if there is
a partial computable function h(e, x) such that whenever
φA

e is total, then h(e, x) is total and escapes domination
from φA

e , i.e:
(∃∞x)[φA

e (x) ≤ h(e, x)].

Theorem
A is low if and only if A has UEP.
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Strong Quantifier Normal Form

Theorem
There is a computable function g such that for any Π2 set
A with Π2 index e:

1. A(x) ⇔ Wg(e,x) = ω

2. ¬A(x) ⇔ Wg(e,x) is finite.

Proof.
I A ∈ Π2 with index e, hence A(x) ⇔ (∀z)[〈x , z〉 ∈ We]

I Use the Sm
n -Theorem: A(x) ⇔ (∀z)[z ∈ Wh(e,x)]

I Define a g so that:
y ∈ Wg(e,x) ⇔ (∀z ≤ y)[z ∈ Wh(e,x)]
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Every low set has UEP
Basic Tools

I The Recursion Thoerem
Let s be a total computable function. Then there is
an e such that We = Ws(e).

I Settling functions.
Let We be any c.e. set with standard approximation
We,s. The settling function for We is the denoted by
me and defined by

me(x) = (µs)[x ∈ We,s].

I me is a partial computable function, uniformly in e.
I me is total if and only if We = ω
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Every low set has UEP

Let A be a low set. We will show that there is a total
computable function k , such that if φA

e is total, then
Wk(e) = ω and the settling function mk(e) escapes
domination from φA

e . Then we will define
h(e, x) = mk(e)(x).
Will define k(e) so that for all e if φA

e is total then k(e) has
the following properties:

Esc (∃∞x)(∃s)[φA
e,s(x) ↓< s ∧ x /∈ Wk(e),s]

Tot Wk(e) = ω.
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Every low set has UEP
The main idea

Esc (∃∞x)(∃s)[φA
e,s(x) < s ↓ ∧x /∈ Wk(e),s]

Tot Wk(e) = ω.
I (Esc) is a ΠA

2 predicate V A(e)

I A is low1, hence ΣA
2 ⊂ Π2. It follows that ΠA

2 ⊂ Π2.
I Use the strong quantifier normal form theorem.

V A(e) ⇔ Wg(u,e) = ω
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Every low set has UEP
Let V A(e, i) be the A-predicate expressing Esc:

V A(e, i) ⇔ (∃∞x)(∃s)[φA
e,s(x) ↓< s ∧ x /∈ Wg(i,e),s]

I V A(e, i) is ΠA
2 . But A is low, hence ΣA

1 ⊆ Π2, and
ΠA

2 ⊆ Π2.
I Let V A(e, i) have Π2-index v :

V A(e, i) ⇔ (∀z)[〈i , e, z〉 ∈ Wv ]

I Apply the Sm
n Theorem:

V A(e, i) ⇔ (∀z)[〈e, z〉 ∈ Ws(v ,i)]

I Apply the recursion theorem ⇒ there is some u,
such that Ws(v ,u) = Wu

I V A(e, u) has Π2-index u.
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Every low set has UEP

Now let V A(e) = V A(e, u).

I By definition

V A(e) ⇔ (∃∞x)(∃s)[φA
e,s(x) ↓< s ∧ x /∈ Wg(u,e),s].

I By the strong quantifier normal form theorem:

V A(e) ⇔ Wg(u,e) = ω.
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Every low set has UEP

Lemma
If φA

e is total, then V A(e).

Proof.
Suppose not. Let e be such that φA

e is total and ¬V A(e).
I By (TSQNF) Wg(u,e) is finite.
I Let M = max(Wg(u,e)). Let x > M. Then by the

totality of φA
e there is a stage s, such that

φA
e,s(x) ↓< s and x /∈ Wg(u,e),s.

I (∃∞x)(∃s)[φA
e,s(x) ↓< s ∧ x /∈ Wg(u,e),s], hence V A

e .
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φA
e,s(x) ↓< s and x /∈ Wg(u,e),s.

I (∃∞x)(∃s)[φA
e,s(x) ↓< s ∧ x /∈ Wg(u,e),s], hence V A

e .
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A Characterization

Mariya I. Soskova
Every low set has UEP

Define h(e, x) = mg(u,e)(x).

Corollary
If φA

e is total. Then h(e, x) is total and escapes domination
from φA

e .

Proof.
I φA

e is total ⇒ V A(e)

I V A(e) ⇒ Wg(u,e) = ω, hence h(e, x) is total.
I V A(e) and h(e, x) is total ⇒ h(e, x) escapes

domination from φA
e .



A Characterization

Mariya I. Soskova
Tot and Fin

Definition
Tot = {e|φe is total }.

I Tot is Π2:

Tot(e) ⇔ (∀x)(∃s)[φe,s(x) ↓].

I Tot is Π2 - complete.
Let A be a Π2- set with Π2 index e, then from the
(SQNF):

A(x) ⇔ Wg(e,x) = ω ⇔ g(e, x) ∈ Tot .



A Characterization

Mariya I. Soskova
Tot and Fin

Definition
Fin = {e|dom(φe) is finite }.

I Fin is Σ2:

Fin(e) ⇔ (∃x)(∀y > x)(∀s)[φe,s(y) ↑].

I Fin is Σ2 - complete.
Let A be a Σ2- set with Σ2 index e, hence A has Π2
index e then from the (SQNF):

A(x) ⇔ ¬A(x) ⇔

Wg(e,x) is finite ⇔ g(e, x) ∈ Fin.


