The total degrees in the local structure of the enumeration degrees

Mariya I. Soskova¹

Faculty of Mathematics and Informatics Sofia University

joint work with H. Ganchev

¹Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework Programme.

Mariya I. Soskova (Faculty of Mathematics a

Total degrees

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

- $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

< ロ > < 同 > < 回 > < 回 >

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

•
$$d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$$

• $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.

- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

A (10) A (10) A (10)

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

• $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

- $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨, ′, 0_e⟩ is an upper semi-lattice with jump operation and least element.

< ロ > < 同 > < 回 > < 回 >

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

• $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

•
$$\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$$

• $d_e(A) \lor d_e(B) = d_e(A \oplus B).$

• $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.

 D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

< ロ > < 同 > < 回 > < 回 >

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

•
$$d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

•
$$\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$$

•
$$d_e(A) \lor d_e(B) = d_e(A \oplus B).$$

• $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.

 D_e = ⟨D_e, ≤, ∨, ′, 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

•
$$d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

•
$$\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$$

•
$$d_e(A) \lor d_e(B) = d_e(A \oplus B).$$

• $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.

 D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

•
$$d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

•
$$\mathbf{0}_{e} = d_{e}(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$$

•
$$d_e(A) \lor d_e(B) = d_e(A \oplus B).$$

• $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.

D_e = ⟨*D_e*, ≤, ∨,', **0**_{*e*}⟩ is an upper semi-lattice with jump operation and least element.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as $TOT = \iota(D_T)$.

< 回 ト < 三 ト < 三

The total degrees above $\mathbf{0}'_e$

Theorem (Kalimullin)

There is a first order formula $\mathcal J$ in the language of a partial order, such that

$$\mathcal{D}_{\boldsymbol{e}} \models \mathcal{J}(\boldsymbol{\mathsf{a}}, \boldsymbol{\mathsf{b}}) \Leftrightarrow \boldsymbol{\mathsf{b}} = \boldsymbol{\mathsf{a}}'.$$

Theorem

- If $\mathbf{b} = \mathbf{a}'$ the \mathbf{b} is total.
- ② Every total degree $\mathbf{b} \ge \mathbf{0}'_e$ is the jump of some $\mathbf{a} < \mathbf{b}$.

Corollary

The total degrees above $\mathbf{0}'_e$ are first order definable in \mathcal{D}_e .

The total degrees above $\mathbf{0}_e'$

Theorem (Kalimullin)

There is a first order formula $\mathcal J$ in the language of a partial order, such that

$$\mathcal{D}_{m{e}}\models\mathcal{J}(m{a},m{b})\Leftrightarrowm{b}=m{a}'.$$

Theorem

- If $\mathbf{b} = \mathbf{a}'$ the \mathbf{b} is total.
- 2 Every total degree $\mathbf{b} \ge \mathbf{0}'_e$ is the jump of some $\mathbf{a} < \mathbf{b}$.

Corollary

The total degrees above $\mathbf{0}'_e$ are first order definable in \mathcal{D}_e .

With respect to the arithmetic hierarchy the degrees can be partitioned into three classes.

A (10) > A (10) > A (10)

The total degrees below $\mathbf{0}'_e$ are images of the Turing degrees below $\mathbf{0}'$. Every total degree is Δ_2^0 , but not all Δ_2^0 are total.

A degree is low if its jump is as low as possible: $\mathbf{0}'_e$. Every low degree is Δ_2^0 .

<<p>・日本

The upwards properly Σ_2^0 have no incomplete Δ_2^0 above them. The downwards properly Σ_2^0 have no nonzero Δ_2^0 below them.

< 回 > < 回 > < 回 >

\mathcal{K} -pairs

Iskander Kalimullin: Definability of the jump operator in the enumeration degrees Journal of Mathematical Logic (2003)

Definition

Let *A* and *B* be a pair sets of natural numbers. The pair (*A*, *B*) is a \mathcal{K} -pair (e-ideal) if there exists a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

< ロ > < 同 > < 回 > < 回 >

\mathcal{K} -pairs: A trivial example

Example

Let V be a c.e set. Then (V, A) is a \mathcal{K} -pair for any set of natural numbers A.

Let $W = V \times \mathbb{N}$. Then $V \times A \subseteq W$ and $\overline{V} \times \overline{A} \subseteq \overline{W}$.

We will only be interested in non-trivial \mathcal{K} -pairs.

< ロ > < 同 > < 回 > < 回 >

$\mathcal K\text{-pairs:}$ A more interesting example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

$$\bullet s_{\mathcal{A}}(x,y) \in \{x,y\}$$

3 If $x \in A$ or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

-

$\mathcal K\text{-pairs:}$ A more interesting example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

$$s_{\mathcal{A}}(x,y) \in \{x,y\}$$

If
$$x \in A$$
 or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

$\mathcal K\text{-pairs:}$ A more interesting example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

$$s_{\mathcal{A}}(x,y) \in \{x,y\}$$

If
$$x \in A$$
 or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

3

An order theoretic characterization of \mathcal{K} -pairs

Kalimullin has proved that the property of being a \mathcal{K} -pair is degree theoretic and first order definable in \mathcal{D}_e .

Theorem (Kalimullin)

(A, B) is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ have the following property:

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

- The enumeration degrees of the elements of a *K* pair are quasi minimal, i.e. the only total degree bounded by either of them is **0**_e.
- 2) The enumeration degrees of the elements of a ${\cal K}$ pair are low.
- Solution Every Δ_2^0 degree bounds a \mathcal{K} -pair.
- The class of the enumeration degrees of sets that form a *K*-pair with a fixed set A is an ideal.

< 回 > < 三 > < 三 >

- The enumeration degrees of the elements of a *K* pair are quasi minimal, i.e. the only total degree bounded by either of them is **0**_e.
- 2 The enumeration degrees of the elements of a \mathcal{K} pair are low.
- 3 Every Δ_2^0 degree bounds a \mathcal{K} -pair.
- The class of the enumeration degrees of sets that form a *K*-pair with a fixed set A is an ideal.

< 回 > < 三 > < 三 >

- The enumeration degrees of the elements of a *K* pair are quasi minimal, i.e. the only total degree bounded by either of them is **0**_e.
- 2 The enumeration degrees of the elements of a \mathcal{K} pair are low.
- Solution Every Δ_2^0 degree bounds a \mathcal{K} -pair.
- The class of the enumeration degrees of sets that form a *K*-pair with a fixed set A is an ideal.

4 **A** N A **B** N A **B** N

- The enumeration degrees of the elements of a *K* pair are quasi minimal, i.e. the only total degree bounded by either of them is **0**_e.
- 2 The enumeration degrees of the elements of a \mathcal{K} pair are low.
- Solution Every Δ_2^0 degree bounds a \mathcal{K} -pair.
- The class of the enumeration degrees of sets that form a \mathcal{K} -pair with a fixed set A is an ideal.

4 **A** N A **B** N A **B** N

The \mathcal{K} -pairs in the local structure.

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Local definability of \mathcal{K} -pairs

$\mathcal{K}(\textbf{a},\textbf{b}) \leftrightarrows (\forall \textbf{x})((\textbf{a} \lor \textbf{x}) \land (\textbf{b} \lor \textbf{x}) = \textbf{x})$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees? Could there be a fake \mathcal{K} -pair {**a**, **b**}, such that:

$$\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \neg (\mathcal{D}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b}))?$$

Theorem

There is a first order formula \mathcal{LK} , such that for any Σ_2^0 sets A and B, $\{A, B\}$ is a non-trivial \mathcal{K} -pair if and only if $\mathcal{G}_e \models \mathcal{LK}(\mathbf{d}_e(A), \mathbf{d}_e(B))$.

Local definability of \mathcal{K} -pairs

$$\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees? Could there be a fake \mathcal{K} -pair {**a**, **b**}, such that:

$$\mathcal{G}_{e} \models \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \neg (\mathcal{D}_{e} \models \mathcal{K}(\mathbf{a}, \mathbf{b}))?$$

Theorem

There is a first order formula \mathcal{LK} , such that for any Σ_2^0 sets A and B, $\{A, B\}$ is a non-trivial \mathcal{K} -pair if and only if $\mathcal{G}_e \models \mathcal{LK}(\mathbf{d}_e(A), \mathbf{d}_e(B))$.

- 4 回 ト 4 ヨ ト 4 ヨ

Local definability of \mathcal{K} -pairs

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees? Could there be a fake \mathcal{K} -pair {**a**, **b**}, such that:

$$\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \neg (\mathcal{D}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b}))?$$

Theorem

There is a first order formula \mathcal{LK} , such that for any Σ_2^0 sets A and B, $\{A, B\}$ is a non-trivial \mathcal{K} -pair if and only if $\mathcal{G}_e \models \mathcal{LK}(\mathbf{d}_e(A), \mathbf{d}_e(B))$.

不同 トイモトイモ

Cupping properties

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Theorem

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low-cuppable or **v** is low-cuppable.

Theorem

For every nonzero Δ_2^0 degree **b** there is a nontrivial \mathcal{K} -pair, (**c**, **d**), such that

$$\mathbf{b} \lor \mathbf{c} = \mathbf{c} \lor \mathbf{d} = \mathbf{0}'_e.$$

Cupping properties

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Theorem

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low-cuppable or **v** is low-cuppable.

Theorem

For every nonzero Δ_2^0 degree **b** there is a nontrivial \mathcal{K} -pair, (**c**, **d**), such that

$$\mathbf{b} \lor \mathbf{c} = \mathbf{c} \lor \mathbf{d} = \mathbf{0}'_e.$$

Cupping properties

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Theorem

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low-cuppable or **v** is low-cuppable.

Theorem

For every nonzero Δ_2^0 degree **b** there is a nontrivial \mathcal{K} -pair, (**c**, **d**), such that

$$\mathbf{b} \lor \mathbf{c} = \mathbf{c} \lor \mathbf{d} = \mathbf{0}'_{e}.$$

The first example of a definable class of degrees in the local structure: $\mathcal{K}\mbox{-}\mathsf{pairs}.$

э

★週 ▶ ★ 国 ▶ ★ 国 ▶

An easy consequence

If **a** bounds a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** is a downwards properly Σ_2^0 degree, then it bounds no \mathcal{K} -pair.

Theorem

The class of downwards properly Σ_2^0 is first order definable in \mathcal{G}_e by the formula:

$$\mathcal{DP}\Sigma^0_2(\mathbf{x}) \rightleftharpoons orall \mathbf{b}, \mathbf{c}[(\mathbf{b} \leq \mathbf{x} \ \& \ \mathbf{c} \leq \mathbf{x}) \Rightarrow
eg \mathcal{LK}(\mathbf{b}, \mathbf{c})].$$

An easy consequence

If **a** bounds a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** is a downwards properly Σ_2^0 degree, then it bounds no \mathcal{K} -pair.

Theorem

The class of downwards properly Σ_2^0 is first order definable in \mathcal{G}_e by the formula:

$$\mathcal{DP}\Sigma^0_2(\mathbf{X})
ightarrow orall \mathbf{b}, \mathbf{c}[(\mathbf{b} \leq \mathbf{x} \ \& \ \mathbf{c} \leq \mathbf{x}) \Rightarrow
eg \mathcal{LK}(\mathbf{b}, \mathbf{c})].$$

The second example of a definable class of degrees in the local structure: Downwards properly Σ_2^0 degrees.

A > + = + + =

Definition

 \boldsymbol{x} is upwards properly $\boldsymbol{\Sigma}_2^0$ every $\boldsymbol{y} \in [\boldsymbol{x},\boldsymbol{0}_e')$ is properly $\boldsymbol{\Sigma}_2^0.$

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Definition

 \boldsymbol{x} is upwards properly $\boldsymbol{\Sigma}_2^0$ every $\boldsymbol{y} \in [\boldsymbol{x}, \boldsymbol{0}_e')$ is properly $\boldsymbol{\Sigma}_2^0.$

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Definition

 \boldsymbol{x} is upwards properly $\boldsymbol{\Sigma}_2^0$ every $\boldsymbol{y} \in [\boldsymbol{x}, \boldsymbol{0}_e')$ is properly $\boldsymbol{\Sigma}_2^0.$

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

・ロン ・四 と ・ ヨン

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_e$ there is a total enumeration degree \mathbf{b} such that $\mathbf{a} \le \mathbf{b} < \mathbf{0}'_e$.

So a degree **a** is upwards properly Σ_2^0 if and only if no element above it other than $\mathbf{0}'_e$ can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem

The class of upwards properly Σ_2^0 is first order definable in \mathcal{G}_e by the formula :

 $\mathcal{U}P\Sigma_2^0(\textbf{x}) \rightleftharpoons \forall \textbf{c}, \textbf{d}(\mathcal{LK}(\textbf{c},\textbf{d}) \And \textbf{x} \leq \textbf{c} \lor \textbf{d} \Rightarrow \textbf{c} \lor \textbf{d} = \textbf{0}_e').$

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_e$ there is a total enumeration degree \mathbf{b} such that $\mathbf{a} \le \mathbf{b} < \mathbf{0}'_e$.

So a degree **a** is upwards properly Σ_2^0 if and only if no element above it other than $\mathbf{0}'_e$ can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem

The class of upwards properly Σ^0_2 is first order definable in \mathcal{G}_e by the formula :

$\mathcal{U}P\Sigma_2^0(\textbf{x}) \rightleftharpoons \forall \textbf{c}, \textbf{d}(\mathcal{LK}(\textbf{c},\textbf{d}) \And \textbf{x} \leq \textbf{c} \lor \textbf{d} \Rightarrow \textbf{c} \lor \textbf{d} = \textbf{0}_e').$

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_e$ there is a total enumeration degree \mathbf{b} such that $\mathbf{a} \le \mathbf{b} < \mathbf{0}'_e$.

So a degree **a** is upwards properly Σ_2^0 if and only if no element above it other than $\mathbf{0}'_e$ can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem

The class of upwards properly Σ_2^0 is first order definable in \mathcal{G}_e by the formula :

$$\mathcal{U}P\Sigma_2^0(\textbf{x}) \rightleftharpoons \forall \textbf{c}, \textbf{d}(\mathcal{LK}(\textbf{c}, \textbf{d}) \And \textbf{x} \leq \textbf{c} \lor \textbf{d} \Rightarrow \textbf{c} \lor \textbf{d} = \textbf{0}_e').$$

・ロン ・四 と ・ ヨン

The third example of a definable class of degrees in the local structure: Upwards properly Σ_2^0 degrees.

Theorem (Kalimullin)

If A and B form a nontrivial $\Delta_2^0 \mathcal{K}$ -pair then $A \leq_e \overline{B}$ and $B \leq_e \overline{A}$.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$. Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$. By the ideal property A forms a \mathcal{K} -pair with D. Hence $D \leq_e \overline{A}$.

- 4 回 ト 4 ヨ ト 4 ヨ

Theorem (Kalimullin)

If A and B form a nontrivial $\Delta_2^0 \mathcal{K}$ -pair then $A \leq_e \overline{B}$ and $B \leq_e \overline{A}$.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$.

Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$. By the ideal property A forms a \mathcal{K} -pair with D. Hence $D \leq_e \overline{A}$.

A (10) A (10) A (10) A

Theorem (Kalimullin)

If A and B form a nontrivial $\Delta_2^0 \mathcal{K}$ -pair then $A \leq_e \overline{B}$ and $B \leq_e \overline{A}$.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$. Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$. By the ideal property A forms a \mathcal{K} -pair with D. Hence $D \leq_e \overline{A}$.

- 4 同 6 4 日 6 4 日 6

Theorem (Kalimullin)

If A and B form a nontrivial $\Delta_2^0 \mathcal{K}$ -pair then $A \leq_e \overline{B}$ and $B \leq_e \overline{A}$.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$. Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$. By the ideal property A forms a \mathcal{K} -pair with D. Hence $D <_e \overline{A}$.

(人間) とうきょうきょう

Theorem (Kalimullin)

If A and B form a nontrivial $\Delta_2^0 \mathcal{K}$ -pair then $A \leq_e \overline{B}$ and $B \leq_e \overline{A}$.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$. Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$. By the ideal property A forms a \mathcal{K} -pair with D. Hence $D \leq_e \overline{A}$.

- A TE N - A TE N

Theorem (Kalimullin)

If A and B form a nontrivial $\Delta_2^0 \mathcal{K}$ -pair then $A \leq_e \overline{B}$ and $B \leq_e \overline{A}$.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$. Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$. By the ideal property A forms a \mathcal{K} -pair with D. Hence $D \leq_e \overline{A}$.

- A TE N - A TE N

Maximal \mathcal{K} -pairs

Definition

We say that $\{A, B\}$ is a maximal \mathcal{K} -pair if for every \mathcal{K} -pair $\{C, D\}$, such that $A \leq_e C$ and $B \leq_e D$, we have $A \equiv_e C$ and $B \equiv_e D$.

Corollary

Every nonzero total set is enumeration equivalent to the join of a maximal \mathcal{K} -pair.

Goal

Prove that the join of every maximal \mathcal{K} -pair is a total degree.

Maximal \mathcal{K} -pairs

Definition

We say that $\{A, B\}$ is a maximal \mathcal{K} -pair if for every \mathcal{K} -pair $\{C, D\}$, such that $A \leq_e C$ and $B \leq_e D$, we have $A \equiv_e C$ and $B \equiv_e D$.

Corollary

Every nonzero total set is enumeration equivalent to the join of a maximal \mathcal{K} -pair.

Goal

Prove that the join of every maximal \mathcal{K} -pair is a total degree.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Maximal \mathcal{K} -pairs

Definition

We say that $\{A, B\}$ is a maximal \mathcal{K} -pair if for every \mathcal{K} -pair $\{C, D\}$, such that $A \leq_e C$ and $B \leq_e D$, we have $A \equiv_e C$ and $B \equiv_e D$.

Corollary

Every nonzero total set is enumeration equivalent to the join of a maximal \mathcal{K} -pair.

Goal

Prove that the join of every maximal \mathcal{K} -pair is a total degree.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

For every nontrivial $\Delta_2^0 \mathcal{K}$ -pair $\{A, B\}$ there is a \mathcal{K} -pair $\{C, \overline{C}\}$, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof Sketch: Fix a nontrivial \mathcal{K} -pair $\{A, B\}$. We construct sets C and D satisfying following requirements:

- (E) $A \leq_e C, B \leq_e D;$
- (Δ_2^0) *C* and *D* are Δ_2^0 ;
 - (C) $\overline{C} = D;$
 - (K) $\{C, D\}$ is a \mathcal{K} -pair.

< 回 > < 三 > < 三 >

Theorem

For every nontrivial $\Delta_2^0 \mathcal{K}$ -pair $\{A, B\}$ there is a \mathcal{K} -pair $\{C, \overline{C}\}$, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof Sketch: Fix a nontrivial \mathcal{K} -pair $\{A, B\}$. We construct sets C and D satisfying following requirements:

(E)
$$A \leq_e C, B \leq_e D;$$

$$(\Delta_2^0)$$
 C and D are Δ_2^0 ;

(C)
$$\overline{C} = D;$$

(K) $\{C, D\}$ is a \mathcal{K} -pair.

4 3 5 4 3 5 5

< 6 b

Lemma (Kalimullin)

A pair of non-c.e. Δ_2^0 sets A, B is a \mathcal{K} -pair if and only if there are Δ_2^0 approximations $\{A_i\}_{i < \omega}$ to A and $\{B_i\}_{i < \omega}$ to B, such that:

 $\forall i (A_i \subseteq A \lor B_i \subseteq B).$

Let $\{A_i\}_{i < \omega}$ and $\{B_i\}_{i < \omega}$ be \mathcal{K} -pair approximations to A and B. We construct Σ_2^0 approximations to sets C and D.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(P1) A_i = {x | ∃j[2⟨x, j⟩ ∈ C_i]} and B_i = {x | ∃j[2⟨x, j⟩ + 1 ∈ D_i]}.
(P2) ∀i[A_i ⊈ A ⇒ D_i ⊆ D] and ∀i[B_i ⊈ B ⇒ C_i ⊆ C].
(P3) ∀i[C_i ∩ D_i = ∅] and every natural number is eventually enumerated in one of the sets.

 $(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].$

(P2) implies that C and D are Δ_2^0 .

Assume that there is an $x \notin D$ and infinitely many stages *i* such that $x \in D_i$.

By (P2) at all such stages $A_i \subseteq A$.

Hence we have a c.e. approximation to the set *A*.

-

イロト イポト イラト イラト

(P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}$. (P2) $\forall i [A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i [B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.

(P3) $\forall i [C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.

 $(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].$

(P2) implies that *C* and *D* are Δ_2^0 .

Assume that there is an $x \notin D$ and infinitely many stages *i* such that $x \in D_i$.

By (P2) at all such stages $A_i \subseteq A$.

Hence we have a c.e. approximation to the set A.

-

イロト イポト イラト イラト

(P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}.$

- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i[C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.

 $(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].$

(P2) implies that C and D are Δ_2^0 .

Assume that there is an $x \notin D$ and infinitely many stages *i* such that $x \in D_i$.

By (P2) at all such stages $A_i \subseteq A$.

Hence we have a c.e. approximation to the set A.

-

(P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}$.

- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i [C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.
- $(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].$

(P2) implies that *C* and *D* are Δ_2^0 .

Assume that there is an $x \notin D$ and infinitely many stages *i* such that $x \in D_i$.

By (P2) at all such stages $A_i \subseteq A$.

Hence we have a c.e. approximation to the set A.

-

イロト 不得 トイヨト イヨト

(P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}$.

- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i [C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.
- $(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].$
 - (P2) implies that C and D are Δ_2^0 .

Assume that there is an $x \notin D$ and infinitely many stages *i* such that $x \in D_i$.

By (P2) at all such stages $A_i \subseteq A$.

Hence we have a c.e. approximation to the set A.

- (P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}$.
- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i[C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.
- (P4) $\forall i [C_i \subseteq C \lor D_i \subseteq D].$
 - (P2) implies that C and D are Δ_2^0 .

Assume that there is an $x \notin D$ and infinitely many stages *i* such that $x \in D_i$.

By (P2) at all such stages $A_i \subseteq A$.

Hence we have a c.e. approximation to the set *A*.

- (P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}.$
- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i[C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.
- (P4) $\forall i [C_i \subseteq C \lor D_i \subseteq D].$
 - (P2) implies that *C* and *D* are Δ_2^0 .

Assume that there is an $x \notin D$ and infinitely many stages *i* such that $x \in D_i$.

By (P2) at all such stages $A_i \subseteq A$.

Hence we have a c.e. approximation to the set *A*.

イロト 不得 トイヨト イヨト ニヨー

- (P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}.$
- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i[C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.
- (P4) $\forall i [C_i \subseteq C \lor D_i \subseteq D].$
 - (P2) implies that *C* and *D* are Δ_2^0 .

Assume that there is an $x \notin D$ and infinitely many stages *i* such that $x \in D_i$.

By (P2) at all such stages $A_i \subseteq A$.

Hence we have a c.e. approximation to the set A.

(P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}.$

- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i [C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.

 $(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].$

 (Δ_2^0) +(P1) imply (E):

 $A = \{x \mid \exists i [2\langle x, i \rangle \in C]\} \text{ and } B = \{x \mid \exists i [2\langle x, i \rangle + 1 \in D]\}.$

 (Δ_2^0) +(P3) imply (C): C = D

(P4) implies (K): $\{C, D\}$ is a \mathcal{K} -pair.

(P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}.$

- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i [C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.

 $(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].$

 (Δ_2^0) +(P1) imply (E):

 $A = \{x \mid \exists i [2\langle x, i \rangle \in C]\} \text{ and } B = \{x \mid \exists i [2\langle x, i \rangle + 1 \in D]\}.$

 (Δ_2^0) +(P3) imply (C): $\overline{C} = D$

(P4) implies (K): $\{C, D\}$ is a \mathcal{K} -pair.

(P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}.$

- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i[C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.

```
(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].
```

 (Δ_2^0) +(P1) imply (E):

 $A = \{x \mid \exists i [2\langle x, i \rangle \in C]\} \text{ and } B = \{x \mid \exists i [2\langle x, i \rangle + 1 \in D]\}.$

 (Δ_2^0) +(P3) imply (C): $\overline{C} = D$

(P4) implies (K): $\{C, D\}$ is a \mathcal{K} -pair.

- (P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}$.
- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i[C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.
- $(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].$

Note that (P1) + (P4) ensure (P2).

If $A_i \not\subseteq A$ then by (P1) $C_i \not\subseteq C$.

By (P4) we have $D_i \subseteq D$.

- (P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}$.
- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i[C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.
- $(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].$

Note that (P1) + (P4) ensure (P2).

If $A_i \not\subseteq A$ then by (P1) $C_i \not\subseteq C$.

```
By (P4) we have D_i \subseteq D.
```

- (P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}$.
- (P2) $\forall i[A_i \not\subseteq A \Rightarrow D_i \subseteq D]$ and $\forall i[B_i \not\subseteq B \Rightarrow C_i \subseteq C]$.
- (P3) $\forall i [C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.
- $(\mathsf{P4}) \ \forall i [C_i \subseteq C \lor D_i \subseteq D].$

Note that (P1) + (P4) ensure (P2).

- If $A_i \not\subseteq A$ then by (P1) $C_i \not\subseteq C$.
- By (P4) we have $D_i \subseteq D$.

Main Property

$(P4):\forall i[C_i \subseteq C \lor D_i \subseteq D]$

Suppose that $x \notin C$, but $x \in C_i$.

Then $C_i \nsubseteq C$, and we must ensure that for every $y \in D_i$ ultimately $y \in D$.

If $x \in C_i$ and $y \in D_i$, we say that x is **connected** to y at stage *i*.

(MP) If x is connected to y at stage i then for all $j \ge i$

 $x \in D_j \Longrightarrow y \in D_j$ and $y \in C_j \Longrightarrow x \in C_j$.

-

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Property

$(P4):\forall i[C_i \subseteq C \lor D_i \subseteq D]$

Suppose that $x \notin C$, but $x \in C_i$.

Then $C_i \nsubseteq C$, and we must ensure that for every $y \in D_i$ ultimately $y \in D$.

If $x \in C_i$ and $y \in D_i$, we say that x is **connected** to y at stage *i*.

(MP) If x is connected to y at stage i then for all $j \ge i$

 $x \in D_j \Longrightarrow y \in D_j$ and $y \in C_j \Longrightarrow x \in C_j$.

-

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Main Property

$(P4):\forall i[C_i \subseteq C \lor D_i \subseteq D]$

Suppose that $x \notin C$, but $x \in C_i$.

Then $C_i \nsubseteq C$, and we must ensure that for every $y \in D_i$ ultimately $y \in D$.

If $x \in C_i$ and $y \in D_i$, we say that x is **connected** to y at stage i.

(MP) If x is connected to y at stage i then for all $j \ge i$

 $x \in D_j \Longrightarrow y \in D_j$ and $y \in C_j \Longrightarrow x \in C_j$.

-

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Property

$(P4):\forall i[C_i \subseteq C \lor D_i \subseteq D]$

Suppose that $x \notin C$, but $x \in C_i$.

Then $C_i \nsubseteq C$, and we must ensure that for every $y \in D_i$ ultimately $y \in D$.

If $x \in C_i$ and $y \in D_i$, we say that x is **connected** to y at stage *i*.

(MP) If x is connected to y at stage i then for all $j \ge i$

 $x \in D_j \Longrightarrow y \in D_j$ and $y \in C_j \Longrightarrow x \in C_j$.

Main Property

$(P4):\forall i[C_i \subseteq C \lor D_i \subseteq D]$

Suppose that $x \notin C$, but $x \in C_i$.

Then $C_i \nsubseteq C$, and we must ensure that for every $y \in D_i$ ultimately $y \in D$.

If $x \in C_i$ and $y \in D_i$, we say that x is **connected** to y at stage *i*.

(MP) If x is connected to y at stage i then for all $j \ge i$

$$x \in D_j \Longrightarrow y \in D_j$$
 and $y \in C_j \Longrightarrow x \in C_j$.

-

The construction

- (P1) $A_i = \{x \mid \exists j [2\langle x, j \rangle \in C_i]\}$ and $B_i = \{x \mid \exists j [2\langle x, j \rangle + 1 \in D_i]\}.$
- (P3) $\forall i[C_i \cap D_i = \emptyset]$ and every natural number is eventually enumerated in one of the sets.
- (MP) If x is connected to y at stage i then for all $j \ge i$

$$x \in D_j \Longrightarrow y \in D_j$$
 and $y \in C_j \Longrightarrow x \in C_j$.

イロト イポト イラト イラト

Local definability of the total degrees

Denote by $\mathcal{MK}(\mathbf{x}, \mathbf{y})$ the first order formula that defines in \mathcal{G}_e the set of degrees of maximal \mathcal{K} -pairs.

Corollary

The class of total degrees is first order definable in \mathcal{G}_e by the formula:

 $\mathcal{TOT}(\mathbf{x}) \rightleftharpoons \mathbf{x} = \mathbf{0}_e \ \lor \ \exists \mathbf{c} \exists \mathbf{d} [\mathcal{MK}(\mathbf{c}, \mathbf{d}) \& \mathbf{x} = \mathbf{c} \lor \mathbf{d}.]$

Local definability of the total degrees

Denote by $\mathcal{MK}(\mathbf{x}, \mathbf{y})$ the first order formula that defines in \mathcal{G}_e the set of degrees of maximal \mathcal{K} -pairs.

Corollary

The class of total degrees is first order definable in \mathcal{G}_e by the formula:

 $\mathcal{TOT}(\mathbf{x}) \rightleftharpoons \mathbf{x} = \mathbf{0}_{e} \lor \exists \mathbf{c} \exists \mathbf{d} [\mathcal{MK}(\mathbf{c}, \mathbf{d}) \& \mathbf{x} = \mathbf{c} \lor \mathbf{d}.]$

< ロ > < 同 > < 回 > < 回 >

The fourth example of a definable class of degrees in the local structure: The total degrees.

Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly Σ_2^0 enumeration degree.

Corollary

The class of low total e-degrees is first order definable in \mathcal{G}_e by the formula:

 $\mathcal{TL}(\mathbf{x}) \rightleftharpoons \mathcal{TOT}(\mathbf{x}) \& \forall \mathbf{c} < \mathbf{x}[\neg \mathcal{D}P\Sigma_2^0(\mathbf{c})]$

< ロ > < 同 > < 回 > < 回 >

Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly Σ_2^0 enumeration degree.

Corollary

The class of low total e-degrees is first order definable in \mathcal{G}_e by the formula:

$$\mathcal{TL}(\mathbf{x})
ightarrow \mathcal{TOT}(\mathbf{x}) \ \& \ \forall \mathbf{c} \leq \mathbf{x}[\neg \mathcal{DP}\Sigma_2^0(\mathbf{c})]$$

3

< ロ > < 同 > < 回 > < 回 >

Theorem (Soskov)

For every enumeration degree x there is a total enumeration degree y, such that x < y and x' = y'.

Thus a Σ_2^0 enumeration degree is low if and only if there is a low total Σ_2^0 enumeration degree above it.

Theorem

The class of low e-degrees is first order definable in \mathcal{G}_e by the formula:

$$\mathcal{LOW}(\mathbf{x}) \rightleftharpoons \exists \mathbf{y} [\mathbf{x} \leq \mathbf{y} \ \& \ \mathcal{TL}(\mathbf{y})]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Soskov)

For every enumeration degree x there is a total enumeration degree y, such that x < y and x' = y'.

Thus a Σ_2^0 enumeration degree is low if and only if there is a low total Σ_2^0 enumeration degree above it.

Theorem

The class of low e-degrees is first order definable in \mathcal{G}_e by the formula:

$$\mathcal{LOW}(\mathbf{x}) \rightleftharpoons \exists \mathbf{y} [\mathbf{x} \leq \mathbf{y} \& \mathcal{TL}(\mathbf{y})]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The fifth example of a definable class of degrees in the local structure: The low degrees.

★週 ▶ ★ 国 ▶ ★ 国 ▶

Thank you!

æ

イロト イヨト イヨト イヨト