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Preliminaries: The enumeration degrees

Definition
A ≤e B iff there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.
de(A) = {B | A ≤e B & B ≤e A}
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

de(A)′ = de(A′), where A′ = LA ⊕ LA and LA = {x | x ∈Wx (A)}.
De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation
and least element.
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The total degrees

Proposition

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as T OT = ι(DT ).
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The total degrees above 0′e

Theorem (Kalimullin)
There is a first order formula J in the language of a partial order, such
that

De |= J (a,b)⇔ b = a′.

Theorem
1 If b = a′ the b is total.
2 Every total degree b ≥ 0′

e is the jump of some a < b.

Corollary
The total degrees above 0′

e are first order definable in De.
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0′
e

0e

The local structure of the enumeration degrees Ge = De(≤ 0′
e)

consists of all degrees below 0′
e.
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0′
e

0e

Σ2 ∆2 Π1

With respect to the arithmetic hierarchy the degrees can be partitioned
into three classes.
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0′
e

0e

Σ2 ∆2 Π1

T OT

The total degrees below 0′
e are images of the Turing degrees below 0′.

Every total degree is ∆0
2, but not all ∆0

2 are total.
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0′
e

0e

Σ2 ∆2 Π1

T OT

Low

A degree is low if its jump is as low as possible: 0′
e. Every low degree

is ∆0
2.
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0′
e

0e

Σ2 ∆2 Π1

T OT

Low

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The upwards properly Σ0
2 have no incomplete ∆0

2 above them. The
downwards properly Σ0

2 have no nonzero ∆0
2 below them.
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K-pairs

Iskander Kalimullin: Definability of the jump operator in the
enumeration degrees
Journal of Mathematical Logic (2003)

Definition
Let A and B be a pair sets of natural numbers. The pair (A,B) is a
K-pair (e-ideal) if there exists a c.e. set W , such that A× B ⊆W and
A× B ⊆W .
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K-pairs: A trivial example

Example
Let V be a c.e set. Then (V ,A) is a K-pair for any set of natural
numbers A.

Let W = V × N. Then V × A ⊆W and V × A ⊆W .

We will only be interested in non-trivial K-pairs.
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K-pairs: A more interesting example

Definition (Jockusch)
A set of natural numbers A is semi-recursive if there is a computable
function sA such that for every pair of natural numbers (x , y):

1 sA(x , y) ∈ {x , y}.
2 If x ∈ A or y ∈ A then sA(x , y) ∈ A.

Example

Let A be a semi-recursive set. Then (A,A) is a K-pair.

Theorem (Jockusch)
For every noncomputable set B there is a semi recursive set A ≡T B
such that both A and A are not c.e.
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An order theoretic characterization of K-pairs

Kalimullin has proved that the property of being a K-pair is degree
theoretic and first order definable in De.

Theorem (Kalimullin)
(A,B) is a K-pair if and only if the degrees a = de(A) and b = de(B)
have the following property:

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)
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Properties of K-pairs in the local structure

1 The enumeration degrees of the elements of a K pair are quasi
minimal, i.e. the only total degree bounded by either of them is 0e.

2 The enumeration degrees of the elements of a K pair are low.
3 Every ∆0

2 degree bounds a K-pair.
4 The class of the enumeration degrees of sets that form a K-pair

with a fixed set A is an ideal.
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0′
e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The K-pairs in the local structure.
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Local definability of K-pairs

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)

Is it enough to require that this formula is satisfied by all Σ0
2 e-degrees?

Could there be a fake K-pair {a,b}, such that:

Ge |= K(a,b) & ¬(De |= K(a,b))?

Theorem
There is a first order formula LK, such that for any Σ0

2 sets A and B,
{A,B} is a non-trivial K-pair if and only if Ge |= LK(de(A),de(B)).
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Cupping properties

Definition
A Σ0

2 enumeration degree a is called cuppable if there is an incomplete
Σ0

2 e-degree b, such that a ∨ b = 0′
e.

If furthermore b is low, then a will be called low-cuppable.

Theorem
If u and v are Σ0

2 enumeration degrees such that u ∨ v = 0′
e then u is

low-cuppable or v is low-cuppable.

Theorem
For every nonzero ∆0

2 degree b there is a nontrivial K-pair, (c,d), such
that

b ∨ c = c ∨ d = 0′
e.
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0′
e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The first example of a definable class of degrees in the local structure:
K-pairs.
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An easy consequence

If a bounds a nonzero ∆0
2 degree then it bounds a nontrivial K-pair.

If a is a downwards properly Σ0
2 degree, then it bounds no K-pair.

Theorem
The class of downwards properly Σ0

2 is first order definable in Ge by the
formula:

DPΣ0
2(x) 
 ∀b,c[(b ≤ x & c ≤ x)⇒ ¬LK(b,c)].
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0′
e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The second example of a definable class of degrees in the local
structure: Downwards properly Σ0

2 degrees.
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The upwards properly Σ0
2 degrees

Definition
x is upwards properly Σ0

2 every y ∈ [x,0′
e) is properly Σ0

2.

Theorem (Jockusch)
For every noncomputable set B there is a semi recursive set A ≡T B
such that both A and A are not c.e.

Corollary
Every nonzero total enumeration degree can be represented as the
least upper bound of a nontrivial K-pair.

Mariya I. Soskova (Faculty of Mathematics and Informatics Sofia University )Total degrees joint work with H. Ganchev 21 / 39



The upwards properly Σ0
2 degrees

Definition
x is upwards properly Σ0

2 every y ∈ [x,0′
e) is properly Σ0

2.

Theorem (Jockusch)
For every noncomputable set B there is a semi recursive set A ≡T B
such that both A and A are not c.e.

Corollary
Every nonzero total enumeration degree can be represented as the
least upper bound of a nontrivial K-pair.

Mariya I. Soskova (Faculty of Mathematics and Informatics Sofia University )Total degrees joint work with H. Ganchev 21 / 39



The upwards properly Σ0
2 degrees

Definition
x is upwards properly Σ0

2 every y ∈ [x,0′
e) is properly Σ0

2.

Theorem (Jockusch)
For every noncomputable set B there is a semi recursive set A ≡T B
such that both A and A are not c.e.

Corollary
Every nonzero total enumeration degree can be represented as the
least upper bound of a nontrivial K-pair.

Mariya I. Soskova (Faculty of Mathematics and Informatics Sofia University )Total degrees joint work with H. Ganchev 21 / 39



The upwards properly Σ0
2 degrees

Theorem (Arslanov, Cooper, Kalimullin)

For every ∆0
2 enumeration degree a < 0′

e there is a total enumeration
degree b such that a ≤ b < 0′

e.

So a degree a is upwards properly Σ0
2 if and only if no element above it

other than 0′
e can be represented as the least upper bound of a

nontrivial K-pair.

Theorem
The class of upwards properly Σ0

2 is first order definable in Ge by the
formula :

UPΣ0
2(x) 
 ∀c,d(LK(c,d) & x ≤ c ∨ d⇒ c ∨ d = 0′

e).
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0′
e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The third example of a definable class of degrees in the local structure:
Upwards properly Σ0

2 degrees.
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Semi-recursive sets revisited

Theorem (Kalimullin )

If A and B form a nontrivial ∆0
2 K-pair then A ≤e B and B ≤e A.

Consider a nontrivial K-pair of a semi recursive set and its
complement: {A,A}.
Assume that there is a K-pair {C,D} such that A <e C and A <e D.
By the ideal property A forms a K-pair with D.
Hence D ≤e A.
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Maximal K-pairs

Definition
We say that {A,B} is a maximal K-pair if for every K-pair {C,D}, such
that A ≤e C and B ≤e D, we have A ≡e C and B ≡e D.

Corollary
Every nonzero total set is enumeration equivalent to the join of a
maximal K-pair.

Goal
Prove that the join of every maximal K-pair is a total degree.
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Extending K-pairs to maximal

Theorem

For every nontrivial ∆0
2 K-pair {A,B} there is a K-pair {C,C}, such

that A ≤e C and B ≤e C.

Proof Sketch: Fix a nontrivial K-pair {A,B}. We construct sets C and
D satisfying following requirements:
(E) A ≤e C, B ≤e D;

(∆0
2) C and D are ∆0

2;

(C) C = D;
(K) {C,D} is a K-pair.
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Extending K-pairs to maximal

Lemma (Kalimullin)

A pair of non-c.e. ∆0
2 sets A,B is a K-pair if and only if there are ∆0

2
approximations {Ai}i<ω to A and {Bi}i<ω to B, such that:

∀i(Ai ⊆ A ∨ Bi ⊆ B).

Let {Ai}i<ω and {Bi}i<ω be K-pair approximations to A and B. We
construct Σ0

2 approximations to sets C and D.
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Extending K-pairs to maximal

(P1) Ai = {x | ∃j[2〈x , j〉 ∈ Ci ]} and Bi = {x | ∃j[2〈x , j〉+ 1 ∈ Di ]}.
(P2) ∀i[Ai 6⊆ A⇒ Di ⊆ D] and ∀i[Bi 6⊆ B ⇒ Ci ⊆ C].
(P3) ∀i[Ci ∩Di = ∅] and every natural number is eventually enumerated

in one of the sets.
(P4) ∀i[Ci ⊆ C ∨ Di ⊆ D].

(P2) implies that C and D are ∆0
2.

Assume that there is an x /∈ D and infinitely many stages i such that
x ∈ Di .

By (P2) at all such stages Ai ⊆ A.

Hence we have a c.e. approximation to the set A.
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(P3) ∀i[Ci ∩Di = ∅] and every natural number is eventually enumerated

in one of the sets.
(P4) ∀i[Ci ⊆ C ∨ Di ⊆ D].

(∆0
2)+(P1) imply (E):

A = {x | ∃i[2〈x , i〉 ∈ C]} and B = {x | ∃i[2〈x , i〉+ 1 ∈ D]}.

(∆0
2)+(P3) imply (C): C = D

(P4) implies (K): {C,D} is a K-pair.
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(P3) ∀i[Ci ∩Di = ∅] and every natural number is eventually enumerated

in one of the sets.
(P4) ∀i[Ci ⊆ C ∨ Di ⊆ D].

Note that (P1) + (P4) ensure (P2).

If Ai * A then by (P1) Ci * C.

By (P4) we have Di ⊆ D.
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Main Property

(P4) : ∀i[Ci ⊆ C ∨ Di ⊆ D]

Suppose that x 6∈ C, but x ∈ Ci .

Then Ci * C, and we must ensure that for every y ∈ Di ultimately
y ∈ D.

If x ∈ Ci and y ∈ Di , we say that x is connected to y at stage i .

(MP) If x is connected to y at stage i then for all j ≥ i

x ∈ Dj =⇒ y ∈ Dj and y ∈ Cj =⇒ x ∈ Cj .
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The construction

(P1) Ai = {x | ∃j[2〈x , j〉 ∈ Ci ]} and Bi = {x | ∃j[2〈x , j〉+ 1 ∈ Di ]}.
(P3) ∀i[Ci ∩Di = ∅] and every natural number is eventually enumerated

in one of the sets.
(MP) If x is connected to y at stage i then for all j ≥ i

x ∈ Dj =⇒ y ∈ Dj and y ∈ Cj =⇒ x ∈ Cj .
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Local definability of the total degrees

Denote byMK(x,y) the first order formula that defines in Ge the set of
degrees of maximal K-pairs.

Corollary
The class of total degrees is first order definable in Ge by the formula:

T OT (x) 
 x = 0e ∨ ∃c∃d[MK(c,d) & x = c ∨ d.]
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0′
e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The fourth example of a definable class of degrees in the local
structure: The total degrees.
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One final consequence

Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly Σ0
2

enumeration degree.

Corollary
The class of low total e-degrees is first order definable in Ge by the
formula:

T L(x) 
 T OT (x) & ∀c ≤ x[¬DPΣ0
2(c)]
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One final consequence

Theorem (Soskov)
For every enumeration degree x there is a total enumeration degree y,
such that x < y and x′ = y′.

Thus a Σ0
2 enumeration degree is low if and only if there is a low total

Σ0
2 enumeration degree above it.

Theorem
The class of low e-degrees is first order definable in Ge by the formula:

LOW(x) 
 ∃y[x ≤ y & T L(y)]
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0′
e

0e

Σ2 ∆2 Π1

T OT

LowK K

Up-Σ2

Dn-Σ2

Up-Σ2

Dn-Σ2

The fifth example of a definable class of degrees in the local structure:
The low degrees.
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The end

Thank you!
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