Embedding Partial Orderings in Degree **Structures**

Mariya I. Soskova and Ivan N. Soskov

Computability seminar, Leeds 2009

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

A very basic result

Theorem (Mostowski 1938)

There exists a computable partial ordering $\mathcal{R} = \langle \mathbb{N}, \leq \rangle$ *in which every countable partial ordering can be embedded.*

Proof.

Let $\mathcal{R} = \langle \mathbb{Q}^2, \leq \rangle$, where $\langle a, b \rangle \leq \langle c, d \rangle$ if and only if $a \leq c$ and *b* ≤ *d*.

Conclusion: An embedding of this computable partial ordering gives automatically an embedding of every countable partial ordering.

KORK ERKER ADAM ADA

Independent sequences of sets

Definition (Kleene, Post 1954)

A sequence of sets $\{A_i\}_{i\leq w}$ is called computably independent if for every *i*:

$$
A_i \nleq \tau \bigoplus_{j \neq i} A_j.
$$

Theorem (Kleene, Post 1954)

There is a computably independent sequence of sets. This sequence can be constructed uniformly below 0'.

Theorem (Muchnik 1958)

There is a computably independent sequence of c.e. sets.

Putting the two together

Theorem (Sacks 1963)

The existence of a computably independent sequence of sets gives an embedding of any computable partial ordering in the Turing degrees.

Proof.

Let $\mathcal{R} = \langle \mathbb{N}, \prec \rangle$ be a computable partial ordering and $\{A_i\}_{i \leq \omega}$ be a computably independent sequence of sets. The embedding is:

$$
\kappa(i)=d_T(\bigoplus_{j\preceq i}A_i).
$$

KOD KARD KED KED BE YOUR

The final step..

Corollary

Every countable partial ordering can be embedded

- 1. Kleene and Post: in the Turing degrees, even in the Δ^0_2 *Turing degrees.*
- 2. *Muchnik: in the c.e. Turing degrees.*
- 3. *Robinson 1971: densely in the c.e. Turing degrees, i.e. in any nonempty interval of c.e. Turing degrees.*

KORKARA KERKER DAGA

The enumeration degrees

- \blacktriangleright The e-degrees as a proper extension of the Turing degrees, inherit this complexity.
- \triangleright Case 1971: Any countable partial ordering can be embedded in the e-degrees below the degree of any generic function.
- \triangleright Copestake 1988: below any 1-generic enumeration degree.
- ► Cooper and McEvoy 1985: below any nonzero Δ^0_2 e-degree.
- Bianchini 2000: densely in the Σ^0_2 enumeration degrees.

Method: *e*-independent sequences of sets.

KORK ERKEY EL POLO

The first observation

Theorem

Let **b** < **a** *be enumeration degrees such that* **a** *contains a member with a good approximation. Then every countable partial ordering can be embedded in the interval* [**b**, **a**]*.*

Idea: Construct an e-independent sequence of sets above **b** and uniformly below **a**.

KORK ERKER ADAM ADA

Techniques: Good approximations combined with a construction inspired by Cooper's density construction.

The general picture

(ロ)→(個)→(理)→(理)→ È 299

The ω e-degrees: Basic definitions

Let S be the set of all sequences of sets of natural numbers.

Definition

Let $A = \{A_n\}_{n \leq \omega}$ be a sequence of sets natural numbers and V be an e-operator. The result of applying the enumeration operator V to the sequence A, denoted by $V(A)$, is the sequence $\{V[n](A_n)\}_{n\leq\omega}$. We say that $V(A)$ is enumeration reducible $(_e)$ to the sequence A.

LED KAP KIED KIED IE VOOR

So $A \leq_{e} B$ is a combination of two notions:

- ► Enumeration reducibility: for every *n* we have that *Aⁿ* ≤*^e Bⁿ* via, say, Γ*n*.
- **In** Uniformity: the sequence $\{\Gamma_n\}_{n\leq w}$ is uniform.

Basic definitions

With every member $A \in S$ we connect a *jump sequence* $P(A)$.

Definition

The *jump sequence* of the sequence A, denoted by $P(A)$ is the sequence ${P_n(\mathcal{A})}_{n<\omega}$ defined inductively as follows:

$$
\blacktriangleright P_0(\mathcal{A}) = A_0.
$$

► $P_{n+1}(\mathcal{A}) = A_{n+1} \oplus P'_n(\mathcal{A})$, where $P'_n(\mathcal{A})$ denotes the enumeration jump of the set $P_n(A)$.

The jump sequence $P(A)$ transforms a sequence A into a monotone sequence of sets of natural numbers with respect to ≤*e*. Every member of the jump sequence contains full information on previous members.

The ω -enumeration degrees

Let $A, B \in \mathcal{S}$.

Definition

- \triangleright *ω*-enumeration reducibility: *A* \leq _ω *B*, if *A* \leq _{*e*} *P*(*B*).
- \triangleright w-enumeration equivalence: $A \equiv_{\omega} B$ if $A \leq_{\omega} B$ and $\mathcal{B} \leq_{\omega} \mathcal{A}$.
- \triangleright *ω*-enumeration degrees: $d_{\omega}(A) = \{ \mathcal{B} \mid A \equiv_{\omega} \mathcal{B} \}.$
- \triangleright The structure of the ω -enumeration degrees: $\mathcal{D}_{\omega} = \langle \{d_{\omega}(\mathcal{A}) \mid \mathcal{A} \in \mathcal{S} \}, \leq_{\omega} \rangle$, where $d_{\omega}(\mathcal{A}) \leq_{\omega} d_{\omega}(\mathcal{B})$ if $\mathcal{A} \leq_{\omega} \mathcal{B}$.
- **If** The least ω -enumeration degree: $\mathbf{0}_{\omega} = d_{\omega}((\emptyset, \emptyset, \emptyset, \ldots))$ or equivalently $d_{\omega}((\emptyset, \emptyset', \emptyset'', \dots)).$

KOD KARD KED KED BE YOUR

The ω -enumeration degrees

Let $A, B \in \mathcal{S}$.

Definition

- \triangleright ω -enumeration reducibility: $\mathcal{A} \leq_{\omega} \mathcal{B}$, if $\mathcal{A} \leq_{e} P(\mathcal{B})$.
- \triangleright ω -enumeration equivalence: $\mathcal{A} \equiv_{\omega} \mathcal{B}$ if $\mathcal{A} \leq_{\omega} \mathcal{B}$ and $\mathcal{B} \leq_{\omega} \mathcal{A}$.
- \triangleright *ω*-enumeration degrees: $d_{\omega}(A) = \{ \mathcal{B} \mid A \equiv_{\omega} \mathcal{B} \}.$
- \blacktriangleright The structure of the ω -enumeration degrees: $\mathcal{D}_{\omega} = \langle \{d_{\omega}(\mathcal{A}) \mid \mathcal{A} \in \mathcal{S}\}, \leq_{\omega} \rangle$, where $d_{\omega}(\mathcal{A}) \leq_{\omega} d_{\omega}(\mathcal{B})$ if $\mathcal{A} \leq_{\omega} \mathcal{B}$.
- **I** The least ω -enumeration degree: $\mathbf{0}_{\omega} = d_{\omega}((\emptyset, \emptyset, \emptyset, \dots))$ or equivalently $d_\omega((\emptyset, \emptyset', \emptyset'', \dots)).$

KORK ERKER ADAM ADA

\mathcal{D}_{ω} as an upper semilattice with jump operation

► The join and least upper bound: $A \oplus B = \{A_n \oplus B_n\}_{n \leq \omega}$. $d_{\omega}(\mathcal{A} \oplus \mathcal{B}) = d_{\omega}(\mathcal{A}) \vee d_{\omega}(\mathcal{B}).$

KORK ERKER ADAM ADA

Fig. 7 The jump operation: $d_{\omega}(\mathcal{A})' = d_{\omega}(\mathcal{A}')$, where $\mathcal{A}' = \{P_{n+1}(\mathcal{A})\}_{n \leq \omega}.$

The e-degrees as a substructure

 $\langle \mathcal{D}_{\bm{e}}, \leq_{\bm{e}}, \vee, ' \rangle$ can be embedded in $\langle \mathcal{D}_{\omega}, \leq_{\omega}, \vee, ' \rangle$ via the embedding κ defined as follows:

$$
\kappa(d_e(A))=d_\omega((A, \emptyset, \emptyset, \dots))=d_\omega((A, A', A'', \dots)).
$$

Theorem (Soskov, Ganchev)

I The structure $D_1 = \kappa(D_e)$ is first order definable in D_ω .

KORKARA KERKER DAGA

^I *The structures* D*^e and* D^ω *with jump operation have isomorphic automorphism groups.*

The embeddability question

Consider the structure \mathcal{G}_{ω} consisting of all degrees reducible to $0_\omega' = d_\omega((\emptyset',\emptyset'',\emptyset''',\dots))$ also called the Σ^0_2 ω -enumeration degrees.

Theorem (Soskov)

The structure G^ω *is dense.*

Theorem

Let **b** <^ω **a** ≤^ω **0** 0 ω *. Every countable partial ordering can be embedded in the interval* [**b**, **a**]*.*

KORK ERKER ADAM ADA

The independent sequence method

Definition

Let $\{A_i\}_{i\leq w}$ be a sequence of sequences of sets

- ► For every computable set C set $\bigoplus_{i \in C} A_i = (\bigoplus_{i \in C} A_{0,i}, \bigoplus_{i \in C} A_{1,i}, \bigoplus_{i \in C} A_{2,i}, \dots).$
- \blacktriangleright The sequence is ω -independent if for every *i* we have $\mathcal{A}_i \nleq \omega \bigoplus_{j \neq i} \mathcal{A}_j$

Goal: Construct an ω -independent sequence of sequences of sets above **b** and uniformly below **a**.

KORK ERKER ADAM ADA

Good approximations to sequences

Definition (Soskov)

Let $\{A_n^{\{s\}}\}_{n,s<\omega}$ be a uniformly computable matrix of finite sets. We say that $\{A_n^{\{s\}}\}_{s<\omega}$ is a *good approximation* to the sequence $\mathcal{A} = \{A_n\}_{n \leq \omega}$ if: G 0: $(\forall s, k)[A_k^{\{s\}} \subseteq A_k \Rightarrow (\forall m \leq k)[A_m^{\{s\}} \subseteq A_m]]$; G 1: $(\forall n, k)(\exists s)(\forall m \leq k)[$ $A_m \upharpoonright n \subseteq A_m^{\{s\}} \subseteq A_m$] and *G*2: $(\forall n, k)(\exists s)(\forall t > s)[A_k^{\{t\}} \subseteq A_k \Rightarrow (\forall m \le k)[A_m \upharpoonright n \subseteq A_m^{\{t\}}]].$ Or more intuitively:

 \triangleright We have a good approximation to every member of the sequence.

KORK ERKER ADAM ADA

If $m \leq k$ then every *k*-good stage is *m*-good.

Proof idea

Theorem (Soskov)

Every Σ 0 2 ω*-enumeration degree contains a member* A *such that* $A \equiv_e P(A)$ *and* A *has a good approximation.* So fix $A = (A_0, A_1, ...)$ in **a** with the properties listed in the theorem and $B = (B_0, B_1, \dots)$ in **b**. Now $\mathcal{B} \leq \mathcal{A}$ can follow by two ways:

- ▶ Non-enumeration reducibility: There is an *n* such that $B_n \leq P$ *A_n***.**
- ▶ Non-uniformity: For every *n* we have $B_n \equiv_e A_n$ but not uniformly in *n*.

KORK ERKER ADAM ADA

Let *n* be such that $B_n <_{e} A_n$.

 \triangleright By first theorem there is an independent sequence of sets ${C_i}_{i \leq \omega}$ above B_n and uniformly below A_n .

KOD KARD KED KED BE YOUR

- ▶ Define $\{C_i\}_{i\leq w}$ by $C_i = (B_0, B_1, \ldots, B_{n-1}, C_i, B_{n+1}, \ldots)$.
- \blacktriangleright { C_i }_{*i<ω*} is an *ω*-independent.
- **For every** *i* we have $B \lt_{\omega} C_i \lt_{\omega} A$.

Let *n* be such that $B_n <_{e} A_n$.

 \triangleright By first theorem there is an independent sequence of sets ${C_i}_{i\leq w}$ above B_n and uniformly below A_n .

KORKARA KERKER DAGA

- ▶ Define $\{C_i\}_{i\leq w}$ by $C_i = (B_0, B_1, \ldots, B_{n-1}, C_i, B_{n+1}, \ldots)$.
- \blacktriangleright {C_i}_{i $\lt \omega$} is an ω -independent.
- **For every** *i* we have $B \lt_{\omega} C_i \lt_{\omega} A$.

Let *n* be such that $B_n <_{e} A_n$.

 \triangleright By first theorem there is an independent sequence of sets ${C_i}_{i\leq w}$ above B_n and uniformly below A_n .

KORKARA KERKER DAGA

▶ Define $\{C_i\}_{i\leq w}$ by $C_i = (B_0, B_1, \ldots, B_{n-1}, C_i, B_{n+1}, \ldots)$.

 \blacktriangleright {C_i}_{i $\lt \omega$} is an ω -independent.

For every *i* we have $B \lt_{\omega} C_i \lt_{\omega} A$.

Let *n* be such that $B_n <_{e} A_n$.

 \triangleright By first theorem there is an independent sequence of sets ${C_i}_{i\leq w}$ above B_n and uniformly below A_n .

KORKARA KERKER DAGA

- ▶ Define $\{C_i\}_{i\leq w}$ by $C_i = (B_0, B_1, \ldots, B_{n-1}, C_i, B_{n+1}, \ldots)$.
- \blacktriangleright $\{C_i\}_{i\leq\omega}$ is an ω -independent.
- **For every** *i* we have $B \lt_{\omega} C_i \lt_{\omega} A$.

Let *n* be such that $B_n \leq A_n$.

 \triangleright By first theorem there is an independent sequence of sets ${C_i}_{i\leq w}$ above B_n and uniformly below A_n .

KORKARA KERKER DAGA

- ▶ Define $\{C_i\}_{i\leq w}$ by $C_i = (B_0, B_1, \ldots, B_{n-1}, C_i, B_{n+1}, \ldots)$.
- \blacktriangleright $\{C_i\}_{i\leq\omega}$ is an ω -independent.
- For every *i* we have $B \lt_{\omega} C_i \lt_{\omega} A$.

Difficult case

For every *n* $A_n \equiv_e B_n$.

Idea: Direct construction building on ideas from first result.

Difficulties: Approximate sets of the form $P(V(A))$, where *V* is the constructed e-operator.

KORK ERKER ADAM ADA

Techniques: Good approximations for sequences of sets. Length of agreement function for sequences of sets. Fixed point theorem (Recursion theorem).

The c.e. degrees modulo iterated jump

Definition (Jockusch, Lerman, Soare and Solovay)

Let **a** and **b** be c.e. Turing degrees. **a** ∼[∞] **b** iff there exists a natural number *n* such that $a^n = b^n$.

- **Induced degree structure** $\mathcal{R}/\sim_{\infty}$ **with** $[a]_{\sim_{\infty}} \leq [b]_{\sim_{\infty}}$ **if and** only if there exists a natural number n such that $\mathbf{a}^n \leq_{\mathcal{T}} \mathbf{b}^n$.
- \blacktriangleright Least element $L = \bigcup_{n<\omega} L_n$.
- \blacktriangleright Greatest element $H = \bigcup_{n<\omega} H_n$.
- \blacktriangleright R/ \sim_{∞} is a dense structure.
- **EXECUTE:** Lempp : There is a splitting of the highest ∞ -degree and a minimal pair of ∞ -degrees.

KORKAR KERKER E VOOR

Starting with other classes of degree

 \blacktriangleright *G*_{*T*} / ∼_∞: the Δ⁰₂ Turing degrees modulo iterated jump. Shoenfield, Sacks: The range of the jump operator restricted to the c.e. Turing degrees coincides with the range of the jump operator restricted to the Δ^0_2 Turing degrees. It is namely the set of all Turing degrees c.e. in and above $0'$. Hence:

$$
{\cal G}_{\cal T}/\sim_\infty \simeq {\cal R}/\sim_\infty.
$$

► \mathcal{G}_{e}/\sim _∞: the Σ₂^o e-degrees modulo iterated jump. McEvoy: The range of the enumeration jump operator restricted to the Σ^0_2 -enumeration degrees coincides with the range of the enumeration jump operator restricted to the Π^0_1 enumeration degrees. Hence:

$$
\mathcal{R}/\sim_\infty \simeq (\Pi^0_1 \text{ e-degrees})/\sim_\infty \simeq \mathcal{G}_e/\sim_\infty.
$$

The ω -enumeration degrees modulo iterated jump

Consider $\mathcal{G}_{\omega}/\sim_{\infty}$.

$$
\quad \blacktriangleright \ \mathcal{R}/\sim_\infty \text{embeds in } \mathcal{G}_\omega/\sim_\infty.
$$

$$
\mathcal{R}\subseteq \mathcal{G}_{\mathcal{T}}\hookrightarrow \iota(\mathcal{G}_{\mathcal{T}})=\mathit{Tot}\subseteq \mathcal{G}_{\bm{e}}\hookrightarrow \kappa(\mathcal{G}_{\bm{e}})=\mathcal{D}_1\subseteq \mathcal{G}_{\omega}
$$

 \blacktriangleright A basic property:

Lemma

Let **a** and **b** be two Σ^0_2 w-enumeration degrees.

- 1. *If* $\mathbf{a} \leq_\omega \mathbf{b}$ *then* $[\mathbf{a}]_{\sim_\infty} \leq [\mathbf{b}]_{\sim_\infty}$.
- 2. *If* [**a**][∼][∞] ≤ [**b**][∼][∞] *then there is a representative* **c** ∈ [**a**][∼][∞] *such that* $c <_{\omega} b$ *.*

KORK ERKER ADAM ADA

The almost degrees

Definition

Let $A = \{A_n\}_{n \leq w}$ be a sequence of sets of natural numbers. We shall say that the sequence $B = {B_n}_{n \leq \omega}$ is *almost-A* if for every *n* we have that $P_n(\mathcal{A}) \equiv_e P_n(\mathcal{B})$.

If A is almost-B then we shall say that $d_{\omega}(A)$ is almost- $d_{\omega}(B)$.

Lemma

Let $a \leq 0'$ _ω be an ω -enumeration degree.

- 1. If **b** is almost-**a** and $A \in \mathbf{a}$ then every $B \in \mathbf{b}$ is almost-A.
- 2. *The class of almost-***a** *degrees is closed under least upper bound.*

KORK ERKER ADAM ADA

3. If $a \leq_{\omega} c \leq_{\omega} b$ and b *is almost-a then* c *is almost-a.*

The almost degrees

Lemma

- $4.$ If $\mathbf{a} \in \mathcal{D}_1$ then \mathbf{a} is the least almost- $\mathbf{a} \Sigma^0_2$ w-enumeration *degree.*
- 5. If **b** and **c** are almost-**a** Σ^0_2 ω -enumeration degrees then [**b**]∼[∞] ≤ [**c**]∼[∞] *if and only if* **b** ≤^ω **c***.*
- 6. If $a \lt_{\omega} b$ and $a \lt_{\infty} b$ then there exists an almost-a degree **z** *such that* $\mathbf{a} <_{\omega} \mathbf{z} <_{\omega} \mathbf{b}$.

KORK ERKER ADAM ADA

Corollary

Gω/ ∼[∞] *properly extends* R/ ∼∞*.*

Corollary

Every countable partial ordering can be embedded densely in $\mathcal{G}_{\omega}/\sim_{\infty}$.

Proof.

- ^I Let [**a**]∼[∞] < [**b**]∼∞.
- \triangleright We may assume that **a** \lt_ω **b**.
- \blacktriangleright Let **z** be an almost-**a** degree such that **a** \lt_ω **z** \leq_ω **b**.
- ^I Then [**a**]∼[∞] < [**z**]∼[∞] ≤ [**b**]∼∞.
- ▶ And [**a**, **z**] consists entirely of almost-**a** degrees, hence is isomorphic to [[**a**]∼∞, [**z**]∼∞].

KOD KARD KED KED BE YOUR

Corollary

Every countable partial ordering can be embedded densely in $\mathcal{G}_{\omega}/\sim_{\infty}$.

Proof.

- ^I Let [**a**]∼[∞] < [**b**]∼∞.
- \triangleright We may assume that **a** \lt_ω **b**.
- \blacktriangleright Let **z** be an almost-**a** degree such that **a** \lt_ω **z** \leq_ω **b**.
- ^I Then [**a**]∼[∞] < [**z**]∼[∞] ≤ [**b**]∼∞.
- ▶ And [**a**, **z**] consists entirely of almost-**a** degrees, hence is isomorphic to [[**a**]∼∞, [**z**]∼∞].

KOD KARD KED KED BE YOUR

Corollary

Every countable partial ordering can be embedded densely in $\mathcal{G}_{\omega}/\sim_{\infty}$.

Proof.

- ^I Let [**a**]∼[∞] < [**b**]∼∞.
- **I** We may assume that $\mathbf{a} <_{\omega} \mathbf{b}$.
- \blacktriangleright Let **z** be an almost-**a** degree such that **a** \lt_ω **z** \leq_ω **b**.
- ^I Then [**a**]∼[∞] < [**z**]∼[∞] ≤ [**b**]∼∞.
- ▶ And [**a**, **z**] consists entirely of almost-**a** degrees, hence is isomorphic to [[**a**]∼∞, [**z**]∼∞].

KORK ERKER ADAM ADA

Corollary

Every countable partial ordering can be embedded densely in $\mathcal{G}_{\omega}/\sim_{\infty}$.

Proof.

- ^I Let [**a**]∼[∞] < [**b**]∼∞.
- **I** We may assume that $\mathbf{a} <_{\omega} \mathbf{b}$.
- \blacktriangleright Let **z** be an almost-**a** degree such that $\mathbf{a} <_{\omega} \mathbf{z} \leq_{\omega} \mathbf{b}$.
- ^I Then [**a**]∼[∞] < [**z**]∼[∞] ≤ [**b**]∼∞.
- ▶ And [a, z] consists entirely of almost-a degrees, hence is isomorphic to [[**a**]∼∞, [**z**]∼∞].

KORK ERKER ADAM ADA

Corollary

Every countable partial ordering can be embedded densely in $\mathcal{G}_{\omega}/\sim_{\infty}$.

Proof.

- ^I Let [**a**]∼[∞] < [**b**]∼∞.
- **I** We may assume that $\mathbf{a} <_{\omega} \mathbf{b}$.
- \blacktriangleright Let **z** be an almost-**a** degree such that $\mathbf{a} <_{\omega} \mathbf{z} \leq_{\omega} \mathbf{b}$.
- ^I Then [**a**]∼[∞] < [**z**]∼[∞] ≤ [**b**]∼∞.
- ▶ And [**a**, **z**] consists entirely of almost-**a** degrees, hence is isomorphic to [[**a**]∼∞, [**z**]∼∞].

KORK ERKER ADAM ADA

Corollary

Every countable partial ordering can be embedded densely in $\mathcal{G}_{\omega}/\sim_{\infty}$.

Proof.

- ^I Let [**a**]∼[∞] < [**b**]∼∞.
- **I** We may assume that $\mathbf{a} <_{\omega} \mathbf{b}$.
- \blacktriangleright Let **z** be an almost-**a** degree such that $\mathbf{a} <_{\omega} \mathbf{z} \leq_{\omega} \mathbf{b}$.
- ^I Then [**a**]∼[∞] < [**z**]∼[∞] ≤ [**b**]∼∞.
- ▶ And [**a**, **z**] consists entirely of almost-**a** degrees, hence is isomorphic to [[**a**]∼∞, [**z**]∼∞].

KORK ERKER ADAM ADA

Corollary

Every countable partial ordering can be embedded densely in $\mathcal{G}_{\omega}/\sim_{\infty}$.

Proof.

- ^I Let [**a**]∼[∞] < [**b**]∼∞.
- **I** We may assume that $\mathbf{a} <_{\omega} \mathbf{b}$.
- \blacktriangleright Let **z** be an almost-**a** degree such that $\mathbf{a} <_{\omega} \mathbf{z} \leq_{\omega} \mathbf{b}$.
- ^I Then [**a**]∼[∞] < [**z**]∼[∞] ≤ [**b**]∼∞.
- ▶ And [**a**, **z**] consists entirely of almost-**a** degrees, hence is isomorphic to [[**a**]∼∞, [**z**]∼∞].

KORKAR KERKER E VOOR

Thank you!

Kロトメ部トメミトメミト ミニのQC