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A very basic result

Theorem (Mostowski 1938)
There exists a computable partial ordering R = 〈N,≤〉 in which
every countable partial ordering can be embedded.

Proof.
Let R = 〈Q2,≤〉, where 〈a,b〉 ≤ 〈c,d〉 if and only if a ≤ c and
b ≤ d .
Conclusion: An embedding of this computable partial ordering
gives automatically an embedding of every countable partial
ordering.



Independent sequences of sets

Definition (Kleene, Post 1954)
A sequence of sets {Ai}i<ω is called computably independent if
for every i :

Ai �T

⊕
j 6=i

Aj .

Theorem (Kleene, Post 1954)
There is a computably independent sequence of sets. This
sequence can be constructed uniformly below 0′.

Theorem (Muchnik 1958)
There is a computably independent sequence of c.e. sets.



Putting the two together

Theorem (Sacks 1963)
The existence of a computably independent sequence of sets
gives an embedding of any computable partial ordering in the
Turing degrees.

Proof.
Let R = 〈N,�〉 be a computable partial ordering and {Ai}i<ω be
a computably independent sequence of sets. The embedding
is:

κ(i) = dT (
⊕
j�i

Ai).



The final step..

Corollary
Every countable partial ordering can be embedded

1. Kleene and Post: in the Turing degrees, even in the ∆0
2

Turing degrees.
2. Muchnik: in the c.e. Turing degrees.
3. Robinson 1971: densely in the c.e. Turing degrees, i.e. in

any nonempty interval of c.e. Turing degrees.



The enumeration degrees

I The e-degrees as a proper extension of the Turing
degrees, inherit this complexity.

I Case 1971: Any countable partial ordering can be
embedded in the e-degrees below the degree of any
generic function.

I Copestake 1988: below any 1-generic enumeration
degree.

I Cooper and McEvoy 1985: below any nonzero ∆0
2

e-degree.
I Bianchini 2000: densely in the Σ0

2 enumeration degrees.

Method: e-independent sequences of sets.



The first observation

Theorem
Let b < a be enumeration degrees such that a contains a
member with a good approximation. Then every countable
partial ordering can be embedded in the interval [b,a].

Idea: Construct an e-independent sequence of sets above b
and uniformly below a.

Techniques: Good approximations combined with a
construction inspired by Cooper’s density construction.



The general picture
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The ω e-degrees: Basic definitions

Let S be the set of all sequences of sets of natural numbers.

Definition
Let A = {An}n<ω be a sequence of sets natural numbers and V
be an e-operator. The result of applying the enumeration
operator V to the sequence A, denoted by V (A), is the
sequence {V [n](An)}n<ω. We say that V (A) is enumeration
reducible (≤e) to the sequence A.
So A ≤e B is a combination of two notions:

I Enumeration reducibility: for every n we have that
An ≤e Bn via, say, Γn.

I Uniformity: the sequence {Γn}n<ω is uniform.



Basic definitions

With every member A ∈ S we connect a jump sequence P(A).

Definition
The jump sequence of the sequence A, denoted by P(A) is the
sequence {Pn(A)}n<ω defined inductively as follows:

I P0(A) = A0.
I Pn+1(A) = An+1 ⊕ P ′n(A), where P ′n(A) denotes the

enumeration jump of the set Pn(A).

The jump sequence P(A) transforms a sequence A into a
monotone sequence of sets of natural numbers with respect to
≤e. Every member of the jump sequence contains full
information on previous members.



The ω-enumeration degrees

Let A,B ∈ S.

Definition
I ω-enumeration reducibility: A ≤ω B, if A ≤e P(B).
I ω-enumeration equivalence: A ≡ω B if A ≤ω B and
B ≤ω A.

I ω-enumeration degrees: dω(A) = {B | A ≡ω B}.
I The structure of the ω-enumeration degrees:
Dω = 〈{dω(A) | A ∈ S},≤ω〉, where dω(A) ≤ω dω(B) if
A ≤ω B.

I The least ω-enumeration degree: 0ω = dω((∅, ∅, ∅, . . . )) or
equivalently dω((∅, ∅′, ∅′′, . . . )).
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Dω as an upper semilattice with jump operation

I The join and least upper bound: A⊕ B = {An ⊕ Bn}n<ω.
dω(A⊕ B) = dω(A) ∨ dω(B).

I The jump operation: dω(A)′ = dω(A′), where
A′ = {Pn+1(A)}n<ω.



The e-degrees as a substructure

〈De,≤e,∨,′ 〉 can be embedded in 〈Dω,≤ω,∨,′ 〉 via the
embedding κ defined as follows:

κ(de(A)) = dω((A, ∅, ∅, . . . )) = dω((A,A′,A′′, . . . )).

Theorem (Soskov, Ganchev)

I The structure D1 = κ(De) is first order definable in Dω.
I The structures De and Dω with jump operation have

isomorphic automorphism groups.



The embeddability question

Consider the structure Gω consisting of all degrees reducible to
0′ω = dω((∅′, ∅′′, ∅′′′, . . . )) also called the Σ0

2 ω-enumeration
degrees.

Theorem (Soskov)
The structure Gω is dense.

Theorem
Let b <ω a ≤ω 0′ω. Every countable partial ordering can be
embedded in the interval [b,a].



The independent sequence method

Definition
Let {Ai}i<ω be a sequence of sequences of sets

I For every computable set C set⊕
i∈C Ai = (

⊕
i∈C A0,i ,

⊕
i∈C A1,i ,

⊕
i∈C A2,i , . . . ).

I The sequence is ω-independent if for every i we have
Ai �ω

⊕
j 6=i Aj

Goal: Construct an ω-independent sequence of sequences of
sets above b and uniformly below a.



Good approximations to sequences

Definition (Soskov)
Let {A{s}n }n,s<ω be a uniformly computable matrix of finite sets.
We say that {A{s}n }s<ω is a good approximation to the sequence
A = {An}n<ω if:
G0: (∀s, k)[A{s}k ⊆ Ak ⇒ (∀m ≤ k)[A{s}m ⊆ Am]];
G1: (∀n, k)(∃s)(∀m ≤ k)[ Am � n ⊆ A{s}m ⊆ Am ] and
G2: (∀n, k)(∃s)(∀t > s)[A{t}k ⊆ Ak ⇒ (∀m ≤ k)[Am � n ⊆ A{t}m ]].
Or more intuitively:

I We have a good approximation to every member of the
sequence.

I If m ≤ k then every k -good stage is m-good.



Proof idea

Theorem (Soskov)
Every Σ0

2 ω-enumeration degree contains a member A such
that A ≡e P(A) and A has a good approximation.
So fix A = (A0,A1, . . . ) in a with the properties listed in the
theorem and B = (B0,B1, . . . ) in b.
Now B <ω A can follow by two ways:

I Non-enumeration reducibility: There is an n such that
Bn <e An.

I Non-uniformity: For every n we have Bn ≡e An but not
uniformly in n.



Easy case: From the e-degrees

Let n be such that Bn <e An.

I By first theorem there is an independent sequence of sets
{Ci}i<ω above Bn and uniformly below An.

I Define {Ci}i<ω by Ci = (B0,B1, . . . ,Bn−1,Ci ,Bn+1, . . . ) .
I {Ci}i<ω is an ω-independent.
I For every i we have B <ω Ci <ω A.
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Difficult case

For every n An ≡e Bn.

Idea: Direct construction building on ideas from first result.

Difficulties: Approximate sets of the form P(V (A)), where V is
the constructed e-operator.

Techniques: Good approximations for sequences of sets.
Length of agreement function for sequences of sets. Fixed
point theorem (Recursion theorem).



The c.e. degrees modulo iterated jump

Definition (Jockusch, Lerman, Soare and Solovay )
Let a and b be c.e. Turing degrees. a ∼∞ b iff there exists a
natural number n such that an = bn.

I Induced degree structure R/ ∼∞ with [a]∼∞ ≤ [b]∼∞ if and
only if there exists a natural number n such that an ≤T bn.

I Least element L =
⋃

n<ω Ln.
I Greatest element H =

⋃
n<ω Hn.

I R/ ∼∞ is a dense structure.
I Lempp : There is a splitting of the highest∞-degree and a

minimal pair of∞-degrees.



Starting with other classes of degree

I GT/ ∼∞: the ∆0
2 Turing degrees modulo iterated jump.

Shoenfield, Sacks: The range of the jump operator
restricted to the c.e. Turing degrees coincides with the
range of the jump operator restricted to the ∆0

2 Turing
degrees. It is namely the set of all Turing degrees c.e. in
and above 0′. Hence:

GT/ ∼∞' R/ ∼∞ .

I Ge/ ∼∞: the Σ0
2 e-degrees modulo iterated jump.

McEvoy: The range of the enumeration jump operator
restricted to the Σ0

2-enumeration degrees coincides with
the range of the enumeration jump operator restricted to
the Π0

1 enumeration degrees. Hence:

R/ ∼∞' (Π0
1 e-degrees)/ ∼∞' Ge/ ∼∞ .



The ω-enumeration degrees modulo iterated jump

Consider Gω/ ∼∞.

I R/ ∼∞ embeds in Gω/ ∼∞.

R ⊆ GT ↪→ ι(GT ) = Tot ⊆ Ge ↪→ κ(Ge) = D1 ⊆ Gω

I A basic property:

Lemma
Let a and b be two Σ0

2 ω-enumeration degrees.
1. If a ≤ω b then [a]∼∞ ≤ [b]∼∞ .
2. If [a]∼∞ ≤ [b]∼∞ then there is a representative c ∈ [a]∼∞

such that c ≤ω b.



The almost degrees

Definition
Let A = {An}n<ω be a sequence of sets of natural numbers.
We shall say that the sequence B = {Bn}n<ω is almost-A if for
every n we have that Pn(A) ≡e Pn(B).
If A is almost-B then we shall say that dω(A) is almost-dω(B).

Lemma
Let a ≤ 0′ω be an ω-enumeration degree.

1. If b is almost-a and A ∈ a then every B ∈ b is almost-A.
2. The class of almost-a degrees is closed under least upper

bound.
3. If a ≤ω c ≤ω b and b is almost-a then c is almost-a.



The almost degrees

Lemma

4. If a ∈ D1 then a is the least almost-a Σ0
2 ω-enumeration

degree.
5. If b and c are almost-a Σ0

2 ω-enumeration degrees then
[b]∼∞ ≤ [c]∼∞ if and only if b ≤ω c.

6. If a <ω b and a <∞ b then there exists an almost-a degree
z such that a <ω z ≤ω b .

Corollary
Gω/ ∼∞ properly extends R/ ∼∞.



Embedding partial orders in Gω/ ∼∞

Corollary
Every countable partial ordering can be embedded densely in
Gω/ ∼∞.

Proof.
I Let [a]∼∞ < [b]∼∞ .
I We may assume that a <ω b.
I Let z be an almost-a degree such that a <ω z ≤ω b.
I Then [a]∼∞ < [z]∼∞ ≤ [b]∼∞ .
I And [a, z] consists entirely of almost-a degrees, hence is

isomorphic to [[a]∼∞ , [z]∼∞ ].

I By second result we can embed any countable partial
ordering in [a, z].
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Thank you!


