The automorphism group of the enumeration degrees

Mariya I. Soskova¹

Sofia University

Logic Colloquium, Évora, July 22, 2013

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471), Sofia University Science Fund grant No. 44/15.04.2013 and BNSF grant No. DMU 03/07/12.12.2011

LC 2013 1 / 24

Enumeration reducibility

Definition

$A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

• • • • • • • • • • • • •

Enumeration reducibility

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

 $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$

•
$$d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}.$$

• $d_e(A) \leq d_e(B)$ if $A \leq_e B$.

•
$$d_e(A \oplus B) = d_e(A) \lor d_e(B)$$
.

•
$$d_e(A)' = d_e(L_A \oplus \overline{L_A})$$
, where $L_A = \{e \mid e \in W_e(A)\}$.

A (10) > A (10) > A (10)

Enumeration reducibility

Definition

(

 $A \leq_e B$ if there is a c.e. set W, such that

 $A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$

•
$$d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}.$$

• $d_e(A) \leq d_e(B)$ if $A \leq_e B$.

•
$$\mathbf{0}_e = d_e(\emptyset)$$
 consists of all c.e. sets.

•
$$d_e(A \oplus B) = d_e(A) \lor d_e(B)$$
.

•
$$d_e(A)' = d_e(L_A \oplus \overline{L_A})$$
, where $L_A = \{e \mid e \in W_e(A)\}$.

 $\mathcal{D}=\langle D,\leq,\vee,'\,\mathbf{0}\rangle$ is an upper semi-lattice with least element and jump operation.

Proposition

$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

A (10) > A (10) > A (10)

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

A (1) > A (2) > A (2)

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation. The substructure of the total e-degrees is defined as $\mathcal{TOT} = \iota(D_T)$.

$$(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,'\boldsymbol{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq_{e},\vee,',\boldsymbol{0}_{e})\subseteq(\mathcal{D}_{e},\leq_{e},\vee,'\boldsymbol{0}_{e})$$

A (1) > A (2) > A (2)

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation. The substructure of the total e-degrees is defined as $\mathcal{TOT} = \iota(D_T)$.

$$(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,'\mathbf{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq_{e},\vee,',\mathbf{0}_{e})\subseteq(\mathcal{D}_{e},\leq_{e},\vee,'\mathbf{0}_{e})$$

Theorem (Selman)

 $A \leq_e B$ if and only if the set of total enumeration degrees above B is a subset of the set of total enumeration degrees above A.

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \text{ is c.e. in } B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation. The substructure of the total e-degrees is defined as $\mathcal{TOT} = \iota(D_T)$.

$$(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,'\mathbf{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq_{e},\vee,',\mathbf{0}_{e})\subseteq(\mathcal{D}_{e},\leq_{e},\vee,'\mathbf{0}_{e})$$

Theorem (Selman)

 $A \leq_e B$ if and only if the set of total enumeration degrees above B is a subset of the set of total enumeration degrees above A. TOT is an automorphism base for D_e .

Defining the Turing jump operator

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_{T} .

A (1) > A (1) > A

Defining the Turing jump operator

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_T .

The double jump is first order definable in D_T: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and "involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".

Defining the Turing jump operator

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_T .

- The double jump is first order definable in D_T: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and "involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".
- 2 An additional structural fact: for every $\mathbf{a} \not\leq_{\mathcal{T}} \mathbf{0}'_{\mathcal{T}}$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$.

$\mathcal K\text{-pairs}$ in the enumeration degrees

Definition (Kalimullin)

A pair of sets A, B are called a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

\mathcal{K} -pairs in the enumeration degrees

Definition (Kalimullin)

A pair of sets A, B are called a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

• A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.

\mathcal{K} -pairs in the enumeration degrees

Definition (Kalimullin)

A pair of sets A, B are called a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If A is a semi-recursive set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair.

\mathcal{K} -pairs in the enumeration degrees

Definition (Kalimullin)

A pair of sets A, B are called a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If A is a semi-recursive set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair.

Theorem (Kalimullin)

A pair of sets A, B are a \mathcal{K} -pair if and only if their enumeration degrees **a** and **b** satisfy:

$$\mathcal{K}(\mathbf{a}, \mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_{e})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$$

$\mathcal K\text{-pairs}$ are invisible in the Turing universe

• *K*-pairs are always quasi-minimal: the only total degree below either of them is **0**_{*e*}.

\mathcal{K} -pairs are invisible in the Turing universe

- *K*-pairs are always quasi-minimal: the only total degree below either of them is **0**_e.
- A consequence of the existence of nontrivial *K*-pairs in *D_e* is that the Slaman-Shore property fails, there is a degree a *≰_e* 0*'_e*, such that for every g, a ∨ g <_e g["].

\mathcal{K} -pairs are invisible in the Turing universe

- *K*-pairs are always quasi-minimal: the only total degree below either of them is **0**_e.
- A consequence of the existence of nontrivial *K*-pairs in *D_e* is that the Slaman-Shore property fails, there is a degree a *≰_e* 0*'_e*, such that for every g, a ∨ g <_e g["].
- There are no \mathcal{K} -pairs in the structure of the Turing degrees.

 \mathcal{K} -pairs and the definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_e$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b})$, $\mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

< 回 ト < 三 ト < 三

 \mathcal{K} -pairs and the definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_e$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b}), \mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

A (10) > A (10) > A (10)

 $\mathcal K\text{-}\mathsf{pairs}$ and the definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_e$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b})$, $\mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Ganchev, S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \leq_e \mathbf{u}$.

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K} -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K} -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Ganchev, S)

In $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a degree is total if and only if it is the least upper bound of a maximal \mathcal{K} -pair.

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K} -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Ganchev, S)

In $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a degree is total if and only if it is the least upper bound of a maximal \mathcal{K} -pair.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We know that:

• $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.

A (10) > A (10) > A (10)

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $TOT \cap D_e (\leq \mathbf{0}'_e)$ is first order definable.

伺 ト イ ヨ ト イ ヨ

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question Is TOT first order definable in D_e ?

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

One step further in the dream world

```
Theorem (Ganchev,S)
```

```
For every nonzero enumeration degree \mathbf{u} \in \mathcal{D}_{e},
```

```
\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \And \mathbf{a} \leq_{e} \mathbf{u} \right\}.
```

One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_{e}$,

```
\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \right\}.
```

- Suppose that a degree is total if and only if it is the least upper bound of a maximal *K*-pair.
- The relation **x** is c.e. in **u** would also be definable for total degrees by :

$$\exists a \exists b (x = a \lor b \& \mathcal{K}(a, b) \& a \leq_e u).$$

One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_{e}$,

```
\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \right\}.
```

- Suppose that a degree is total if and only if it is the least upper bound of a maximal *K*-pair.
- The relation **x** is c.e. in **u** would also be definable for total degrees by :

$$\exists a \exists b (x = a \lor b \& \mathcal{K}(a, b) \& a \leq_e u).$$

 Then for total u, our definition of the jump would read u' is the largest total degree, which is c.e. in u.

Definability via automorphism analysis in \mathcal{D}_e

Slaman and Woodin: Definability in Degree Structures, 1995.

- Coding theorem.
- A characterization of an automorphism in terms of a countable object.
- A finite automorphism base.

Effectively coding and decoding

Mariya I. Soskova (Sofia University) The automorphism group of the enumeration

Effectively coding and decoding

Definition

A countable relation $\mathcal{R} \subseteq \mathcal{D}_e^n$ is e-presented beneath a set A if there is a set $W \leq_e A$ such that $\mathcal{R} = \{ (\mathbf{d}_e(W_{i_1}(A)), \dots, \mathbf{d}_e(W_{i_n}(A))) \mid (i_1, \dots, i_n) \in W \}.$

A > + = + + =

Effectively coding and decoding

Definition

A countable relation $\mathcal{R} \subseteq \mathcal{D}_e^n$ is e-presented beneath a set A if there is a set $W \leq_e A$ such that $\mathcal{R} = \{ (\mathbf{d}_e(W_{i_1}(A)), \dots, \mathbf{d}_e(W_{i_n}(A))) \mid (i_1, \dots, i_n) \in W \}.$

Theorem (Coding Theorem)

For every *n* there is a formula φ_n , such that for every countable relation on enumeration degrees $\mathcal{R} \subseteq \mathcal{D}_e^n$ which is e-presented beneath *R* there are parameters $\bar{\mathbf{p}} \leq_e \mathbf{d}_e(R)''$ such that $\mathcal{R} = \{(\mathbf{x}_1, \dots, \mathbf{x}_n) \mid \mathcal{D}_e \models \varphi_n(\mathbf{x}_1, \dots, \mathbf{x}_n, \bar{\mathbf{p}})\}.$

・ 伺 ト ・ ヨ ト ・ ヨ ト … ヨ

Effectively coding and decoding

Definition

A countable relation $\mathcal{R} \subseteq \mathcal{D}_e^n$ is e-presented beneath a set A if there is a set $W \leq_e A$ such that $\mathcal{R} = \{ (\mathbf{d}_e(W_{i_1}(A)), \dots, \mathbf{d}_e(W_{i_n}(A))) \mid (i_1, \dots, i_n) \in W \}.$

Theorem (Coding Theorem)

For every *n* there is a formula φ_n , such that for every countable relation on enumeration degrees $\mathcal{R} \subseteq \mathcal{D}_e^n$ which is e-presented beneath *R* there are parameters $\bar{\mathbf{p}} \leq_e \mathbf{d}_e(R)''$ such that $\mathcal{R} = \{(\mathbf{x}_1, \dots, \mathbf{x}_n) \mid \mathcal{D}_e \models \varphi_n(\mathbf{x}_1, \dots, \mathbf{x}_n, \bar{\mathbf{p}})\}.$

Theorem (Decoding Theorem)

Let $\mathcal{R} \subseteq \mathcal{D}_e^n$ be countable and coded by parameters $\bar{\mathbf{p}}$. Let $\mathbf{d}_e(P)$ be an upper bound on these parameters. Then there is a presentation W of \mathcal{R} , such that $W \leq_e P^5$.

Jump ideals in \mathcal{D}_e

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

Jump ideals in \mathcal{D}_e

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

Denote by
$$\varphi(\mathbf{u}, \mathbf{u}') : \mathbf{u}' = \max \{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \}.$$

Theorem

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. For every element $\mathbf{u} \in \mathcal{I}$ we have the following equivalence: $\mathcal{I} \models \varphi_{\mathcal{J}}(\mathbf{u}, \mathbf{u}') \leftrightarrow \mathcal{D}_e \models \varphi_{\mathcal{J}}(\mathbf{u}, \mathbf{u}')$.

A (10) A (10)

Jump ideals in \mathcal{D}_e

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

Denote by
$$\varphi(\mathbf{u}, \mathbf{u}') : \mathbf{u}' = \max \{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \}$$
.

Theorem

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. For every element $\mathbf{u} \in \mathcal{I}$ we have the following equivalence: $\mathcal{I} \models \varphi_{\mathcal{J}}(\mathbf{u}, \mathbf{u}') \leftrightarrow \mathcal{D}_e \models \varphi_{\mathcal{J}}(\mathbf{u}, \mathbf{u}')$.

Corollary

If ρ is an automorphism of a jump ideal \mathcal{I} then $\rho(\mathbf{x}') = \rho(\mathbf{x})'$.

Let $\langle \mathbb{N}, 0, s, +, *, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set *X*.

Let $\langle \mathbb{N}, 0, s, +, *, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set *X*.

Coding Theorem: The structure can be coded by parameters below X''.

Let $\langle \mathbb{N}, 0, s, +, *, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set *X*.

- Coding Theorem: The structure can be coded by parameters below X''.
- Obecoding Theorem: Suppose the structure is coded by parameters below P then the set X is enumeration reducible to P⁵.

Let $\langle \mathbb{N}, 0, s, +, *, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set *X*.

- Coding Theorem: The structure can be coded by parameters below X''.
- Obecoding Theorem: Suppose the structure is coded by parameters below P then the set X is enumeration reducible to P⁵.

Corollary

Let $\mathcal{I} \subseteq \mathcal{J}$ be jump ideals in \mathcal{D}_e . Let $\rho : \mathcal{J} \to \mathcal{J}$ be an automorphism of \mathcal{J} . Then $\rho \upharpoonright \mathcal{I}$ is an automorphism of \mathcal{I} .

A (10) A (10)

Let $C \subseteq D_e$ be countable and e-presented beneath C. Let $\langle \mathbb{N}, 0, s, +, *, C, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \to C$.

< 回 ト < 三 ト < 三

Let $C \subseteq D_e$ be countable and e-presented beneath C. Let $\langle \mathbb{N}, \mathbf{0}, \mathbf{s}, +, *, C, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \to C$.

Ocding Theorem: The structure can be coded arithmetically in *C*.

A D A D A D A

Let $C \subseteq D_e$ be countable and e-presented beneath C. Let $\langle \mathbb{N}, \mathbf{0}, \mathbf{s}, +, *, C, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \to C$.

- Coding Theorem: The structure can be coded arithmetically in C.
- 2 Decoding Theorem: Given two such structures, $\langle \mathbb{N}_1, 0_1, \mathbf{s}_1, +_1, *_1, \mathcal{C}_1, \psi_1 \rangle$ and $\langle \mathbb{N}_2, 0_2, \mathbf{s}_2, +_2, *_2, \mathcal{C}_2, \psi_2 \rangle$, both coded by parameters below *P*. Then the relation $\mathcal{C}_1 \to \mathcal{C}_2 = \left\{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathcal{C}_1 \& \mathbf{y} \in \mathcal{C}_2 \& \psi_1^{-1}(\mathbf{x}) = \psi_2^{-1}(\mathbf{y}) \right\}$ is arithmetically presented relative to *P*.

くゆ くうとく ひとう う

Let $C \subseteq D_e$ be countable and e-presented beneath C. Let $\langle \mathbb{N}, \mathbf{0}, \mathbf{s}, +, *, C, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \to C$.

Ocding Theorem: The structure can be coded arithmetically in *C*.

2 Decoding Theorem: Given two such structures, $\langle \mathbb{N}_1, 0_1, \mathbf{s}_1, +_1, *_1, \mathcal{C}_1, \psi_1 \rangle$ and $\langle \mathbb{N}_2, 0_2, \mathbf{s}_2, +_2, *_2, \mathcal{C}_2, \psi_2 \rangle$, both coded by parameters below *P*. Then the relation $\mathcal{C}_1 \to \mathcal{C}_2 = \left\{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathcal{C}_1 \& \mathbf{y} \in \mathcal{C}_2 \& \psi_1^{-1}(\mathbf{x}) = \psi_2^{-1}(\mathbf{y}) \right\}$ is arithmetically presented relative to *P*.

Corollary

Let $\mathcal{I} \subseteq \mathcal{J}$ be jump ideals in \mathcal{D}_e . Let $\rho : \mathcal{J} \to \mathcal{J}$ be an automorphism of \mathcal{J} . If \mathcal{I} is countable and e-presented beneath I and $I \in \mathcal{J}$ then $\rho \upharpoonright \mathcal{I}$ is arithmetically presented in I.

Persistent automorphisms

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be countable jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is called persistent if for every $\mathbf{x} \in \mathcal{D}_e$ there is a countable jump ideal \mathcal{J} and an automorphism $\rho_1 : \mathcal{J} \to \mathcal{J}$ such that $\{\mathbf{x}\} \cup \mathcal{I} \subseteq \mathcal{J}$ and $\rho_1 \upharpoonright \mathcal{I} = \rho$.

A D A D A D A

Persistent automorphisms

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be countable jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is called persistent if for every $\mathbf{x} \in \mathcal{D}_e$ there is a countable jump ideal \mathcal{J} and an automorphism $\rho_1 : \mathcal{J} \to \mathcal{J}$ such that $\{\mathbf{x}\} \cup \mathcal{I} \subseteq \mathcal{J}$ and $\rho_1 \upharpoonright \mathcal{I} = \rho$.

Note: Every automorphism π of \mathcal{D}_e restricted to a countable ideal \mathcal{I} is a persistent automorphism of \mathcal{I} .

Persistent automorphisms

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be countable jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is called persistent if for every $\mathbf{x} \in \mathcal{D}_e$ there is a countable jump ideal \mathcal{J} and an automorphism $\rho_1 : \mathcal{J} \to \mathcal{J}$ such that $\{\mathbf{x}\} \cup \mathcal{I} \subseteq \mathcal{J}$ and $\rho_1 \upharpoonright \mathcal{I} = \rho$.

Note: Every automorphism π of \mathcal{D}_e restricted to a countable ideal \mathcal{I} is a persistent automorphism of \mathcal{I} .

Theorem

Let $\mathcal{I} \subseteq \mathcal{J}$ be countable jump ideals in \mathcal{D}_e . Every persistent automorphism of \mathcal{I} can be extended to a persistent automorphism of \mathcal{J} .

イロト 不得 トイヨト イヨト

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for in some generic extension V[G] in which \mathcal{I} is countable, ρ is persistent.

- A - E - N

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for in some generic extension V[G] in which \mathcal{I} is countable, ρ is persistent.

Theorem

Solution Every automorphism $\pi : \mathcal{D}_e \to \mathcal{D}_e$ is generically persistent.

< 回 > < 回 > < 回 >

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for in some generic extension V[G] in which \mathcal{I} is countable, ρ is persistent.

Theorem

- Every automorphism $\pi : \mathcal{D}_e \to \mathcal{D}_e$ is generically persistent.
- 2 Let π be an automorphism of \mathcal{D}_e in some generic extension V[G]. Then $\pi \in L(\mathbb{R})$.

A (10) A (10)

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for in some generic extension V[G] in which \mathcal{I} is countable, ρ is persistent.

Theorem

- Every automorphism $\pi : \mathcal{D}_e \to \mathcal{D}_e$ is generically persistent.
- 2 Let π be an automorphism of \mathcal{D}_e in some generic extension V[G]. Then $\pi \in L(\mathbb{R})$.
- Solution Every persistent automorphism of a countable ideal $\mathcal{I} \subseteq \mathcal{D}_e$ can be extended to an automorphism π of \mathcal{D}_e .

Arithmetically representing automorphisms of \mathcal{D}_e .

Theorem (Ganchev, Soskov)

Every automorphism of \mathcal{D}_e is the identity on the cone above \emptyset^4 .

< 🗇 > < 🖻 >

Arithmetically representing automorphisms of \mathcal{D}_e .

Theorem (Ganchev, Soskov)

Every automorphism of \mathcal{D}_e is the identity on the cone above \emptyset^4 .

Theorem

Let π be an automorphism of \mathcal{D}_e . There exists an enumeration operator Γ such that for every 8-generic total function g, $\pi(\mathbf{d}_e(g)) = \mathbf{d}_e(\Gamma(g \oplus \emptyset^4)).$

- ∢ ∃ ▶

Arithmetically representing automorphisms of \mathcal{D}_e .

Theorem (Ganchev, Soskov)

Every automorphism of \mathcal{D}_e is the identity on the cone above \emptyset^4 .

Theorem

Let π be an automorphism of \mathcal{D}_e . There exists an enumeration operator Γ such that for every 8-generic total function g, $\pi(\mathbf{d}_e(g)) = \mathbf{d}_e(\Gamma(g \oplus \emptyset^4)).$

Corollary

Let π be an automorphism of \mathcal{D}_e . There exists an arithmetic formula φ such that $\varphi(X, Y)$ is true if and only if $\pi(\mathbf{d}_e(X)) = \mathbf{d}_e(Y)$. There are therefore at most countably many automorphisms of \mathcal{D}_e .

Automorphism bases

Theorem

Let π be an automorphism of \mathcal{D}_e . There exists an enumeration operator Γ such that for every 8-generic total function g, $\pi(\mathbf{d}_e(g)) = \mathbf{d}_e(\Gamma(g \oplus \emptyset^4)).$

A > + = + + =

Automorphism bases

Theorem

Let π be an automorphism of \mathcal{D}_e . There exists an enumeration operator Γ such that for every 8-generic total function g, $\pi(\mathbf{d}_e(g)) = \mathbf{d}_e(\Gamma(g \oplus \emptyset^4)).$

Corollary

The structure of the enumeration degrees \mathcal{D}_e has an automorphism base consisting of:

- A single total degree g.
- A single quasiminimal degree a.
- The enumeration degrees below 0⁸_e.

Definition

Let T be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension;

伺 ト イ ヨ ト イ ヨ

Definition

Let T be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension; An e-assignment of reals consists of

• A countable ω -model \mathcal{M} of T.

Definition

Let T be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension; An e-assignment of reals consists of

- A countable ω -model \mathcal{M} of \mathcal{T} .
- 2 a jump ideal \mathcal{I} in \mathcal{D}_e .
- So A bijection $f : \mathcal{D}_{e}^{\mathcal{M}} \to \mathcal{I}$, such that for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}_{e}^{\mathcal{M}}$, if $\mathcal{M} \models \mathbf{x} \ge \mathbf{y}$ then $f(\mathbf{x}) \ge f(\mathbf{y})$.

Definition

Let T be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension; An e-assignment of reals consists of

- A countable ω -model \mathcal{M} of \mathcal{T} .
- 2 a jump ideal \mathcal{I} in \mathcal{D}_e .

So A bijection $f : \mathcal{D}_{e}^{\mathcal{M}} \to \mathcal{I}$, such that for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}_{e}^{\mathcal{M}}$, if $\mathcal{M} \models \mathbf{x} \ge \mathbf{y}$ then $f(\mathbf{x}) \ge f(\mathbf{y})$.

Theorem

If $(\mathcal{M}, f, \mathcal{I})$ is an e-assignment of reals then $\mathcal{D}_e^{\mathcal{M}} = \mathcal{I}$ and f is an automorphism of \mathcal{I} .

Extendably assigning reals

Definition

An e-assignment of reals $(\mathcal{M}, f, \mathcal{I})$ is extendable if for every $\mathbf{z} \in \mathcal{D}_e$ there exists an e-assignment of reals $(\mathcal{M}_1, f_1, \mathcal{I}_1)$ such that $\mathcal{D}_e^{\mathcal{M}} \subseteq \mathcal{D}_e^{\mathcal{M}_1}, \mathcal{I} \cup \{\mathbf{z}\} \subseteq \mathcal{I}_1$ and $f \subseteq f_1$.

Extendably assigning reals

Definition

An e-assignment of reals $(\mathcal{M}, f, \mathcal{I})$ is extendable if for every $\mathbf{z} \in \mathcal{D}_e$ there exists an e-assignment of reals $(\mathcal{M}_1, f_1, \mathcal{I}_1)$ such that $\mathcal{D}_e^{\mathcal{M}} \subseteq \mathcal{D}_e^{\mathcal{M}_1}, \mathcal{I} \cup \{\mathbf{z}\} \subseteq \mathcal{I}_1$ and $f \subseteq f_1$.

Theorem

If $(\mathcal{M}, f, \mathcal{I})$ is an extendible e-assignment then there is an automorphism $\pi : \mathcal{D}_{e} \to \mathcal{D}_{e}$, such that for all $\mathbf{x} \in \mathcal{D}_{e}^{\mathcal{M}}$, $\pi(\mathbf{x}) = f(\mathbf{x})$.

く 戸 と く ヨ と く ヨ と

Let $(\mathcal{M}, f, \mathcal{I})$ be an extendable e-assignment of reals.

▲ 同 ▶ → 三 ▶

Let $(\mathcal{M}, f, \mathcal{I})$ be an extendable e-assignment of reals.

• We can interpret this structure in \mathcal{D}_e .

Let $(\mathcal{M}, f, \mathcal{I})$ be an extendable e-assignment of reals.

- We can interpret this structure in \mathcal{D}_e .
- Coding Theorem: This interpretation can be coded by finitely many parameters p.

A (10) > A (10) > A (10)

Let $(\mathcal{M}, f, \mathcal{I})$ be an extendable e-assignment of reals.

- We can interpret this structure in \mathcal{D}_e .
- Coding Theorem: This interpretation can be coded by finitely many parameters p.
- " p codes an extendable e-assignment of reals " is a definable property.

・ 何 ト ・ ヨ ト ・ ヨ

Let $(\mathcal{M}, f, \mathcal{I})$ be an extendable e-assignment of reals.

- We can interpret this structure in \mathcal{D}_e .
- Coding Theorem: This interpretation can be coded by finitely many parameters p.
- " p codes an extendable e-assignment of reals " is a definable
 property.

Theorem

Let **g** be the enumeration degree of an 8-generic $g \leq_e \emptyset^8$. Then the relation $Bi(\bar{\mathbf{c}}, \mathbf{d})$, stating that " $\bar{\mathbf{c}}$ codes a model of arithmetic with a unary predicate for X and $\mathbf{d}_e(X) = \mathbf{d}$ " is definable in \mathcal{D}_e using parameter **g**. \mathcal{D}_e is biinterpretable with second order arithmetic using parameters.

Corollary

Let $R \subseteq (2^{\omega})^n$ be relation definable in second order arithmetic and invariant under enumeration reducibility.

A (10) > A (10) > A (10)

Corollary

Let $R \subseteq (2^{\omega})^n$ be relation definable in second order arithmetic and invariant under enumeration reducibility.

• The relation $\mathcal{R} \subseteq \mathcal{D}_e^n$ defined by $\mathcal{R}(\mathbf{d}_e(X_1), \dots, \mathbf{d}_e(X_n)) \leftrightarrow \mathcal{R}(X_1, \dots, X_n)$ is definable in \mathcal{D}_e with one parameter.

Corollary

Let $R \subseteq (2^{\omega})^n$ be relation definable in second order arithmetic and invariant under enumeration reducibility.

 The relation R ⊆ Dⁿ_e defined by R(d_e(X₁),...,d_e(X_n)) ↔ R(X₁,...,X_n) is definable in D_e with one parameter. In particular TOT is definable with one parameter.

A B b 4 B b

Corollary

Let $R \subseteq (2^{\omega})^n$ be relation definable in second order arithmetic and invariant under enumeration reducibility.

 The relation R ⊆ Dⁿ_e defined by R(d_e(X₁),..., d_e(X_n)) ↔ R(X₁,...,X_n) is definable in D_e with one parameter. In particular TOT is definable with one parameter.

If R is invariant under automorphisms then R is definable without parameters in D_e.

A B A A B A

Corollary

Let $R \subseteq (2^{\omega})^n$ be relation definable in second order arithmetic and invariant under enumeration reducibility.

 The relation R ⊆ Dⁿ_e defined by R(d_e(X₁),...,d_e(X_n)) ↔ R(X₁,...,X_n) is definable in D_e with one parameter. In particular TOT is definable with one parameter.

If R is invariant under automorphisms then R is definable without parameters in D_e.
 In particular the hyperarithmetic jump operation is first order definable in D_e.

The end

Thank you!

● ● ● ● ○ Q ○
 LC 2013 24 / 24

イロト イヨト イヨト イヨト