The automorphism group of the enumeration degrees

Mariya I. Soskova¹

Sofia University

Logic Colloquium, Evora, July 22, 2013 ´

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471) , Sofia University Science Fund grant No. 44/15.04.2013 and BNSF grant No. DMU 03/07/12.12.2011

Enumeration reducibility

Definition

$A \leq_e B$ if there is a c.e. set *W*, such that

$$
A=W(B)=\{x\mid \exists D(\langle x,D\rangle \in W \& D\subseteq B)\}.
$$

 Ω

4 0 8 1

 $4 \oplus 14 \oplus 14$

Enumeration reducibility

Definition

 $A \leq_{e} B$ if there is a c.e. set *W*, such that

$$
A=W(B)=\{x\mid \exists D(\langle x,D\rangle \in W \& D\subseteq B)\}.
$$

$$
\bullet\ \ d_{\theta}(A)=\{B\ |\ A\leq_{\theta} B\ \&\ B\leq_{\theta} A\}.
$$

 \bullet *d*_{*e*}(*A*) ≤ *d*_{*e*}(*B*) if *A* ≤*e B*.

•
$$
\mathbf{0}_e = d_e(\emptyset)
$$
 consists of all c.e. sets.

$$
\bullet \, d_e(A \oplus B) = d_e(A) \vee d_e(B).
$$

•
$$
d_e(A)' = d_e(L_A \oplus \overline{L_A})
$$
, where $L_A = \{e \mid e \in W_e(A)\}$.

 Ω

4 17 18

-4 B +

Enumeration reducibility

Definition

 $A \leq_{e} B$ if there is a c.e. set *W*, such that

$$
A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.
$$

$$
\bullet\ \ d_{\theta}(A)=\{B\ |\ A\leq_{\theta} B\ \&\ B\leq_{\theta} A\}.
$$

•
$$
d_e(A) \leq d_e(B)
$$
 if $A \leq_e B$.

•
$$
\mathbf{0}_e = d_e(\emptyset)
$$
 consists of all c.e. sets.

$$
\bullet \, d_e(A \oplus B) = d_e(A) \vee d_e(B).
$$

•
$$
d_e(A)' = d_e(L_A \oplus \overline{L_A})
$$
, where $L_A = \{e \mid e \in W_e(A)\}$.

 $\mathcal{D} = \langle D, \leq, \vee, ' \mathbf{0} \rangle$ is an upper semi-lattice with least element and jump operation.

$$
LC 2013 2/24
$$

つひひ

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Proposition

$A \leq_T B \Leftrightarrow A \oplus \overline{A}$ *is c.e. in* $B \Leftrightarrow A \oplus \overline{A} \leq_B B \oplus \overline{B}$.

∍

 298

K ロ ト K 伺 ト K ヨ ト K

Proposition

$A \leq_T B \Leftrightarrow A \oplus \overline{A}$ *is c.e. in* $B \Leftrightarrow A \oplus \overline{A} \leq_B B \oplus \overline{B}$.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus A)$, preserves the order, the least upper bound and the jump operation.

Proposition

$$
A\leq_T B \Leftrightarrow A\oplus \overline{A} \text{ is c.e. in } B\Leftrightarrow A\oplus \overline{A}\leq_e B\oplus \overline{B}.
$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus A)$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

Proposition

$$
A\leq_T B \Leftrightarrow A\oplus \overline{A} \text{ is c.e. in } B\Leftrightarrow A\oplus \overline{A}\leq_e B\oplus \overline{B}.
$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus A)$, preserves the order, the least upper bound and the jump operation. The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

$$
(\mathcal{D}_\mathcal{T},\leq_\mathcal{T},\vee,'\bm{0}_\mathcal{T})\cong(\mathcal{TOT},\leq_e,\vee,',\bm{0}_e)\subseteq(\mathcal{D}_e,\leq_e,\vee,'\bm{0}_e)
$$

Proposition

$$
A\leq_T B \Leftrightarrow A\oplus \overline{A} \text{ is c.e. in } B\Leftrightarrow A\oplus \overline{A}\leq_e B\oplus \overline{B}.
$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus A)$, preserves the order, the least upper bound and the jump operation. The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

$$
(\mathcal{D}_\mathcal{T},\leq_\mathcal{T},\vee,^\prime\textbf{0}_\mathcal{T})\cong(\mathcal{TOT},\leq_{e},\vee,^\prime,\textbf{0}_e)\subseteq(\mathcal{D}_e,\leq_{e},\vee,\textbf{0}_e)
$$

Theorem (Selman)

A ≤*^e B if and only if the set of total enumeration degrees above B is a subset of the set of total enumeration degrees above A.*

 Ω

K ロ ト K 伺 ト K ヨ ト K

Proposition

$$
A\leq_T B \Leftrightarrow A\oplus \overline{A} \text{ is c.e. in } B\Leftrightarrow A\oplus \overline{A}\leq_e B\oplus \overline{B}.
$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus A)$, preserves the order, the least upper bound and the jump operation. The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

$$
(\mathcal{D}_\mathcal{T},\leq_\mathcal{T},\vee,^\prime\textbf{0}_\mathcal{T})\cong(\mathcal{TOT},\leq_{e},\vee,^\prime,\textbf{0}_e)\subseteq(\mathcal{D}_e,\leq_{e},\vee,\textbf{0}_e)
$$

Theorem (Selman)

A ≤*^e B if and only if the set of total enumeration degrees above B is a subset of the set of total enumeration degrees above A. TOT is an automorphism base for* D*e.*

 Ω

K ロ ト K 伺 ト K ヨ ト K

Defining the Turing jump operator

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in D_T .

 Ω

4 0 8

Defining the Turing jump operator

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in D_T *.*

1 The double jump is first order definable in \mathcal{D}_τ : Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Defining the Turing jump operator

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in D_T *.*

- **1** The double jump is first order definable in \mathcal{D}_τ : Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*
- \bullet An additional structural fact: for every $\mathbf{a} \nleq_{\mathcal{T}} \mathbf{0}'_{\mathcal{T}}$ there is \mathbf{g} such that $\mathbf{a} \vee \mathbf{g} = \mathbf{g}^{\prime \prime}$.

Definition (Kalimullin)

A pair of sets *A*, *B* are called a K-pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Definition (Kalimullin)

A pair of sets *A*, *B* are called a K-pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

• A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.

Definition (Kalimullin)

A pair of sets *A*, *B* are called a K-pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If *A* is a semi-recursive set, then $\{A, \overline{A}\}$ is a *K*-pair.

Definition (Kalimullin)

A pair of sets A, B are called a K -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If *A* is a semi-recursive set, then $\{A, \overline{A}\}$ is a *K*-pair.

Theorem (Kalimullin)

A pair of sets A, *B are a* K*-pair if and only if their enumeration degrees* **a** *and* **b** *satisfy:*

$$
\mathcal{K}(\bm{a},\bm{b})\leftrightharpoons (\forall \bm{x}\in \mathcal{D}_{\bm{e}})((\bm{a}\vee \bm{x})\wedge (\bm{b}\vee \bm{x})=\bm{x}).
$$

K -pairs are invisible in the Turing universe

 \bullet K-pairs are always quasi-minimal: the only total degree below either of them is **0***e*.

K -pairs are invisible in the Turing universe

- \bullet K-pairs are always quasi-minimal: the only total degree below either of them is **0***e*.
- \bullet A consequence of the existence of nontrivial K-pairs in \mathcal{D}_{e} is that the Slaman-Shore property fails, there is a degree $\mathbf{a} \nleq_e \mathbf{0}'_e$, such that for every \boldsymbol{g} , $\boldsymbol{a} \vee \boldsymbol{g} <_e \boldsymbol{g}''$.

K -pairs are invisible in the Turing universe

- \bullet K-pairs are always quasi-minimal: the only total degree below either of them is **0***e*.
- \bullet A consequence of the existence of nontrivial K-pairs in \mathcal{D}_{e} is that the Slaman-Shore property fails, there is a degree $\mathbf{a} \nleq_e \mathbf{0}'_e$, such that for every \boldsymbol{g} , $\boldsymbol{a} \vee \boldsymbol{g} <_e \boldsymbol{g}''$.
- There are no K -pairs in the structure of the Turing degrees.

 K -pairs and the definability of the enumeration jump

Theorem (Kalimullin)

0 0 *e is the largest degree which can be represented as the least upper bound of a triple* $\mathbf{a}, \mathbf{b}, \mathbf{c}$ *, such that* $\mathcal{K}(\mathbf{a}, \mathbf{b})$ *,* $\mathcal{K}(\mathbf{b}, \mathbf{c})$ *and* $\mathcal{K}(\mathbf{c}, \mathbf{a})$ *.*

 K -pairs and the definability of the enumeration jump

Theorem (Kalimullin)

0 0 *e is the largest degree which can be represented as the least upper bound of a triple* $\mathbf{a}, \mathbf{b}, \mathbf{c}$ *, such that* $\mathcal{K}(\mathbf{a}, \mathbf{b})$ *,* $\mathcal{K}(\mathbf{b}, \mathbf{c})$ *and* $\mathcal{K}(\mathbf{c}, \mathbf{a})$ *.*

Corollary (Kalimullin)

The enumeration jump is first order definable in D*e.*

 K -pairs and the definability of the enumeration jump

Theorem (Kalimullin)

0 0 *e is the largest degree which can be represented as the least upper bound of a triple* $\mathbf{a}, \mathbf{b}, \mathbf{c}$ *, such that* $\mathcal{K}(\mathbf{a}, \mathbf{b})$ *,* $\mathcal{K}(\mathbf{b}, \mathbf{c})$ *and* $\mathcal{K}(\mathbf{c}, \mathbf{a})$ *.*

Corollary (Kalimullin)

The enumeration jump is first order definable in D*e.*

Theorem (Ganchev, S)

For every nonzero enumeration degree **u** ∈ D*e,* **u** 0 *is the largest among all least upper bounds* **a** ∨ **b** *of nontrivial* K*-pairs* {**a**, **b**}*, such that* **a** ≤*^e* **u***.*

 Ω

イロト イ押 トイラト イラト

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of K -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of K -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Ganchev, S)

In $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a degree is total if and only if it is the least upper bound of *a maximal* K*-pair.*

Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of K -pairs below $\mathbf{0}'_e$ is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Ganchev, S)

In $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a degree is total if and only if it is the least upper bound of *a maximal* K*-pair.*

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}_e')$ *.*

$$
LC 2013 8/24
$$

 Ω

A BAK BA

We know that:

 $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_\mathit{e}')$ is first order definable.

 299

4 0 8

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_\mathit{e}')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

 Ω

 \mathcal{A} . If \mathcal{B} and \mathcal{A} is

≔

4 0 8

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_\mathit{e}')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

Question

Is T OT *first order definable in* D*e?*

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_\mathit{e}')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

Question *Is* T OT *first order definable in* D*e?*

Recall that the total degrees are an automorphism base for D*e*.

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_\mathit{e}')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

Question *Is* T OT *first order definable in* D*e?*

Recall that the total degrees are an automorphism base for D*e*.

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

One step further in the dream world

```
Theorem (Ganchev,S)
```

```
For every nonzero enumeration degree \mathbf{u} \in \mathcal{D}_{e},
```

```
\mathbf{u}' = max \{ \mathbf{a} \vee \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_e \mathbf{u} \}.
```
-4 B +

One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_{e}$,

```
\mathbf{u}' = max \{ \mathbf{a} \vee \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_e \mathbf{u} \}.
```
- Suppose that a degree is total if and only if it is the least upper bound of a maximal K -pair.
- The relation **x** is c.e. in **u** would also be definable for total degrees by :

$$
\exists a \exists b(x = a \vee b \& \mathcal{K}(a, b) \& a \leq_e u).
$$

One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_{e}$,

```
\mathbf{u}' = max \{ \mathbf{a} \vee \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_e \mathbf{u} \}.
```
- Suppose that a degree is total if and only if it is the least upper bound of a maximal K -pair.
- The relation **x** is c.e. in **u** would also be definable for total degrees by :

$$
\exists a \exists b(x = a \vee b \& \mathcal{K}(a, b) \& a \leq_e u).
$$

Then for total **u**, our definition of the jump would read u' is the largest total degree, which is c.e. in **u**.

Definability via automorphism analysis in D*^e*

Slaman and Woodin: *Definability in Degree Structures*, 1995.

- **1** Coding theorem.
- ² A characterization of an automorphism in terms of a countable object.
- ³ A finite automorphism base.

Effectively coding and decoding

Mariya I. Soskova (Sofia University) The automorphism group of the enumeration degree $LC 2013$ 12/24

÷.

 299

する

 \sim

4 0 8 1

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B}
Effectively coding and decoding

Definition

A countable relation $\mathcal{R} \subseteq \mathcal{D}_{\bm{e}}^n$ is e-presented beneath a set *A* if there is a set $W \leq_e A$ such that $\mathcal{R} = \{(\mathbf{d}_e(W_{i_1}(A)), \ldots, \mathbf{d}_e(W_{i_n}(A))) \mid (i_1, \ldots, i_n) \in W\}.$

Effectively coding and decoding

Definition

A countable relation $\mathcal{R} \subseteq \mathcal{D}_{\bm{e}}^n$ is e-presented beneath a set *A* if there is a set *W* ≤*^e A* such that $\mathcal{R} = \{(\mathbf{d}_e(W_{i_1}(A)), \ldots, \mathbf{d}_e(W_{i_n}(A))) \mid (i_1, \ldots, i_n) \in W\}.$

Theorem (Coding Theorem)

For every n there is a formula φ_n *, such that for every countable relation on enumeration degrees* R ⊆ D*ⁿ ^e which is e-presented beneath R there are parameters* $\bar{\mathbf{p}} \leq_e \mathbf{d}_e(R)''$ *such that* $\mathcal{R} = \{(\mathbf{x}_1, \dots, \mathbf{x}_n) \mid \mathcal{D}_e \models \varphi_n(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{\bar{p}})\}.$

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{B} \supseteq \mathcal{B}$

Effectively coding and decoding

Definition

A countable relation $\mathcal{R} \subseteq \mathcal{D}_{\bm{e}}^n$ is e-presented beneath a set *A* if there is a set $W \leq_e A$ such that $\mathcal{R} = \{(\mathbf{d}_e(W_{i_1}(A)), \ldots, \mathbf{d}_e(W_{i_n}(A))) \mid (i_1, \ldots, i_n) \in W\}.$

Theorem (Coding Theorem)

For every n there is a formula φ_n *, such that for every countable relation on enumeration degrees* R ⊆ D*ⁿ ^e which is e-presented beneath R there are parameters* $\bar{\mathbf{p}} \leq_e \mathbf{d}_e(R)''$ *such that* $\mathcal{R} = \{(\mathbf{x}_1, \dots, \mathbf{x}_n) \mid \mathcal{D}_e \models \varphi_n(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{\bar{p}})\}.$

Theorem (Decoding Theorem)

Let R ⊆ D*ⁿ ^e be countable and coded by parameters* **p¯***. Let* **d***e*(*P*) *be an upper bound on these parameters. Then there is a presentation W of* $\cal R$, such that $W \leq_{\bm e} \bm P^5.$

Jump ideals in D*^e*

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

Jump ideals in D*^e*

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

Denote by
$$
\varphi(\mathbf{u}, \mathbf{u}') : \mathbf{u}' = \max \{ \mathbf{a} \vee \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_e \mathbf{u} \}
$$
.

Theorem

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. For every element $\mathbf{u} \in \mathcal{I}$ we have the \mathcal{I} following equivalence: $\mathcal{I} \models \varphi_{\mathcal{J}}(\mathbf{u}, \mathbf{u}') \leftrightarrow \mathcal{D}_e \models \varphi_{\mathcal{J}}(\mathbf{u}, \mathbf{u}').$

 Ω

 \rightarrow \rightarrow \rightarrow \rightarrow \pm \rightarrow

Jump ideals in D*^e*

Definition

A set of enumeration degrees $\mathcal{I} \subseteq \mathcal{D}_e$ is a jump ideal if it is downwards closed, closed under least upper bound and closed under the jump operation.

Denote by
$$
\varphi(\mathbf{u}, \mathbf{u}') : \mathbf{u}' = \max \{ \mathbf{a} \vee \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_e \mathbf{u} \}
$$
.

Theorem

Let $\mathcal{I} \subseteq \mathcal{D}_e$ *be a jump ideal. For every element* $\mathbf{u} \in \mathcal{I}$ *we have the* \mathcal{I} following equivalence: $\mathcal{I} \models \varphi_{\mathcal{J}}(\mathbf{u}, \mathbf{u}') \leftrightarrow \mathcal{D}_e \models \varphi_{\mathcal{J}}(\mathbf{u}, \mathbf{u}').$

Corollary

If ρ *is an automorphism of a jump ideal I then* $\rho(\mathbf{x}') = \rho(\mathbf{x})'$ *.*

 Ω

イロト イ押 トイラト イラト

Let $\langle \mathbb{N}, 0, s, +, *, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set *X*.

Let $\langle \mathbb{N}, 0, s, +, *, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set *X*.

¹ Coding Theorem: The structure can be coded by parameters below X".

Let $\langle N, 0, s, +, *, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set *X*.

- ¹ Coding Theorem: The structure can be coded by parameters below X".
- ² Decoding Theorem: Suppose the structure is coded by parameters below *P* then the set *X* is enumeration reducible to *P* 5 .

Let $\langle \mathbb{N}, 0, s, +, *, X \rangle$ be the standard model of arithmetic with one additional predicate for membership in the set *X*.

- ¹ Coding Theorem: The structure can be coded by parameters below X".
- ² Decoding Theorem: Suppose the structure is coded by parameters below *P* then the set *X* is enumeration reducible to *P* 5 .

Corollary

Let $\mathcal{I} \subseteq \mathcal{J}$ *be jump ideals in* \mathcal{D}_e *. Let* $\rho : \mathcal{J} \to \mathcal{J}$ *be an automorphism of* J *. Then* $\rho \restriction \mathcal{I}$ is an automorphism of \mathcal{I} *.*

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Let C ⊆ D*^e* be countable and e-presented beneath *C*. Let $\langle \mathbb{N}, 0, s, +, *, \mathcal{C}, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \to \mathcal{C}$.

A + + = +

Let C ⊆ D*^e* be countable and e-presented beneath *C*. Let $\langle \mathbb{N}, 0, s, +, *, \mathcal{C}, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \to \mathcal{C}$.

¹ Coding Theorem: The structure can be coded arithmetically in *C*.

Let C ⊆ D*^e* be countable and e-presented beneath *C*. Let $\langle \mathbb{N}, 0, s, +, *, \mathcal{C}, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \to \mathcal{C}$.

¹ Coding Theorem: The structure can be coded arithmetically in *C*.

² Decoding Theorem: Given two such structures, $\langle \mathbb{N}_1, 0_1, s_1, +_1, *_1, C_1, \psi_1 \rangle$ and $\langle \mathbb{N}_2, 0_2, s_2, +_2, *_2, C_2, \psi_2 \rangle$, both coded by parameters below *P*. Then the relation $\mathcal{C}_1 \rightarrow \mathcal{C}_2 = \left\{ (\textbf{x}, \textbf{y}) \mid \textbf{x} \in \mathcal{C}_1 \; \& \; \textbf{y} \in \mathcal{C}_2 \; \& \; \psi_1^{-1} \right\}$ $i_1^{-1}(\mathbf{x}) = \psi_2^{-1}$ $\left\{ \mathsf{z}^{-1}(\mathsf{y})\right\}$ is arithmetically presented relative to *P*.

 Ω

A + + B + + B +

Let C ⊆ D*^e* be countable and e-presented beneath *C*. Let $\langle \mathbb{N}, 0, s, +, *, \mathcal{C}, \psi \rangle$ be the standard model of arithmetic together with a counting $\psi : \mathbb{N} \to \mathcal{C}$.

¹ Coding Theorem: The structure can be coded arithmetically in *C*.

² Decoding Theorem: Given two such structures, $\langle \mathbb{N}_1, \mathbb{O}_1, s_1, +_1, *_1, \mathcal{C}_1, \psi_1 \rangle$ and $\langle \mathbb{N}_2, \mathbb{O}_2, s_2, +_2, *_2, \mathcal{C}_2, \psi_2 \rangle$, both coded by parameters below *P*. Then the relation $\mathcal{C}_1 \rightarrow \mathcal{C}_2 = \left\{ (\textbf{x}, \textbf{y}) \mid \textbf{x} \in \mathcal{C}_1 \; \& \; \textbf{y} \in \mathcal{C}_2 \; \& \; \psi_1^{-1} \right\}$ $i_1^{-1}(\mathbf{x}) = \psi_2^{-1}$ $\left\{ \mathsf{z}^{-1}(\mathsf{y})\right\}$ is arithmetically presented relative to *P*.

Corollary

Let $I \subseteq J$ *be jump ideals in* \mathcal{D}_e *. Let* $\rho : J \to J$ *be an automorphism of* J . If I is countable and e-presented beneath I and $I \in J$ then $\rho \restriction I$ is *arithmetically presented in I.*

 QQ

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Persistent automorphisms

Definition

Let $\mathcal{I} \subset \mathcal{D}_e$ be countable jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is called persistent if for every $\mathbf{x} \in \mathcal{D}_e$ there is a countable jump ideal \mathcal{J} and an automorphism ρ_1 : $\mathcal{J} \to \mathcal{J}$ such that $\{x\} \cup \mathcal{I} \subset \mathcal{J}$ and $\rho_1 \restriction \mathcal{I} = \rho.$

 Ω

医单位 医单

Persistent automorphisms

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be countable jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is called persistent if for every $\mathbf{x} \in \mathcal{D}_e$ there is a countable jump ideal \mathcal{J} and an automorphism ρ_1 : $\mathcal{J} \to \mathcal{J}$ such that $\{x\} \cup \mathcal{I} \subset \mathcal{J}$ and $\rho_1 \restriction \mathcal{I} = \rho.$

Note: Every automorphism π of \mathcal{D}_e restricted to a countable ideal $\mathcal I$ is a persistent automorphism of I .

 Ω

A + + = + + = +

Persistent automorphisms

Definition

Let $\mathcal{I} \subset \mathcal{D}_e$ be countable jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is called persistent if for every $\mathbf{x} \in \mathcal{D}_e$ there is a countable jump ideal \mathcal{J} and an automorphism ρ_1 : $\mathcal{J} \to \mathcal{J}$ such that $\{x\} \cup \mathcal{I} \subset \mathcal{J}$ and $\rho_1 \restriction \mathcal{I} = \rho.$

Note: Every automorphism π of \mathcal{D}_e restricted to a countable ideal $\mathcal I$ is a persistent automorphism of I .

Theorem

Let I ⊆ J *be countable jump ideals in* D*e. Every persistent automorphism of* I *can be extended to a persistent automorphism of* J *.*

 Ω

イロト イ押 トイラ トイラトー

Definition

Let $\mathcal{I} \subseteq \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for in some generic extension $V[G]$ in which I is countable, ρ is persistent.

Definition

Let $\mathcal{I} \subset \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for in some generic extension $V[G]$ in which I is countable, ρ is persistent.

Theorem

1 Every automorphism π : $\mathcal{D}_e \rightarrow \mathcal{D}_e$ is generically persistent.

ミャイミ

Definition

Let $\mathcal{I} \subset \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for in some generic extension $V[G]$ in which I is countable, ρ is persistent.

Theorem

- ¹ *Every automorphism* π : D*^e* → D*^e is generically persistent.*
- ² *Let* π *be an automorphism of* D*^e in some generic extension V*[*G*]*. Then* $\pi \in L(\mathbb{R})$.

 Ω

化重新分量

Definition

Let $\mathcal{I} \subset \mathcal{D}_e$ be a jump ideal. An automorphism $\rho : \mathcal{I} \to \mathcal{I}$ is generically persistent if for in some generic extension $V[G]$ in which I is countable, ρ is persistent.

Theorem

- ¹ *Every automorphism* π : D*^e* → D*^e is generically persistent.*
- ² *Let* π *be an automorphism of* D*^e in some generic extension V*[*G*]*. Then* $\pi \in L(\mathbb{R})$.
- ³ *Every persistent automorphism of a countable ideal* I ⊆ D*^e can be extended to an automorphism* π *of* \mathcal{D}_e *.*

 Ω

イロト イ押 トイラト イラト

Arithmetically representing automorphisms of D*e*.

Theorem (Ganchev, Soskov)

Every automorphism of \mathcal{D}_e *is the identity on the cone above* \emptyset^4 *.*

Arithmetically representing automorphisms of D*e*.

Theorem (Ganchev, Soskov)

Every automorphism of \mathcal{D}_e *is the identity on the cone above* \emptyset^4 *.*

Theorem

Let π *be an automorphism of* D*e. There exists an enumeration operator* Γ *such that for every* 8*-generic total function g,* $\pi(\mathsf{d}_e(g)) = \mathsf{d}_e(\mathsf{\Gamma}(g \oplus \emptyset^4)).$

Arithmetically representing automorphisms of D*e*.

Theorem (Ganchev, Soskov)

Every automorphism of \mathcal{D}_e *is the identity on the cone above* \emptyset^4 *.*

Theorem

Let π *be an automorphism of* D*e. There exists an enumeration operator* Γ *such that for every* 8*-generic total function g,* $\pi(\mathsf{d}_e(g)) = \mathsf{d}_e(\mathsf{\Gamma}(g \oplus \emptyset^4)).$

Corollary

Let π *be* an automorphism of \mathcal{D}_e . There exists an arithmetic formula φ *such that* $\varphi(X, Y)$ *is true if and only if* $\pi(\mathbf{d}_e(X)) = \mathbf{d}_e(Y)$ *. There are therefore at most countably many automorphisms of* D*e.*

 Ω

イロト イ押 トイラト イラト

Automorphism bases

Theorem

Let π *be an automorphism of* D*e. There exists an enumeration operator* Γ *such that for every* 8*-generic total function g,* $\pi(\mathsf{d}_e(g)) = \mathsf{d}_e(\mathsf{\Gamma}(g \oplus \emptyset^4)).$

The Second

Automorphism bases

Theorem

Let π *be an automorphism of* D*e. There exists an enumeration operator* Γ *such that for every* 8*-generic total function g,* $\pi(\mathsf{d}_e(g)) = \mathsf{d}_e(\mathsf{\Gamma}(g \oplus \emptyset^4)).$

Corollary

The structure of the enumeration degrees D*^e has an automorphism base consisting of:*

- ¹ *A single total degree* **g***.*
- ² *A single quasiminimal degree* **a***.*
- ³ *The enumeration degrees below* **0** 8 *e .*

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

4 D.K.

Definition

Let *T* be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension;

 \rightarrow \rightarrow \rightarrow

Definition

Let *T* be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension; An e-assignment of reals consists of

¹ A countable ω-model M of *T*.

 \rightarrow \rightarrow \rightarrow

Definition

Let *T* be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension; An e-assignment of reals consists of

- ¹ A countable ω-model M of *T*.
- 2 a jump ideal *I* in \mathcal{D}_e .
- \bullet A bijection $f:\mathcal{D}_{\bm{e}}^{\mathcal{M}}\to\mathcal{I}$, such that for all $\textbf{x},\textbf{y}\in\mathcal{D}_{\bm{e}}^{\mathcal{M}},$ if $\mathcal{M}\models\textbf{x}\geq\textbf{y}$ then $f(\mathbf{x}) \geq f(\mathbf{y})$.

Definition

Let *T* be a finitely axiomatizable fragment of ZFC with Σ_1 replacement and Σ_1 comprehension; An e-assignment of reals consists of

- ¹ A countable ω-model M of *T*.
- 2 a jump ideal *I* in \mathcal{D}_e .

 \bullet A bijection $f:\mathcal{D}_{\bm{e}}^{\mathcal{M}}\to\mathcal{I}$, such that for all $\textbf{x},\textbf{y}\in\mathcal{D}_{\bm{e}}^{\mathcal{M}},$ if $\mathcal{M}\models\textbf{x}\geq\textbf{y}$ then $f(\mathbf{x}) \geq f(\mathbf{y})$.

Theorem

If (M, f, \mathcal{I}) *is an e-assignment of reals then* $\mathcal{D}^{\mathcal{M}}_{\mathbf{a}} = \mathcal{I}$ *and f is an automorphism of* I*.*

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Extendably assigning reals

Definition

An e-assignment of reals (M, f, \mathcal{I}) is extendable if for every $\mathbf{z} \in \mathcal{D}_{e}$ there exists an e-assignment of reals $(\mathcal{M}_1, f_1, \mathcal{I}_1)$ such that $\mathcal{D}^{\mathcal{M}}_{\boldsymbol{e}} \subseteq \mathcal{D}^{\mathcal{M}_1}_{\boldsymbol{e}}, \mathcal{I} \cup \{\boldsymbol{z}\} \subseteq \mathcal{I}_1$ and $f \subseteq f_1$.

Extendably assigning reals

Definition

An e-assignment of reals (M, f, \mathcal{I}) is extendable if for every $\mathbf{z} \in \mathcal{D}_{e}$ there exists an e-assignment of reals $(M_1, f_1, \mathcal{I}_1)$ such that $\mathcal{D}^{\mathcal{M}}_{\boldsymbol{e}} \subseteq \mathcal{D}^{\mathcal{M}_1}_{\boldsymbol{e}}, \mathcal{I} \cup \{\boldsymbol{z}\} \subseteq \mathcal{I}_1$ and $f \subseteq f_1$.

Theorem

If (M, *f*, I) *is an extendible e-assignment then there is an* a utomorphism $\pi : \mathcal{D}_e \to \mathcal{D}_e$, such that for all $\mathbf{x} \in \mathcal{D}^\mathcal{M}_e$, $\pi(\mathbf{x}) = f(\mathbf{x})$.

 Ω

4 何 ト 4 ヨ ト 4 ヨ ト

Let (M, f, \mathcal{I}) be an extendable e-assignment of reals.

 Ω

4.000.00

 $\left\{ \bigcap_{i=1}^{n} x_i : i \in \mathbb{N} \right\}$

Let (M, f, \mathcal{I}) be an extendable e-assignment of reals.

¹ We can interpret this structure in D*e*.

∋⇒

Let (M, f, \mathcal{I}) be an extendable e-assignment of reals.

- ¹ We can interpret this structure in D*e*.
- ² Coding Theorem: This interpretation can be coded by finitely many parameters **p**.

Let (M, f, \mathcal{I}) be an extendable e-assignment of reals.

- **1** We can interpret this structure in \mathcal{D}_{e} .
- 2 Coding Theorem: This interpretation can be coded by finitely many parameters **p**.
- ³ " **p** codes an extendable e-assignment of reals " is a definable property.
Example 3: Interpreting automorphisms

Let (M, f, \mathcal{I}) be an extendable e-assignment of reals.

- **1** We can interpret this structure in \mathcal{D}_{e} .
- ² Coding Theorem: This interpretation can be coded by finitely many parameters **p**.
- ³ " **p** codes an extendable e-assignment of reals " is a definable property.

Theorem

Let **g** *be the enumeration degree of an 8-generic g* ≤*^e* ∅ 8 *. Then the relation Bi*(\bar{c} , **d**), *stating that "***c** *codes a model of arithmetic with a unary predicate for X and* $\mathbf{d}_e(X) = \mathbf{d}^n$ *is definable in* \mathcal{D}_e *using parameter* **g***.* D*^e is biinterpretable with second order arithmetic using parameters.*

 Ω

イロト イ押ト イヨト イヨト ニヨ

Corollary

Let $R ⊆ (2^ω)ⁿ$ *be relation definable in second order arithmetic and invariant under enumeration reducibility.*

 Ω

4 17 18

 $\left\{ \left. \left(\mathsf{d} \mathsf{d} \right) \right| \times \left\{ \left(\mathsf{d} \right) \right| \times \left(\mathsf{d} \right) \right\}$

Corollary

Let $R ⊆ (2^ω)ⁿ$ *be relation definable in second order arithmetic and invariant under enumeration reducibility.*

¹ *The relation* R ⊆ D*ⁿ ^e defined by* $\mathcal{R}(\mathbf{d}_e(X_1), \ldots, \mathbf{d}_e(X_n)) \leftrightarrow R(X_1, \ldots, X_n)$ is definable in \mathcal{D}_e with one *parameter.*

-4 T≡

 Ω

 $\left\{ \left| \left| \mathbf{e} \right| \right| \leq \left| \mathbf{e} \right| \leq \left| \mathbf{e} \right| \right\}$

Corollary

Let $R ⊆ (2^ω)ⁿ$ *be relation definable in second order arithmetic and invariant under enumeration reducibility.*

¹ *The relation* R ⊆ D*ⁿ ^e defined by* $\mathcal{R}(\mathbf{d}_e(X_1), \ldots, \mathbf{d}_e(X_n)) \leftrightarrow R(X_1, \ldots, X_n)$ is definable in \mathcal{D}_e with one *parameter. In particular* T OT *is definable with one parameter.*

B K -4 B Ω

Corollary

Let $R ⊆ (2^ω)ⁿ$ *be relation definable in second order arithmetic and invariant under enumeration reducibility.*

- ¹ *The relation* R ⊆ D*ⁿ ^e defined by* $\mathcal{R}(\mathbf{d}_e(X_1), \ldots, \mathbf{d}_e(X_n)) \leftrightarrow R(X_1, \ldots, X_n)$ is definable in \mathcal{D}_e with one *parameter. In particular* T OT *is definable with one parameter.*
- ² *If* R *is invariant under automorphisms then* R *is definable without parameters in* D*e.*

 Ω

医单位 医单位

Corollary

Let $R ⊆ (2^ω)ⁿ$ *be relation definable in second order arithmetic and invariant under enumeration reducibility.*

¹ *The relation* R ⊆ D*ⁿ ^e defined by* $\mathcal{R}(\mathbf{d}_e(X_1), \ldots, \mathbf{d}_e(X_n)) \leftrightarrow R(X_1, \ldots, X_n)$ is definable in \mathcal{D}_e with one *parameter. In particular* T OT *is definable with one parameter.*

² *If* R *is invariant under automorphisms then* R *is definable without parameters in* D*e. In particular the hyperarithmetic jump operation is first order*

definable in D*e.*

 Ω

イロト イ押ト イヨト イヨト ニヨ

Thank you!

Mariya I. Soskova (Sofia University) The automorphism group of the enumeration degree can controlled and the 24/24

重

 299

 \mathbf{p}

←ロト ←部 ト ←語 ト ←語