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The spectrum of relative definability

How can a set of natural numbers B be used to define a set of natural
numbers A.
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The spectrum of relative definability

How can a set of natural numbers B be used to define a set of natural
numbers A.

@ There is an algorithm, which determines whether x € A using
finite information about memberships in B: Turing reducibility.

@ There is an algorithm, which enumerates instances of
memberships in A from instances of memberships in B:
enumeration reducibility.
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Turing reducibility

@ A <7 Biff x4 is computable using oracle B.
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Turing reducibility

@ A <7 Biff x4 is computable using oracle B.
@ A<rBiff A@Aisc.e. inB.

@ Aisc.e. in Biff there is a c.e. set W such that
x € Aiff there are finite sets Dg and Dg, such that
(x,Dg® Dg) € Wand Dg& D5 C B& B.
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Turing reducibility

@ A <7 Biff x4 is computable using oracle B.

@ A<rBiff A@Aisc.e. inB.

@ Aisc.e. in Biff there is a c.e. set W such that
x € Aiff there are finite sets Dg and Dg, such that
(x,Dg® Dg) € Wand Dg& D5 C B& B.

Definition
A <¢ Bif and only if there is a c.e. set W, such that
A= W(B)={x|3u((x,uye WA D, C B)}.
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Turing reducibility

@ A <7 Biff x4 is computable using oracle B.

@ A<;Biff A@Aisc.e.inB.

@ Ais c.e. in Biff there is a c.e. set W such that
x € Aiff there are finite sets Dg and D, such that
(x,Dp® Dg) € Wand Dg® Dg C B® B.

Definition
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Turing reducibility

@ A <7 Biff x4 is computable using oracle B.

@ A<;Biff A@Aisc.e.inB.

@ Ais c.e. in Biff there is a c.e. set W such that
x € Aiff there are finite sets Dg and D, such that
(x,Dp® Dg) € Wand Dg® Dg C B® B.

Definition
A <¢ Bif and only if there is a c.e. set W, such that
A= W(B)={x|3u((x,uye WA D, C B)}.

So Aisc.e. in Bifand only if A<, B&® B.
A<ty Bifandonlyif A¢ A<, B® B.
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The structure of the enumeration degrees

@ A=, Bif A<, Band B <, A.
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The structure of the enumeration degrees

@ A=, Bif A<, Band B <. A.
e do(A) = {B| A=, B}.
o ds(A) < do(B) iff A<, B.
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The structure of the enumeration degrees

@ A= Bif A<cBand B <. A
@ do(A) = {B| A= B}.

0 do(A) < dy(B) iff A<, B.

@ 0. =do(0)={W| Wisc.e. }.
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The structure of the enumeration degrees

@ A= Bif A<cBand B <. A
@ do(A) = {B| A= B}.

0 do(A) < dy(B) iff A<, B.

@ 0. =do(0)={W| Wisc.e. }.
@ do(A) V de(B) = de(A® B).
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The structure of the enumeration degrees

0 A=, Bif A<, Band B <, A

@ do(A)={B|A=¢ B}.

@ do(A) < dg(B) iff A< B.

@ 0. =do(0)={W| Wisc.e. }.

@ do(A) V de(B) = de(A @ B).

@ Do = (De, <, V,0.) is an upper semi-lattice with least element.
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The total degrees

Proposition

The embedding . : D1 — De, defined by 1(d7(A)) = de(A D A),
preserves the order and the least upper bound.
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The total degrees

Proposition

The embedding . : D1 — De, defined by 1(d7(A)) = de(A D A),
preserves the order and the least upper bound.

The substructure of the total e-degrees is defined as TOT = «(Dr).

(DT7 ST’ v, OT) = (TOT) §e7 v, Oe) C (De; Sea v, oe)
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More connections between Dt and Dqg

@ Bisc.e.inAifandonly if B <, A® A.
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More connections between Dt and Dqg

@ Bisc.e.inAifandonly if B <, A® A.
@ Selman’s Theorem: A <, B if and only if

{X|Bisce.in X} C{X|Aisc.e.in X}.

{de(X697) | BSeX®7} C {de(X®7) | ASeX®7}.
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More connections between D+ and D,

@ Bisc.e.inAifandonly if B <, A® A.
@ Selman’s Theorem: A <, B if and only if

{X|Bisc.e.in X} C{X|Aisc.e.in X}.

{de(X697) | BgeX@Y} C {de(X@Y) | ASeX®7}.

@ Corollary: TOT is an automorphism base for De.
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The enumeration jump

@ Let Ky = {x| x € Wx(A)}.
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The enumeration jump

@ Let Ky = {x | x € Wx(A)}. Note that Ky =¢ A.
@ The jump of Ais A’ = Ky @ K. Then do(A) = de(A).
@ The embedding ¢ preserves the jump operation.
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The enumeration jump

@ Let Ky = {x | x € Wx(A)}. Note that Ky =¢ A.
@ The jump of Ais A’ = Ky @ K. Then do(A) = de(A).
@ The embedding ¢ preserves the jump operation.

(DTv ST? Vv, OTa, ) = (TOT, Sev \ oea, ) c (De7 Sea V, 067/ )

Theorem (Soskov’s Jump Inversion Theorem)
For every x € D, there exists a total e-degree a > x, such thata’ = x'. J
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Computable model theory

Fix a countable relational structure A = (N, Ry ... Rx).
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Computable model theory

Fix a countable relational structure A = (N, Ry ... Rx).

Definition (Richter)
The degree spectrum of A, denoted by DS7(.A), is the set of Turing
degrees of the diagrams of structures B = A.

Mariya I. Soskova ( Sofia University ) The Turing universe in context LC 2012

8/31



Computable model theory

Fix a countable relational structure A = (N, Ry ... Rx).

Definition (Richter)
The degree spectrum of A, denoted by DS7(.A), is the set of Turing
degrees of the diagrams of structures B = A.

If DS7(A) has a least member, it is the (Turing) degree of A.
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Fix a countable relational structure A = (N, Ry ... Ry).

Definition (Richter)

The degree spectrum of A, denoted by DS7(.A), is the set of Turing
degrees of the diagrams of structures B = A.

If DS7(A) has a least member, it is the (Turing) degree of A.

Definition (Jockusch)
The jump spectrum of A is DST(A) = {d’' | d € DST(A)}.
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Computable model theory

Fix a countable relational structure A = (N, Ry ... Ry).

Definition (Richter)

The degree spectrum of A, denoted by DS7(.A), is the set of Turing
degrees of the diagrams of structures B = A.

If DS7(A) has a least member, it is the (Turing) degree of A.

Definition (Jockusch)
The jump spectrum of A is DST(A) = {d’' | d € DST(A)}.
If DS}(.A) has a least member, it is the (Turing) jump degree of A.
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Torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 G is (isomorphic to) a subgroup

of (Q, +,=).
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Torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 G is (isomorphic to) a subgroup
of (Q, +,=).

Definition

Let p be a prime number and a € G.
ho(a) = the largest k, such that pX|ain G;
PR oo, if vk(p¥|ain G) .

Here pX|ain G if there exists b € G such that pX.b = a.
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Torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 G is (isomorphic to) a subgroup
of (Q,+,=).

Definition

Let p be a prime number and a € G.
ho(a) = the largest k, such that pX|ain G;
PR oo, if vk(p¥|ain G) .

Here pX|ain G if there exists b € G such that pX.b = a.

Example: It G = Q then for all nonzero a and all p, hp(a) = oo,
because for all k, pk.ﬁ =a.
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Torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 G is (isomorphic to) a subgroup

of (Q, +,=).
Definition
Let p be a prime number and a € G.

) = the largest k, such that pX|ain G;
PR oo, if vk(p¥|ain G) .

Here pX|ain G if there exists b € G such that pX.b = a.

Example: It G = Q then for all nonzero a and all p, hp(a) = oo,
because for all k, pk.l% =a.

If G = Z then for all nonzero a and all but finitely many p, hy(a) = 0.
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Torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 G is (isomorphic to) a subgroup
of (Q,+,=).

Definition
Let p be a prime number and a € G.

ho(a) = the largest k, such that pk\ain G;
PR oo, if vk(p¥|ain G) .

Here pX|ain G if there exists b € G such that pX.b = a.

Example: It G = Q then for all nonzero a and all p, hp(a) = oo,
because for all k, pk.ﬁ =a.

If G = Z then for all nonzero a and all but finitely many p, hy(a) = 0.
In fact if a, b # 0 then for all but finitely many p, hp(a) = hp(b).
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The type of G

Definition
The characteristic of an element a € G is the sequence:

x(8) = (hpy(8): Mo, (@), - - hp, (@), .- ).
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The type of G

Definition
The characteristic of an element a € G is the sequence:

x(8) = (hpy(8): Mo, (@), - - hp, (@), .- ).

So if a, b # 0 then x(a) = x(b).
The type of G, denoted x(G) is the equivalence class of x(a) for any
a#0inG.
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The type of G

Definition
The characteristic of an element a € G is the sequence:
x(a) = (hp,(@), hp, (@), ... hp,(aQ),...).

So if a, b # 0 then x(a) = x(b).
The type of G, denoted x(G) is the equivalence class of x(a) for any
a#0inG.

Baer noticed that there is a TFA1 group of every possible type.
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The type of G

Definition
The characteristic of an element a € G is the sequence:
x(a) = (hp,(@), hp, (@), ... hp,(aQ),...).

So if a,b # 0 then x(a) =* x(b).
The type of G, denoted x(G) is the equivalence class of x(a) for any
a#0inG.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if
they have the same type.
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The standard type of G

Definition
Let S(G) = {(i,j) | j < the i-th element of x(G)}. J
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The standard type of G

Definition
Let S(G) = {(i,j) | j < the i-th element of x(G)}.

Theorem (Downey, Jockusch)
The degree spectrum of G is precisely {degr(Y) | S(G) is c.e. in Y}.
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The standard type of G

Definition
Let S(G) = {(i,j) | j < the i-th element of x(G)}. )

Theorem (Downey, Jockusch)
The degree spectrum of G is precisely {degr(Y) | S(G) is c.e. in Y}.

@ Every set A can be coded (is m-equivalent) to a type of some
group G.
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The standard type of G

Definition
Let S(G) = {(i,j) | j < the i-th element of x(G)}.

Theorem (Downey, Jockusch)
The degree spectrum of G is precisely {degr(Y) | S(G) is c.e. in Y}.

@ Every set A can be coded (is m-equivalent) to a type of some
group G.
@ Given a set A, characterize C(A) = {X | Ais c.e. in X}.
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Least jump enumeration
C(A)={X|Aisc.e.in X}.

Theorem (Richter)

There is a non-c.e. set A such that A is c.e. in two sets B and C which
form a minimal pair.
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Least jump enumeration
C(A)={X|Aisc.e.in X}.

Theorem (Richter)
There is a non-c.e. set A such that A is c.e. in two sets B and C which
form a minimal pair.

Hence there is a set A, such that C(A) does not have a member of
least degree.

Theorem (Coles, Downey, Slaman)
For every sets A the set: C(A) = {X' | Ais c.e. in X} has a member of
least degree.

Every torsion free abelian group of rank 1 has a jump degree.

The proof is a forcing construction of this least member.
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Enumeration degree spectrum

Fix a countable relational structure A = (N, Ry ... Rk).
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Enumeration degree spectrum

Fix a countable relational structure A = (N, Ry ... Rk).

Definition (Soskov)

The enumeration degree spectrum of A, denoted by DS¢(.A), is the set
of e-degrees of the positive diagrams of structures 5 = A.
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Enumeration degree spectrum

Fix a countable relational structure A = (N, Ry ... Rk).

Definition (Soskov)

The enumeration degree spectrum of A, denoted by DS¢(.A), is the set
of e-degrees of the positive diagrams of structures 5 = A.

If DSe(A) has a least member, it is the (enumeration) degree of A.
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Enumeration degree spectrum

Fix a countable relational structure A = (N, Ry ... Rk).

Definition (Soskov)

The enumeration degree spectrum of A, denoted by DS¢(.A), is the set
of e-degrees of the positive diagrams of structures 5 = A.

If DSe(A) has a least member, it is the (enumeration) degree of A.

@ Consider the structure At = (N, Ry, Ry ... Ry, R).
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Enumeration degree spectrum

Fix a countable relational structure A = (N, Ry ... Rk).

Definition (Soskov)

The enumeration degree spectrum of A, denoted by DS¢(.A), is the set
of e-degrees of the positive diagrams of structures 5 = A.

If DSe(A) has a least member, it is the (enumeration) degree of A.

@ Consider the structure At = (N, Ry, Ry ... Ry, R).
@ Then DSg(A') C TOT.
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Enumeration degree spectrum

Fix a countable relational structure A = (N, Ry ... Rk).

Definition (Soskov)

The enumeration degree spectrum of A, denoted by DSg(A), is the set
of e-degrees of the positive diagrams of structures 5 = A.

If DSe(A) has a least member, it is the (enumeration) degree of A.

@ Consider the structure At = (N, Ry, Ry ... Ry, R).
@ Then DSg(A1) C TOT.
@ Infact DSg(A™) = {«(a) |a € DSt(A)}.
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Enumeration degree spectrum

Fix a countable relational structure A = (N, Ry ... Rk).

Definition (Soskov)

The enumeration degree spectrum of A, denoted by DSg(A), is the set
of e-degrees of the positive diagrams of structures 5 = A.

If DSe(A) has a least member, it is the (enumeration) degree of A.

@ Consider the structure At = (N, Ry, Ry ... Ry, R).

@ Then DSg(A') C TOT.

@ Infact DSg(A™) = {«(a) |a € DSt(A)}.

@ A has T-degree a if and only if A* has e-degree «(a).
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TFA1 groups in the e-degrees

@ Let G be a torsion-free abelian group of rank 1.
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TFA1 groups in the e-degrees

@ Let G be a torsion-free abelian group of rank 1.

@ Recall that the Turing degree spectrum of G is precisely
{degr(Y) | S(G)isc.e.in Y}.
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TFA1 groups in the e-degrees

@ Let G be a torsion-free abelian group of rank 1.

@ Recall that the Turing degree spectrum of G is precisely
{degr(Y) | S(G)isc.e.in Y}.

@ Note that the diagram of a group is enumeration equivalent to its
positive diagram, as addition is a total function.
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TFA1 groups in the e-degrees

@ Let G be a torsion-free abelian group of rank 1.

@ Recall that the Turing degree spectrum of G is precisely
{degr(Y) | S(G)isc.e.in Y}.

@ Note that the diagram of a group is enumeration equivalent to its
positive diagram, as addition is a total function.

@ In particular DS,(G) = DS¢(G™) = «(DST(G)).
@ Denote do(S(G)) by sg-the type degree of G.
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TFA1 groups in the e-degrees

@ Let G be a torsion-free abelian group of rank 1.

@ Recall that the Turing degree spectrum of G is precisely
{degr(Y) | S(G)isc.e.in Y}.

@ Note that the diagram of a group is enumeration equivalent to its
positive diagram, as addition is a total function.

@ In particular DS,(G) = DS¢(G™) = «(DST(G)).

@ Denote do(S(G)) by sg-the type degree of G. The enumeration
degree spectrum of G is:

DSe(G)={a|acTOT &sg <e¢a}.
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TFA groups in the e-degrees

DSe(G)={a|acTOT & sg <eca}
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TFA groups in the e-degrees

DS;(G)={a|acTOT & sg <ca}

@ By Selman’s Theorem sg is completely determined by the set of
total degrees above it.
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TFA groups in the e-degrees

DS,(G)={a|acTOT & sg <ca}

@ By Selman’s Theorem sg is completely determined by the set of
total degrees above it.

@ G has a degree (both e- and T-) if and only if the type degree sg is
total.
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TFA groups in the e-degrees

DSe(G) ={a|ac TOT & sg <ca}

@ By Selman’s Theorem sg is completely determined by the set of
total degrees above it.

@ G has a degree (both e- and T-) if and only if the type degree sg is
total.

@ If G has an e-degree then this e-degree is precisely sg.
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TFA groups in the e-degrees

DSe(G) ={a|ac TOT & sg <ca}

@ By Selman’s Theorem sg is completely determined by the set of
total degrees above it.

@ G has a degree (both e- and T-) if and only if the type degree sg is
total.

@ If G has an e-degree then this e-degree is precisely sg.

@ By Soskov’s Jump inversion Theorem G always has first jump
degree (both e- and T-) and it is si;.
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Defining the Turing jump operator

Theorem (Shore, Slaman)
The Turing jump operator is first order definable in Dr. J

Mariya I. Soskova ( Sofia University ) The Turing universe in context LC 2012 16/31



Defining the Turing jump operator

Theorem (Shore, Slaman)
The Turing jump operator is first order definable in Dr. J

@ Slaman and Woodin: The double jump is first order definable in
Dr.
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Defining the Turing jump operator
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Hence 0’ is the greatest degree which does not join any g to g”.

Ingredient 1: Slaman and Woodin’s analysis of the automorphisms of
the Turing degrees and “involves explicit translation of automorphism
facts in definability facts via a coding of second order arithmetic”.
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Defining the Turing jump operator

Theorem (Shore, Slaman)
The Turing jump operator is first order definable in Dr. J

@ Slaman and Woodin: The double jump is first order definable in
Dr.

© Forevery a £ 0'; there is g such thatav g = g”
Hence 0’ is the greatest degree which does not join any g to g”.

Ingredient 1: Slaman and Woodin’s analysis of the automorphisms of
the Turing degrees and “involves explicit translation of automorphism
facts in definability facts via a coding of second order arithmetic”.

Ingredient 2: A special case of a more general theorem for any n-rea
operator. Involves sharp analysis of Kumabe-Slaman forcing.
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Semi-recursive sets in the enumeration degrees

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a total
computable selector function s, such that sa(x, y) € {x, y} and if

{x,y} N A+ Dthen sa(x,y) € A.
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Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a total
computable selector function s, such that sa(x, y) € {x, y} and if
{x,y} N A# Dthen ss(x,y) € A

@ Foreveryset Atheset Ly = {0 €2< |0 <; xa}is
semi-recursive.
Theorem (Jockusch)

For every noncomputable set B there is a semi-recursive set A=t B
such that both A and A are not c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-recursive set, which is not c.e. and not co-c.e then de(A)
and dg(A) form a minimal pair.
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Semi-recursive sets in the enumeration degrees
Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a total
computable selector function s, such that sa(x, y) € {x, y} and if
{x,y} N A# Dthen ss(x,y) € A

@ Foreveryset Atheset Ly = {0 €2< |0 <; xa}is
semi-recursive.
Theorem (Jockusch)

For every noncomputable set B there is a semi-recursive set A=t B
such that both A and A are not c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-recursive set, which is not c.e. and not co-c.e then de(A)
and dg(A) form a minimal pair.

(VX € De)((de(A) V X) A (do(A) V X) = X). )
Lc2012  17/31




IC-pairs in the enumeration degrees

Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that
AxBCWand AxBC W.
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IC-pairs in the enumeration degrees

Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that
AxBCWand AxBC W.

@ Atrivial example is {A, U} and {U, A}, where U is c.e.
o If Ais a semi-recursive set, then {A, A} is a K-pair.
W ={(x,y) | sa(x,y) = x}.
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IC-pairs in the enumeration degrees

Definition (Kalimullin)
A pair of sets A, B are called a KC-pair if there is a c.e. set W, such that
AxBC WandAx BC W.

@ Atrivial example is {A, U} and {U, A}, where U is c.e.
@ If Ais a semi-recursive set, then {A, A} is a K-pair.
W= {<X7y> ’ SA(X7y) = X} :

Theorem (Kalimullin)

A pair of sets A, B are a K-pair if and only if their enumeration degrees
a and b satisfy:

K(a,b) = (vx € De)((a Vv x) A (b V Xx) =Xx).
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IC-pairs are invisible in the Turing universe

@ K-pairs are always quasi-minimal: the only total degree below
either of them is Oc.
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@ A consequence of the existence of nontrivial K-pairs in De is that
the Slaman-Shore property fails, there is a degree a £ 0}, such
that for every g,av g <ec g".
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IC-pairs are invisible in the Turing universe

@ K-pairs are always quasi-minimal: the only total degree below
either of them is Oc.

@ A consequence of the existence of nontrivial K-pairs in De is that
the Slaman-Shore property fails, there is a degree a £ 0}, such
that for every g,av g <ec g".

@ There are no K-pairs in the structure of the Turing degrees.
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KC-pairs and the definability of the enumeration jump

Theorem (Kalimullin)

0, is the largest degree which can be represented as the least upper
bound of a triple a, b, ¢, such that KC(a,b), K(b,c) and K(c,a).
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KC-pairs and the definability of the enumeration jump

Theorem (Kalimullin)

0, is the largest degree which can be represented as the least upper
bound of a triple a, b, ¢, such that KC(a,b), K(b,c) and K(c,a).

Corollary (Kalimullin)
The enumeration jump is first order definable in De.

Theorem (S, Ganchev)

For every nonzero enumeration degree u € De, U’ is the largest among
all least upper bounds a \/ b of nontrivial K-pairs {a,b}, such that
a<eu.
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The local structures

@ The local structure of the Turing degrees D7 (< 07) consists of all
A Turing degrees.
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The local structures
@ The local structure of the Turing degrees D7 (< 07) consists of all
A Turing degrees.

@ The structure R consists of the of the computably enumerable
degrees.

@ The local structure of the enumeration degrees Dg(< 0}), consists
of all £ enumeration degrees.

@ Recall that . : Dt — D preserves the jump, hence Dy (< 0)
embeds in Dg(< 0%).

Dr(< 07) = TOT(< 0g) C De(< 0g)

@ ((R) is precisely the substructure of the N9 enumeration degrees.
R = NY e-degrees C TOT(< 0,) C De(< 0)
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Extracting more structure

@ A pair of degrees a, b are a splitting of cifa < ¢, b < ¢ and
avb=c.
Theorem (Harrington)

There exists a c.e. Turing degree a <1 0", such that no pair of c.e.
degrees above a are a splitting of 0’;..
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avb=c.
Theorem (Harrington)

There exists a c.e. Turing degree a <1 0", such that no pair of c.e.
degrees above a are a splitting of 0’;..

Theorem (Cooper, S)

There exists a I'I? enumeration degree a < 07, such that no pair of a
N? and £3 e-degrees above a are a splitting of 0.
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@ A pair of degrees a, b are a splitting of cifa < ¢, b < ¢ and
avb=c.
Theorem (Harrington)

There exists a c.e. Turing degree a <1 0", such that no pair of c.e.
degrees above a are a splitting of 0’;..

Theorem (Cooper, S)

There exists a I'I? enumeration degree a <, 0, such that no pair of a
M% and 3 e-degrees above a are a splitting of 0.

@ So transferring back, there is a c.e. Turing degree a <1 0’, such

that no pair of a c.e. degree and a Ag degree above a are a
splitting of 0%
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Extracting more structure

@ A pair of degrees a, b are a splitting of cifa < ¢, b < ¢ and
avb=c.
Theorem (Harrington)

There exists a c.e. Turing degree a <1 0", such that no pair of c.e.
degrees above a are a splitting of 0’;..

Theorem (Cooper, S)

There exists a I'I? enumeration degree a <, 0, such that no pair of a
M% and 3 e-degrees above a are a splitting of 0.

@ So transferring back, there is a c.e. Turing degree a <1 0’, such
that no pair of a c.e. degree and a Ag degree above a are a
splitting of 0%

@ By Sacks’ Splitting Theorem this is the best possible result.
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Definability in the local structures

Definition
@ For every n > 1 the class of low, degrees is
L,={a<0|a"=0"}.
© For every n > 1 the class of high, degrees is
H,={a<0 |a"=0""}
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Theorem (Nies, Shore, Slaman)
For every n > 1 the classes L, 1 and H,, are first order definable in R.
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Definition
@ For every n > 1 the class of low, degrees is
L,={a<0|a"=0"}.

© For every n > 1 the class of high, degrees is
H,={a<0 |a"=0""}

Theorem (Nies, Shore, Slaman)
For every n > 1 the classes L, 1 and H,, are first order definable in R.
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Theorem (Shore)

For every n > 1 the classes L, .1 and H, are first order definable in
Dr(£0).
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Definability in the local structures

Definition
@ For every n > 1 the class of low, degrees is
L,={a<0|a"=0"}.
© For every n > 1 the class of high, degrees is
H,={a<0 |a"=0""}

Theorem (Nies, Shore, Slaman)
For every n > 1 the classes L, 1 and H,, are first order definable in R.

v

Theorem (Shore)

For every n > 1 the classes L, .1 and H, are first order definable in
Dr(£0).

Note that the definability of Ly in D7(< 0%) or in R remains open.
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Biinterpretability up to double jump

@ The theory of first order arithmetic can be interpreted in R and
Dr(<0).
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Biinterpretability up to double jump

@ The theory of first order arithmetic can be interpreted in R and
Dr(<0).

© There is a definable way of mapping a degree a to a set A in every
coded model of arithmetic so that A” € a”.

© Every relation which is invariant under double jump and definable
in arithmetic is definable.

© An additional proof that H; is first order definable.
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Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(< 07).

Mariya I. Soskova ( Sofia University ) The Turing universe in context LC 2012 25/31



Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(< 07).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(< 0)). J

Mariya I. Soskova ( Sofia University ) The Turing universe in context LC 2012 25/31



Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(< 07).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(< 0)). J

@ Non-trivial £3 K-pairs are low.

Mariya I. Soskova ( Sofia University ) The Turing universe in context LC 2012 25/31



Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(< 07).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(< 0)). J

@ Non-trivial Zg KC-pairs are low.

@ A K-system, a sequence of {a,};c; of e-degrees such that if i # j
then K(a;, a;), is an antichain.
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Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(< 07).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(< 0)). J

@ Non-trivial Zg KC-pairs are low.

@ A K-system, a sequence of {a,};c; of e-degrees such that if i # j
then K(a;, a;), is an antichain.

@ Every nonzero A e-degree bounds a countable K-system.
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An obstacle

K(a,b) = (vx)((aV x) A (bVXx) =Xx)
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Is it enough to require that this formula is satisfied by all £3 e-degrees?
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An obstacle

K(a,b) = (vx)((aVv x) A (bVX)=Xx)
Is it enough to require that this formula is satisfied by all 3 e-degrees?
Theorem (Ganchey, S)

There is a first order formula LIC(x, y), which defines the K-pairs in
De(<07).

LE(x,y): K(x,¥)ATu,v(uv v =0, & K(u,v) & x < U)

Theorem (Ganchey, S)

The first order theory of De(< 0,) is computably isomorphic to the first
order theory of true arithmetic.
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A surprising consequence

Theorem (Ganchey, S)

An enumeration degree a is low if and only if every degree b <, a
bounds a K-pair.
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An enumeration degree a is low if and only if every degree b <, a
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@ Extends a result of Giorgi, Sorbi and Yang.
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A surprising consequence

Theorem (Ganchey, S)

An enumeration degree a is low if and only if every degree b <, a
bounds a K-pair.

@ Extends a result of Giorgi, Sorbi and Yang.

Corollary

The class L1 of all low enumeration degrees is first order definable in
De(<L0).
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A more surprising consequence

@ By Jockusch for every incomputable set B there is a
semi-recursive set A =7 B such that both A and A are not c.e.
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A more surprising consequence

@ By Jockusch for every incomputable set B there is a
semi-recursive set A =1 B such that both A and A are not c.e.

@ A K-pair of the form {A, A} is maximal, i.e. it cannot be extended
to a K-pair (B, C), with A < Bor A <¢ C.

@ Every nonzero total enumeration degree can be represented as
the least upper bound of a maximal K-pair.
Theorem (Ganchey, S)
The least upper bound of every maximal £3 K-pair is total.
The class of total degrees is first order definable in De(< 0),).
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Open question

We know that:
@ TOT NDe(> 0,) is first order definable.
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Open question

We know that:
@ TOT NDe(> 0,) is first order definable.
@ TOT NDe(<L 0,) is first order definable.

Question
Is TOT first order definable in Dg? }

Recall that the total degrees are an automorphism base for De.

A positive answer would connect the problems of the existence of a
non-trivial automorphism in both structures.
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One step further in the dream world

Theorem (Ganchev,S)
For every nonzero enumeration degree u € D,

u=max{avb|K(ab)&a<.u}.
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One step further in the dream world

Theorem (Ganchev,S)
For every nonzero enumeration degree u € D,

u=max{avb|K(a,b)&a<,u}.

@ If x and u # 0, are total degrees then x is c.e. in u implies that
X = a Vv b for a maximal K-pair {a,b}, such that a <. u.

@ Suppose that the least upper bound of every maximal K-pair is
total.

@ Then 7OT would be definable in De.
@ The relation x is c.e. in u would also be definable for total degrees.

@ Then for total u, our definition of the jump would read u’ is the
largest total degree, which is c.e. in u.
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The end

Thank you!
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