The Turing universe in the context of enumeration reducibility

Mariya I. Soskova¹

Sofia University

Logic Colloquium, Manchester, July 16, 2012

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471), Sofia University Science Fund grant No. 131/09.05.2012 and BNSF grant No. DMU 03/07/12.12.2011

Mariya I. Soskova (Sofia University)

The Turing universe in context

LC 2012 1/31

The spectrum of relative definability

How can a set of natural numbers B be used to define a set of natural numbers A.

- There is an algorithm, which determines whether *x* ∈ *A* using finite information about memberships in *B*: Turing reducibility.
- There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*: enumeration reducibility.

A D A D A D A

The spectrum of relative definability

How can a set of natural numbers *B* be used to define a set of natural numbers *A*.

- There is an algorithm, which determines whether *x* ∈ *A* using finite information about memberships in *B*: Turing reducibility.
- There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*: enumeration reducibility.

A B A B A B A

The spectrum of relative definability

How can a set of natural numbers *B* be used to define a set of natural numbers *A*.

- There is an algorithm, which determines whether *x* ∈ *A* using finite information about memberships in *B*: Turing reducibility.
- There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*: enumeration reducibility.

• $A \leq_T B$ iff χ_A is computable using oracle B.

- $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.
- *A* is c.e. in *B* iff there is a c.e. set *W* such that $x \in A$ iff there are finite sets D_B and $D_{\overline{B}}$, such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

So *A* is c.e. in *B* if and only if $A \leq_e B \oplus \overline{B}$.

 $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

< 回 ト < 三 ト < 三

• $A \leq_T B$ iff χ_A is computable using oracle B.

- $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.
- *A* is c.e. in *B* iff there is a c.e. set *W* such that $x \in A$ iff there are finite sets D_B and $D_{\overline{B}}$, such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

So *A* is c.e. in *B* if and only if $A \leq_e B \oplus \overline{B}$.

 $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

< 回 ト < 三 ト < 三

- $A \leq_T B$ iff χ_A is computable using oracle B.
- $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.
- *A* is c.e. in *B* iff there is a c.e. set *W* such that $x \in A$ iff there are finite sets D_B and $D_{\overline{B}}$, such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

So *A* is c.e. in *B* if and only if $A \leq_e B \oplus \overline{B}$.

 $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

伺 ト イ ヨ ト イ ヨ

- $A \leq_T B$ iff χ_A is computable using oracle B.
- $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.
- *A* is c.e. in *B* iff there is a c.e. set *W* such that $x \in A$ iff there are finite sets D_B and $D_{\overline{B}}$, such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

So *A* is c.e. in *B* if and only if $A \leq_e B \oplus \overline{B}$.

 $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

A D A D A D A

- $A \leq_T B$ iff χ_A is computable using oracle B.
- $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.
- *A* is c.e. in *B* iff there is a c.e. set *W* such that $x \in A$ iff there are finite sets D_B and $D_{\overline{B}}$, such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

So *A* is c.e. in *B* if and only if $A \leq_e B \oplus \overline{B}$.

 $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

A D A D A D A

- $A \leq_T B$ iff χ_A is computable using oracle B.
- $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.
- *A* is c.e. in *B* iff there is a c.e. set *W* such that $x \in A$ iff there are finite sets D_B and $D_{\overline{B}}$, such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

So *A* is c.e. in *B* if and only if $A \leq_e B \oplus \overline{B}$.

 $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

A B F A B F

• $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.

- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$

• $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$

• $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$

• $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$

• $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

The total degrees

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order and the least upper bound.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

 $(\mathcal{D}_{T},\leq_{T},\vee,\boldsymbol{0}_{T})\cong(\mathcal{TOT},\leq_{e},\vee,\boldsymbol{0}_{e})\subseteq(\mathcal{D}_{e},\leq_{e},\vee,\boldsymbol{0}_{e})$

4 A N 4 A N 4

The total degrees

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order and the least upper bound.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

 $(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,\boldsymbol{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq_{e},\vee,\boldsymbol{0}_{e})\subseteq(\mathcal{D}_{e},\leq_{e},\vee,\boldsymbol{0}_{e})$

The total degrees

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order and the least upper bound.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

$$(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,\boldsymbol{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq_{e},\vee,\boldsymbol{0}_{e})\subseteq(\mathcal{D}_{e},\leq_{e},\vee,\boldsymbol{0}_{e})$$

More connections between \mathcal{D}_T and \mathcal{D}_e

• *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.

• Selman's Theorem: $A \leq_e B$ if and only if

 $\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$

$$\left\{ d_e(X \oplus \overline{X}) \mid B \leq_e X \oplus \overline{X} \right\} \subseteq \left\{ d_e(X \oplus \overline{X}) \mid A \leq_e X \oplus \overline{X} \right\}.$$

• Corollary: TOT is an automorphism base for D_e .

More connections between \mathcal{D}_T and \mathcal{D}_e

- *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.
- Selman's Theorem: $A \leq_e B$ if and only if

 $\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$

$$\left\{ d_e(X \oplus \overline{X}) \mid B \leq_e X \oplus \overline{X}
ight\} \subseteq \left\{ d_e(X \oplus \overline{X}) \mid A \leq_e X \oplus \overline{X}
ight\}.$$

• Corollary: TOT is an automorphism base for D_e .

More connections between \mathcal{D}_T and \mathcal{D}_e

- *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.
- Selman's Theorem: $A \leq_e B$ if and only if

 $\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$

$$\left\{ d_e(X \oplus \overline{X}) \mid B \leq_e X \oplus \overline{X}
ight\} \subseteq \left\{ d_e(X \oplus \overline{X}) \mid A \leq_e X \oplus \overline{X}
ight\}.$$

• Corollary: TOT is an automorphism base for D_e .

• Let $K_A = \{x \mid x \in W_x(A)\}$. Note that $K_A \equiv_e A$.

• The jump of A is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A')$.

• The embedding ι preserves the jump operation.

 $(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,\mathbf{0}_{\mathcal{T}},')\cong(\mathcal{TOT},\leq_{e},\vee,\mathbf{0}_{e},')\subseteq(\mathcal{D}_{e},\leq_{e},\vee,\mathbf{0}_{e},')$

Theorem (Soskov's Jump Inversion Theorem)

• Let $K_A = \{x \mid x \in W_x(A)\}$. Note that $K_A \equiv_e A$.

• The jump of A is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A')$.

• The embedding ι preserves the jump operation.

 $(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,\mathbf{0}_{\mathcal{T}},')\cong(\mathcal{TOT},\leq_{e},\vee,\mathbf{0}_{e},')\subseteq(\mathcal{D}_{e},\leq_{e},\vee,\mathbf{0}_{e},')$

Theorem (Soskov's Jump Inversion Theorem)

- Let $K_A = \{x \mid x \in W_x(A)\}$. Note that $K_A \equiv_e A$.
- The jump of A is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A')$.
- The embedding ι preserves the jump operation.

 $(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,\boldsymbol{0}_{\mathcal{T}},')\cong(\mathcal{TOT},\leq_{e},\vee,\boldsymbol{0}_{e},')\subseteq(\mathcal{D}_{e},\leq_{e},\vee,\boldsymbol{0}_{e},')$

Theorem (Soskov's Jump Inversion Theorem)

• Let
$$K_A = \{x \mid x \in W_x(A)\}$$
. Note that $K_A \equiv_e A$.

- The jump of *A* is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A')$.
- The embedding ι preserves the jump operation.

$$(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,\boldsymbol{0}_{\mathcal{T}},')\cong(\mathcal{TOT},\leq_{e},\vee,\boldsymbol{0}_{e},')\subseteq(\mathcal{D}_{e},\leq_{e},\vee,\boldsymbol{0}_{e},')$$

Theorem (Soskov's Jump Inversion Theorem)

• Let
$$K_A = \{x \mid x \in W_x(A)\}$$
. Note that $K_A \equiv_e A$.

• The jump of *A* is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A')$.

• The embedding ι preserves the jump operation.

$$(\mathcal{D}_{\mathsf{T}},\leq_{\mathsf{T}},\vee,\mathbf{0}_{\mathsf{T}},')\cong(\mathcal{TOT},\leq_{e},\vee,\mathbf{0}_{e},')\subseteq(\mathcal{D}_{e},\leq_{e},\vee,\mathbf{0}_{e},')$$

Theorem (Soskov's Jump Inversion Theorem)

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of \mathcal{A} , denoted by $DS_{\mathcal{T}}(\mathcal{A})$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(\mathcal{A})$ has a least member, it is the (Turing) degree of \mathcal{A} .

Definition (Jockusch)

The jump spectrum of \mathcal{A} is $DS'_{\mathcal{T}}(\mathcal{A}) = \{ \mathbf{d}' \mid \mathbf{d} \in DS_{\mathcal{T}}(\mathcal{A}) \}.$

If $DS'_{T}(\mathcal{A})$ has a least member, it is the (Turing) jump degree of \mathcal{A} .

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of \mathcal{A} , denoted by $DS_{\mathcal{T}}(\mathcal{A})$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(\mathcal{A})$ has a least member, it is the (Turing) degree of \mathcal{A} .

Definition (Jockusch)

The jump spectrum of \mathcal{A} is $DS'_{\mathcal{T}}(\mathcal{A}) = \{ \mathbf{d}' \mid \mathbf{d} \in DS_{\mathcal{T}}(\mathcal{A}) \}.$

If $DS'_{T}(\mathcal{A})$ has a least member, it is the (Turing) jump degree of \mathcal{A} .

< ロ > < 同 > < 回 > < 回 >

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of \mathcal{A} , denoted by $DS_{\mathcal{T}}(\mathcal{A})$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(\mathcal{A})$ has a least member, it is the (Turing) degree of \mathcal{A} .

Definition (Jockusch)

The jump spectrum of \mathcal{A} is $DS'_{\mathcal{T}}(\mathcal{A}) = \{ \mathbf{d}' \mid \mathbf{d} \in DS_{\mathcal{T}}(\mathcal{A}) \}.$

If $DS'_{T}(\mathcal{A})$ has a least member, it is the (Turing) jump degree of \mathcal{A} .

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of \mathcal{A} , denoted by $DS_{\mathcal{T}}(\mathcal{A})$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(\mathcal{A})$ has a least member, it is the (Turing) degree of \mathcal{A} .

Definition (Jockusch)

The jump spectrum of \mathcal{A} is $DS'_{\mathcal{T}}(\mathcal{A}) = \{ \mathbf{d}' \mid \mathbf{d} \in DS_{\mathcal{T}}(\mathcal{A}) \}.$

If $DS'_{T}(\mathcal{A})$ has a least member, it is the (Turing) jump degree of \mathcal{A} .

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of \mathcal{A} , denoted by $DS_{\mathcal{T}}(\mathcal{A})$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(\mathcal{A})$ has a least member, it is the (Turing) degree of \mathcal{A} .

Definition (Jockusch)

The jump spectrum of \mathcal{A} is $DS'_{\mathcal{T}}(\mathcal{A}) = \{ \mathbf{d}' \mid \mathbf{d} \in DS_{\mathcal{T}}(\mathcal{A}) \}.$

If $DS'_{T}(\mathcal{A})$ has a least member, it is the (Turing) jump degree of \mathcal{A} .

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let *p* be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} \text{ the largest } k, & \text{such that } p^k | a \text{ in } G; \\ \infty, & \text{ if } \forall k(p^k | a \text{ in } G) . \end{cases}$$

Here $p^k | a$ in G if there exists $b \in G$ such that $p^k \cdot b = a$.

Example: If $G = \mathbb{Q}$ then for all nonzero *a* and all *p*, $h_p(a) = \infty$, because for all *k*, $p^k \cdot \frac{a}{p^k} = a$.

If $G = \mathbb{Z}$ then for all nonzero *a* and all but finitely many *p*, $h_p(a) = 0$.

In fact if $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let p be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} ext{ the largest } k, & ext{ such that } p^k | a ext{ in } G; \\ \infty, & ext{ if } orall k(p^k | a ext{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

Example: If $G = \mathbb{Q}$ then for all nonzero *a* and all *p*, $h_p(a) = \infty$, because for all *k*, $p^k \cdot \frac{a}{p^k} = a$.

If $G = \mathbb{Z}$ then for all nonzero *a* and all but finitely many *p*, $h_{\rho}(a) = 0$.

In fact if $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let p be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} ext{ the largest } k, & ext{ such that } p^k | a ext{ in } G; \\ \infty, & ext{ if } orall k(p^k | a ext{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

Example: If $G = \mathbb{Q}$ then for all nonzero *a* and all *p*, $h_p(a) = \infty$, because for all *k*, $p^k \cdot \frac{a}{p^k} = a$.

If $G = \mathbb{Z}$ then for all nonzero *a* and all but finitely many *p*, $h_{\rho}(a) = 0$.

In fact if $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let *p* be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} ext{ the largest } k, & ext{ such that } p^k | a ext{ in } G; \\ \infty, & ext{ if } orall k(p^k | a ext{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

Example: If $G = \mathbb{Q}$ then for all nonzero *a* and all *p*, $h_p(a) = \infty$, because for all *k*, $p^k \cdot \frac{a}{p^k} = a$.

If $G = \mathbb{Z}$ then for all nonzero *a* and all but finitely many *p*, $h_p(a) = 0$.

In fact if $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

Torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let p be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} ext{ the largest } k, & ext{ such that } p^k | a ext{ in } G; \\ \infty, & ext{ if } orall k(p^k | a ext{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

Example: If $G = \mathbb{Q}$ then for all nonzero *a* and all *p*, $h_p(a) = \infty$, because for all *k*, $p^k \cdot \frac{a}{p^k} = a$. If $G = \mathbb{Z}$ then for all nonzero *a* and all but finitely many *p*, $h_p(a) = 0$.

In fact if $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{p_0}(a), h_{p_1}(a), \dots h_{p_n}(a), \dots).$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of G, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in G.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{\rho_0}(a), h_{\rho_1}(a), \dots h_{\rho_n}(a), \dots).$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$.

The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{p_0}(a), h_{p_1}(a), \dots h_{p_n}(a), \dots).$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{\rho_0}(a), h_{\rho_1}(a), \dots h_{\rho_n}(a), \dots).$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{\rho_0}(a), h_{\rho_1}(a), \dots h_{\rho_n}(a), \dots).$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Theorem (Downey, Jockusch)

The degree spectrum of G is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}$.

- Every set *A* can be coded (is *m*-equivalent) to a type of some group *G*.
- Given a set A, characterize $C(A) = \{X \mid A \text{ is c.e. in } X\}.$

A (10) > A (10) > A (10)

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Theorem (Downey, Jockusch)

The degree spectrum of G is precisely $\{ deg_T(Y) \mid S(G) \text{ is c.e. in } Y \}$.

• Every set *A* can be coded (is *m*-equivalent) to a type of some group *G*.

• Given a set A, characterize $C(A) = \{X \mid A \text{ is c.e. in } X\}.$

A (10) A (10) A (10)

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Theorem (Downey, Jockusch)

The degree spectrum of G is precisely $\{ deg_T(Y) \mid S(G) \text{ is c.e. in } Y \}$.

• Every set *A* can be coded (is *m*-equivalent) to a type of some group *G*.

• Given a set A, characterize $C(A) = \{X \mid A \text{ is c.e. in } X\}.$

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Theorem (Downey, Jockusch)

The degree spectrum of G is precisely $\{ deg_T(Y) \mid S(G) \text{ is c.e. in } Y \}$.

- Every set *A* can be coded (is *m*-equivalent) to a type of some group *G*.
- Given a set A, characterize $C(A) = \{X \mid A \text{ is c.e. in } X\}.$

Least jump enumeration

 $\mathcal{C}(A) = \{X \mid A \text{ is c.e. in } X\}.$

Theorem (Richter)

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair.

Hence there is a set A, such that C(A) does not have a member of least degree.

Theorem (Coles, Downey, Slaman)

For every sets A the set: $C(A)' = \{X' \mid A \text{ is c.e. in } X\}$ has a member of least degree.

Every torsion free abelian group of rank 1 has a jump degree.

The proof is a forcing construction of this least member.

< ロ > < 同 > < 回 > < 回 >

Least jump enumeration

 $\mathcal{C}(A) = \{X \mid A \text{ is c.e. in } X\}.$

Theorem (Richter)

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair.

Hence there is a set A, such that C(A) does not have a member of least degree.

Theorem (Coles, Downey, Slaman)

For every sets A the set: $C(A)' = \{X' \mid A \text{ is c.e. in } X\}$ has a member of least degree.

Every torsion free abelian group of rank 1 has a jump degree.

The proof is a forcing construction of this least member.

< ロ > < 同 > < 回 > < 回 >

Least jump enumeration

 $\mathcal{C}(A) = \{X \mid A \text{ is c.e. in } X\}.$

Theorem (Richter)

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair.

Hence there is a set A, such that C(A) does not have a member of least degree.

Theorem (Coles, Downey, Slaman)

For every sets A the set: $C(A)' = \{X' \mid A \text{ is c.e. in } X\}$ has a member of least degree.

Every torsion free abelian group of rank 1 has a jump degree.

The proof is a forcing construction of this least member.

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov)

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then $DS_e(\mathcal{A}^+) \subseteq \mathcal{TOT}$.
- In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$
- \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

A (10) A (10) A (10)

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov)

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(\mathcal{A})$ has a least member, it is the (enumeration) degree of \mathcal{A} .

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then $DS_e(\mathcal{A}^+) \subseteq \mathcal{TOT}$.
- In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$
- \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov)

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then $DS_e(\mathcal{A}^+) \subseteq \mathcal{TOT}$.
- In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$
- \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov)

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then $DS_e(\mathcal{A}^+) \subseteq \mathcal{TOT}$.
- In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$
- \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov)

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then $DS_e(\mathcal{A}^+) \subseteq \mathcal{TOT}$.
- In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$
- \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov)

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then $DS_e(\mathcal{A}^+) \subseteq \mathcal{TOT}$.
- In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$

• \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov)

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then $DS_e(\mathcal{A}^+) \subseteq \mathcal{TOT}$.
- In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$
- \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

• Let G be a torsion-free abelian group of rank 1.

- Recall that the Turing degree spectrum of *G* is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.
- Denote d_e(S(G)) by s_G-the type degree of G. The enumeration degree spectrum of G is:

$$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}.$$

A (10) A (10) A (10)

- Let G be a torsion-free abelian group of rank 1.
- Recall that the Turing degree spectrum of *G* is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.
- Denote d_e(S(G)) by s_G-the type degree of G. The enumeration degree spectrum of G is:

$$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}.$$

< 同 ト < 三 ト < 三 ト

- Let G be a torsion-free abelian group of rank 1.
- Recall that the Turing degree spectrum of *G* is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.
- Denote d_e(S(G)) by s_G-the type degree of G. The enumeration degree spectrum of G is:

$$DS_{e}(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_{G} \leq_{e} \mathbf{a} \}.$$

く 同 ト く ヨ ト く ヨ ト

- Let G be a torsion-free abelian group of rank 1.
- Recall that the Turing degree spectrum of *G* is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.
- Denote d_e(S(G)) by s_G-the type degree of G. The enumeration degree spectrum of G is:

$$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}.$$

く 同 ト く ヨ ト く ヨ ト

- Let G be a torsion-free abelian group of rank 1.
- Recall that the Turing degree spectrum of *G* is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.
- Denote d_e(S(G)) by s_G-the type degree of G. The enumeration degree spectrum of G is:

$$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}.$$

LC 2012 14 / 31

A (10) A (10)

- Let G be a torsion-free abelian group of rank 1.
- Recall that the Turing degree spectrum of *G* is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.
- Denote d_e(S(G)) by s_G-the type degree of G. The enumeration degree spectrum of G is:

$$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}.$$

A (10) A (10)

$\mathit{DS}_{e}(\mathit{G}) = \{ a \mid a \in \mathcal{TOT} \& s_{\mathit{G}} \leq_{e} a \}$

- By Selman's Theorem s_G is completely determined by the set of total degrees above it.
- G has a degree (both e- and T-) if and only if the type degree s_G is total.
- If G has an e-degree then this e-degree is precisely \mathbf{s}_{G} .
- By Soskov's Jump inversion Theorem G always has first jump degree (both e- and T-) and it is s'_G.

< ロ > < 同 > < 回 > < 回 >

$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}$

- By Selman's Theorem s_G is completely determined by the set of total degrees above it.
- G has a degree (both e- and T-) if and only if the type degree s_G is total.
- If *G* has an e-degree then this e-degree is precisely \mathbf{s}_G .
- By Soskov's Jump inversion Theorem G always has first jump degree (both e- and T-) and it is s'_G.

$$DS_e(G) = \{ a \mid a \in TOT \& s_G \leq_e a \}$$

- By Selman's Theorem s_G is completely determined by the set of total degrees above it.
- *G* has a degree (both e- and T-) if and only if the type degree **s**_{*G*} is total.
- If *G* has an e-degree then this e-degree is precisely **s**_{*G*}.
- By Soskov's Jump inversion Theorem G always has first jump degree (both e- and T-) and it is s'_G.

$$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in TOT \& \mathbf{s}_G \leq_e \mathbf{a} \}$$

- By Selman's Theorem s_G is completely determined by the set of total degrees above it.
- G has a degree (both e- and T-) if and only if the type degree s_G is total.
- If G has an e-degree then this e-degree is precisely s_G.
- By Soskov's Jump inversion Theorem G always has first jump degree (both e- and T-) and it is s'_G.

A (10) A (10)

$$DS_e(G) = \{ a \mid a \in TOT \& s_G \leq_e a \}$$

- By Selman's Theorem s_G is completely determined by the set of total degrees above it.
- *G* has a degree (both e- and T-) if and only if the type degree **s**_{*G*} is total.
- If *G* has an e-degree then this e-degree is precisely **s**_{*G*}.
- By Soskov's Jump inversion Theorem G always has first jump degree (both e- and T-) and it is s[']_G.

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_T .

- I Slaman and Woodin: The double jump is first order definable in \mathcal{D}_T .
- So For every $\mathbf{a} \leq_T \mathbf{0}'_T$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence $\mathbf{0}'$ is the greatest degree which does not join any \mathbf{g} to \mathbf{g}'' .

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

< ロ > < 同 > < 回 > < 回 >

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_T .

- Slaman and Woodin: The double jump is first order definable in *D_T*.
- **(2)** For every $\mathbf{a} \leq_{\mathcal{T}} \mathbf{0}'_{\mathcal{T}}$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence $\mathbf{0}'$ is the greatest degree which does not join any \mathbf{g} to \mathbf{g}'' .

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

< ロ > < 同 > < 回 > < 回 >

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_T .

- Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.
- **2** For every $\mathbf{a} \leq_T \mathbf{0}'_T$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence **0**′ is the greatest degree which does not join any **g** to **g**″.

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_T .

- Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.
- **2** For every $\mathbf{a} \leq_T \mathbf{0}'_T$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence **0**' is the greatest degree which does not join any **g** to **g**".

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_T .

- Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.
- **2** For every $\mathbf{a} \leq_T \mathbf{0}'_T$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence $\mathbf{0}'$ is the greatest degree which does not join any \mathbf{g} to \mathbf{g}'' .

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism* facts in definability facts via a coding of second order arithmetic".

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

イロト 不得 トイヨト イヨト

Defining the Turing jump operator

Theorem (Shore, Slaman)

The Turing jump operator is first order definable in \mathcal{D}_T .

- Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.
- **2** For every $\mathbf{a} \leq_T \mathbf{0}'_T$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence $\mathbf{0}'$ is the greatest degree which does not join any \mathbf{g} to \mathbf{g}'' .

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

For every set A the set L_A = {σ ∈ 2^{<ω} | σ ≤_L χ_A} is semi-recursive.

Theorem (Jockusch)

For every noncomputable set B there is a semi-recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-recursive set, which is not c.e. and not co-c.e then $d_e(A)$ and $d_e(\overline{A})$ form a minimal pair.

$(\forall \mathbf{x} \in \mathcal{D}_{e})((d_{e}(A) \lor \mathbf{x}) \land (d_{e}(\overline{A}) \lor \mathbf{x}) = \mathbf{x}).$

Mariya I. Soskova (Sofia University)

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Theorem (Jockusch)

For every noncomputable set B there is a semi-recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-recursive set, which is not c.e. and not co-c.e then $d_e(A)$ and $d_e(\overline{A})$ form a minimal pair.

 $(\forall \mathbf{x} \in \mathcal{D}_{e})((d_{e}(A) \lor \mathbf{x}) \land (d_{e}(\overline{A}) \lor \mathbf{x}) = \mathbf{x}).$

Mariya I. Soskova (Sofia University)

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

For every set A the set L_A = {σ ∈ 2^{<ω} | σ ≤_L χ_A} is semi-recursive.

Theorem (Jockusch)

For every noncomputable set B there is a semi-recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-recursive set, which is not c.e. and not co-c.e then $d_e(A)$ and $d_e(\overline{A})$ form a minimal pair.

 $(\forall \mathbf{x} \in \mathcal{D}_{e})((d_{e}(A) \lor \mathbf{x}) \land (d_{e}(\overline{A}) \lor \mathbf{x}) = \mathbf{x}).$

Mariya I. Soskova (Sofia University)

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

For every set A the set L_A = {σ ∈ 2^{<ω} | σ ≤_L χ_A} is semi-recursive.

Theorem (Jockusch)

For every noncomputable set B there is a semi-recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-recursive set, which is not c.e. and not co-c.e then $d_e(A)$ and $d_e(\overline{A})$ form a minimal pair.

 $(\forall \mathbf{x} \in \mathcal{D}_e)((d_e(A) \lor \mathbf{x}) \land (d_e(\overline{A}) \lor \mathbf{x}) = \mathbf{x}).$

Mariya I. Soskova (Sofia University)

The Turing universe in context

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Theorem (Jockusch)

For every noncomputable set B there is a semi-recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-recursive set, which is not c.e. and not co-c.e then $d_e(A)$ and $d_e(\overline{A})$ form a minimal pair.

$$(\forall \mathbf{x} \in \mathcal{D}_{e})((d_{e}(A) \lor \mathbf{x}) \land (d_{e}(\overline{A}) \lor \mathbf{x}) = \mathbf{x}).$$

Definition (Kalimullin)

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

• A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.

• If *A* is a semi-recursive set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair. $W = \{\langle x, y \rangle \mid s_A(x, y) = x\}.$

Theorem (Kalimullin)

A pair of sets A, B are a \mathcal{K} -pair if and only if their enumeration degrees **a** and **b** satisfy:

 $\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_{\boldsymbol{\theta}})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$

Definition (Kalimullin)

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If *A* is a semi-recursive set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair. $W = \{\langle x, y \rangle \mid s_A(x, y) = x\}.$

Theorem (Kalimullin)

A pair of sets A, B are a \mathcal{K} -pair if and only if their enumeration degrees **a** and **b** satisfy:

 $\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_{\boldsymbol{e}})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$

< ロ > < 同 > < 回 > < 回 >

Definition (Kalimullin)

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If *A* is a semi-recursive set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair. $W = \{\langle x, y \rangle \mid s_A(x, y) = x\}.$

Theorem (Kalimullin)

A pair of sets A, B are a \mathcal{K} -pair if and only if their enumeration degrees **a** and **b** satisfy:

 $\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_{\boldsymbol{\theta}})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Kalimullin)

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If *A* is a semi-recursive set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair. $W = \{\langle x, y \rangle \mid s_A(x, y) = x\}.$

Theorem (Kalimullin)

A pair of sets A, B are a \mathcal{K} -pair if and only if their enumeration degrees **a** and **b** satisfy:

 $\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_{\boldsymbol{\theta}})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Kalimullin)

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If *A* is a semi-recursive set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair. $W = \{\langle x, y \rangle \mid s_A(x, y) = x\}.$

Theorem (Kalimullin)

A pair of sets A, B are a \mathcal{K} -pair if and only if their enumeration degrees **a** and **b** satisfy:

$$\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_{e})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$$

< ロ > < 同 > < 回 > < 回 >

\mathcal{K} -pairs are invisible in the Turing universe

- *K*-pairs are always quasi-minimal: the only total degree below either of them is **0**_e.
- A consequence of the existence of nontrivial *K*-pairs in *D_e* is that the Slaman-Shore property fails, there is a degree a ≰_e 0'_e, such that for every g, a ∨ g <_e g".
- There are no \mathcal{K} -pairs in the structure of the Turing degrees.

\mathcal{K} -pairs are invisible in the Turing universe

- *K*-pairs are always quasi-minimal: the only total degree below either of them is **0**_e.
- A consequence of the existence of nontrivial *K*-pairs in *D_e* is that the Slaman-Shore property fails, there is a degree a ≰_e 0'_e, such that for every g, a ∨ g <_e g".
- There are no \mathcal{K} -pairs in the structure of the Turing degrees.

\mathcal{K} -pairs are invisible in the Turing universe

- *K*-pairs are always quasi-minimal: the only total degree below either of them is **0**_e.
- A consequence of the existence of nontrivial *K*-pairs in *D_e* is that the Slaman-Shore property fails, there is a degree a *≰_e* 0*'_e*, such that for every g, a ∨ g <_e g["].
- There are no \mathcal{K} -pairs in the structure of the Turing degrees.

 \mathcal{K} -pairs and the definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_e$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b})$, $\mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (S, Ganchev)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \leq_e \mathbf{u}$.

 \mathcal{K} -pairs and the definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_e$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b})$, $\mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (S, Ganchev)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \leq_e \mathbf{u}$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

 $\mathcal K\text{-}\mathsf{pairs}$ and the definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_{e}$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b}), \mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (S, Ganchev)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \leq_e \mathbf{u}$.

- The local structure of the Turing degrees $\mathcal{D}_T (\leq \mathbf{0}_T')$ consists of all Δ_2^0 Turing degrees.
- The structure $\ensuremath{\mathcal{R}}$ consists of the of the computably enumerable degrees.
- The local structure of the enumeration degrees D_e(≤ 0'_e), consists of all Σ₂⁰ enumeration degrees.
- Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

$$\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}_{\mathcal{T}}') \cong \mathcal{T}\mathcal{O}\mathcal{T}(\leq \mathbf{0}_{e}') \subseteq \mathcal{D}_{e}(\leq \mathbf{0}_{e}')$$

• $\iota(\mathcal{R})$ is precisely the substructure of the Π_1^0 enumeration degrees.

$\mathcal{R} \cong \Pi^0_1 \text{ e-degrees} \subseteq \mathcal{TOT}(\leq \mathbf{0}'_e) \subseteq \mathcal{D}_e(\leq \mathbf{0}'_e)$

- The local structure of the Turing degrees $\mathcal{D}_T (\leq \mathbf{0}_T')$ consists of all Δ_2^0 Turing degrees.
- The structure ${\mathcal R}$ consists of the of the computably enumerable degrees.
- The local structure of the enumeration degrees D_e(≤ 0'_e), consists of all Σ₂⁰ enumeration degrees.
- Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

$$\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}_{\mathcal{T}}') \cong \mathcal{T}\mathcal{O}\mathcal{T}(\leq \mathbf{0}_{e}') \subseteq \mathcal{D}_{e}(\leq \mathbf{0}_{e}')$$

• $\iota(\mathcal{R})$ is precisely the substructure of the Π_1^0 enumeration degrees.

$\mathcal{R} \cong \Pi^0_1 extbf{e} extbf{d}$ degrees $\subseteq \mathcal{TOT}(\leq \mathbf{0}'_e) \subseteq \mathcal{D}_e(\leq \mathbf{0}'_e)$

- The local structure of the Turing degrees $\mathcal{D}_T (\leq \mathbf{0}_T')$ consists of all Δ_2^0 Turing degrees.
- The structure \mathcal{R} consists of the of the computably enumerable degrees.
- The local structure of the enumeration degrees D_e(≤ 0'_e), consists of all Σ₂⁰ enumeration degrees.
- Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

$$\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}_{\mathcal{T}}') \cong \mathcal{T}\mathcal{O}\mathcal{T}(\leq \mathbf{0}_{e}') \subseteq \mathcal{D}_{e}(\leq \mathbf{0}_{e}')$$

• $\iota(\mathcal{R})$ is precisely the substructure of the Π_1^0 enumeration degrees.

$\mathcal{R} \cong \Pi^0_1 \text{ e-degrees} \subseteq \mathcal{TOT}(\leq \mathbf{0}'_e) \subseteq \mathcal{D}_e(\leq \mathbf{0}'_e)$

- The local structure of the Turing degrees $\mathcal{D}_T (\leq \mathbf{0}_T')$ consists of all Δ_2^0 Turing degrees.
- The structure R consists of the of the computably enumerable degrees.
- The local structure of the enumeration degrees D_e(≤ 0'_e), consists of all Σ₂⁰ enumeration degrees.
- Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

$\mathcal{D}_{\mathcal{T}}(\leq \boldsymbol{0}_{\mathcal{T}}') \cong \mathcal{T}\mathcal{O}\mathcal{T}(\leq \boldsymbol{0}_{\varrho}') \subseteq \mathcal{D}_{\varrho}(\leq \boldsymbol{0}_{\varrho}')$

• $\iota(\mathcal{R})$ is precisely the substructure of the Π_1^0 enumeration degrees.

$\mathcal{R} \cong \Pi^0_1 \text{ e-degrees} \subseteq \mathcal{TOT}(\leq \mathbf{0}'_e) \subseteq \mathcal{D}_e(\leq \mathbf{0}'_e)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

- The local structure of the Turing degrees $\mathcal{D}_T (\leq \mathbf{0}_T')$ consists of all Δ_2^0 Turing degrees.
- The structure R consists of the of the computably enumerable degrees.
- The local structure of the enumeration degrees D_e(≤ 0'_e), consists of all Σ₂⁰ enumeration degrees.
- Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

$$\mathcal{D}_{\mathcal{T}}(\leq \boldsymbol{0}_{\mathcal{T}}') \cong \mathcal{T}\mathcal{O}\mathcal{T}(\leq \boldsymbol{0}_{e}') \subseteq \mathcal{D}_{e}(\leq \boldsymbol{0}_{e}')$$

• $\iota(\mathcal{R})$ is precisely the substructure of the Π_1^0 enumeration degrees.

$\mathcal{R} \cong \Pi^0_1 \text{ e-degrees} \subseteq \mathcal{TOT}(\leq \mathbf{0}'_e) \subseteq \mathcal{D}_e(\leq \mathbf{0}'_e)$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国 .

- The local structure of the Turing degrees $\mathcal{D}_T (\leq \mathbf{0}_T')$ consists of all Δ_2^0 Turing degrees.
- The structure \mathcal{R} consists of the of the computably enumerable degrees.
- The local structure of the enumeration degrees D_e(≤ 0'_e), consists of all Σ₂⁰ enumeration degrees.
- Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

$$\mathcal{D}_{\mathcal{T}}(\leq \boldsymbol{0}_{\mathcal{T}}')\cong \mathcal{TOT}(\leq \boldsymbol{0}_{e}')\subseteq \mathcal{D}_{e}(\leq \boldsymbol{0}_{e}')$$

• $\iota(\mathcal{R})$ is precisely the substructure of the Π_1^0 enumeration degrees.

$$\mathcal{R} \cong \Pi^0_1 \text{ e-degrees} \subseteq \mathcal{TOT}(\leq \mathbf{0}'_e) \subseteq \mathcal{D}_e(\leq \mathbf{0}'_e)$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- The local structure of the Turing degrees $\mathcal{D}_T (\leq \mathbf{0}_T')$ consists of all Δ_2^0 Turing degrees.
- The structure \mathcal{R} consists of the of the computably enumerable degrees.
- The local structure of the enumeration degrees D_e(≤ 0'_e), consists of all Σ₂⁰ enumeration degrees.
- Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

$$\mathcal{D}_{\mathcal{T}}(\leq \boldsymbol{0}_{\mathcal{T}}') \cong \mathcal{TOT}(\leq \boldsymbol{0}_{e}') \subseteq \mathcal{D}_{e}(\leq \boldsymbol{0}_{e}')$$

• $\iota(\mathcal{R})$ is precisely the substructure of the Π_1^0 enumeration degrees.

$$\mathcal{R} \cong \Pi^0_1 \text{ e-degrees} \subseteq \mathcal{TOT}(\leq \bm{0}'_{e}) \subseteq \mathcal{D}_{e}(\leq \bm{0}'_{e})$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

 A pair of degrees a, b are a splitting of c if a < c, b < c and a \vee b = c.

Theorem (Harrington)

There exists a c.e. Turing degree $\mathbf{a} <_{T} \mathbf{0}'_{T}$, such that no pair of c.e. degrees above \mathbf{a} are a splitting of $\mathbf{0}'_{T}$.

Theorem (Cooper, S)

There exists a Π_1^0 enumeration degree $\mathbf{a} <_e \mathbf{0}'_e$, such that no pair of a Π_1^0 and Σ_2^0 e-degrees above \mathbf{a} are a splitting of $\mathbf{0}'_e$.

- So transferring back, there is a c.e. Turing degree a <_T 0'_T, such that no pair of a c.e. degree and a Δ⁰₂ degree above a are a splitting of 0'_T.
- By Sacks' Splitting Theorem this is the best possible result.

- < 注 → < 注 →

A D b 4 A b

 A pair of degrees a, b are a splitting of c if a < c, b < c and a \vee b = c.

Theorem (Harrington)

There exists a c.e. Turing degree $\mathbf{a} <_{T} \mathbf{0}'_{T}$, such that no pair of c.e. degrees above \mathbf{a} are a splitting of $\mathbf{0}'_{T}$.

Theorem (Cooper, S)

There exists a Π_1^0 enumeration degree $\mathbf{a} <_e \mathbf{0}'_e$, such that no pair of a Π_1^0 and Σ_2^0 e-degrees above \mathbf{a} are a splitting of $\mathbf{0}'_e$.

- So transferring back, there is a c.e. Turing degree a <_T 0'_T, such that no pair of a c.e. degree and a Δ⁰₂ degree above a are a splitting of 0'_T.
- By Sacks' Splitting Theorem this is the best possible result.

∃ ► < ∃ ►</p>

 A pair of degrees a, b are a splitting of c if a < c, b < c and a \vee b = c.

Theorem (Harrington)

There exists a c.e. Turing degree $\mathbf{a} <_{T} \mathbf{0}'_{T}$, such that no pair of c.e. degrees above \mathbf{a} are a splitting of $\mathbf{0}'_{T}$.

Theorem (Cooper, S)

There exists a Π_1^0 enumeration degree $\mathbf{a} <_e \mathbf{0}'_e$, such that no pair of a Π_1^0 and Σ_2^0 e-degrees above \mathbf{a} are a splitting of $\mathbf{0}'_e$.

- So transferring back, there is a c.e. Turing degree a <_T 0'_T, such that no pair of a c.e. degree and a Δ⁰₂ degree above a are a splitting of 0'_T.
- By Sacks' Splitting Theorem this is the best possible result.

 A pair of degrees a, b are a splitting of c if a < c, b < c and a \vee b = c.

Theorem (Harrington)

There exists a c.e. Turing degree $\mathbf{a} <_{T} \mathbf{0}'_{T}$, such that no pair of c.e. degrees above \mathbf{a} are a splitting of $\mathbf{0}'_{T}$.

Theorem (Cooper, S)

There exists a Π_1^0 enumeration degree $\mathbf{a} <_e \mathbf{0}'_e$, such that no pair of a Π_1^0 and Σ_2^0 e-degrees above \mathbf{a} are a splitting of $\mathbf{0}'_e$.

- So transferring back, there is a c.e. Turing degree a <_T 0'_T, such that no pair of a c.e. degree and a Δ⁰₂ degree above a are a splitting of 0'_T.
- By Sacks' Splitting Theorem this is the best possible result.

Definition

• For every $n \ge 1$ the class of low_n degrees is $L_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^n \}.$

2 For every $n \ge 1$ the class of high_n degrees is $H_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^{n+1} \}$

Theorem (Nies, Shore, Slaman)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in \mathcal{R} .

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T(\le \mathbf{0}')$.

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ or in \mathcal{R} remains open.

Definition

• For every
$$n \ge 1$$
 the class of low_n degrees is $L_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^n \}.$

2 For every $n \ge 1$ the class of high_n degrees is $H_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^{n+1} \}$

Theorem (Nies, Shore, Slaman)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in \mathcal{R} .

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T (\le \mathbf{0}')$.

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ or in \mathcal{R} remains open.

Definition

• For every
$$n \ge 1$$
 the class of low_n degrees is $L_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^n \}.$

2 For every $n \ge 1$ the class of high_n degrees is $H_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^{n+1} \}$

Theorem (Nies, Shore, Slaman)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in \mathcal{R} .

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T (\le \mathbf{0}')$.

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ or in \mathcal{R} remains open.

Definition

• For every
$$n \ge 1$$
 the class of low_n degrees is $L_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^n \}.$

2 For every $n \ge 1$ the class of high_n degrees is $H_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^{n+1} \}$

Theorem (Nies, Shore, Slaman)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in \mathcal{R} .

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T (\le \mathbf{0}')$.

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ or in \mathcal{R} remains open.

• The theory of first order arithmetic can be interpreted in \mathcal{R} and $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$.

- 2 There is a definable way of mapping a degree a to a set A in every coded model of arithmetic so that A" ∈ a".
- Every relation which is invariant under double jump and definable in arithmetic is definable.
- If \square An additional proof that H_1 is first order definable.

< 回 ト < 三 ト < 三

- The theory of first order arithmetic can be interpreted in \mathcal{R} and $\mathcal{D}_T (\leq \mathbf{0}')$.
- 2 There is a definable way of mapping a degree **a** to a set *A* in every coded model of arithmetic so that $A'' \in \mathbf{a}''$.
- Every relation which is invariant under double jump and definable in arithmetic is definable.
- If \square An additional proof that H_1 is first order definable.

A (10) A (10)

- The theory of first order arithmetic can be interpreted in \mathcal{R} and $\mathcal{D}_T (\leq \mathbf{0}')$.
- 2 There is a definable way of mapping a degree **a** to a set *A* in every coded model of arithmetic so that $A'' \in \mathbf{a}''$.
- Every relation which is invariant under double jump and definable in arithmetic is definable.
 - An additional proof that H_1 is first order definable.

< 回 > < 回 > < 回 >

- The theory of first order arithmetic can be interpreted in \mathcal{R} and $\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}')$.
- 2 There is a definable way of mapping a degree **a** to a set *A* in every coded model of arithmetic so that $A'' \in \mathbf{a}''$.
- Every relation which is invariant under double jump and definable in arithmetic is definable.
- An additional proof that H_1 is first order definable.

A D A D A D A

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

In Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.

- ② A *K*-system, a sequence of {a_i}_{i∈I} of e-degrees such that if i ≠ j then *K*(a_i, a_i), is an antichain.
- **3** Every nonzero Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

< 同 > < 回 > .

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

() Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.

- ② A *K*-system, a sequence of {a_i}_{i∈I} of e-degrees such that if i ≠ j then *K*(a_i, a_i), is an antichain.
- If Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

• Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.

- ② A *K*-system, a sequence of {a_i}_{i∈I} of e-degrees such that if i ≠ j then *K*(a_i, a_j), is an antichain.
- If Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.
- 2 A *K*-system, a sequence of {a_i}_{i∈1} of e-degrees such that if i ≠ j then *K*(a_i, a_j), is an antichain.
- If Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.
- 2 A *K*-system, a sequence of {a_i}_{i∈1} of e-degrees such that if i ≠ j then *K*(a_i, a_j), is an antichain.
- Solution Sector Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

く 同 ト く ヨ ト く ヨ ト

$\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_{e}(\leq \mathbf{0}'_{e})$.

$$\mathcal{LK}(x,y):\mathcal{K}(x,y)\wedge \exists u,v(u\vee v=\mathbf{0}'_{e}\ \&\ \mathcal{K}(u,v)\ \&\ x\leq_{e} u)$$

Theorem (Ganchev, S)

The first order theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is computably isomorphic to the first order theory of true arithmetic.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \rightleftharpoons (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$ Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_{e}(\leq \mathbf{0}'_{e})$.

$$\mathcal{LK}(x,y):\mathcal{K}(x,y)\wedge \exists u,v(u\vee v=\mathbf{0}'_{e}\ \&\ \mathcal{K}(u,v)\ \&\ x\leq_{e} u)$$

Theorem (Ganchev, S)

The first order theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is computably isomorphic to the first order theory of true arithmetic.

< ロ > < 同 > < 回 > < 回 >

 $\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

$$\mathcal{LK}(x,y):\mathcal{K}(x,y)\wedge \exists u,v(u\vee v=\mathbf{0}'_{e}\ \&\ \mathcal{K}(u,v)\ \&\ x\leq_{e} u)$$

Theorem (Ganchev, S)

The first order theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is computably isomorphic to the first order theory of true arithmetic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (orall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

$$\mathcal{LK}(x,y):\mathcal{K}(x,y)\wedge\exists u,v(u\vee v=\mathbf{0}_{e}^{\prime}\&\mathcal{K}(u,v)\&x\leq_{e}u)$$

Theorem (Ganchev, S)

The first order theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is computably isomorphic to the first order theory of true arithmetic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

$$\mathcal{LK}(x,y):\mathcal{K}(x,y)\wedge\exists u,v(u\vee v=\mathbf{0}_{e}^{\prime}\&\mathcal{K}(u,v)\&x\leq_{e}u)$$

Theorem (Ganchev, S)

The first order theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is computably isomorphic to the first order theory of true arithmetic.

Mariya I. Soskova (Sofia University)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Ganchev, S)

An enumeration degree **a** is low if and only if every degree $\mathbf{b} \leq_e \mathbf{a}$ bounds a \mathcal{K} -pair.

• Extends a result of Giorgi, Sorbi and Yang.

Corollary

The class L_1 of all low enumeration degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Ganchev, S)

An enumeration degree **a** is low if and only if every degree $\mathbf{b} \leq_e \mathbf{a}$ bounds a \mathcal{K} -pair.

• Extends a result of Giorgi, Sorbi and Yang.

Corollary

The class L_1 of all low enumeration degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

- ∢ ∃ ▶

Theorem (Ganchev, S)

An enumeration degree **a** is low if and only if every degree $\mathbf{b} \leq_e \mathbf{a}$ bounds a \mathcal{K} -pair.

• Extends a result of Giorgi, Sorbi and Yang.

Corollary

The class L_1 of all low enumeration degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- By Jockusch for every incomputable set B there is a semi-recursive set A ≡_T B such that both A and A are not c.e.
- A K-pair of the form {A, A} is maximal, i.e. it cannot be extended to a K-pair (B, C), with A <_e B or A <_e C.
- Every nonzero total enumeration degree can be represented as the least upper bound of a maximal \mathcal{K} -pair.

Theorem (Ganchev, S)

The least upper bound of every maximal $\Sigma_2^0 \mathcal{K}$ -pair is total.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- By Jockusch for every incomputable set B there is a semi-recursive set A ≡_T B such that both A and A are not c.e.
- A K-pair of the form {A, A} is maximal, i.e. it cannot be extended to a K-pair (B, C), with A <_e B or A <_e C.
- Every nonzero total enumeration degree can be represented as the least upper bound of a maximal \mathcal{K} -pair.

Theorem (Ganchev, S)

The least upper bound of every maximal $\Sigma_2^0 \mathcal{K}$ -pair is total.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- By Jockusch for every incomputable set B there is a semi-recursive set A ≡_T B such that both A and A are not c.e.
- A K-pair of the form {A, A} is maximal, i.e. it cannot be extended to a K-pair (B, C), with A <_e B or A <_e C.
- Every nonzero total enumeration degree can be represented as the least upper bound of a maximal *K*-pair.

Theorem (Ganchev, S)

The least upper bound of every maximal $\Sigma_2^0 \mathcal{K}$ -pair is total.

A D A D A D A

- By Jockusch for every incomputable set B there is a semi-recursive set A ≡_T B such that both A and A are not c.e.
- A K-pair of the form {A, A} is maximal, i.e. it cannot be extended to a K-pair (B, C), with A <_e B or A <_e C.
- Every nonzero total enumeration degree can be represented as the least upper bound of a maximal *K*-pair.

Theorem (Ganchev, S)

The least upper bound of every maximal $\Sigma_2^0 \mathcal{K}$ -pair is total.

The class of total degrees is first order definable in ${\mathcal D}_{e}(\leq {f 0}_{e}').$

Mariya I. Soskova (Sofia University)

The Turing universe in context

LC 2012 28 / 31

- By Jockusch for every incomputable set B there is a semi-recursive set A ≡_T B such that both A and A are not c.e.
- A K-pair of the form {A, A} is maximal, i.e. it cannot be extended to a K-pair (B, C), with A <_e B or A <_e C.
- Every nonzero total enumeration degree can be represented as the least upper bound of a maximal \mathcal{K} -pair.

Theorem (Ganchev, S)

The least upper bound of every maximal $\Sigma_2^0 \mathcal{K}$ -pair is total.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Mariya I. Soskova (Sofia University)

The Turing universe in context

LC 2012 28 / 31

< 回 > < 三 > < 三 >

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $TOT \cap D_e (\leq \mathbf{0}'_e)$ is first order definable.

Question Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question

Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question

Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$,

```
\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \And \mathbf{a} \leq_{e} \mathbf{u} \right\}.
```

- If x and u ≠ 0_e are total degrees then x is c.e. in u implies that x = a ∨ b for a maximal K-pair {a, b}, such that a ≤_e u.
- Suppose that the least upper bound of every maximal $\mathcal{K}\text{-pair}$ is total.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total degrees.
- Then for total **u**, our definition of the jump would read **u**' is the largest total degree, which is c.e. in **u**.

< ロ > < 同 > < 回 > < 回 >

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$,

 $\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \right\}.$

- If x and u ≠ 0_e are total degrees then x is c.e. in u implies that x = a ∨ b for a maximal K-pair {a, b}, such that a ≤_e u.
- Suppose that the least upper bound of every maximal *K*-pair is total.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total degrees.
- Then for total **u**, our definition of the jump would read **u**' is the largest total degree, which is c.e. in **u**.

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$,

 $\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \right\}.$

- If x and u ≠ 0_e are total degrees then x is c.e. in u implies that x = a ∨ b for a maximal K-pair {a, b}, such that a ≤_e u.
- Suppose that the least upper bound of every maximal \mathcal{K} -pair is total.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total degrees.
- Then for total **u**, our definition of the jump would read **u**' is the largest total degree, which is c.e. in **u**.

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$,

 $\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \right\}.$

- If x and u ≠ 0_e are total degrees then x is c.e. in u implies that x = a ∨ b for a maximal K-pair {a, b}, such that a ≤_e u.
- Suppose that the least upper bound of every maximal \mathcal{K} -pair is total.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total degrees.
- Then for total **u**, our definition of the jump would read **u**' is the largest total degree, which is c.e. in **u**.

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$,

```
\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \right\}.
```

- If x and u ≠ 0_e are total degrees then x is c.e. in u implies that x = a ∨ b for a maximal K-pair {a, b}, such that a ≤_e u.
- Suppose that the least upper bound of every maximal \mathcal{K} -pair is total.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total degrees.
- Then for total **u**, our definition of the jump would read **u**' is the largest total degree, which is c.e. in **u**.

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$,

 $\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \right\}.$

- If x and u ≠ 0_e are total degrees then x is c.e. in u implies that x = a ∨ b for a maximal K-pair {a, b}, such that a ≤_e u.
- Suppose that the least upper bound of every maximal \mathcal{K} -pair is total.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total degrees.
- Then for total u, our definition of the jump would read u' is the largest total degree, which is c.e. in u.

Thank you!

Mariya I. Soskova (Sofia University)

The Turing universe in context

● ● ● ● ○ ○ ○
 LC 2012 31/31

イロト イヨト イヨト イヨト