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The spectrum of relative definability

How can a set of natural numbers B be used to define a set of natural
numbers A.

There is an algorithm, which determines whether x ∈ A using
finite information about memberships in B: Turing reducibility.
There is an algorithm, which enumerates instances of
memberships in A from instances of memberships in B:
enumeration reducibility.
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Turing reducibility

A ≤T B iff χA is computable using oracle B.
A ≤T B iff A⊕ A is c.e. in B.
A is c.e. in B iff there is a c.e. set W such that
x ∈ A iff there are finite sets DB and DB, such that
〈x ,DB ⊕ DB〉 ∈W and DB ⊕ DB ⊆ B ⊕ B.

Definition
A ≤e B if and only if there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.

So A is c.e. in B if and only if A ≤e B ⊕ B.

A ≤T B if and only if A⊕ A ≤e B ⊕ B.
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The structure of the enumeration degrees

A ≡e B if A ≤e B and B ≤e A.

de(A) = {B | A ≡e B}.
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

De = 〈De,≤,∨,0e〉 is an upper semi-lattice with least element.
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The total degrees

Proposition

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order and the least upper bound.

The substructure of the total e-degrees is defined as T OT = ι(DT ).

(DT ,≤T ,∨,0T ) ∼= (T OT ,≤e,∨,0e) ⊆ (De,≤e,∨,0e)
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More connections between DT and De

B is c.e. in A if and only if B ≤e A⊕ A.
Selman’s Theorem: A ≤e B if and only if

{X | B is c.e. in X} ⊆ {X | A is c.e. in X} .{
de(X ⊕ X ) | B ≤e X ⊕ X

}
⊆
{

de(X ⊕ X ) | A ≤e X ⊕ X
}
.

Corollary: T OT is an automorphism base for De.
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The enumeration jump

Let KA = {x | x ∈Wx (A)}. Note that KA ≡e A.

The jump of A is A′ = KA ⊕ KA. Then de(A)′ = de(A′).

The embedding ι preserves the jump operation.

(DT ,≤T ,∨,0T ,
′ ) ∼= (T OT ,≤e,∨,0e,

′ ) ⊆ (De,≤e,∨,0e,
′ )

Theorem (Soskov’s Jump Inversion Theorem)
For every x ∈ De there exists a total e-degree a ≥ x, such that a′ = x′.
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Computable model theory

Fix a countable relational structure A = (N,R1 . . .Rk ).

Definition (Richter)
The degree spectrum of A, denoted by DST (A), is the set of Turing
degrees of the diagrams of structures B ∼= A.

If DST (A) has a least member, it is the (Turing) degree of A.

Definition (Jockusch)
The jump spectrum of A is DS′T (A) = {d′ | d ∈ DST (A)}.
If DS′T (A) has a least member, it is the (Turing) jump degree of A.
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Torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 G is (isomorphic to) a subgroup
of (Q,+,=).

Definition
Let p be a prime number and a ∈ G.

hp(a) =

{
the largest k , such that pk |a in G;
∞, if ∀k(pk |a in G) .

Here pk |a in G if there exists b ∈ G such that pk .b = a.

Example: If G = Q then for all nonzero a and all p, hp(a) =∞,
because for all k , pk . a

pk = a.
If G = Z then for all nonzero a and all but finitely many p, hp(a) = 0.

In fact if a,b 6= 0 then for all but finitely many p, hp(a) = hp(b).
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The type of G

Definition
The characteristic of an element a ∈ G is the sequence:

χ(a) = (hp0(a),hp1(a), . . .hpn (a), . . . ).

So if a,b 6= 0 then χ(a) =∗ χ(b).
The type of G, denoted χ(G) is the equivalence class of χ(a) for any
a 6= 0 in G.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)
Two torsion-free abelian groups of rank 1 are isomorphic if and only if
they have the same type.
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The standard type of G

Definition
Let S(G) = {〈i , j〉 | j ≤ the i-th element of χ(G)}.

Theorem (Downey, Jockusch)
The degree spectrum of G is precisely {degT (Y ) | S(G) is c.e. in Y}.

Every set A can be coded (is m-equivalent) to a type of some
group G.
Given a set A , characterize C(A) = {X | A is c.e. in X}.
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Least jump enumeration

C(A) = {X | A is c.e. in X}.

Theorem (Richter)
There is a non-c.e. set A such that A is c.e. in two sets B and C which
form a minimal pair.

Hence there is a set A, such that C(A) does not have a member of
least degree.

Theorem (Coles, Downey, Slaman)
For every sets A the set: C(A)′ = {X ′ | A is c.e. in X} has a member of
least degree.

Every torsion free abelian group of rank 1 has a jump degree.

The proof is a forcing construction of this least member.
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Enumeration degree spectrum

Fix a countable relational structure A = (N,R1 . . .Rk ).

Definition (Soskov)
The enumeration degree spectrum of A, denoted by DSe(A), is the set
of e-degrees of the positive diagrams of structures B ∼= A.

If DSe(A) has a least member, it is the (enumeration) degree of A.

Consider the structure A+ = (N,R1,R1 . . .Rk ,Rk ).
Then DSe(A+) ⊆ T OT .
In fact DSe(A+) = {ι(a) | a ∈ DST (A)}.
A has T-degree a if and only if A+ has e-degree ι(a).
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TFA1 groups in the e-degrees

Let G be a torsion-free abelian group of rank 1.

Recall that the Turing degree spectrum of G is precisely
{degT (Y ) | S(G) is c.e. in Y}.
Note that the diagram of a group is enumeration equivalent to its
positive diagram, as addition is a total function.

In particular DSe(G) = DSe(G+) = ι(DST (G)).

Denote de(S(G)) by sG-the type degree of G. The enumeration
degree spectrum of G is:

DSe(G) = {a | a ∈ T OT & sG ≤e a} .
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TFA groups in the e-degrees

DSe(G) = {a | a ∈ T OT & sG ≤e a}

By Selman’s Theorem sG is completely determined by the set of
total degrees above it.
G has a degree (both e- and T-) if and only if the type degree sG is
total.
If G has an e-degree then this e-degree is precisely sG.
By Soskov’s Jump inversion Theorem G always has first jump
degree (both e- and T-) and it is s′G.
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Defining the Turing jump operator

Theorem (Shore, Slaman)
The Turing jump operator is first order definable in DT .

1 Slaman and Woodin: The double jump is first order definable in
DT .

2 For every a �T 0′T there is g such that a ∨ g = g′′

Hence 0′ is the greatest degree which does not join any g to g′′.

Ingredient 1: Slaman and Woodin’s analysis of the automorphisms of
the Turing degrees and “involves explicit translation of automorphism
facts in definability facts via a coding of second order arithmetic”.

Ingredient 2: A special case of a more general theorem for any n-rea
operator. Involves sharp analysis of Kumabe-Slaman forcing.
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Semi-recursive sets in the enumeration degrees
Definition (Jockusch)
A set of natural numbers A is semi-recursive if there is a total
computable selector function sA, such that sA(x , y) ∈ {x , y} and if
{x , y} ∩ A 6= ∅ then sA(x , y) ∈ A.

For every set A the set LA = {σ ∈ 2<ω | σ ≤L χA} is
semi-recursive.

Theorem (Jockusch)
For every noncomputable set B there is a semi-recursive set A ≡T B
such that both A and A are not c.e.

Theorem (Arslanov, Cooper, Kalimullin)
If A is a semi-recursive set, which is not c.e. and not co-c.e then de(A)
and de(A) form a minimal pair.

(∀x ∈ De)((de(A) ∨ x) ∧ (de(A) ∨ x) = x).
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K-pairs in the enumeration degrees

Definition (Kalimullin)
A pair of sets A,B are called a K-pair if there is a c.e. set W , such that
A× B ⊆W and A× B ⊆W .

A trivial example is {A,U} and {U,A}, where U is c.e.
If A is a semi-recursive set, then {A,A} is a K-pair.
W = {〈x , y〉 | sA(x , y) = x} .

Theorem (Kalimullin)
A pair of sets A,B are a K-pair if and only if their enumeration degrees
a and b satisfy:

K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).
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A trivial example is {A,U} and {U,A}, where U is c.e.
If A is a semi-recursive set, then {A,A} is a K-pair.
W = {〈x , y〉 | sA(x , y) = x} .

Theorem (Kalimullin)
A pair of sets A,B are a K-pair if and only if their enumeration degrees
a and b satisfy:

K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).
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K-pairs are invisible in the Turing universe

K-pairs are always quasi-minimal: the only total degree below
either of them is 0e.
A consequence of the existence of nontrivial K-pairs in De is that
the Slaman-Shore property fails, there is a degree a �e 0′e, such
that for every g, a ∨ g <e g′′.
There are no K-pairs in the structure of the Turing degrees.
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K-pairs and the definability of the enumeration jump

Theorem (Kalimullin)
0′e is the largest degree which can be represented as the least upper
bound of a triple a,b,c, such that K(a,b), K(b,c) and K(c,a).

Corollary (Kalimullin)
The enumeration jump is first order definable in De.

Theorem (S, Ganchev)
For every nonzero enumeration degree u ∈ De, u′ is the largest among
all least upper bounds a ∨ b of nontrivial K-pairs {a,b}, such that
a ≤e u.
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The local structures

The local structure of the Turing degrees DT (≤ 0′T ) consists of all
∆0

2 Turing degrees.
The structure R consists of the of the computably enumerable
degrees.
The local structure of the enumeration degrees De(≤ 0′e), consists
of all Σ0

2 enumeration degrees.

Recall that ι : DT → De preserves the jump, hence DT (≤ 0′)
embeds in De(≤ 0′e).

DT (≤ 0′T ) ∼= T OT (≤ 0′e) ⊆ De(≤ 0′e)

ι(R) is precisely the substructure of the Π0
1 enumeration degrees.

R ∼= Π0
1 e-degrees ⊆ T OT (≤ 0′e) ⊆ De(≤ 0′e)
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Extracting more structure
A pair of degrees a,b are a splitting of c if a < c, b < c and
a ∨ b = c.

Theorem (Harrington)
There exists a c.e. Turing degree a <T 0′T , such that no pair of c.e.
degrees above a are a splitting of 0′T .

Theorem (Cooper, S)

There exists a Π0
1 enumeration degree a <e 0′e, such that no pair of a

Π0
1 and Σ0

2 e-degrees above a are a splitting of 0′e.

So transferring back, there is a c.e. Turing degree a <T 0′T , such
that no pair of a c.e. degree and a ∆0

2 degree above a are a
splitting of 0′T .
By Sacks’ Splitting Theorem this is the best possible result.
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Definability in the local structures

Definition
1 For every n ≥ 1 the class of lown degrees is

Ln = {a ≤ 0′ | an = 0n}.
2 For every n ≥ 1 the class of highn degrees is

Hn =
{

a ≤ 0′ | an = 0n+1}
Theorem (Nies, Shore, Slaman)
For every n ≥ 1 the classes Ln+1 and Hn are first order definable in R.

Theorem (Shore)
For every n ≥ 1 the classes Ln+1 and Hn are first order definable in
DT (≤ 0′).

Note that the definability of L1 in DT (≤ 0′T ) or in R remains open.
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Biinterpretability up to double jump

1 The theory of first order arithmetic can be interpreted in R and
DT (≤ 0′).

2 There is a definable way of mapping a degree a to a set A in every
coded model of arithmetic so that A′′ ∈ a′′.

3 Every relation which is invariant under double jump and definable
in arithmetic is definable.

4 An additional proof that H1 is first order definable.
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Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(≤ 0′e).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(≤ 0′e).

1 Non-trivial Σ0
2 K-pairs are low.

2 A K-system, a sequence of {ai}i∈I of e-degrees such that if i 6= j
then K(ai ,aj), is an antichain.

3 Every nonzero ∆0
2 e-degree bounds a countable K-system.
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An obstacle

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)
Is it enough to require that this formula is satisfied by all Σ0

2 e-degrees?

Theorem (Ganchev, S)
There is a first order formula LK(x , y), which defines the K-pairs in
De(≤ 0′e).

LK(x , y) : K(x , y) ∧ ∃u, v(u ∨ v = 0′e & K(u, v) & x ≤e u)

Theorem (Ganchev, S)
The first order theory of De(≤ 0′e) is computably isomorphic to the first
order theory of true arithmetic.

Mariya I. Soskova ( Sofia University ) The Turing universe in context LC 2012 26 / 31



An obstacle

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)
Is it enough to require that this formula is satisfied by all Σ0

2 e-degrees?

Theorem (Ganchev, S)
There is a first order formula LK(x , y), which defines the K-pairs in
De(≤ 0′e).

LK(x , y) : K(x , y) ∧ ∃u, v(u ∨ v = 0′e & K(u, v) & x ≤e u)

Theorem (Ganchev, S)
The first order theory of De(≤ 0′e) is computably isomorphic to the first
order theory of true arithmetic.

Mariya I. Soskova ( Sofia University ) The Turing universe in context LC 2012 26 / 31



An obstacle

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)
Is it enough to require that this formula is satisfied by all Σ0

2 e-degrees?

Theorem (Ganchev, S)
There is a first order formula LK(x , y), which defines the K-pairs in
De(≤ 0′e).

LK(x , y) : K(x , y) ∧ ∃u, v(u ∨ v = 0′e & K(u, v) & x ≤e u)

Theorem (Ganchev, S)
The first order theory of De(≤ 0′e) is computably isomorphic to the first
order theory of true arithmetic.

Mariya I. Soskova ( Sofia University ) The Turing universe in context LC 2012 26 / 31



An obstacle

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)
Is it enough to require that this formula is satisfied by all Σ0

2 e-degrees?

Theorem (Ganchev, S)
There is a first order formula LK(x , y), which defines the K-pairs in
De(≤ 0′e).

LK(x , y) : K(x , y) ∧ ∃u, v(u ∨ v = 0′e & K(u, v) & x ≤e u)

Theorem (Ganchev, S)
The first order theory of De(≤ 0′e) is computably isomorphic to the first
order theory of true arithmetic.

Mariya I. Soskova ( Sofia University ) The Turing universe in context LC 2012 26 / 31



An obstacle

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)
Is it enough to require that this formula is satisfied by all Σ0

2 e-degrees?

Theorem (Ganchev, S)
There is a first order formula LK(x , y), which defines the K-pairs in
De(≤ 0′e).

LK(x , y) : K(x , y) ∧ ∃u, v(u ∨ v = 0′e & K(u, v) & x ≤e u)

Theorem (Ganchev, S)
The first order theory of De(≤ 0′e) is computably isomorphic to the first
order theory of true arithmetic.

Mariya I. Soskova ( Sofia University ) The Turing universe in context LC 2012 26 / 31



A surprising consequence

Theorem (Ganchev, S)
An enumeration degree a is low if and only if every degree b ≤e a
bounds a K-pair.

Extends a result of Giorgi, Sorbi and Yang.

Corollary
The class L1 of all low enumeration degrees is first order definable in
De(≤ 0′e).
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A more surprising consequence

By Jockusch for every incomputable set B there is a
semi-recursive set A ≡T B such that both A and A are not c.e.
A K-pair of the form {A,A} is maximal, i.e. it cannot be extended
to a K-pair (B,C), with A <e B or A <e C.
Every nonzero total enumeration degree can be represented as
the least upper bound of a maximal K-pair.

Theorem (Ganchev, S)

The least upper bound of every maximal Σ0
2 K-pair is total.

The class of total degrees is first order definable in De(≤ 0′e).
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Open question

We know that:
T OT ∩ De(≥ 0′e) is first order definable.
T OT ∩ De(≤ 0′e) is first order definable.

Question
Is T OT first order definable in De?

Recall that the total degrees are an automorphism base for De.

A positive answer would connect the problems of the existence of a
non-trivial automorphism in both structures.
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One step further in the dream world

Theorem (Ganchev,S)
For every nonzero enumeration degree u ∈ De,

u′ = max {a ∨ b | K(a,b) & a ≤e u} .

If x and u 6= 0e are total degrees then x is c.e. in u implies that
x = a ∨ b for a maximal K-pair {a,b}, such that a ≤e u.
Suppose that the least upper bound of every maximal K-pair is
total.
Then T OT would be definable in De.
The relation x is c.e. in u would also be definable for total degrees.
Then for total u, our definition of the jump would read u′ is the
largest total degree, which is c.e. in u.
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The end

Thank you!
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