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Enumeration reducibility

Reducibility Oracle set B Reduced set

A ≤T B Complete information Complete information

A c.e. in B Complete information Positive information

A ≤e B Positive information Positive information

Definition (Friedberg, Rogers (59))
A ≤e B if there is a c.e. set W, such that

A = W(B) = {x | ∃D(〈x,D〉 ∈ W & D ⊆ B)} .

The structures of the Turing degrees DT and the enumeration degrees De are
upper semi-lattices with least element and jump operation.
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The automorphism problem

Question
Is there a non-trivial automorphism of DT or De?

Theorem (Slaman, Woodin)
The rigidity of DT is equivalent to its biinterpretability with second order
arithmetic.
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Biinterpretability

Theorem (Simpson, Slaman and Woodin)
The first order theories of DT and De are each computably isomorphic to the
theory of Second order arithmetic.

DT is biinterpretable with second order arithmetic if the relation ϕ(~p, x)
defined by “~p codes a standard model of arithmetic with a unary predicate for
the set Y and Y is of the same degree as x” is definable in DT .

Theorem (Slaman, Woodin)

There is an element g ≤ 0(5) such that ϕ is definable with parameter g.
The singleton {g} is an automorphism base for the structure of the Turing
degrees DT .
Aut(DT) is countable and every member has an arithmetically definable
presentation.
Every relation induced by a degree invariant definable relation in Second
order arithmetic is definable with parameters.
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What connects DT and De

Proposition

A ≤T B⇔ A⊕ A is c.e. in B⇔ A⊕ A ≤e B⊕ B.

The embedding ι : DT → De, defined by ι(dT(A)) = de(A⊕ A), preserves the
order, the least upper bound and the jump operation.

T OT = ι(DT) is the set of total enumeration degrees.

(DT ,≤T ,∨,′ , 0T) ∼= (T OT ,≤e,∨,′ , 0e) ⊆ (De,≤e,∨,′ , 0e)

Question (Rogers (67))
Is the set of total enumeration degrees first order definable in De?
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The total degrees as an automorphism base

Theorem (Selman)
A is enumeration reducible to B if and only if
{x ∈ T OT | de(A) ≤ x} ⊇ {x ∈ T OT | de(B) ≤ x}.

The total enumeration degrees are an automorphism base for De.

If T OT is definable then a nontrivial automorphism of De implies a
nontrivial automorphism of DT .
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Semi-computable sets
Definition (Jockusch)
A is semi-computable if there is a total computable function sA, such that
sA(x, y) ∈ {x, y} and if {x, y} ∩ A 6= ∅ then sA(x, y) ∈ A.

Example:
A left cut in a computable linear ordering is a semi-computable set.
In particular for any set A consider LA = {σ ∈ 2<ω | σ ≤ A}.
Every nonzero Turing degree contains a semi-computable set that is not
c.e. or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)
If A is a semi-computable set then for every X:

(de(X) ∨ de(A)) ∧ (de(X) ∨ de(A)) = de(X).

If X is not computable then there is a semi-computable set A with
de(X ⊕ X) = de(A) ∨ de(A).
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Kalimullin pairs

Definition (Kalimullin)
A pair of sets A,B are called a K-pair if there is a c.e. set W, such that
A× B ⊆ W and A× B ⊆ W.

Example:
1 A trivial example is {A,U}, where U is c.e: W = N× U.
2 If A is a semi-computable set, then {A,A} is a K-pair:

W = {(m, n) | sA(m, n) = m}.

Theorem (Kalimullin)
A pair of sets A,B is a K-pair if and only if their enumeration degrees a and b
satisfy:

K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).
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Definability of the enumeration jump

Theorem (Kalimullin)
0′e is the largest degree which can be represented as the least upper bound of a
triple a,b, c, such that K(a,b), K(b, c) and K(c, a).

Corollary (Kalimullin)
1 The enumeration jump is first order definable in De.
2 The set of total enumeration degrees above 0′e is first order definable in
De.
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Definability in the local structure of the enumeration
degrees

Theorem (Ganchev, S)
The class of K-pairs below 0′e is first order definable in De(≤ 0′e).

Theorem (Ganchev, S)
1 The theory of De(≤ 0′e) is computably isomorphic to the theory of first

order arithmetic.
2 The low enumeration degrees are first order definable in De(≤ 0′e).
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Maximal K-pairs

Definition
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and b ≤ d,
we have that a = c and b = d.

Example: A semi-computable pair is a maximal K-pair.
Total enumeration degrees are joins of maximal K-pairs.

Theorem (Ganchev, S)
If {A,B} is a nontrivial K-pair in De(≤ 0′e) then there is a semi-computable
set C ≤e 0′e, such that A ≤e C and B ≤e C.

Corollary
In De(≤ 0′e) a nonzero degree is total if and only if it is the least upper bound
of a maximal K-pair.
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Automorphism analysis in the enumeration degrees

Theorem (S)

There is an element g ≤ 0(8) such that De is biinterpretable with second order
arithmetic using parameter g.

The singleton {g} is an automorphism base for De.

Aut(De) is countable and every member has an arithmetically definable
presentation.

Every relation induced by a degree invariant definable relation in Second
order arithmetic is definable with parameters.

In particular the total enumeration degrees are definable with parameters in
De.
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order arithmetic is definable with parameters.

In particular the total enumeration degrees are definable with parameters in
De.
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Defining total enumeration degrees in De

Theorem (Cai, Ganchev, Lempp, Miller, S)
If {A,B} is a nontrivial K-pair in De then there is a semi-computable set C,
such that A ≤e C and B ≤e C.

Proof flavor: Let W be a c.e. set such that A× B ⊆ W and A× B ⊆ W.
1 The countable component: we use W to construct an effective labeling of

the computable linear ordering Q.
2 The uncountable component: C will be a left cut in this ordering.

We label elements of Q with the elements of N ∪ N.
The goal: A = {m | ∃q ∈ C(q is labeled by m)} and
B =

{
k | ∃q ∈ C(q is labeled by k)

}
.

While (m, k) /∈ W : Q : k m

m /∈ A
k ∈ B
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Success!

Theorem (Cai, Ganchev, Lempp, Miller, S)
The total enumeration degrees are first order definable in De.

Corollary
The total enumeration degrees form a definable automorphism base of the
enumeration degrees.

If DT is rigid then De is rigid.

The automorphism analysis for the enumeration degrees follows.

The total degrees below 0(5)e are an automorphism base of De.
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The relation c.e. in

Definition
A Turing degree a is c.e. in a Turing degree x if some A ∈ a is c.e. in some
X ∈ x.

Recall that ι is the standard embedding of DT into De.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The set {〈ι(a), ι(x)〉 | a is c.e. in x} is first order definable in De.

1 Ganchev, S had observed that if T OT is definable by maximal K-pairs
then the image of the relation ‘c.e. in’ is definable for non-c.e. degrees.

2 A result by Cai and Shore allowed us to complete this definition.
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Local structures of Turing degrees

Definition
R is the substructure of the computably enumerable degrees.

DT(≤ 0′) is the substructure of all degrees that are bounded by 0′, the ∆0
2

Turing degrees.
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The local coding theorem

Definition
A set of degrees Z contained in DT(≤ 0′) is uniformly low if it is bounded by
a low degree and there is a sequence {Zi}i<ω, representing the degrees in Z ,
and a computable function f such that {f (i)}∅′ is the Turing jump of

⊕
j<i Zj.

Example: If
⊕

i<ω Ai is low then A = {dT(Ai) | i < ω} is uniformly low.

Theorem (Slaman and Woodin)
If Z is a uniformly low subset of DT(≤ 0′) then Z is definable from finitely
many parameters in DT(≤ 0′).
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Applications of the coding theorem

Using parameters we can code a
model of arithmeticM =
(NM, 0M, sM,+M,×M,≤M).

1 The set NM is definable with
parameters ~p.

2 The graphs of s, +, × and the
relation ≤ are definable with
parameters ~p.

3 N |= ϕ iff DT(≤ 0′) |= ϕT(~p)
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Applications of the coding theorem

If Z ⊆ DT(≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT(≤ 0′) such that ϕ(iM) = dT(Zi).

We call such a function an indexing of Z .

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT(≤ 0′) such that
ψ(eM) = dT(We).
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An indexing of the c.e. degrees
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The Goal

The Goal
Extend this result to an indexing ϕ
of the ∆0

2 Turing degrees.

We will call e an index for a ∆0
2 set

X if {e}∅′ is the characteristic
function of X.

Idea: We can use a further
uniformly low set
Z = {dT(Zi) | i < ω}.
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Biinterpretability with parameters

Theorem (Slaman, S)
There are finitely many ∆0

2 parameters that code a model of arithmeticM
and an indexing of the ∆0

2 degrees.

Proof flavor:
1 A ∆0

2 degree can be defined from four low degrees using meet and join.
2 There exists a uniformly low set of Turing degrees Z , such that every

low Turing degree x is uniquely positioned with respect to the c.e.
degrees and the elements of Z .

If x, y ≤ 0′, x′ = 0′ and y � x then there are gi ≤ 0′, c.e. degrees ai and
∆0

2 degrees ci,bi ∈ Z for i = 1, 2 such that:
1 gi is the least element below ai which joins bi above ci.
2 x ≤ g1 ∨ g2.
3 y � g1 ∨ g2.
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Applications

Theorem (Slaman, S)
1 DT(≤ 0′) has a finite automorphism base.

2 The automorphism group of DT(≤ 0′) is countable.
3 Every automorphism of DT(≤ 0′) has an arithmetic presentation.
4 Every relation R ⊆ DT(≤ 0′) induced by an arithmetically definable

degree invariant relation is definable with finitely many ∆0
2 parameters.

5 DT(≤ 0′) is rigid if and only if DT(≤ 0′) is biinterpretable with first
order arithmetic.
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Towards a better automorphism base of De

Theorem (Slaman, Woodin)
There are total ∆0

2 parameters
that code a model of arithmetic
M and an indexing of the
image of the c.e. Turing
degrees.

Idea: In the wider context of
De we can reach more
elements: non-total elements.
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De we can reach more
elements: non-total elements.
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Towards a better automorphism base of De

Theorem (Slaman, S)
If ~p defines a model of
arithmeticM and an indexing
of the image of the c.e. Turing
degrees then ~p defines an
indexing of the total ∆0

2
enumeration degrees.

Proof flavour:
The image of the c.e. degrees
→ The low 3-c.e. e-degrees
→ The low ∆0

2 e-degrees
→ The total ∆0

2 e-degrees
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Moving outside the local structure

1 Extend to an indexing of all
total degrees that are “c.e. in ”
and above some total ∆0

2
enumeration degree.

I The jump is definable.

I The image of the relation
“c.e. in ” is definable.

2 Relativizing the previous
theorem extend to an
indexing of

⋃
x≤T 0′ ι([x, x

′]).

Mariya I. Soskova Definability, automorphisms and e-degrees 25 / 1



Moving outside the local structure

3 Extend to an indexing of all
total degrees below 0′′e .

Mariya I. Soskova Definability, automorphisms and e-degrees 25 / 1



And now we iterate
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And now we iterate
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And now we iterate

Theorem (Slaman, S)
Let n be a natural number and ~p be parameters that index the image of the c.e.
Turing degrees. There is a definable from ~p indexing of the total ∆0

n+1 degrees.
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Consequences

Theorem (Slaman, S)
1 There is a finite automorphism base for the enumeration degrees

consisting of total ∆0
2 enumeration degrees.

2 The image of the c.e. Turing degrees is an automorphism base for De.
3 If the structure of the c.e. Turing degrees is rigid then so is the structure

of the enumeration degrees.

Question
Can every automorphism of the Turing degrees be extended to an
automorphism of the enumeration degrees?
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The best puzzles are the ones that will never be completely solved.

-Ivan Soskov
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