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Review

Theorem
There exists a c.e. degree a such that 0′ can not be split
over a.

I NΨ : E 6= ΨA - hence A is not complete
I PΘ,U,V : E = ΘU,V ⇒ (∃Γ,Λ)[K = ΓU,A ∨ K = ΛV ,A]
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Review

I The (P, Γ) - strategy - builds a c.e. set of axioms, so
that ΓU,A = K

I The (N, Γ) - strategy
1. Initialization - choose threshold and witness
2. Honestifictaion - insure θ(x) < u(d)
3. Attack - If ΨA(x) = 0, enumerate x in E
4. Successful attack - A U-change - move the

γ-markers above ψ(x) to preserve the computation
ΨA(x) = 0.

5. Unsuccessful attack - A V -change - cancel witness,
enumerate γ(d) in A and start over, (P,Λ) and (N,Λ)
start work.
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Important Details

I Working intervals - secure working space for
successive strategies

I The Functionals must be total - the markers have to
come to rest for each element after a certain stage



Harrington’s
Nonsplitting

Theorem

Mariya I. Soskova

Two P- requirements above one N
requirement

(P1,Γ1)

le-(P2,Γ2)

le- (N,Γ1,Γ2)

I P1 building Γ1

I P2 building Γ2

I (N, Γ1, Γ2)
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Two P- requirements above one N
requirement

I N needs to clear its computation of both γ1 and γ2
markers.

I Initialization - two thresholds
I Honestification - both Γ1 and Γ2 have to be honest

hence two outcome h1 and h2

I Attack - one witness enumerated in E will force both
(U1,V1) changes and (U2,V2) changes
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Synchronization Problems

I One P requirement - a single U change insures
success

I Two P requirements - we need a U1 and U2 change
simultaneously.

I Worst case scenario:
(U1,V2) ⇒ (V1,U2) ⇒ (U1,V2) ⇒ . . .

I We need two outcomes g1 and g2

I Outcomes g and h destroy the functional Γ. Now all
outcomes h1, h2, g1, and g2 can destroy both
functionals.
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Solutions

I A change in the strategy of a higher priority
requirement can afford to restart all lower priority
strategies:

1. Below infinite Honestification for Γ1 a new (P2, Γ2)
node

2. Below Unsuccessful attack for Γ1 a new (P2, Γ2) node

I Hence a change in P1’s strategy can afford to destroy
P2’s work and insure a safe working space for the
strategies below

I A change in strategy in lower priority requirements
has to preserve higher priority strategies - more work
on insuring safe working interval
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Honestification

I True outcome is h2, then P1 must be preserved.
I Hence h1 <L h2.
I Outcome h1: both Γ1 and Γ2 destroyed, P1 satisfied,

P2 postponed
I Outcome h2: Γ1 uninfluenced, P1 remains intact. P2

satisfied.
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Unsuccessful Attacks

I Unsuccessful attacks - Cancel current witness,
Honestification with new witness but same threshold
at following stages. If the true outcome is infinitely
many unsuccessful attacks - γ(d) is unbounded,
hence (P, Γ) destroyed.

I Infinitely many P2-unsuccessful attacks destroy
(P1, Γ1).

I Only solution - moving thresholds: Define d2 < d1,
unsuccessful attack for P2 (o = g2) - cancel current
P1 - threshold d1.

I Hence g2 <L g1.
I Dangerous possibility: true outcome is g2, but g1 is

visited infinitely often solved!
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The detailed (NΨ, Γ1, Γ2) strategy
Initialization

(N, Γ1, Γ2)

llllllllllllllll

uuuuuuuuuu

IIIIIIIIII

RRRRRRRRRRRRRRRR

UUUUUUUUUUUUUUUUUUUUU

g2 g1 h1 h2 f w

1. Define new thresholds: d2 < d1, if undefined
2. Define a witness x > d1, x /∈ E
3. Wait for x < l(E ,ΘU1,V1

1 ) and x < l(E ,ΘU2,V2
2 ) .

(o = w)
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The detailed (NΨ, Γ1, Γ2) strategy
Honestification

(N, Γ1, Γ2)

llllllllllllllll

uuuuuuuuuu
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g2 g1 h1 h2 f w

I Perform Honestification(Γ1): Check if θ1(x) has
grown since the last stage (Result = h), change
markers as appropriate. Otherwise (Result = w).

I If (Result = h) then enumerate γ(d2) in A, (o = h1)
working within boundaries (x , γ(d1)).

I If (Result = w), perform Honestification(Γ2).
I If (Result = h) then (o = h2) working within

boundaries (L = max(x , γ(d1)),R = γ(d2)).
I If (Result = w), then wait for ΨA(x) = 0, with
ψ(x) < R. (o = w), working within boundaries
(L = max(γ1(d1), γ2(d2)),R).
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The detailed (NΨ, Γ1, Γ2) strategy
Honestification

(N, Γ1, Γ2)

llllllllllllllll

uuuuuuuuuu

IIIIIIIIII

RRRRRRRRRRRRRRRR

UUUUUUUUUUUUUUUUUUUUU

g2 g1 h1 h2 f w

I Perform Honestification(Γ1): Check if θ1(x) has
grown since the last stage (Result = h), change
markers as appropriate. Otherwise (Result = w).

I If (Result = h) then enumerate γ(d2) in A, (o = h1)
working within boundaries (x , γ(d1)).

I If (Result = w), perform Honestification(Γ2).
I If (Result = h) then (o = h2) working within

boundaries (L = max(x , γ(d1)),R = γ(d2)).
I If (Result = w), then wait for ΨA(x) = 0, with
ψ(x) < R. (o = w), working within boundaries
(L = max(γ1(d1), γ2(d2)),R).
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The detailed (NΨ, Γ1, Γ2) strategy
Honestification

(N, Γ1, Γ2)

llllllllllllllll

uuuuuuuuuu
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UUUUUUUUUUUUUUUUUUUUU

g2 g1 h1 h2 f w

I Perform Honestification(Γ1): Check if θ1(x) has
grown since the last stage (Result = h), change
markers as appropriate. Otherwise (Result = w).

I If (Result = h) then enumerate γ(d2) in A, (o = h1)
working within boundaries (x , γ(d1)).

I If (Result = w), perform Honestification(Γ2).
I If (Result = h) then (o = h2) working within

boundaries (L = max(x , γ(d1)),R = γ(d2)).
I If (Result = w), then wait for ΨA(x) = 0, with
ψ(x) < R. (o = w), working within boundaries
(L = max(γ1(d1), γ2(d2)),R).
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The detailed (NΨ, Γ1, Γ2) strategy
Attack

(N, Γ1, Γ2)

llllllllllllllll

uuuuuuuuuu

IIIIIIIIII
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UUUUUUUUUUUUUUUUUUUUU

g2 g1 h1 h2 f w

I Enumerate x in E and restrain A on ψ(x). The
outcome (o = gi), where gi is the most recently
visited g-outcome

I Wait for the next expansionary stage
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The detailed (NΨ, Γ1, Γ2) strategy
Attack

(N, Γ1, Γ2)

llllllllllllllll

uuuuuuuuuu
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g2 g1 h1 h2 f w

I Unsuccessful Γ1-attack. Enumerate γ1(d1) and
γ2(d2) in A. Remove the restraint on A. Cancel the
current witness x. Return to Initialization at the next
stage (o = g1) working within (L = d1,R = x).

I Unsuccessful Γ2-attack. Enumerate γ2(d2) in A and
cancel d1. Remove the restraint on A. Cancel the
current witness x. Return to Initialization at the next
stage (o = g2) working within (L = d2,R = x).

I Successful attack - (o = f ), working within
(L = max(γ1(d1), γ2(d2)),R).
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The detailed (NΨ, Γ1, Γ2) strategy
Attack

(N, Γ1, Γ2)

llllllllllllllll

uuuuuuuuuu

IIIIIIIIII

RRRRRRRRRRRRRRRR

UUUUUUUUUUUUUUUUUUUUU

g2 g1 h1 h2 f w

I Unsuccessful Γ1-attack. Enumerate γ1(d1) and
γ2(d2) in A. Remove the restraint on A. Cancel the
current witness x. Return to Initialization at the next
stage (o = g1) working within (L = d1,R = x).

I Unsuccessful Γ2-attack. Enumerate γ2(d2) in A and
cancel d1. Remove the restraint on A. Cancel the
current witness x. Return to Initialization at the next
stage (o = g2) working within (L = d2,R = x).

I Successful attack - (o = f ), working within
(L = max(γ1(d1), γ2(d2)),R).
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The detailed (NΨ, Γ1, Γ2) strategy
Attack

(N, Γ1, Γ2)

llllllllllllllll

uuuuuuuuuu

IIIIIIIIII

RRRRRRRRRRRRRRRR

UUUUUUUUUUUUUUUUUUUUU

g2 g1 h1 h2 f w

I Unsuccessful Γ1-attack. Enumerate γ1(d1) and
γ2(d2) in A. Remove the restraint on A. Cancel the
current witness x. Return to Initialization at the next
stage (o = g1) working within (L = d1,R = x).

I Unsuccessful Γ2-attack. Enumerate γ2(d2) in A and
cancel d1. Remove the restraint on A. Cancel the
current witness x. Return to Initialization at the next
stage (o = g2) working within (L = d2,R = x).

I Successful attack - (o = f ), working within
(L = max(γ1(d1), γ2(d2)),R).
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Working Intervals

(N, Γ1, Γ2)

llllllllllllllll

uuuuuuuuuu

IIIIIIIIII

RRRRRRRRRRRRRRRR

UUUUUUUUUUUUUUUUUUUUU

g2 g1 h1 h2 f w

g2 - (L = d2,R = x). d1 is cancelled and redefined
bigger than x .

g1 - (L = d1,R = x). γ(d1) and γ(d2) are cancelled,
redefined bigger than x .

h1 - (L = x ,R = γ(d1)). γ(d2) is cancelled and
redefined bigger than γ(d1).

h2 -(L = γ(d1),R = γ(d2))

w, f - (L = γ(d2),R)
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Working below Honestification outcomes
Below h2

(N, Γ1,FM2)

sssssssssss

JJJJJJJJJJJ

RRRRRRRRRRRRRRRR

g1 h1 f w

I h1 is not visited - θ1(x) remains constant, N does not
enumerate any γ1 markers in A.

I θ2(x) - unbounded, hence P2 is satisfied.
I (N, Γ1,FM2) working only with P1 as described

previously - within the working interval
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Working below Honestification outcomes
Below h1

(P2, Γ2)

(N,FM1, Γ2)

sssssssssss

JJJJJJJJJJJ

RRRRRRRRRRRRRRRR

g2 h2 f w

I θ1(x) unbounded, hence P1 satisfied.
I γ2(d2) also grows unbounded - Γ2 is destroyed and

works outside the working interval.
I P2 restarted on the next node
I (N,FM1, Γ2) working only with the new P2, within the

right working interval.
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Working below Unsuccessful outcomes
outcomes
Below g1

(P1,Λ1)

(P2, Γ2)

(N,Λ1, Γ2)

llllllllllllllll

tttttttttt

HHHHHHHHHH

QQQQQQQQQQQQQQQ

g2 h1 h2 f w

I Cofinitely many Γ1- Unsuccessful attacks, P1
switches to a Λ1 strategy.

I γ2(d2) also grows unbounded - Γ2 is destroyed and
works outside the working interval.P2 restarted on
the next node
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Working below Unsuccessful Attack
outcomes
Below g1

(P1,Λ1)

(P2, Γ2)

(N,Λ1, Γ2)

llllllllllllllll

tttttttttt

HHHHHHHHHH

QQQQQQQQQQQQQQQ

g2 h1 h2 f w

I (N,Λ1, Γ2) working with the new P2, within the right
working interval.

I Every attack synchronized with (N, Γ1, Γ2) - hence Λ1
successful. No outcome g1, only g2
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Working below Unsuccessful Attack
outcomes
Below g2

(P2,Λ2)

(N, Γ1,Λ2)

llllllllllllllll

tttttttttt

HHHHHHHHHH

QQQQQQQQQQQQQQQ

g1 h1 h2 f w

I Infinitely many Γ2- Unsuccessful attacks, P2 switches
to a Λ2 strategy.

I d1 grows unboundedly - Γ1 is preserved.
I (N, Γ1,Λ2) working with thresholds and witness

d2 < d̂2 < d̂1 < x̂ < d1 < x .
I Every attack synchronized with (N, Γ1, Γ2) - hence Λ2

successful. No outcome g2, only g1.
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Main tricks
Initialization

I A change in K below a threshold d can injure the
computation ΨA(x) = 0

I True outcomes w , f , h1, h2, g1 - finitely many times
initialization

I True outcome g2 - first threshold d1 changes infinitely
often - infinitely many times initialization.

I Solution - when a K � d change occurs, initialize only
nodes below outcomes that assume d remains
constant.

I K � d1-change ⇒ initialize all nodes except below
outcome g2.
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Main tricks
Initialization

I The threshold d̂1 for (N, Γ1,Λ2) remains constant.
I Attack ⇒ Success ⇒ Change in K � d1, above d̂1.
I (N, Γ1,Λ2) expects a V2- change - that it obviously

did not get.
I Solution: There was a (U1,V1) � θ1(x̂) - change.

1. U1 � θ1(x̂)-change ⇒ the markers for all elements
n > d̂1 have been moved above ψ(x) and the
computation will be preserved. Do not initialize in this
case.

2. V1 � θ1(x̂)-change. Then (N, Γ1,Λ2) would have
outcome g1 at next true stage.
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Main tricks
Unsuccessful attacks - Worst case scenario

I Both outcomes g2 and g1 are visited infinitely often.
I An attack synchronized with g2, may be followed by

outcome g1. Then when g2 is true again, the
synchronization between the attacks is lost!

I We can not be sure that there is a V2 � θ2(x̂) -
change

I We can be sure that in this case there is a V1 � θ1(x̂)-
change - hence (N, Γ1,Λ2) will have outcome g1
followed by a new P2 strategy and a (N,Λ1, Γ2) -
node.


