Harrington's Nonsplitting Theorem

Mariya I. Soskova

Introduction to Harrington's Nonsplitting Theorem Part Two

Mariya I. Soskova

University of Leeds Department of Pure Mathematics

13.06.2006

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Review

Harrington's Nonsplitting Theorem

Mariya I. Soskova

Theorem

There exists a c.e. degree a such that 0' can not be split over a.

•
$$N_{\Psi}: E \neq \Psi^A$$
 - hence *A* is not complete

$$\blacktriangleright P_{\Theta,U,V} : E = \Theta^{U,V} \Rightarrow (\exists \Gamma, \Lambda) [K = \Gamma^{U,A} \lor K = \Lambda^{V,A}]$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

Review

Harrington's Nonsplitting Theorem

- The (P, Γ) strategy builds a c.e. set of axioms, so that Γ^{U,A} = K
- The (N, Γ) strategy
 - 1. Initialization choose threshold and witness
 - 2. Honestifictation insure $\theta(x) < u(d)$
 - 3. Attack If $\Psi^A(x) = 0$, enumerate x in E
 - 4. Successful attack A *U*-change move the γ -markers above $\psi(x)$ to preserve the computation $\Psi^{A}(x) = 0$.
 - 5. Unsuccessful attack A V-change cancel witness, enumerate $\gamma(d)$ in A and start over, (P, Λ) and (N, Λ) start work.

Mariya I. Soskova

- Working intervals secure working space for successive strategies
- The Functionals must be total the markers have to come to rest for each element after a certain stage

Two P- requirements above one *N* requirement

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- P₁ building Γ₁
- P₂ building Γ₂
- ► (Ν, Γ₁, Γ₂)

Two P- requirements above one *N* requirement

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- N needs to clear its computation of both γ₁ and γ₂ markers.
- Initialization two thresholds
- Honestification both Γ₁ and Γ₂ have to be honest hence two outcome h₁ and h₂
- Attack one witness enumerated in E will force both (U₁, V₁) changes and (U₂, V₂) changes

Synchronization Problems

 One P requirement - a single U change insures success

- Two P requirements we need a U₁ and U₂ change simultaneously.
- ► Worst case scenario: $(U_1, V_2) \Rightarrow (V_1, U_2) \Rightarrow (U_1, V_2) \Rightarrow \dots$
- We need two outcomes g₁ and g₂
- Outcomes g and h destroy the functional Γ. Now all outcomes h₁, h₂, g₁, and g₂ can destroy both functionals.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Harrington's Nonsplitting Theorem

Solutions

- A change in the strategy of a higher priority requirement can afford to restart all lower priority strategies:
 - Below infinite Honestification for Γ₁ a new (P₂, Γ₂) node
 - 2. Below Unsuccessful attack for Γ_1 a new (P_2 , Γ_2) node
- Hence a change in P₁'s strategy can afford to destroy P₂'s work and insure a safe working space for the strategies below
- A change in strategy in lower priority requirements has to preserve higher priority strategies - more work on insuring safe working interval

Harrington's Nonsplitting Theorem

- True outcome is h_2 , then P_1 must be preserved.
- Hence $h_1 <_L h_2$.
- Outcome h₁: both Γ₁ and Γ₂ destroyed, P₁ satisfied, P₂ postponed
- Outcome h₂: Γ₁ uninfluenced, P₁ remains intact. P₂ satisfied.

Unsuccessful Attacks

Harrington's Nonsplitting Theorem

- Unsuccessful attacks Cancel current witness, Honestification with new witness but same threshold at following stages. If the true outcome is infinitely many unsuccessful attacks - γ(d) is unbounded, hence (P, Γ) destroyed.
- Infinitely many P₂-unsuccessful attacks destroy (P₁, Γ₁).
- Only solution moving thresholds: Define d₂ < d₁, unsuccessful attack for P₂ (o = g₂) - cancel current P₁ - threshold d₁.
- Hence $g_2 <_L g_1$.
- Dangerous possibility: true outcome is g₂, but g₁ is visited infinitely often solved!

The detailed $(N_{\Psi}, \Gamma_1, \Gamma_2)$ strategy Initialization

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- 1. Define new thresholds: $d_2 < d_1$, if undefined
- 2. Define a witness $x > d_1$, $x \notin E$
- 3. Wait for $x < I(E, \Theta_1^{U_1, V_1})$ and $x < I(E, \Theta_2^{U_2, V_2})$. (o = w)

Honestification

- Perform Honestification(Γ₁): Check if θ₁(x) has grown since the last stage (Result = h), change markers as appropriate. Otherwise (Result = w).
- If (Result = h) then enumerate γ(d₂) in A, (o = h₁) working within boundaries (x, γ(d₁)).
- If (Result = w), perform Honestification(Γ₂).
- If (Result = h) then (o = h₂) working within boundaries (L = max(x, γ(d₁)), R = γ(d₂)).
- ► If (Result = w), then wait for $\Psi^A(x) = 0$, with $\psi(x) < R$. (o = w), working within boundaries $(L = \max(\gamma_1(d_1), \gamma_2(d_2)), R)$.

Harrington's Nonsplitting Theorem

Honestification

- Perform Honestification(Γ₁): Check if θ₁(x) has grown since the last stage (Result = h), change markers as appropriate. Otherwise (Result = w).
- If (Result = h) then enumerate γ(d₂) in A, (o = h₁) working within boundaries (x, γ(d₁)).
- If (Result = w), perform Honestification(Γ₂).
- If (Result = h) then (o = h₂) working within boundaries (L = max(x, γ(d₁)), R = γ(d₂)).
- ► If (Result = w), then wait for $\Psi^A(x) = 0$, with $\psi(x) < R$. (o = w), working within boundaries $(L = \max(\gamma_1(d_1), \gamma_2(d_2)), R)$.

Harrington's Nonsplitting Theorem

Honestification

- Perform Honestification(Γ₁): Check if θ₁(x) has grown since the last stage (Result = h), change markers as appropriate. Otherwise (Result = w).
- If (Result = h) then enumerate γ(d₂) in A, (o = h₁) working within boundaries (x, γ(d₁)).
- If (Result = w), perform Honestification(Γ₂).
- If (Result = h) then (o = h₂) working within boundaries (L = max(x, γ(d₁)), R = γ(d₂)).
- ► If (Result = w), then wait for $\Psi^A(x) = 0$, with $\psi(x) < R$. (o = w), working within boundaries $(L = \max(\gamma_1(d_1), \gamma_2(d_2)), R)$.

Harrington's Nonsplitting Theorem

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- ► Enumerate x in E and restrain A on ψ(x). The outcome (o = g_i), where g_i is the most recently visited g-outcome
- Wait for the next expansionary stage

・ロト・西ト・山田・山田・山下

- Unsuccessful Γ₁-attack. Enumerate γ₁(d₁) and γ₂(d₂) in A. Remove the restraint on A. Cancel the current witness x. Return to Initialization at the next stage (o = g₁) working within (L = d₁, R = x).
- Unsuccessful Γ₂-attack. Enumerate γ₂(d₂) in A and cancel d₁. Remove the restraint on A. Cancel the current witness x. Return to Initialization at the next stage (o = g₂) working within (L = d₂, R = x).
- Successful attack (o = f), working within $(L = \max(\gamma_1(d_1), \gamma_2(d_2)), R)$.

Harrington's Nonsplitting Theorem

- Unsuccessful Γ₁-attack. Enumerate γ₁(d₁) and γ₂(d₂) in A. Remove the restraint on A. Cancel the current witness x. Return to Initialization at the next stage (o = g₁) working within (L = d₁, R = x).
- Unsuccessful Γ₂-attack. Enumerate γ₂(d₂) in A and cancel d₁. Remove the restraint on A. Cancel the current witness x. Return to Initialization at the next stage (o = g₂) working within (L = d₂, R = x).
- Successful attack (o = f), working within $(L = \max(\gamma_1(d_1), \gamma_2(d_2)), R)$.

Harrington's Nonsplitting Theorem

- Unsuccessful Γ₁-attack. Enumerate γ₁(d₁) and γ₂(d₂) in A. Remove the restraint on A. Cancel the current witness x. Return to Initialization at the next stage (o = g₁) working within (L = d₁, R = x).
- Unsuccessful Γ₂-attack. Enumerate γ₂(d₂) in A and cancel d₁. Remove the restraint on A. Cancel the current witness x. Return to Initialization at the next stage (o = g₂) working within (L = d₂, R = x).
- Successful attack (o = f), working within $(L = \max(\gamma_1(d_1), \gamma_2(d_2)), R)$.

Harrington's Nonsplitting Theorem

Working Intervals

Harrington's Nonsplitting Theorem

Mariya I. Soskova

 $g_2 - (L = d_2, R = x)$. d_1 is cancelled and redefined bigger than x.

- $g_1 (L = d_1, R = x)$. $\gamma(d_1)$ and $\gamma(d_2)$ are cancelled, redefined bigger than *x*.
- $h_1 (L = x, R = \gamma(d_1))$. $\gamma(d_2)$ is cancelled and redefined bigger than $\gamma(d_1)$.

$$h_2 \ -(L = \gamma(d_1), R = \gamma(d_2))$$

w, f - (L = $\gamma(d_2), R$)

Working below Honestification outcomes Below *h*₂

Harrington's Nonsplitting Theorem

- h₁ is not visited θ₁(x) remains constant, N does not enumerate any γ₁ markers in A.
- $\theta_2(x)$ unbounded, hence P_2 is satisfied.
- (N, Γ₁, FM₂) working only with P₁ as described previously - within the working interval

Working below Honestification outcomes Below *h*₁

• $\theta_1(x)$ unbounded, hence P_1 satisfied.

- γ₂(d₂) also grows unbounded Γ₂ is destroyed and works outside the working interval.
- P2 restarted on the next node
- (N, FM₁, Γ₂) working only with the new P₂, within the right working interval.

Harrington's Nonsplitting Theorem

Working below Unsuccessful outcomes outcomes

Below g_1

Harrington's Nonsplitting Theorem

- Cofinitely many Γ₁- Unsuccessful attacks, P₁ switches to a Λ₁ strategy.
- γ₂(d₂) also grows unbounded Γ₂ is destroyed and works outside the working interval.P₂ restarted on the next node

Working below Unsuccessful Attack outcomes

Below g_1

Harrington's Nonsplitting Theorem

- (N, Λ₁, Γ₂) working with the new P₂, within the right working interval.
- ► Every attack synchronized with (N, Γ₁, Γ₂) hence Λ₁ successful. No outcome g₁, only g₂

Working below Unsuccessful Attack outcomes

Below g₂

- Infinitely many Γ₂- Unsuccessful attacks, P₂ switches to a Λ₂ strategy.
- d_1 grows unboundedly Γ_1 is preserved.
- (N, Γ_1, Λ_2) working with thresholds and witness $d_2 < \widehat{d_2} < \widehat{d_1} < \widehat{x} < d_1 < x$.
- Every attack synchronized with (N, Γ₁, Γ₂) hence Λ₂ successful. No outcome g₂, only g₁.

Harrington's Nonsplitting Theorem

Main tricks

Initialization

- A change in K below a threshold d can injure the computation Ψ^A(x) = 0
- True outcomes w, f, h₁, h₂, g₁ finitely many times initialization
- True outcome g₂ first threshold d₁ changes infinitely often infinitely many times initialization.
- Solution when a K ↾ d change occurs, initialize only nodes below outcomes that assume d remains constant.
- $K \upharpoonright d_1$ -change \Rightarrow initialize all nodes except below outcome g_2 .

Harrington's Nonsplitting Theorem

Main tricks

Initialization

- The threshold $\widehat{d_1}$ for (N, Γ_1, Λ_2) remains constant.
- Attack \Rightarrow Success \Rightarrow Change in $K \upharpoonright d_1$, above $\widehat{d_1}$.
- (N, Γ₁, Λ₂) expects a V₂- change that it obviously did not get.
- Solution: There was a $(U_1, V_1) \upharpoonright \theta_1(\hat{x})$ change.
 - U₁ ↾ θ₁(x̂)-change ⇒ the markers for all elements n > d̂₁ have been moved above ψ(x) and the computation will be preserved. Do not initialize in this case.
 - 2. $V_1 \upharpoonright \theta_1(\hat{x})$ -change. Then (N, Γ_1, Λ_2) would have outcome g_1 at next true stage.

Harrington's Nonsplitting Theorem

Main tricks

Unsuccessful attacks - Worst case scenario

- ▶ Both outcomes *g*² and *g*¹ are visited infinitely often.
- An attack synchronized with g₂, may be followed by outcome g₁. Then when g₂ is true again, the synchronization between the attacks is lost!
- We can not be sure that there is a V₂ ↾ θ₂(x̂) change
- We can be sure that in this case there is a V₁ ↾ θ₁(x̂)change - hence (N, Γ₁, Λ₂) will have outcome g₁ followed by a new P₂ strategy and a (N, Λ₁, Γ₂) node.

Harrington's Nonsplitting Theorem