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The Priority Method

I 1958 Post’s Problem and Friedberg and Muchnik’s
solution

I 1963 Sacks splitting theorem

Theorem
For any c.e. degree b and noncomputable c.e. degree
c ≤ 0′ there exist incomparable c.e. degrees a0 and a1
such that b = a0 ∨ a1 and c � a0 and c � a1.

I 1963 Sacks Jump Theorem and 1964 Density
theorem

Theorem
The c.e. degrees are dense.

I 1975 Lachlan and the priority tree method
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Lachlan’s Nonsplitting theorem

Theorem
There exist c.e. degrees a < b such that b can not be
split over a.
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The priority tree method

I D is a set of requirements.
D = {R1(e)}e<ω ∪ · · · ∪ {Rk (e)}e<ω

I Aim: Build a set A, satisfying all requirements Ri(e).
I Strategies and outcomes: R ⇒ S1 . . .Sk ⇒ O1 . . .Ok

I The tree of strategies: a computable tree T with
Dom(T ) ⊂ O<ω and Range(T ) = D, such that:

I Every infinite path f ⊂ T , has Range(f ) = D.
I If α ∈ Dom(T ) and T (α) = R, then α̂ o ∈ Dom(T ) for

all o ∈ OR .
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The construction

I Finite path through the tree δs ∈ Dom(T ) injuring all
strategies to the right.
δ0

s = ∅, . . . , δn
s , . . . , δs

s .
I Approximation to the set A
I Approximation to the true path:

An infinite path f ⊂ Dom(T ), such that
I ∀n∃sn∀s > sn(δs 6<L f � n)

I ∀n
∞
∃ s(f � n ⊆ δs)
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Harrington’s Nonsplitting theorem

Theorem
There exists a c.e. degree a such that 0′ can not be split
over a.
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The Requirements

We will construct the c.e. sets A and E

I NΨ : E 6= ΨA - hence A is not complete
I PΘ,U,V : E = ΘU,V ⇒ (∃Γ,Λ)[K = ΓU,A ∨ K = ΛV ,A]

1. Assume A <T U,V <T K and U ⊕ V ≡T K
2. Then E <T U ⊕ V , hence E = ΘU,V

3. But K ≡T U ⊕ A ≡T U or K ≡T V ⊕ A ≡T V
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Definitions

I Use function: Given a computation ΦA(x) = ε, then
φ(x) = µn[Φ(A�n)(x) = ε].

I Length of agreement: Given sets C and D,
l(C,D) = max(n)[χC � n = χD � n], where χC and χD
are the characteristic functions of C and D.
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The naive N strategy

I Select a witness x for NΨ

I Wait for ΨA(x) = 0
I Enumerate x in E and restrain each y ∈ A � ψ(x) .
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The naive P strategy

I Wait for an expansionary stage at which
l = l(E ,ΘU,V ) is greater than at any previous stage.

I Construct a Turing operator Γ, so that ΓU,A = K
I For each z < l : axiom ΓU�(u(z)+1),A�(γ(z)+1)(z) = K (z)

I If K (z) changes, enumerate γ(z) in A and define
new axiom
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Combining the two strategies

I A-restraint by NΨ conflicts the need to rectify Γ

I Choose threshold d and try to achieve γ(n) > ψ(x)
for all n > d

I Enumerate x in E . Return of l(E ,ΘU,V ) forces U or
V to change.

I U-change: lift the gamma markers and preserve the
restraint

I V -change - start over with new witness, implement
the backup strategy which insures ΛV ,A = K
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The detailed (PΘ, Γ) strategy

I Working interval (L,R)

I Operator Γ:
n ⇒ us(n), γs(n) ⇒ ΓUs�us(n),As�γs(n)(n) = K (n)

I Conditions:
1. Correctness of Γ: a new axiom for n only if ΓU,A(n) ↑
2. Γ must be total: limsus(n) <∞ and lims(γs(n)) <∞.

I Individual γ marker set AG and γ(n) ∈ AG.
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The detailed (PΘ, Γ) strategy

(PΘ,Γ)

le

1. Wait for an expansionary stage. (o = l)
2. Choose n < l(ΘU,V ,E) in turn (n = 0,1, . . . ) and

perform following actions:

I Check if the markers are defined, define them if not.
I If Γ(U,A)(n) ↑, define γ(n) new and an axiom

Γ(U�u(n)+1,A�γ(n)+1)(n) = K (n).
I If Γ(U,A)(n) 6= K (n), then enumerate γ(n) in A, define

the new axiom Γ(U�u(n)+1,A�γ(n)+1)(n) = K (n).
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The detailed NΨ strategy
Initialization

(NΨ,Γ)

wfh - (NΨ,FM)g-(PΘ,Λ)

1. Choose a new threshold bigger than any defined
until now d such that L < d < R.

2. Choose a new witness x > d , x /∈ E .
3. Wait for x < l(E ,ΘU,V ) . (o = w)
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The detailed NΨ strategy
Honestification

I Enumerating x in E produces a change in
(U,V ) � θ(x).

I We need a change in U � u(d). Hence first insure
that θ(x) < u(x).

I Problem: θ(x) grows unbounded
I Solution: then ΘU,V (x) ↑ - PΘ is satisfied, NΨ can be

satisfied by a simple strategy.
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The detailed NΨ strategy
Honestification

(NΨ,Γ)

wfh - (NΨ,FM)g-(PΘ,Λ)

I Check if θ(x) has grown since the last stage (o = h)
I Check if u(d) < θ(x), if so:

1. Enumerate γ(d) in A. Redefine u(d) = θ(x) + 1.
2. Cancel all markers u(n) for n > d and n /∈ K .

I Wait for ΨA(x) = 0 with ψ(x) < R (o = w).
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The detailed NΨ strategy
Honestification

(NΨ,Γ)

wfh - (NΨ,FM)g-(PΘ,Λ)

I Check if θ(x) has grown since the last stage (o = h)
I Check if u(d) < θ(x), if so:

1. Enumerate γ(d) in A. Redefine u(d) = θ(x) + 1.
2. Cancel all markers u(n) for n > d and n /∈ K .

I Wait for ΨA(x) = 0 with ψ(x) < R (o = w).
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The detailed NΨ strategy
Attack

(NΨ,Γ)

wfh - (NΨ,FM)g-(PΘ,Λ)

I Enumerate x in E and restrain A on ψ(x). (o = g)
I Wait for the next expansionary stage
I Successful attack - U � θ(x) changed. (o = f).
I Unsuccessful attack. Enumerate γ(d) in A. Remove

the restraint on A. Cancel the current witness x.
Return to Initialization at the next stage (o = g).
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The detailed NΨ strategy
Attack
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The detailed NΨ strategy
Attack
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wfh - (NΨ,FM)g-(PΘ,Λ)

I Enumerate x in E and restrain A on ψ(x). (o = g)
I Wait for the next expansionary stage
I Successful attack - U � θ(x) changed. (o = f).
I Unsuccessful attack. Enumerate γ(d) in A. Remove

the restraint on A. Cancel the current witness x.
Return to Initialization at the next stage (o = g).
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The outcomes
PΘ

l - limsupl(ΘU,V ,E) <∞ . Then PΘ is trivially satisfied.
Satisfaction of NΨ with simpler strategy working
within boundaries (L,∞).

e - infinitely many expansionary stages. PΘ remains
intact.
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The outcomes
NΨ

w - Infinite wait for ΨA(x) = 0. NΨ is satisfied. PΘ

remains intact. Successive strategies work within
boundaries (L = γ(d),R = ∞)

f - NΨ is satisfied, PΘ- remains intact. Successive
strategies work within boundaries (L = γ(d),R = ∞)

h - Infinitely many occurrences of Honestification,
precluding an occurrence of Attack. PΘ is satisfied.
Simple strategy for NΨ working within boundaries
(x , γ(d)).

g - Infinitely many unsuccessful attacks. A backup
strategy for PΘ is activated. A copy of NΨ works
below the backup strategy in boundaries
(L = d ,R = x).
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(PΘ,Γ)

l - (NΨ,FM)

wf

e-(NΨ,Γ)

wfh - (NΨ,FM)

ws

g-(PΘ,Λ)
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The backup strategies
(NΨ, FM)

(NΨ,FM)

wf

I Choose a new witness x , such that x /∈ E and
L < x < R.

I Wait for ΨA(x) = 0 with ψ(x) < R. (o = w)

I Enumerate x in E and restrain A � ψ(x). (o = f )
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The backup strategies
(PΘ, Λ)

(PΘ,Λ)

s

I Construct Λ, so that ΛV ,A = K .
I Markers v(n) and λ(n)

I Axioms similar to the Γ- markers



Harrington’s
Nonsplitting

Theorem

Mariya I. Soskova

NΨ working below (PΘ, Λ)

(NΨ,Λ)

wfh - (NΨ,FM)

I Active and Nonactive stages
I Initialization, Honestification, Attack
I The witness x̂ chosen before x .
I Attacks only on nonactive stages, synchronized with

attacks by the original copy of NΨ.
I Every attack is successful.
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l - (NΨ,FM)

wf

e-(NΨ,Γ)

wfh - (NΨ,FM)

wf

g-(PΘ,Λ)

(NΨ,Λ)

wfh- (NΨ,FM)

wf


