Harrington's Nonsplitting Theorem

Mariya I. Soskova

Introduction to Harrington's Nonsplitting Theorem Part One

Mariya I. Soskova

University of Leeds Department of Pure Mathematics

06.06.2006

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

The Priority Method

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- 1958 Post's Problem and Friedberg and Muchnik's solution
- 1963 Sacks splitting theorem

Theorem

For any c.e. degree b and noncomputable c.e. degree $c \leq 0'$ there exist incomparable c.e. degrees a_0 and a_1 such that $b = a_0 \lor a_1$ and $c \nleq a_0$ and $c \nleq a_1$.

 1963 Sacks Jump Theorem and 1964 Density theorem

Theorem

The c.e. degrees are dense.

1975 Lachlan and the priority tree method

Lachlan's Nonsplitting theorem

Harrington's Nonsplitting Theorem

Mariya I. Soskova

Theorem

There exist c.e. degrees a < b such that b can not be split over a.

The priority tree method

Harrington's Nonsplitting Theorem

- ► *D* is a set of requirements. $D = \{R_1(e)\}_{e < \omega} \cup \cdots \cup \{R_k(e)\}_{e < \omega}$
- Aim: Build a set A, satisfying all requirements $R_i(e)$.
- ▶ Strategies and outcomes: $R \Rightarrow S_1 \dots S_k \Rightarrow O_1 \dots O_k$
- The tree of strategies: a computable tree *T* with Dom(*T*) ⊂ O^{<ω} and Range(*T*) = D, such that:
 - Every infinite path $f \subset T$, has $\operatorname{Range}(f) = D$.
 - If $\alpha \in \text{Dom}(T)$ and $T(\alpha) = R$, then $\alpha \circ c \in \text{Dom}(T)$ for all $o \in O_R$.

The construction

Harrington's Nonsplitting Theorem

Mariya I. Soskova

Finite path through the tree $\delta_s \in Dom(T)$ injuring all strategies to the right.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

 $\delta_{s}^{0} = \emptyset, \ldots, \delta_{s}^{n}, \ldots, \delta_{s}^{s}.$

- Approximation to the set A
- Approximation to the true path: An infinite path *f* ⊂ *Dom*(*T*), such that

$$\forall n \exists s_n \forall s > s_n (\delta_s \not<_L f \upharpoonright n)$$

$$\forall n \stackrel{\infty}{\exists} s(f \upharpoonright n \subseteq \delta_s)$$

Harrington's Nonsplitting theorem

Harrington's Nonsplitting Theorem

Mariya I. Soskova

Theorem

There exists a c.e. degree a such that 0' can not be split over a.

Harrington's Nonsplitting Theorem

Mariya I. Soskova

We will construct the c.e. sets A and E

• $N_{\Psi}: E \neq \Psi^{A}$ - hence A is not complete

$$\blacktriangleright P_{\Theta,U,V}: E = \Theta^{U,V} \Rightarrow (\exists \Gamma, \Lambda)[K = \Gamma^{U,A} \lor K = \Lambda^{V,A}]$$

- 1. Assume $A <_T U$, $V <_T K$ and $U \oplus V \equiv_T K$
- 2. Then $E <_T U \oplus V$, hence $E = \Theta^{U,V}$
- 3. But $K \equiv_T U \oplus A \equiv_T U$ or $K \equiv_T V \oplus A \equiv_T V$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Definitions

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- ▶ Use function: Given a computation $\Phi^A(x) = \varepsilon$, then $\phi(x) = \mu n[\Phi^{(A \upharpoonright n)}(x) = \varepsilon]$.
- Length of agreement: Given sets C and D, I(C, D) = max(n)[χ_C ↾ n = χ_D ↾ n], where χ_C and χ_D are the characteristic functions of C and D.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

The naive N strategy

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- Select a witness x for N_{Ψ}
- Wait for $\Psi^A(x) = 0$
- Enumerate x in E and restrain each $y \in A \upharpoonright \psi(x)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

The naive P strategy

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- ► Wait for an expansionary stage at which I = I(E, ⊖^{U,V}) is greater than at any previous stage.
- Construct a Turing operator Γ , so that $\Gamma^{U,A} = K$
- For each z < l: axiom $\Gamma^{U \upharpoonright (u(z)+1), A \upharpoonright (\gamma(z)+1)}(z) = K(z)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

If K(z) changes, enumerate γ(z) in A and define new axiom

Combining the two strategies

- A-restraint by N_Ψ conflicts the need to rectify Γ
- Choose threshold *d* and try to achieve γ(n) > ψ(x) for all n ≥ d
- ► Enumerate x in E. Return of I(E, ⊖^{U,V}) forces U or V to change.
- U-change: lift the gamma markers and preserve the restraint
- V-change start over with new witness, implement the backup strategy which insures Λ^{V,A} = K

The detailed (P_{Θ}, Γ) strategy

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- ▶ Working interval (*L*, *R*)
- Operator Γ:

 $n \Rightarrow u_{s}(n), \gamma_{s}(n) \Rightarrow \Gamma^{U_{s} \upharpoonright u_{s}(n), A_{s} \upharpoonright \gamma_{s}(n)}(n) = K(n)$

- Conditions:
 - 1. Correctness of Γ : a new axiom for *n* only if $\Gamma^{U,A}(n)$ \uparrow
 - 2. Γ must be total: $\lim_{s} u_s(n) < \infty$ and $\lim_{s} (\gamma_s(n)) < \infty$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

• Individual γ marker set A_G and $\gamma(n) \in A_G$.

The detailed (P_{Θ}, Γ) strategy

Harrington's Nonsplitting Theorem

Mariya I. Soskova

(*P*_Θ,Γ)

- 1. Wait for an expansionary stage. (o = I)
- 2. Choose $n < I(\Theta^{U,V}, E)$ in turn (n = 0, 1, ...) and perform following actions:
 - Check if the markers are defined, define them if not.
- ► If $\Gamma^{(U,A)}(n)$ ↑, define $\gamma(n)$ new and an axiom $\Gamma^{(U \upharpoonright u(n)+1,A \upharpoonright \gamma(n)+1)}(n) = K(n)$.
- If Γ^(U,A)(n) ≠ K(n), then enumerate γ(n) in A, define the new axiom Γ^{(U↾u(n)+1,A↾γ(n)+1)}(n) = K(n).

The detailed N_{ψ} strategy

Harrington's Nonsplitting Theorem

Mariya I. Soskova

1. Choose a new threshold bigger than any defined until now *d* such that L < d < R.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

- 2. Choose a new witness x > d, $x \notin E$.
- 3. Wait for $x < l(E, \Theta^{U,V})$. (*o* = *w*)

The detailed N_{Ψ} strategy

Honestification

Harrington's Nonsplitting Theorem

- Enumerating x in E produces a change in $(U, V) \upharpoonright \theta(x)$.
- We need a change in U ↾ u(d). Hence first insure that θ(x) < u(x).</p>
- Problem: $\theta(x)$ grows unbounded
- Solution: then Θ^{U,V}(x) ↑ P_Θ is satisfied, N_Ψ can be satisfied by a simple strategy.

The detailed N_{Ψ} strategy

Honestification

Harrington's Nonsplitting Theorem

- Check if θ(x) has grown since the last stage (o = h)
 Check if u(d) < θ(x), if so:
- 1. Enumerate $\gamma(d)$ in A. Redefine $u(d) = \theta(x) + 1$.
- 2. Cancel all markers u(n) for n > d and $n \notin K$.

• Wait for
$$\Psi^A(x) = 0$$
 with $\psi(x) < R$ (o = w).

The detailed N_{Ψ} strategy

Honestification

Harrington's Nonsplitting Theorem

- Check if θ(x) has grown since the last stage (o = h)
 Check if u(d) < θ(x), if so:
- 1. Enumerate $\gamma(d)$ in A. Redefine $u(d) = \theta(x) + 1$.
- 2. Cancel all markers u(n) for n > d and $n \notin K$.

• Wait for
$$\Psi^A(x) = 0$$
 with $\psi(x) < R$ (o = w).

The detailed N_{Ψ} strategy Attack

Harrington's Nonsplitting Theorem

- Enumerate x in E and restrain A on $\psi(x)$. (o = g)
- Wait for the next expansionary stage
- Successful attack $U \upharpoonright \theta(x)$ changed. (o = f).
- Unsuccessful attack. Enumerate γ(d) in A. Remove the restraint on A. Cancel the current witness x. Return to Initialization at the next stage (o = g).

The detailed N_{Ψ} strategy Attack

Harrington's Nonsplitting Theorem

- Enumerate x in E and restrain A on $\psi(x)$. (o = g)
- Wait for the next expansionary stage
- Successful attack $U \upharpoonright \theta(x)$ changed. (o = f).
- Unsuccessful attack. Enumerate γ(d) in A. Remove the restraint on A. Cancel the current witness x. Return to Initialization at the next stage (o = g).

The detailed N_{Ψ} strategy Attack

Harrington's Nonsplitting Theorem

- Enumerate x in E and restrain A on $\psi(x)$. (o = g)
- Wait for the next expansionary stage
- Successful attack $U \upharpoonright \theta(x)$ changed. (o = f).
- Unsuccessful attack. Enumerate γ(d) in A. Remove the restraint on A. Cancel the current witness x. Return to Initialization at the next stage (o = g).

- I *lim*_{sup}*l*($\Theta^{U,V}$, *E*) < ∞. Then *P*_Θ is trivially satisfied. Satisfaction of *N*_Ψ with simpler strategy working within boundaries (*L*,∞).
- e infinitely many expansionary stages. P_{Θ} remains intact.

The outcomes

Nw

Harrington's Nonsplitting Theorem

- w Infinite wait for $\Psi^{A}(x) = 0$. N_{Ψ} is satisfied. P_{Θ} remains intact. Successive strategies work within boundaries ($L = \gamma(d), R = \infty$)
 - f N_{Ψ} is satisfied, P_{Θ} remains intact. Successive strategies work within boundaries ($L = \gamma(d), R = \infty$)
- h Infinitely many occurrences of Honestification, precluding an occurrence of Attack. P_{Θ} is satisfied. Simple strategy for N_{Ψ} working within boundaries $(x, \gamma(d))$.
- g Infinitely many unsuccessful attacks. A backup strategy for P_{Θ} is activated. A copy of N_{Ψ} works below the backup strategy in boundaries (L = d, R = x).

Harrington's Nonsplitting Theorem

The backup strategies (N_{Ψ}, FM)

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- Choose a new witness x, such that x ∉ E and L < x < R.</p>
- Wait for $\Psi^{A}(x) = 0$ with $\psi(x) < R$. (o = w)
- Enumerate x in E and restrain $A \upharpoonright \psi(x)$. (o = f)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

The backup strategies (P_{Θ}, Λ)

Harrington's Nonsplitting Theorem

Mariya I. Soskova

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

• Construct
$$\Lambda$$
, so that $\Lambda^{V,A} = K$.

- Markers v(n) and $\lambda(n)$
- Axioms similar to the Γ- markers

N_{Ψ} working below (P_{Θ} , Λ)

Harrington's Nonsplitting Theorem

Mariya I. Soskova

- Active and Nonactive stages
- Initialization, Honestification, Attack
- The witness \hat{x} chosen before x.
- Attacks only on nonactive stages, synchronized with attacks by the original copy of N_Ψ.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Every attack is successful.

