Mariya I. Soskova

A Generalization of Harrington's Nonsplitting Theorem

Mariya I. Soskova

University of Leeds Department of Pure Mathematics

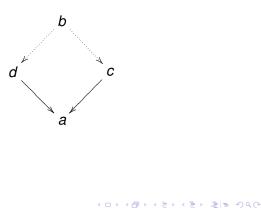
24.08.2006

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のへで

Lachlan's Nonsplitting theorem

Theorem

There exist c.e. degrees a < b such that b can not be split over a.

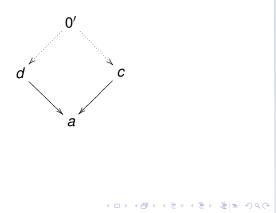


A Generalization

Harrington's Nonsplitting theorem

Theorem

There exists a c.e. degree a < 0' such that 0' can not be split over a.



A Generalization

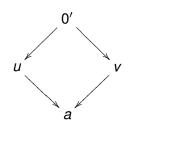
Arslanov's splitting theorem

A Generalization

Mariya I. Soskova

Theorem

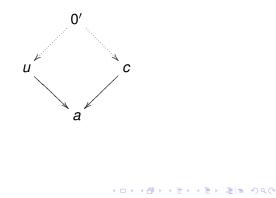
There is a d.c.e. splitting of 0' above each c.e. degree a < 0'.



The strongest nonsplitting theorem

Theorem

There exists a computably enumerable degree a < 0' such that there exists no nontrivial cuppings of c.e. degrees in the Δ_2 degrees above a.



A Generalization

$n \in A \Leftrightarrow \exists D(\langle n, [D] \rangle \in \Phi \land D \subset B)$

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

- 2. A is enumeration equivalent to B ($A \equiv_e B$) if $A \leq_e B$ and $B \leq_e A$
- 3. Let $d_e(A) = \{B|A \equiv_e B\}$.
- (*D_e*, <, ∪, ', 0_{*e*}) is the semi-lattice of the enumeration degrees

The semi-lattice of the enumeration degrees

Definition

1. A set *A* is enumeration reducible to a set *B* ($A \leq_e B$), if there is a c.e. set Φ such that

A Generalization

Embedding the Turing degrees into the enumeration degrees

There exists an order theoretic embedding $\iota: D_T \to D_e$ with following properties.

- 1. ι preserves least element, joins and jump operators
- 2. The c.e. Turing degrees embed exactly onto the Π_1 enumeration degrees
- 3. There are partial Δ_2 degrees.

A Generalization

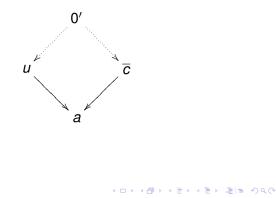
Main Result

A Generalization

Mariya I. Soskova

Theorem

There exists a Π_1 e-degree $a < 0'_e$ such that there exist no nontrivial cuppings of Π_1 e-degrees in the Δ_2 e-degrees above a.



Mariya I. Soskova

The Requirements

We will construct the Π_1 sets A and E

For all enumeration operators Ψ:

$$N_{\Psi}: E \neq \Psi^{A}$$

For each pair of a Δ₂ set U and a Π₁ set W and each enumeration operator Θ:

$$P_{\Theta,U,W}: E = \Theta^{U,\overline{W}} \Rightarrow (\exists \Gamma, \Lambda)[\overline{K} = \Gamma^{U,A} \vee \overline{K} = \Lambda^{\overline{W},A}]$$

▲ロト ▲周ト ▲ヨト ▲ヨト 回回 ののの

Mariya I. Soskova

- Select a witness $x \in E$ for N_{Ψ}
- Wait for $x \in \Psi^A$

• Extract *x* from *E* and restrain each $y \in A \upharpoonright \psi(x)$.

Mariya I. Soskova

The naive *P* strategy

Good approximations

- If $E \neq \Theta^{U,\overline{W}}$, the requirement is trivially satisfied.
- ► We monitor the length of agreement *I*(*E*, Θ^{U,W}) and act only on expansionary stages.
- We define a good approximating sequence to the set $U \oplus \overline{W}$ with following properties
 - ▶ Infinitely many good stages: $\forall n \exists s (U \oplus \overline{W} \upharpoonright n \subseteq (U \oplus \overline{W})_s \subseteq U \oplus \overline{W}).$
 - Stability: $\forall n \exists s_0 \forall s > s_0 (U \oplus \overline{W} \upharpoonright n = (U \oplus \overline{W})_s \upharpoonright n)$
 - If Θ(U ⊕ W̄) = E, then there are infinitely many expansionary stages

Mariya I. Soskova

The naive *P* strategy

On expansionary stages construct an enumeration operator Γ , so that $\Gamma^{U,A} = \overline{K}$

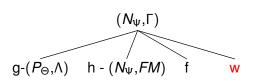
- For each $n < l, n \in \overline{K}$: axiom $\langle n, U \upharpoonright (u(n) + 1), A \upharpoonright (\gamma(n) + 1) \rangle \searrow \Gamma$.
- If the axiom becomes invalid a change in U ↾ (u(n) + 1), but store the old axiom in a list Old(n).
- If *n* exits *K*, extract *γ*(*n*) from *A* of all valid axioms for *n* in Γ.

Combining the two strategies

- A-restraint by N_Ψ conflicts the need to rectify Γ
- Choose threshold *d* and try to achieve γ(n) > ψ(x) for all n ≥ d
- Extract x from E. Return of $I(E, \Theta^{U, \overline{W}})$ forces U or \overline{W} to change.
- U-change: lift the gamma markers and preserve the restraint
- ► \overline{W} -change start over with new witness, implement the backup strategy which insures $\Lambda^{\overline{W},A} = \overline{K}$

Mariya I. Soskova

The detailed N_{Ψ} strategy



1. Choose a new threshold *d* and a new witness x > d, $x \in E$.

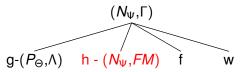
2. Wait for
$$x < I$$
. $(o = w)$

- 3. Extract all markers $\gamma(d)$ old and new and empty the list Old(n) for $n \ge d$. Define u(d) new, bigger than $\theta(x)$.
- For every element y ≤ x, y ∈ E enumerate in the list Axioms the current valid axiom from Θ.

Mariya I. Soskova

The detailed N_{Ψ} strategy

Honestification



- Scan the list Axioms. If for any element y ≤ x, y ∈ E the listed axiom is not valid anymore, then:
 - 1. Update the list Axioms
 - Extract all markers γ(d) old and new and empty the list Old(n) for n ≥ d. Define u(d) new, bigger than θ(x).(o = h)

• Wait for
$$x \searrow \Psi^A$$
 (o = w).

Mariya I. Soskova

The detailed N_{Ψ} strategy

Honestification

- Scan the list Axioms. If for any element y ≤ x, y ∈ E the listed axiom is not valid anymore, then:
 - 1. Update the list Axioms
 - Extract all markers γ(d) old and new and empty the list Old(n) for n ≥ d. Define u(d) new, bigger than θ(x). (o = h)

• Wait for
$$x \searrow \Psi^A$$
 (o = w).

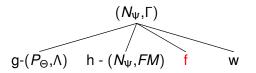
Mariya I. Soskova

The detailed N_{Ψ} strategy Attack

- Extract x from E. The outcome (o = g)lets the backup strategy synchronize its attack with this one.
- ► Choose x' to be the least element extracted from E during the attack, with corresponding axiom ⟨x', U_x, W_x⟩ ∈ Axioms
- ► Unsuccessful attack W_x ⊈ W: cancel x and start over from initialization. The attack is successful for the backup strategy (o = g).

Mariya I. Soskova

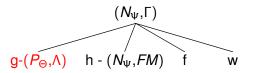
The detailed N_{Ψ} strategy Attack



- Successful attack $W_x \subseteq \overline{W}$, hence there is a useful change in U (o = f).
- Keep an eye on U it may later on change back due to its tricky Δ₂ nature.
- If so W_x ⊈ W delayed successful attack for backup strategy.

Mariya I. Soskova

The detailed N_{Ψ} strategy Attack



- Successful attack $W_x \subseteq \overline{W}$, hence there is a useful change in U (o = f).
- Keep an eye on U it may later on change back due to its tricky Δ₂ nature.
- If so W_x ⊈ W delayed successful attack for backup strategy.

Bibliography

- S. B. Cooper, Computability Theory, Chapman & Hall/CRC Mathematics, Boca Raton, FL, 2004.
- P. G. Odifreddi, Classical Recursion Theory, Volume II, North-Holland/Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo 1999.
- R. I. Soare, *Recursively enumerable sets and degrees*, Springer-Verlag, Heidelberg, 1987.
- L. Harrington, *Understanding Lachlan's Monster Paper*, Notes
- A.H. Lachlan, R.A. Shore, *The n-rea Enumeration Degrees are Dense*, Arch. Math. Logic (1992)31 : 277-285.
- S.D. Leonhardi, *Generalized Nonsplitting in the Recursively Enumerable Degrees*
- R. Soare, Notes on Lachlan's Monster Theorem

A Generalization