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K-pairs: Definition

Iskander Kalimullin: Definability of the jump operator in the
enumeration degrees
Journal of Mathematical Logic (2003)

Definition
Let A, B and U be sets of a ntural numbers. The pair (A,B) is a K-pair
over U (U-e-ideal) if there exists a set W ≤e U such that A× B ⊆W
and A× B ⊆W .

If U = ∅ then (A,B) is called a K -pair.
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K-pairs: A trivial example

Example
Let V be a c.e set. Then (V ,A) is a K-pair for any set of natural
numbers A.

Let W = V × N. Then V × A ⊆W and V × A ⊆W .
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K-pairs: A more interesting example

Definition (Jockusch 1968)
A set of natural numbers A is semi-recursive if there is a computable
function sA such that for every pair of natural numbers (x , y):

1 sA(x , y) ∈ {x , y}.
2 If x ∈ A or y ∈ A then sA(x , y) ∈ A.

Example

Let A be a semi-recursive set. Then (A,A) is a K-pair.

Let sA be the selector function for A.
Set W = {(sA(x , y), sA(x , y)) | x , y ∈ N},
where sA(x , y) = x if sA(x , y) = y and sA(x , y) = y if sA(x , y) = x .
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An order theoretic characterization of K-pairs

Theorem (Kalimullin)
(A,B) is a K-pair if and only if the degrees a = de(A) and b = de(B)
have the following property:

(∀c ∈ De)((a ∨ c) ∧ (b ∨ c) = c)

1 A pair of degrees (a,b) is a K-pair
⇔ There is a K-pair of sets (A,B), such that A ∈ a and B ∈ b .
⇔ For all A ∈ a and B ∈ b the pair of sets (A,B) is a K-pair.

2 If (a,b) is a K-pair then (a,b) is a minimal pair:

((a ∨ 0e)︸ ︷︷ ︸∧ (b ∨ 0e)︸ ︷︷ ︸ = 0e

a ∧ b = 0e
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K-pairs in the local structure Ge

Lemma (Kalimullin)

Let A and B be Σ0
2 sets with Σ0

2 approximation {A{s}}s<ω and
{B{s}}s<ω such that:

(∀s)(A{s} ⊆ A ∨ B{s} ⊆ B).

Then (A,B) is a K-pair.

Proof:
Let W =

⋃
s<ω A{s} × B{s}.

If (x , y) ∈ A× B then there is a stage s such that (x , y) ∈ A{s} × B{s}.
If (x , y) ∈ A× B then for all stages s, A{s} ⊆ A or B{s} ⊆ B , hence
x /∈ A{s} or y /∈ B{s}, so (x , y) /∈W .
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Constructing a nontrivial K-pair

We want to construct Σ0
2 approximations {A{s}} and {B{s}} to sets A

and B such that for all e:

N A
e : We 6= A

N B
e : We 6= B

and for alll s

Ks : A{s} ⊆ A ∨ B{s} ⊆ B.
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Strategy for satisfying N -requirements

To satisfy N A
e at every stage s do the following:

1 If a witness xe is not yet selected then select a witness xe as a
fresh number and enumerate it in A{s}.

2 If xe ∈W {s}
e then extract xe from A{s}.

To satisfy N B
e at every stage s do the following:

1 If a witness ye is not yet selected then select a witness ye as a
fresh number and enumerate it in B{s}.

2 If ye ∈W {s}
e then extract ye from B{s}.
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Conflict and solution

Conflict: If xe is enumerated in A{sstart} and extracted from A{send} then
for all t such that sstart ≤ t < send , A{t} * B. We must ensure that
B{t} ⊆ B.

Solution: We order the N requirements linearly by priority:

N A
0 < N B

0 < N A
1 < N B

1 < . . .

and add injury:
If an N -strategy is injured then the value of its witness is cancelled and
the witness is enumerated back in the corresponding set A or B.
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Final construction

At every stage s activate the first s N -strategies in order of their
priority:
If the stratey N A

e is activated at stage s the:
1 If a witness xe is not yet selected then select a witness xe as a

fresh number and enumerate it in A{s}.
2 If xe ∈W {s}

e then extract xe from A{s} and injure all lower priority
strategies.

If the stratey N B
e is activated at stage s the:

1 If a witness ye is not yet selected then select a witness ye as a
fresh number and enumerate it in B{s}.

2 If ye ∈W {s}
e then extract ye from B{s} and injure all lower priority

strategies.
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Properties of Σ0
2 K-pairs

Theorem (Kallimulin)
1 If (a,b) are a Σ0

2 K-pair then a and b are low and quasi-minimal.
2 Every ∆0

2 enumeration degree bounds a K-pair.
3 There is a ∆0

2 K- pair (a,b) which splits 0′
e.

4 The set of degrees c which form a K-pair with a fixed degree a is
an ideal.

Theorem (Ganchev, S)

Every ∆0
2 enumeration degree bounds a countable K-system, i.e. a

sequence (a0,a1, . . . ) of ∆0
2 enumeration degrees such that for every

i 6= j the pair (ai,aj) is a K-pair.
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Properties of Σ0
2 K-pairs

a ∈ ∆0
2

a0 a1 a2 a3 a4 a5 a6 a7

a0,1 a2,3 a4,5 a6,7

a0,1,2,3 a4,5,6,7

0e
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Definability of K-pairs
K(a,b)= ” (a,b) is a K-pair” is definable in De:

K(a,b)⇔ (∀c)((a ∨ c) ∧ (b ∨ c) = c).

Theorem (Kalimullin)
If (de(A),de(B)) is not a K-pair then there is a witness C computable
from A⊕ B ⊕ K such that:

(de(A) ∨ de(C)) ∧ (de(B) ∨ de(C))) 6= de(C))

If A and B are ∆0
2 then C is also ∆0

2 and hence in the structure of
the ∆0

2 enumeration degrees the property K(a,b) is definable and
{a | (∃b)K(a,b)} is a definable set of low degrees.
If A and B are Σ0

2 then C is ∆0
3.

Question
Is the property K(a,b) first order definable in Ge?
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The main theorem

Theorem (S,Wu)

Every nonzero ∆0
2 enumeration degree a is low cuppable, i.e. there is

a low b such that a ∨ b = 0′
e.

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable Σ0
2 enumeration degrees.

Theorem (The main theorem)

If u and v are Σ0
2 enumeration degrees such that u ∨ v = 0′

e then u is
low cuppable or v is low cuppable.
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A definition of a low set

Corollary
The formula L(a)⇔ (∃b)(K(a,b) ∧ a ∨ b = 0′

e) defines in Ge a
nonempty set of low enumeration degrees.

Proof:
There is a ∆0

2 K-pair which splits 0′
e so the set {a | Ge ` L(a)} 6= ∅.

Let a be a Σ0
2 degree such that Ge ` L(a). Let b a witness such that

K(a,b) ∧ a ∨ b = 0′
e.
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A definition of a low set
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Case 1: b is low cuppable. Let c be a low ∆0

2 e-degree which cups b.

(a ∨ c) ∧ (b ∨ c)︸ ︷︷ ︸ = c

(a ∨ c) ∧ 0′
e = c

(a ∨ c) = c

Hence a ≤ c and a′ ≤ c′ = 0′
e and the degree a is low.
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A definition of a low set

Corollary
The formula L(a)⇔ (∃b)(K(a,b) ∧ a ∨ b = 0′

e) defines in Ge a
nonempty set of low enumeration degrees.

Proof:
Case 2: a is low cuppable. Let c be a low ∆0

2 e-degree which cups a.

(a ∨ c)︸ ︷︷ ︸∧(b ∨ c) = c

0′
e ∧ (b ∨ c) = c

(b ∨ c) = c

So b ≤ c and hence b is low.
Every low degree is ∆0

2 hence low cuppable.
So b is low cuppable and we are back to Case 1.
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Main theorem

Theorem (The main theorem)

If u and v are Σ0
2 enumeration degrees such that u ∨ v = 0′

e then u is
low cuppable or v is low cuppable.

Proof:(Sketch)
Uses a construction very similar to the construction of a non-splitting
enumeration degree.
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Non-splitting as a strong form of cupping

Theorem (S)

There is an incomplete Σ0
2 e-degree a such that there is no splitting of

0′
e in the e-degrees above a.

Proof idea: Construct a Π0
1 set E and a Σ0

2 set A such that the following
requirements are satified:

NΨ : Ψe(A) 6= E .

RΘ,U,V : Θ(U,V ) = E ⇒ ∃Γ,Λ(Γ(U,A) = K ∨ Λ(V ,A) = K ).

So the constructed degree a = de(A) has the following property:

If (u,v) is a splitting of 0′
e then a cups u or a cups v.
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Level 1: gaining control over the give sets

Let U and V be Σ0
2 degrees such that U ⊕ V ≡e K . Fix good Σ0

2
approximations to U, V and U ⊕ V .

We will construct a Π0
1 set E , which we use to force changes in the

approximations to U and V .

As U ⊕ V has complete e-degree there is an enumeration
operator Θ such that Θ(U,V ) = E .

The length of agreement function l(Θ(U,V ){s},E{s}, s) is
unbounded in s.

The first level of the construction tries to single out such an
operator Θ.
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Level 1: gaining control over the give sets

e b

e b

e b

α0 : l(Θ0(U,V ),E , s)

α1 : l(Θ1(U,V ),E , s)

α2 : l(Θ2(U,V ),E , s)

α3 : l(Θ3(U,V ),E , s)
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Level 2: Working below outcome e

Suppose α is monitoring l(Θ(U,V ),E , s) and see infinitely many
expansionary stages.

The strategy α starts the construction of a set A and an operator Γ so
that Γ(U,A) = K .

On every visit it rectifies Γ on all n ≤ s.

1 If n ∈ K
{s}

enumerate an axiom in Γ of the form
〈n,U{s} � u(n) + 1,A{s} � a(n) + 1〉

2 If n /∈ K
{s}

then extract a(n) from A invalidating the axiom.
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Making A low

Definition
A set A is 1-generic if for every c.e. set W viewed as a set of finite
binary strings

(∃τ ⊆ A)(τ ∈W ∨ (∀µ ⊇ τ)µ /∈W )).

Theorem (Copestake)

Everey ∆0
2 1-generic set is low.

For each c.e. set We add a strategy βe ensuring:

(∃τ ⊆ A)(τ ∈We ∨ (∀µ ⊇ τ)µ /∈We)
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Naive strategy for β
1 Select a threshold d ∈ K .
2 Wait until α is done correctign the operator Γ on elements n ≤ d

and set τ = A � a(d) + 1.
3 If there is no extension µ ⊇ τ such that µ ∈W {s} then the

outcome is w .
4 If there is a an extension µ ⊇ τ such that µ ∈W then make µ an

initial segment of A and let the outcome be f .

be

f w

α

β0

β1 β1

A, Γ
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Including the set E to force changes

Solution: β will use an agitator.

1 Select an agitator e ∈ E .
2 As β is working under the assumption that Θ(U,V ) = E so

e ∈ Θ(U,V ) with axiom 〈e,Ue,Ve〉.
3 Extracting e from the set E forces e out of Θ(U,V ) and 〈e,Ue,Ve〉

is not valid at further stages. This is called an attack.
4 Arrange things so that Ue * U invalidates all axioms in Γ for

elements n ≥ d .
5 This moves α’s influence on A on elements larger than |µ| and we

can preserve µ ⊆ A.
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Honestification before an attack

Make sure that u(d) > max Ue so that Ue * U ensures
〈d ,U � u(n) + 1,A � a(d) + 1〉 invalid.
This must be repeated every time the valid axiom for e in Θ
changes before the attack.
If this happens infinitely many times then there are no valid
axioms for e in Θ and Θ(U,V ) 6= E .
A new outcome h is added to signify this.
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Honestification

be

f wh

e b

e b

αi

β0

β1 β1

A, Γ

αi+1

αi+2
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Transferring results from the Turing degrees
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