A Locally Definable Set of Low Enumeration **Degrees** Work in progress

Mariya I. Soskova¹

Faculty of Mathematics and Informatics Sofia University

September 16, 2009

¹ Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework [Pr](#page-0-0)[ogr](#page-1-0)[am](#page-0-0)[m](#page-1-0)[e.](#page-0-0) QQ

Mariya I. Soskova (Faculty of Mathematics arA Locally Definable Set of Low Enumeration Degrees September 16, 2009 1/35

- \bigcirc K-pairs: definition and properties
- The main theorem and the definition of a set of low degrees
- Basic ideas in the construction

4 0 8

画 \mathcal{A} The South The

 \sim

 QQ

\bullet K-pairs: definition and properties

- The main theorem and the definition of a set of low degrees
- Basic ideas in the construction

4.000.00

 \mathcal{A} .

÷ \sim

- \bullet K-pairs: definition and properties
- ² The main theorem and the definition of a set of low degrees
- Basic ideas in the construction

- \bullet K-pairs: definition and properties
- ² The main theorem and the definition of a set of low degrees
- ³ Basic ideas in the construction

K -pairs: Definition

Iskander Kalimullin: Definability of the jump operator in the enumeration degrees Journal of Mathematical Logic (2003)

Definition

Let A, B and U be sets of a ntural numbers. The pair (A, B) is a K-pair over *U* (*U*-e-ideal) if there exists a set $W \leq_e U$ such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

If $U = \emptyset$ then (A, B) is called a *K*-pair.

K -pairs: A trivial example

Example

Let *V* be a c.e set. Then (V, A) is a K -pair for any set of natural numbers *A*.

Let $W = V \times \mathbb{N}$. Then $V \times A \subseteq W$ and $\overline{V} \times \overline{A} \subseteq \overline{W}$.

K -pairs: A more interesting example

Definition (Jockusch 1968)

A set of natural numbers *A* is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y) :

$$
\bullet \ \ s_{A}(x,y)\in \{x,y\}.
$$

2 If
$$
x \in A
$$
 or $y \in A$ then $s_A(x, y) \in A$.

Example

Let *A* be a semi-recursive set. Then (A, \overline{A}) is a K -pair.

Let *s^A* be the selector function for *A*. Set $W = \{ (s_A(x, y), \overline{s_A(x, y)}) \mid x, y \in \mathbb{N} \},$ where $\overline{s_A(x, y)} = x$ if $s_A(x, y) = y$ and $\overline{s_A(x, y)} = y$ if $s_A(x, y) = x$.

 Ω

(ロ) (*同*) (ヨ) (ヨ)

An order theoretic characterization of K -pairs

Theorem (Kalimullin)

 (A, B) *is a* K-pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ *have the following property:*

$$
(\forall \textbf{c} \in \mathcal{D}_{\textbf{e}})((\textbf{a} \vee \textbf{c}) \wedge (\textbf{b} \vee \textbf{c}) = \textbf{c})
$$

- ¹ A pair of degrees (**a**, **b**) is a K-pair ⇔ There is a K-pair of sets (*A*, *B*), such that *A* ∈ **a** and *B* ∈ **b** . \Leftrightarrow For all *A* ∈ **a** and *B* ∈ **b** the pair of sets (*A*, *B*) is a *K*-pair.
- **2** If (a, b) is a K-pair then (a, b) is a minimal pair:

$$
\begin{array}{c}\n\left(\left(\mathbf{a} \vee \mathbf{0}_{e}\right) \wedge \left(\mathbf{b} \vee \mathbf{0}_{e}\right)\right) = \mathbf{0}_{e} \\
\mathbf{a} \wedge \mathbf{b} = \mathbf{0}_{e}\n\end{array}
$$

An order theoretic characterization of K -pairs

Theorem (Kalimullin)

 (A, B) *is a* K-pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ *have the following property:*

$$
(\forall \textbf{c} \in \mathcal{D}_{\textbf{e}})((\textbf{a} \vee \textbf{c}) \wedge (\textbf{b} \vee \textbf{c}) = \textbf{c})
$$

1 A pair of degrees (a, b) is a K-pair ⇔ There is a K-pair of sets (*A*, *B*), such that *A* ∈ **a** and *B* ∈ **b** . ⇔ For all *A* ∈ **a** and *B* ∈ **b** the pair of sets (*A*, *B*) is a K-pair.

2 If (a, b) is a K-pair then (a, b) is a minimal pair:

$$
\begin{array}{c}\n\left(\left(\mathbf{a} \vee \mathbf{0}_{e}\right) \wedge \left(\mathbf{b} \vee \mathbf{0}_{e}\right)\right) = \mathbf{0}_{e} \\
\mathbf{a} \wedge \mathbf{b} = \mathbf{0}_{e}\n\end{array}
$$

An order theoretic characterization of K -pairs

Theorem (Kalimullin)

 (A, B) *is a* K-pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ *have the following property:*

$$
(\forall \textbf{c} \in \mathcal{D}_{\textbf{e}})((\textbf{a} \vee \textbf{c}) \wedge (\textbf{b} \vee \textbf{c}) = \textbf{c})
$$

- **1** A pair of degrees (a, b) is a K-pair ⇔ There is a K-pair of sets (*A*, *B*), such that *A* ∈ **a** and *B* ∈ **b** . \Leftrightarrow For all *A* ∈ **a** and *B* ∈ **b** the pair of sets (A, B) is a *K*-pair.
- **2** If (a, b) is a K-pair then (a, b) is a minimal pair:

$$
\underbrace{(\left(\mathbf{a} \vee \mathbf{0}_{e}\right)}_{\mathbf{a}} \wedge \underbrace{(\mathbf{b} \vee \mathbf{0}_{e})}_{\mathbf{b}} = \mathbf{0}_{e}
$$

 K -pairs in the local structure \mathcal{G}_e

Lemma (Kalimullin)

Let A and B be Σ 0 2 *sets with* Σ 0 2 *approximation* {*A* {*s*}}*s*<ω *and* {*B* {*s*}}*s*<ω *such that:*

$$
(\forall s)(A^{\{s\}}\subseteq A\vee B^{\{s\}}\subseteq B).
$$

Then (A, B) *is a* K *-pair.*

Proof: Let $W = \bigcup_{s < \omega} A^{\{s\}} \times B^{\{s\}}$. If $(x, y) \in A \times B$ then there is a stage *s* such that $(x, y) \in A^{\{s\}} \times B^{\{s\}}$. If $(x,y)\in \overline{A}\times \overline{B}$ then for all stages $s,$ $A^{\{s\}}\subseteq A$ or $B^{\{s\}}\subseteq B$, hence $x \notin A^{\{s\}}$ or $y \notin B^{\{s\}},$ so $(x, y) \notin W$.

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Constructing a nontrivial K -pair

We want to construct Σ^0_2 approximations $\{A^{\{s\}}\}$ and $\{B^{\{s\}}\}$ to sets A and *B* such that for all *e*:

> $\mathcal{N}_{e}^{\mathcal{A}}: \mathcal{W}_{e} \neq \mathcal{A}$ $\mathcal{N}_{e}^{B}:$ $W_{e}\neq B$ and for alll *s* $\mathcal{K}_{\boldsymbol{s}}$: $\mathcal{A}^{\{\boldsymbol{s}\}} \subseteq \mathcal{A} \vee \mathcal{B}^{\{\boldsymbol{s}\}} \subseteq \mathcal{B}.$

Mariya I. Soskova (Faculty of Mathematics and Locally Definable Set of Low Enumeration Degrees September 16, 2009 8/35

Strategy for satisfying N -requirements

To satisfy $\mathcal{N}_{e}^{\boldsymbol{A}}$ at every stage \boldsymbol{s} do the following:

- **1** If a witness x_e is not yet selected then select a witness x_e as a fresh number and enumerate it in $A^{\{s\}}.$
- 2 If $x_e \in W_e^{\{s\}}$ $\mathcal{L}_{e}^{\{S\}}$ then extract x_e from $\mathcal{A}^{\{S\}}$.

To satisfy \mathcal{N}_{e}^{B} at every stage s do the following:

- ¹ If a witness *y^e* is not yet selected then select a witness *y^e* as a fresh number and enumerate it in $B^{\{s\}}.$
- 2 If $y_e \in W_e^{\{s\}}$ $e^{i\{s\}}$ then extract y_e from $B^{\{s\}}$.

Strategy for satisfying N -requirements

To satisfy $\mathcal{N}_{e}^{\boldsymbol{A}}$ at every stage \boldsymbol{s} do the following:

- **1** If a witness x_e is not yet selected then select a witness x_e as a fresh number and enumerate it in $A^{\{s\}}.$
- 2 If $x_e \in W_e^{\{s\}}$ $\mathcal{L}_{e}^{\{S\}}$ then extract x_e from $\mathcal{A}^{\{S\}}$.

To satisfy \mathcal{N}_{e}^{B} at every stage s do the following:

- ¹ If a witness *y^e* is not yet selected then select a witness *y^e* as a fresh number and enumerate it in $B^{\{s\}}.$
- 2 If $y_e \in W_e^{\{s\}}$ $e^{i\{s\}}$ then extract y_e from $B^{\{s\}}$.

Conflict and solution

Conflict: If x_e is enumerated in $A^{\{S_{stat}\}}$ and extracted from $A^{\{S_{end}\}}$ then for all t such that $s_{start} \leq t < s_{end}$, $\mathcal{A}^{\{t\}} \nsubseteq B.$ We must ensure that $B^{\{t\}} \subseteq B$.

Solution: We order the N requirements linearly by priority:

$$
\mathcal{N}_0^{\textit{A}} < \mathcal{N}_0^{\textit{B}} < \mathcal{N}_1^{\textit{A}} < \mathcal{N}_1^{\textit{B}} < \ldots
$$

and add injury:

If an $\mathcal N$ -strategy is injured then the value of its witness is cancelled and the witness is enumerated back in the corresponding set *A* or *B*.

Conflict and solution

Conflict: If x_e is enumerated in $A^{\{S_{stat}\}}$ and extracted from $A^{\{S_{end}\}}$ then for all t such that $s_{start} \leq t < s_{end}$, $\mathcal{A}^{\{t\}} \nsubseteq B.$ We must ensure that $B^{\{t\}} \subseteq B$.

Solution: We order the N requirements linearly by priority:

$$
\mathcal{N}_0^{\textit{A}} < \mathcal{N}_0^{\textit{B}} < \mathcal{N}_1^{\textit{A}} < \mathcal{N}_1^{\textit{B}} < \ldots
$$

and add injury:

If an $\mathcal N$ -strategy is injured then the value of its witness is cancelled and the witness is enumerated back in the corresponding set *A* or *B*.

Final construction

At every stage *s* activate the first *s* N-strategies in order of their priority:

If the stratey $\mathcal{N}_{e}^{\mathcal{A}}$ is activated at stage *s* the:

- **1** If a witness x_e is not yet selected then select a witness x_e as a fresh number and enumerate it in $A^{\{s\}}.$
- 2 If $x_e \in W_e^{\{s\}}$ $e^{i\{s\}}$ then extract x_e from $A^{\{s\}}$ and injure all lower priority strategies.

If the stratey \mathcal{N}_{e}^{B} is activated at stage *s* the:

- **1** If a witness y_e is not yet selected then select a witness y_e as a fresh number and enumerate it in $B^{\{s\}}.$
- 2 If $y_e \in W_e^{\{s\}}$ $e^{i\{s\}}$ then extract y_e from $B^{\{s\}}$ and injure all lower priority strategies.

 Ω

 $\mathcal{A} \cap \{ \mathcal{B} \mid \math$

Properties of Σ^0_2 \mathcal{K} -pairs

Theorem (Kallimulin)

- **1** If (a, b) are a Σ^0_2 K-pair then a and b are low and quasi-minimal.
- ² *Every* ∆⁰ 2 *enumeration degree bounds a* K*-pair.*
- **3** There is a Δ^0_2 K - pair (\textbf{a}, \textbf{b}) which splits $\textbf{0}'_e$.
- ⁴ *The set of degrees* **c** *which form a* K*-pair with a fixed degree* **a** *is an ideal.*

Theorem (Ganchev, S)

Every ∆⁰ 2 *enumeration degree bounds a countable* K*-system, i.e. a* $\mathsf{sequence}\left(\mathsf{a_0}, \mathsf{a_1}, \dots\right)$ of Δ^0_2 enumeration degrees such that for every $i\neq j$ the pair $(\mathbf{a_i},\mathbf{a_j})$ is a K-pair.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Properties of Σ^0_2 \mathcal{K} -pairs

 $4.11 +$

する

÷ \sim E

 299

$\mathcal{K}(\mathbf{a}, \mathbf{b}) =$ " (**a**, **b**) is a \mathcal{K} -pair" is definable in \mathcal{D}_e : $\mathcal{K}(\mathbf{a}, \mathbf{b}) \Leftrightarrow (\forall \mathbf{c}) ((\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}).$

If $(d_e(A), d_e(B))$ *is not a* K-pair then there is a witness C computable *from* $A \oplus B \oplus K$ *such that:* $(d_e(A) ∨ d_e(C)) ∧ (d_e(B) ∨ d_e(C))) ≠ d_e(C)$

- If *A* and *B* are Δ_2^0 then *C* is also Δ_2^0 and hence in the structure of the Δ^0_2 enumeration degrees the property $\mathcal{K}(\mathbf{a},\mathbf{b})$ is definable and {**a** | (∃**b**)K(**a**, **b**)} is a definable set of low degrees.
- If *A* and *B* are Σ^0_2 then *C* is Δ^0_3 .

Is the property K(**a**, **b**) *first order definable in* G*e?*

 Ω

イロト イ押ト イヨト イヨ

$\mathcal{K}(\mathbf{a}, \mathbf{b}) =$ " (**a**, **b**) is a \mathcal{K} -pair" is definable in \mathcal{D}_e : $\mathcal{K}(\mathbf{a}, \mathbf{b}) \Leftrightarrow (\forall \mathbf{c}) ((\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}).$

Theorem (Kalimullin)

If $(d_e(A), d_e(B))$ *is not a* K-pair then there is a witness C computable *from* $A \oplus B \oplus K$ *such that:* $(d_e(A) ∨ d_e(C)) ∧ (d_e(B) ∨ d_e(C))) ≠ d_e(C)$

- If *A* and *B* are Δ_2^0 then *C* is also Δ_2^0 and hence in the structure of the Δ^0_2 enumeration degrees the property $\mathcal{K}(\mathbf{a},\mathbf{b})$ is definable and {**a** | (∃**b**)K(**a**, **b**)} is a definable set of low degrees.
- If *A* and *B* are Σ^0_2 then *C* is Δ^0_3 .

Is the property $K(a, b)$ *first order definable in* G_e ?

E

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) =$ " (**a**, **b**) is a \mathcal{K} -pair" is definable in \mathcal{D}_e : $\mathcal{K}(\mathbf{a}, \mathbf{b}) \Leftrightarrow (\forall \mathbf{c})((\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}).$

Theorem (Kalimullin)

If $(d_e(A), d_e(B))$ *is not a* K-pair then there is a witness C computable *from* $A \oplus B \oplus K$ *such that:*

 $(d_e(A) ∨ d_e(C)) ∧ (d_e(B) ∨ d_e(C))) ≠ d_e(C)$

- If *A* and *B* are Δ_2^0 then *C* is also Δ_2^0 and hence in the structure of the Δ^0_2 enumeration degrees the property $\mathcal{K}(\mathbf{a},\mathbf{b})$ is definable and $\{a \mid (\exists b) \mathcal{K}(a, b)\}\$ is a definable set of low degrees.
- If *A* and *B* are Σ^0_2 then *C* is Δ^0_3 .

Is the property $K(a, b)$ *first order definable in* G_e ?

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) =$ " (**a**, **b**) is a \mathcal{K} -pair" is definable in \mathcal{D}_e : $\mathcal{K}(\mathbf{a}, \mathbf{b}) \Leftrightarrow (\forall \mathbf{c}) ((\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}).$

Theorem (Kalimullin)

If $(d_e(A), d_e(B))$ *is not a* K-pair then there is a witness C computable *from* $A \oplus B \oplus K$ *such that:*

 $(d_e(A) ∨ d_e(C)) ∧ (d_e(B) ∨ d_e(C))) ≠ d_e(C)$

- If *A* and *B* are Δ_2^0 then *C* is also Δ_2^0 and hence in the structure of the Δ^0_2 enumeration degrees the property $\mathcal{K}(\mathbf{a},\mathbf{b})$ is definable and $\{a \mid (\exists b) \mathcal{K}(a, b)\}\$ is a definable set of low degrees.
- If *A* and *B* are Σ^0_2 then *C* is Δ^0_3 .

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) =$ " (**a**, **b**) is a \mathcal{K} -pair" is definable in \mathcal{D}_e : $\mathcal{K}(\mathbf{a}, \mathbf{b}) \Leftrightarrow (\forall \mathbf{c}) ((\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}).$

Theorem (Kalimullin)

If $(d_e(A), d_e(B))$ *is not a* K-pair then there is a witness C computable *from* $A \oplus B \oplus K$ *such that:*

 $(d_e(A) ∨ d_e(C)) ∧ (d_e(B) ∨ d_e(C))) ≠ d_e(C)$

- If *A* and *B* are Δ_2^0 then *C* is also Δ_2^0 and hence in the structure of the Δ^0_2 enumeration degrees the property $\mathcal{K}(\mathbf{a},\mathbf{b})$ is definable and $\{a \mid (\exists b) \mathcal{K}(a, b)\}\$ is a definable set of low degrees.
- If *A* and *B* are Σ^0_2 then *C* is Δ^0_3 .

Question

Is the property $K(a, b)$ *first order definable in* G_e ?

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

The main theorem

Theorem (S,Wu)

Every nonzero ∆⁰ 2 *enumeration degree* **a** *is low cuppable, i.e. there is a low* **b** *such that* **a** \vee **b** = $\mathbf{0}'_e$ *.*

There are non-cuppable Σ^0_2 enumeration degrees.

If **u** and **v** are Σ^0_2 enumeration degrees such that **u** \vee **v** = $\mathbf{0}'_e$ then **u** is *low cuppable or* **v** *is low cuppable.*

The main theorem

Theorem (S,Wu)

Every nonzero ∆⁰ 2 *enumeration degree* **a** *is low cuppable, i.e. there is a low* **b** *such that* **a** \vee **b** = $\mathbf{0}'_e$ *.*

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable Σ^0_2 enumeration degrees.

If **u** and **v** are Σ^0_2 enumeration degrees such that **u** \vee **v** = $\mathbf{0}'_e$ then **u** is *low cuppable or* **v** *is low cuppable.*

 \leftarrow \leftarrow \leftarrow

All The South The

The main theorem

Theorem (S,Wu)

Every nonzero ∆⁰ 2 *enumeration degree* **a** *is low cuppable, i.e. there is a low* **b** *such that* **a** \vee **b** = $\mathbf{0}'_e$ *.*

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable Σ^0_2 enumeration degrees.

Theorem (The main theorem)

If **u** and **v** are Σ^0_2 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then \mathbf{u} is *low cuppable or* **v** *is low cuppable.*

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

There is a Δ^0_2 \mathcal{K} -pair which splits $\mathbf{0}'_e$ so the set $\{ \mathbf{a} \mid \mathcal{G}_e \vdash \mathcal{L}(\mathbf{a}) \} \neq \emptyset.$

Let **a** be a Σ^0_2 degree such that $\mathcal{G}_e \vdash \mathcal{L}(\mathbf{a})$. Let **b** a witness such that $\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e.$

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ^0_2 e-degree which cups **b**.

(**a** ∨ **c**) ∧ (**b** ∨ **c**) = **c** $| {\overline{\bf x}} |$

 $(\mathbf{a} \vee \mathbf{c}) \wedge \mathbf{0}'_e = \mathbf{c}$

 $(a \vee c)$ = **c**

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

 QQQ

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array} \right\}$

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

 $(\mathbf{a} \vee \mathbf{c}) \wedge \mathbf{0}'_e = \mathbf{c}$

 $(a \vee c)$ = **c**

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

 Ω

 \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

$$
(\mathbf{a} \vee \mathbf{c}) \wedge \quad \mathbf{0}'_{\mathbf{e}} = \mathbf{c}
$$

 $(a \vee c)$ = **c**

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

$$
(\mathbf{a}\vee\mathbf{c})\wedge\quad \mathbf{0}'_e\quad=\mathbf{c}
$$

 $(a \vee c)$ = **c**

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

$$
(\mathbf{a}\vee \mathbf{c})\wedge \quad \mathbf{0}'_e \quad = \mathbf{c}
$$

 $(a \vee c)$ = **c**

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

$$
(\mathbf{a}\vee \mathbf{c})\wedge \quad \mathbf{0}'_e \quad = \mathbf{c}
$$

 $(a \vee c)$ = **c**

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

$$
(\textbf{a} \vee \textbf{c}) \wedge \quad \textbf{0}'_e \quad = \textbf{c}
$$

 $(a \vee c)$ = **c**

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.
Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 2: **a** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **a**.

$$
\begin{array}{c}\n\left(\mathbf{a} \vee \mathbf{c}\right) \wedge \left(\mathbf{b} \vee \mathbf{c}\right) = \mathbf{c} \\
\mathbf{0}'_e \wedge \left(\mathbf{b} \vee \mathbf{c}\right) = \mathbf{c} \\
\left(\mathbf{b} \vee \mathbf{c}\right) = \mathbf{c}\n\end{array}
$$

So $\mathbf{b} \leq \mathbf{c}$ and hence **b** is low. Every low degree is Δ_2^0 hence low cuppable. So **b** is low cuppable and we are back to Case 1.

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 2: **a** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **a**.

$$
\begin{aligned}\n\left(\mathbf{a} \vee \mathbf{c}\right) \wedge \left(\mathbf{b} \vee \mathbf{c}\right) &= \mathbf{c} \\
\mathbf{0}'_e \wedge \left(\mathbf{b} \vee \mathbf{c}\right) &= \mathbf{c} \\
\left(\mathbf{b} \vee \mathbf{c}\right) &= \mathbf{c}\n\end{aligned}
$$

So $\mathbf{b} \leq \mathbf{c}$ and hence **b** is low.

Every low degree is Δ_2^0 hence low cuppable. So **b** is low cuppable and we are back to Case 1.

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 2: **a** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **a**.

$$
\underbrace{(\mathbf{a} \vee \mathbf{c})}_{\mathbf{0}'_e \wedge (\mathbf{b} \vee \mathbf{c})} \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

$$
\underbrace{\mathbf{0}'_e \wedge (\mathbf{b} \vee \mathbf{c})}_{= \mathbf{c}}
$$

So $\mathbf{b} \leq \mathbf{c}$ and hence **b** is low. Every low degree is Δ^0_2 hence low cuppable. So **b** is low cuppable and we are back to Case 1.

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b}) (\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge \mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a *nonempty set of low enumeration degrees.*

Proof:

Case 2: **a** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **a**.

$$
\underbrace{(\mathbf{a} \vee \mathbf{c})}_{\mathbf{0}'_e \wedge (\mathbf{b} \vee \mathbf{c})} \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

$$
\underbrace{\mathbf{0}'_e \wedge (\mathbf{b} \vee \mathbf{c})}_{= \mathbf{c}}
$$

So $\mathbf{b} < \mathbf{c}$ and hence **b** is low. Every low degree is Δ^0_2 hence low cuppable. So **b** is low cuppable and we are back to Case 1.

Main theorem

Theorem (The main theorem)

If **u** and **v** are Σ^0_2 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then \mathbf{u} is *low cuppable or* **v** *is low cuppable.*

Proof:(Sketch) Uses a construction very similar to the construction of a non-splitting enumeration degree.

Theorem (S)

There is an incomplete Σ^0_2 *e-degree* **a** *such that there is no splitting of* **0** 0 *e in the e-degrees above* **a***.*

Proof idea: Construct a Π 0 set *E* and a Σ^0_2 set *A* such that the following requirements are satified:

 \mathcal{N}_{Ψ} : $\Psi_{\rho}(A) \neq E$.

 $\mathcal{R}_{\Theta,UV}$: $\Theta(U,V) = E \Rightarrow \exists \Gamma, \Lambda(\Gamma(U,A) = \overline{K} \vee \Lambda(V,A) = \overline{K}).$

So the constructed degree $\mathbf{a} = d_e(A)$ has the following property:

If (**u**, **v**) is a splitting of **0** 0 *e* then **a** cups **u** or **a** cups **v**.

 Ω

 \mathcal{A} and \mathcal{A} in the \mathcal{A} in the \mathcal{A} in the \mathcal{A}

Theorem (S)

There is an incomplete Σ^0_2 *e-degree* **a** *such that there is no splitting of* **0** 0 *e in the e-degrees above* **a***.*

Proof idea: Construct a Π 0 ₁ set *E* and a Σ 0 ₂ set *A* such that the following requirements are satified:

 \mathcal{N}_{Ψ} : $\Psi_{\rho}(A) \neq E$.

 $\mathcal{R}_{\Theta,UV}$: $\Theta(U,V) = E \Rightarrow \exists \Gamma, \Lambda(\Gamma(U,A) = \overline{K} \vee \Lambda(V,A) = \overline{K}).$

So the constructed degree $\mathbf{a} = d_e(A)$ has the following property:

If (**u**, **v**) is a splitting of **0** 0 *e* then **a** cups **u** or **a** cups **v**.

 Ω

 \mathcal{A} and \mathcal{A} in \mathcal{A} . The set of the \mathcal{A}

Theorem (S)

There is an incomplete Σ^0_2 *e-degree* **a** *such that there is no splitting of* **0** 0 *e in the e-degrees above* **a***.*

Proof idea: Construct a Π 0 ₁ set *E* and a Σ 0 ₂ set *A* such that the following requirements are satified:

 \mathcal{N}_{Ψ} : $\Psi_{\mathbf{e}}(A) \neq E$.

 $\mathcal{R}_{\Theta,UV}$: $\Theta(U,V) = E \Rightarrow \exists \Gamma, \Lambda(\Gamma(U,A) = \overline{K} \vee \Lambda(V,A) = \overline{K}).$

So the constructed degree $\mathbf{a} = d_e(A)$ has the following property:

If (**u**, **v**) is a splitting of **0** 0 *e* then **a** cups **u** or **a** cups **v**.

 \mathcal{A} and \mathcal{A} in the set of \mathbb{R} is \mathcal{A} . The set

Theorem (S)

There is an incomplete Σ^0_2 *e-degree* **a** *such that there is no splitting of* **0** 0 *e in the e-degrees above* **a***.*

Proof idea: Construct a Π 0 ₁ set *E* and a Σ 0 ₂ set *A* such that the following requirements are satified:

$$
\mathcal{N}_{\Psi}:\Psi_{e}(A)\neq E.
$$

 $\mathcal{R}_{\Theta,U,V}$: $\Theta(U,V) = E \Rightarrow \exists \Gamma, \Lambda(\Gamma(U,A) = \overline{K} \vee \Lambda(V,A) = \overline{K}).$

So the constructed degree $\mathbf{a} = d_e(A)$ has the following property:

If (**u**, **v**) is a splitting of **0** 0 *e* then **a** cups **u** or **a** cups **v**.

 Ω

(ロ) (*同*) (ヨ) (ヨ)

Theorem (S)

There is an incomplete Σ^0_2 *e-degree* **a** *such that there is no splitting of* **0** 0 *e in the e-degrees above* **a***.*

Proof idea: Construct a Π 0 ₁ set *E* and a Σ 0 ₂ set *A* such that the following requirements are satified:

$$
\mathcal{N}_{\Psi}:\Psi_{e}(A)\neq E.
$$

 $\mathcal{R}_{\Theta,U,V}$: $\Theta(U,V) = E \Rightarrow \exists \Gamma, \Lambda(\Gamma(U,A) = \overline{K} \vee \Lambda(V,A) = \overline{K}).$

So the constructed degree $\mathbf{a} = d_e(A)$ has the following property:

If (**u**, **v**) is a splitting of **0** 0 *e* then **a** cups **u** or **a** cups **v**.

 Ω

イロト イ押 トイヨ トイヨ トーヨ

- Let U and V be Σ^0_2 degrees such that $U\oplus V \equiv_e \overline{K}.$ Fix good Σ^0_2 approximations to U , V and $U \oplus V$.
- We will construct a Π^0_1 set $E,$ which we use to force changes in the approximations to *U* and *V*.
- As *U* ⊕ *V* has complete e-degree there is an enumeration operator Θ such that Θ(*U*, *V*) = *E*.
- The length of agreement function *l*(Θ(*U*, *V*) {*s*} , *E* {*s*} , *s*) is unbounded in *s*.
- The first level of the construction tries to single out such an operator Θ.

- Let U and V be Σ^0_2 degrees such that $U\oplus V \equiv_e \overline{K}.$ Fix good Σ^0_2 approximations to U , V and $U \oplus V$.
- We will construct a Π^0_1 set E , which we use to force changes in the approximations to *U* and *V*.
- As *U* ⊕ *V* has complete e-degree there is an enumeration operator Θ such that Θ(*U*, *V*) = *E*.
- The length of agreement function *l*(Θ(*U*, *V*) {*s*} , *E* {*s*} , *s*) is unbounded in *s*.
- The first level of the construction tries to single out such an operator Θ.

- Let U and V be Σ^0_2 degrees such that $U\oplus V \equiv_e \overline{K}.$ Fix good Σ^0_2 approximations to U , V and $U \oplus V$.
- We will construct a Π^0_1 set E , which we use to force changes in the approximations to *U* and *V*.
- As *U* ⊕ *V* has complete e-degree there is an enumeration operator Θ such that $\Theta(U, V) = E$.
- The length of agreement function *l*(Θ(*U*, *V*) {*s*} , *E* {*s*} , *s*) is unbounded in *s*.
- The first level of the construction tries to single out such an operator Θ.

 Ω

(ロ) (何) (ヨ) (ヨ) (

- Let U and V be Σ^0_2 degrees such that $U\oplus V \equiv_e \overline{K}.$ Fix good Σ^0_2 approximations to U , V and $U \oplus V$.
- We will construct a Π^0_1 set E , which we use to force changes in the approximations to *U* and *V*.
- As *U* ⊕ *V* has complete e-degree there is an enumeration operator Θ such that $\Theta(U, V) = E$.
- The length of agreement function $I(\Theta(U,V)^{\{s\}},E^{\{s\}},\boldsymbol{s})$ is unbounded in *s*.
- The first level of the construction tries to single out such an operator Θ.

イロト イ押 トイヨ トイヨ トーヨ

- Let U and V be Σ^0_2 degrees such that $U\oplus V \equiv_e \overline{K}.$ Fix good Σ^0_2 approximations to U , V and $U \oplus V$.
- We will construct a Π^0_1 set E , which we use to force changes in the approximations to *U* and *V*.
- As *U* ⊕ *V* has complete e-degree there is an enumeration operator Θ such that $\Theta(U, V) = E$.
- The length of agreement function $I(\Theta(U,V)^{\{s\}},E^{\{s\}},\boldsymbol{s})$ is unbounded in *s*.
- The first level of the construction tries to single out such an operator Θ.

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Level 2: Working below outcome *e*

Suppose α is monitoring $I(\Theta(U, V), E, s)$ and see infinitely many expansionary stages.

The strategy α starts the construction of a set *A* and an operator Γ so that $\Gamma(U, A) = \overline{K}$.

On every visit it rectifies Γ on all *n* ≤ *s*.

- \mathbf{D} If $n \in \overline{K}^{\{s\}}$ enumerate an axiom in $\mathsf{\Gamma}$ of the form $\langle n, U^{\{s\}} \restriction u(n) + 1, A^{\{s\}} \restriction a(n) + 1 \rangle$
- 2 If $n \notin \overline{K}^{\{s\}}$ then extract $a(n)$ from *A* invalidating the axiom.

Level 2: Working below outcome *e*

Suppose α is monitoring $I(\Theta(U, V), E, s)$ and see infinitely many expansionary stages.

The strategy α starts the construction of a set A and an operator Γ so that $\Gamma(U, A) = \overline{K}$.

On every visit it rectifies Γ on all *n* ≤ *s*.

- \mathbf{D} If $n \in \overline{K}^{\{s\}}$ enumerate an axiom in $\mathsf{\Gamma}$ of the form $\langle n, U^{\{s\}} \restriction u(n) + 1, A^{\{s\}} \restriction a(n) + 1 \rangle$
- 2 If $n \notin \overline{K}^{\{s\}}$ then extract $a(n)$ from *A* invalidating the axiom.

Level 2: Working below outcome *e*

Suppose α is monitoring $I(\Theta(U, V), E, s)$ and see infinitely many expansionary stages.

The strategy α starts the construction of a set A and an operator Γ so that $\Gamma(U, A) = \overline{K}$.

On every visit it rectifies Γ on all *n* ≤ *s*.

- **1** If $n \in \overline{K}^{\{s\}}$ enumerate an axiom in Γ of the form $\langle n, U^{\{s\}} \restriction u(n) + 1, A^{\{s\}} \restriction a(n) + 1 \rangle$
- **2** If $n \notin \overline{K}^{\{s\}}$ then extract $a(n)$ from *A* invalidating the axiom.

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{B} \rightarrow \mathcal{B}$

Making *A* low

Definition

A set *A* is 1-generic if for every c.e. set *W* viewed as a set of finite binary strings

$$
(\exists \tau \subseteq A)(\tau \in W \vee (\forall \mu \supseteq \tau)\mu \notin W)).
$$

Everey Δ^0_2 1*-generic set is low.*

For each c.e. set *W^e* add a strategy β*^e* ensuring:

 $(\exists \tau \subseteq A)(\tau \in W_e \vee (\forall \mu \supseteq \tau)\mu \notin W_e)$

 Ω

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow$

Making *A* low

Definition

A set *A* is 1-generic if for every c.e. set *W* viewed as a set of finite binary strings

$$
(\exists \tau \subseteq A)(\tau \in W \vee (\forall \mu \supseteq \tau)\mu \notin W)).
$$

Theorem (Copestake)

Everey Δ^0_2 1*-generic set is low.*

For each c.e. set *W^e* add a strategy β*^e* ensuring:

 $(\exists \tau \subseteq A)(\tau \in W_e \vee (\forall \mu \supseteq \tau)\mu \notin W_e)$

 Ω

イロト イ押ト イヨト イヨト

Making *A* low

Definition

A set *A* is 1-generic if for every c.e. set *W* viewed as a set of finite binary strings

$$
(\exists \tau \subseteq A)(\tau \in W \vee (\forall \mu \supseteq \tau)\mu \notin W)).
$$

Theorem (Copestake)

Everey Δ^0_2 1*-generic set is low.*

For each c.e. set *W^e* add a strategy β*^e* ensuring:

$$
(\exists \tau \subseteq A)(\tau \in W_{e} \vee (\forall \mu \supseteq \tau)\mu \notin W_{e})
$$

 Ω

 \rightarrow \equiv \rightarrow

Naive strategy for β

- **1** Select a threshold $d \in \overline{K}$.
- **2** Wait until α is done correctign the operator Γ on elements $n \le d$ and set $\tau = A \restriction a(d) + 1$.
- \bullet If there is no extension $\mu \supseteq \tau$ such that $\mu \in \mathsf{W}^{\{s\}}$ then the outcome is *w*.
- \bullet If there is a an extension $\mu \supseteq \tau$ such that $\mu \in W$ then make μ an initial segment of *A* and let the outcome be *f*.

Naive strategy for β

- **1** Select a threshold $d \in \overline{K}$.
- ² Wait until α is done correctign the operator Γ on elements *n* ≤ *d* and set $\tau = A \restriction a(d) + 1$.
- \bullet If there is no extension $\mu \supseteq \tau$ such that $\mu \in \mathsf{W}^{\{s\}}$ then the outcome is *w*.
- \bullet If there is a an extension $\mu \supseteq \tau$ such that $\mu \in W$ then make μ an initial segment of *A* and let the outcome be *f*.

Naive strategy for β

- **1** Select a threshold $d \in \overline{K}$.
- ² Wait until α is done correctign the operator Γ on elements *n* ≤ *d* and set $\tau = A \restriction a(d) + 1$.
- **3** If there is no extension $\mu \supseteq \tau$ such that $\mu \in \mathcal{W}^{\{\textbf{s}\}}$ then the outcome is *w*.
- \bullet If there is a an extension $\mu \supset \tau$ such that $\mu \in W$ then make μ an initial segment of *A* and let the outcome be *f*.

Naive strategy for β

- **■** Select a threshold $d \in \overline{K}$.
- ² Wait until α is done correctign the operator Γ on elements *n* ≤ *d* and set $\tau = A \restriction a(d) + 1$.
- **3** If there is no extension $\mu \supseteq \tau$ such that $\mu \in \mathcal{W}^{\{\textbf{s}\}}$ then the outcome is *w*.
- **4** If there is a an extension $\mu \supset \tau$ such that $\mu \in W$ then make μ an initial segment of *A* and let the outcome be *f*.

Including the set *E* to force changes

Solution: β will use an agitator.

- ¹ Select an agitator *e* ∈ *E*.
- 2 As β is working under the assumption that $\Theta(U, V) = E$ so $e \in \Theta(U, V)$ with axiom $\langle e, U_e, V_e \rangle$.
- **3** Extracting *e* from the set *E* forces *e* out of $\Theta(U, V)$ and $\langle e, U_e, V_e \rangle$ is not valid at further stages. This is called an attack.
- **4** Arrange things so that $U_e \nsubseteq U$ invalidates all axioms in Γ for elements *n* ≥ *d*.
- **5** This moves α 's influence on A on elements larger than $|\mu|$ and we can preserve $\mu \subseteq A$.

 Ω

(ロ) (印) (ヨ) (ヨ) (ヨ)

Honestification before an attack

- Make sure that $u(d)$ > max U_e so that $U_e \nsubseteq U$ ensures $\langle d, U \upharpoonright u(n) + 1, A \upharpoonright a(d) + 1$ invalid.
- This must be repeated every time the valid axiom for *e* in Θ changes before the attack.
- **•** If this happens infinitely many times then there are no valid axioms for *e* in Θ and $\Theta(U, V) \neq E$.
- A new outcome *h* is added to signify this.

Honestification

K ロメ K 御 メ K 君 メ K 君 X

重

4 0 8 4. 何

 \sim E. **A** The

Þ

4 0 8 4. 何

 \sim ÷ \sim **A** The

Þ

4 0 8 4. 何

 \sim ÷ \sim **A** The

Þ

4 0 8 4. 何

 \sim E. **A** The

Þ

4 0 8 4. 何

 \sim E. **A** The

Þ

4 0 8 4. 何

 \sim ÷ \sim **A** The

Þ

 QQ

Bibliography

- S. B. Cooper: Enumeration reducibility, nondeterminitsic computations and relative computability of partial functions. In: K. Ambos-Spies, G. H. Muller, G. E. Sacks (eds.) Recursion Theory Week, Proceedings Oberwolfach 1989, pp 57–110. LNM 1432 (1990)
- S. B. Cooper, A. Sorbi, X. Yi: Cupping and noncupping in the enumeration degrees of Σ^0_2 sets. Ann. Pure Appl. Logic 82, 317–342 (1996)
- A. H. Lachlan, R. A. Shore: The n-rea enumeration degrees are dense. Arch. Math. Logic 31, 277–285 (1992)
- M. I. Soskova, G. Wu: Cupping Δ_2^0 enumeration degrees to 0'. In: S. Cooper, B. Löwe, A. Sorbi (eds.) Computation and Logic in the Real World, pp 727–738. LNCS 4497 (2007)

 \equiv

 Ω

(ロ) (何) (ヨ) (ヨ) (