A Locally Definable Set of Low Enumeration Degrees Work in progress

Mariya I. Soskova¹

Faculty of Mathematics and Informatics Sofia University

September 16, 2009

¹Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework Programme.

Mariya I. Soskova (Faculty of Mathematics arA Locally Definable Set of Low Enumeration E

- \mathcal{K} -pairs: definition and properties
- The main theorem and the definition of a set of low degrees
- Basic ideas in the construction

< 6 k

K-pairs: definition and properties

- C-pairs: definition and properties
- Intermating theorem and the definition of a set of low degrees
- Basic ideas in the construction

H N

- C-pairs: definition and properties
- Intermating theorem and the definition of a set of low degrees
- Basic ideas in the construction

K-pairs: Definition

Iskander Kalimullin: Definability of the jump operator in the enumeration degrees Journal of Mathematical Logic (2003)

Definition

Let *A*, *B* and *U* be sets of a ntural numbers. The pair (*A*, *B*) is a \mathcal{K} -pair over *U* (*U*-e-ideal) if there exists a set $W \leq_e U$ such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

If $U = \emptyset$ then (A, B) is called a *K*-pair.

- A TE N - A TE N

\mathcal{K} -pairs: A trivial example

Example

Let V be a c.e set. Then (V, A) is a \mathcal{K} -pair for any set of natural numbers A.

Let $W = V \times \mathbb{N}$. Then $V \times A \subseteq W$ and $\overline{V} \times \overline{A} \subseteq \overline{W}$.

4 6 1 1 4

E N 4 E N

4/35

$\mathcal K\text{-pairs:}$ A more interesting example

Definition (Jockusch 1968)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

3 If
$$x \in A$$
 or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Let s_A be the selector function for A. Set $W = \{(s_A(x, y), \overline{s_A(x, y)}) \mid x, y \in \mathbb{N}\},\$ where $\overline{s_A(x, y)} = x$ if $s_A(x, y) = y$ and $\overline{s_A(x, y)} = y$ if $s_A(x, y) = x$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An order theoretic characterization of \mathcal{K} -pairs

Theorem (Kalimullin)

(A, B) is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ have the following property:

$$(orall \mathbf{c} \in \mathcal{D}_{\mathbf{e}})((\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{c})$$

- A pair of degrees (a, b) is a *K*-pair
 ⇔ There is a *K*-pair of sets (*A*, *B*), such that *A* ∈ a and *B* ∈ b .
 ⇔ For all *A* ∈ a and *B* ∈ b the pair of sets (*A*, *B*) is a *K*-pair.
- If (a, b) is a \mathcal{K} -pair then (a, b) is a minimal pair:

$$(\underbrace{(\mathbf{a}\vee\mathbf{0}_e)}_{\mathbf{a}}\wedge\underbrace{(\mathbf{b}\vee\mathbf{0}_e)}_{\mathbf{b}}=\mathbf{0}_e$$

イロト イポト イラト イラ

An order theoretic characterization of \mathcal{K} -pairs

Theorem (Kalimullin)

(A, B) is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ have the following property:

$$(\forall \mathbf{c} \in \mathcal{D}_{\mathbf{e}})((\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{c})$$

A pair of degrees (a, b) is a *K*-pair
⇔ There is a *K*-pair of sets (*A*, *B*), such that *A* ∈ a and *B* ∈ b.
⇔ For all *A* ∈ a and *B* ∈ b the pair of sets (*A*, *B*) is a *K*-pair.

If (\mathbf{a}, \mathbf{b}) is a \mathcal{K} -pair then (\mathbf{a}, \mathbf{b}) is a minimal pair:

$$(\underbrace{(\mathbf{a}\vee\mathbf{0}_{e})}_{\mathbf{a}}\wedge\underbrace{(\mathbf{b}\vee\mathbf{0}_{e})}_{\mathbf{b}}=\mathbf{0}_{e}$$

イロト イポト イラト イラ

An order theoretic characterization of \mathcal{K} -pairs

Theorem (Kalimullin)

(A, B) is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ have the following property:

$$(\forall \mathbf{c} \in \mathcal{D}_{\mathbf{e}})((\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{c})$$

- A pair of degrees (a, b) is a *K*-pair
 ⇔ There is a *K*-pair of sets (*A*, *B*), such that *A* ∈ a and *B* ∈ b.
 ⇔ For all *A* ∈ a and *B* ∈ b the pair of sets (*A*, *B*) is a *K*-pair.
- 2 If (\mathbf{a}, \mathbf{b}) is a \mathcal{K} -pair then (\mathbf{a}, \mathbf{b}) is a minimal pair:

$$(\underbrace{(\mathbf{a} \lor \mathbf{0}_e)}_{\mathbf{a}} \land \underbrace{(\mathbf{b} \lor \mathbf{0}_e)}_{\mathbf{b}} = \mathbf{0}_e$$

 \mathcal{K} -pairs in the local structure \mathcal{G}_e

Lemma (Kalimullin)

Let A and B be Σ_2^0 sets with Σ_2^0 approximation $\{A^{\{s\}}\}_{s<\omega}$ and $\{B^{\{s\}}\}_{s<\omega}$ such that:

$$(\forall s)(A^{\{s\}} \subseteq A \lor B^{\{s\}} \subseteq B).$$

Then (A, B) is a \mathcal{K} -pair.

Proof: Let $W = \bigcup_{s < \omega} A^{\{s\}} \times B^{\{s\}}$. If $(x, y) \in A \times B$ then there is a stage *s* such that $(x, y) \in A^{\{s\}} \times B^{\{s\}}$. If $(x, y) \in \overline{A} \times \overline{B}$ then for all stages *s*, $A^{\{s\}} \subseteq A$ or $B^{\{s\}} \subseteq B$, hence $x \notin A^{\{s\}}$ or $y \notin B^{\{s\}}$, so $(x, y) \notin W$.

Constructing a nontrivial \mathcal{K} -pair

We want to construct Σ_2^0 approximations $\{A^{\{s\}}\}$ and $\{B^{\{s\}}\}$ to sets *A* and *B* such that for all *e*:

 $\mathcal{N}_{e}^{A}: W_{e} \neq A$ $\mathcal{N}_{e}^{B}: W_{e} \neq B$ and for all *s* $\mathcal{K}_{s}: A^{\{s\}} \subseteq A \lor B^{\{s\}} \subseteq B.$

Strategy for satisfying \mathcal{N} -requirements

To satisfy \mathcal{N}_e^A at every stage *s* do the following:

- If a witness x_e is not yet selected then select a witness x_e as a fresh number and enumerate it in A^{s}.
- 2 If $x_e \in W_e^{\{s\}}$ then extract x_e from $A^{\{s\}}$.

To satisfy $\mathcal{N}_{e}^{\mathcal{B}}$ at every stage *s* do the following:

- If a witness y_e is not yet selected then select a witness y_e as a fresh number and enumerate it in $B^{\{s\}}$.
- 2 If $y_e \in W_e^{\{s\}}$ then extract y_e from $B^{\{s\}}$.

Strategy for satisfying \mathcal{N} -requirements

To satisfy \mathcal{N}_e^A at every stage *s* do the following:

- If a witness x_e is not yet selected then select a witness x_e as a fresh number and enumerate it in A^{s}.
- 2 If $x_e \in W_e^{\{s\}}$ then extract x_e from $A^{\{s\}}$.

To satisfy \mathcal{N}_e^B at every stage *s* do the following:

- If a witness y_e is not yet selected then select a witness y_e as a fresh number and enumerate it in B^{s}.
- 2 If $y_e \in W_e^{\{s\}}$ then extract y_e from $B^{\{s\}}$.

Conflict and solution

Conflict: If x_e is enumerated in $A^{\{s_{start}\}}$ and extracted from $A^{\{s_{end}\}}$ then for all *t* such that $s_{start} \leq t < s_{end}$, $A^{\{t\}} \not\subseteq B$. We must ensure that $B^{\{t\}} \subseteq B$.

Solution: We order the \mathcal{N} requirements linearly by priority:

$$\mathcal{N}_0^A < \mathcal{N}_0^B < \mathcal{N}_1^A < \mathcal{N}_1^B < \dots$$

and add injury:

If an N-strategy is injured then the value of its witness is cancelled and the witness is enumerated back in the corresponding set A or B.

Conflict and solution

Conflict: If x_e is enumerated in $A^{\{s_{start}\}}$ and extracted from $A^{\{s_{end}\}}$ then for all *t* such that $s_{start} \leq t < s_{end}$, $A^{\{t\}} \not\subseteq B$. We must ensure that $B^{\{t\}} \subseteq B$.

Solution: We order the \mathcal{N} requirements linearly by priority:

$$\mathcal{N}_0^A < \mathcal{N}_0^B < \mathcal{N}_1^A < \mathcal{N}_1^B < \dots$$

and add injury:

If an N-strategy is injured then the value of its witness is cancelled and the witness is enumerated back in the corresponding set A or B.

Final construction

At every stage *s* activate the first s N-strategies in order of their priority:

If the stratey \mathcal{N}_e^A is activated at stage *s* the:

- If a witness x_e is not yet selected then select a witness x_e as a fresh number and enumerate it in A^{s}.
- If x_e ∈ W_e^{s} then extract x_e from A^{s} and injure all lower priority strategies.

If the stratey \mathcal{N}_e^B is activated at stage *s* the:

- If a witness y_e is not yet selected then select a witness y_e as a fresh number and enumerate it in $B^{\{s\}}$.
- If y_e ∈ W_e^{s} then extract y_e from B^{s} and injure all lower priority strategies.

Properties of $\Sigma_2^0 \mathcal{K}$ -pairs

Theorem (Kallimulin)

- If (\mathbf{a}, \mathbf{b}) are a $\Sigma_2^0 \mathcal{K}$ -pair then \mathbf{a} and \mathbf{b} are low and quasi-minimal.
- 2 Every Δ_2^0 enumeration degree bounds a \mathcal{K} -pair.
- 3 There is a $\Delta_2^0 \mathcal{K}$ pair (**a**, **b**) which splits **0**'_e.
- The set of degrees c which form a K-pair with a fixed degree a is an ideal.

Theorem (Ganchev, S)

Every Δ_2^0 enumeration degree bounds a countable \mathcal{K} -system, i.e. a sequence $(\mathbf{a}_0, \mathbf{a}_1, ...)$ of Δ_2^0 enumeration degrees such that for every $i \neq j$ the pair $(\mathbf{a}_i, \mathbf{a}_j)$ is a \mathcal{K} -pair.

3

Properties of $\Sigma_2^0 \mathcal{K}$ -pairs

-

э

$$\begin{split} \mathcal{K}(\textbf{a},\textbf{b}) &= "(\textbf{a},\textbf{b}) \text{ is a } \mathcal{K}\text{-pair" is definable in } \mathcal{D}_{e}\text{:} \\ \mathcal{K}(\textbf{a},\textbf{b}) \Leftrightarrow (\forall \textbf{c})((\textbf{a} \lor \textbf{c}) \land (\textbf{b} \lor \textbf{c}) = \textbf{c}). \end{split}$$

Theorem (Kalimullin)

If $(d_e(A), d_e(B))$ is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that: $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C))) \neq d_e(C))$

- If A and B are Δ₂⁰ then C is also Δ₂⁰ and hence in the structure of the Δ₂⁰ enumeration degrees the property K(**a**, **b**) is definable and {**a** | (∃**b**)K(**a**, **b**)} is a definable set of low degrees.
- If A and B are Σ_2^0 then C is Δ_3^0 .

Question

Is the property $\mathcal{K}(\mathbf{a}, \mathbf{b})$ first order definable in \mathcal{G}_e ?

$$\begin{split} \mathcal{K}(\textbf{a},\textbf{b}) &= "(\textbf{a},\textbf{b}) \text{ is a } \mathcal{K}\text{-pair" is definable in } \mathcal{D}_{e}\text{:} \\ \mathcal{K}(\textbf{a},\textbf{b}) \Leftrightarrow (\forall \textbf{c})((\textbf{a} \lor \textbf{c}) \land (\textbf{b} \lor \textbf{c}) = \textbf{c}). \end{split}$$

Theorem (Kalimullin)

If $(d_e(A), d_e(B))$ is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that: $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C))) \neq d_e(C))$

- If A and B are Δ₂⁰ then C is also Δ₂⁰ and hence in the structure of the Δ₂⁰ enumeration degrees the property K(a, b) is definable and {a | (∃b)K(a, b)} is a definable set of low degrees.
- If *A* and *B* are Σ_2^0 then *C* is Δ_3^0 .

Question

Is the property $\mathcal{K}(\mathbf{a}, \mathbf{b})$ first order definable in \mathcal{G}_e ?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{split} \mathcal{K}(\mathbf{a},\mathbf{b}) &= "(\mathbf{a},\mathbf{b}) \text{ is a } \mathcal{K}\text{-pair" is definable in } \mathcal{D}_{\boldsymbol{e}}\text{:} \\ \mathcal{K}(\mathbf{a},\mathbf{b}) \Leftrightarrow (\forall \mathbf{c})((\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{c}). \end{split}$$

Theorem (Kalimullin)

If $(d_e(A), d_e(B))$ is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C))) \neq d_e(C))$

- If A and B are Δ₂⁰ then C is also Δ₂⁰ and hence in the structure of the Δ₂⁰ enumeration degrees the property K(**a**, **b**) is definable and {**a** | (∃**b**)K(**a**, **b**)} is a definable set of low degrees.
- If *A* and *B* are Σ_2^0 then *C* is Δ_3^0 .

Question

Is the property $\mathcal{K}(\mathbf{a}, \mathbf{b})$ first order definable in \mathcal{G}_e ?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{split} \mathcal{K}(\mathbf{a},\mathbf{b}) &= "(\mathbf{a},\mathbf{b}) \text{ is a } \mathcal{K}\text{-pair" is definable in } \mathcal{D}_{\boldsymbol{e}}\text{:} \\ \mathcal{K}(\mathbf{a},\mathbf{b}) \Leftrightarrow (\forall \mathbf{c})((\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{c}). \end{split}$$

Theorem (Kalimullin)

If $(d_e(A), d_e(B))$ is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C))) \neq d_e(C))$

- If A and B are Δ₂⁰ then C is also Δ₂⁰ and hence in the structure of the Δ₂⁰ enumeration degrees the property K(**a**, **b**) is definable and {**a** | (∃**b**)K(**a**, **b**)} is a definable set of low degrees.
- If A and B are Σ_2^0 then C is Δ_3^0 .

Question

Is the property $\mathcal{K}(\mathbf{a}, \mathbf{b})$ first order definable in \mathcal{G}_e ?

Definability of \mathcal{K} -pairs

$$\begin{split} \mathcal{K}(\textbf{a},\textbf{b}) &= "(\textbf{a},\textbf{b}) \text{ is a } \mathcal{K}\text{-pair" is definable in } \mathcal{D}_{e}\text{:} \\ \mathcal{K}(\textbf{a},\textbf{b}) \Leftrightarrow (\forall \textbf{c})((\textbf{a} \lor \textbf{c}) \land (\textbf{b} \lor \textbf{c}) = \textbf{c}). \end{split}$$

Theorem (Kalimullin)

If $(d_e(A), d_e(B))$ is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C))) \neq d_e(C))$

- If A and B are Δ₂⁰ then C is also Δ₂⁰ and hence in the structure of the Δ₂⁰ enumeration degrees the property K(**a**, **b**) is definable and {**a** | (∃**b**)K(**a**, **b**)} is a definable set of low degrees.
- If A and B are Σ_2^0 then C is Δ_3^0 .

Question

Is the property $\mathcal{K}(a, b)$ first order definable in \mathcal{G}_e ?

э.

イロト 不得 トイヨト イヨト

The main theorem

Theorem (S,Wu)

Every nonzero Δ_2^0 enumeration degree **a** is low cuppable, i.e. there is a low **b** such that $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$.

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable Σ_2^0 enumeration degrees.

Theorem (The main theorem)

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low cuppable or **v** is low cuppable.

The main theorem

Theorem (S,Wu)

Every nonzero Δ_2^0 enumeration degree **a** is low cuppable, i.e. there is a low **b** such that $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$.

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable Σ_2^0 enumeration degrees.

Theorem (The main theorem)

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \lor \mathbf{v} = \mathbf{0}'_e$ then **u** is low cuppable or **v** is low cuppable.

A (10) A (10)

The main theorem

Theorem (S,Wu)

Every nonzero Δ_2^0 enumeration degree **a** is low cuppable, i.e. there is a low **b** such that $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$.

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable Σ_2^0 enumeration degrees.

Theorem (The main theorem)

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low cuppable or **v** is low cuppable.

A (10) A (10)

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

There is a $\Delta_2^0 \mathcal{K}$ -pair which splits $\mathbf{0}'_e$ so the set $\{\mathbf{a} \mid \mathcal{G}_e \vdash \mathcal{L}(\mathbf{a})\} \neq \emptyset$.

Let **a** be a Σ_2^0 degree such that $\mathcal{G}_e \vdash \mathcal{L}(\mathbf{a})$. Let **b** a witness such that $\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$.

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **b**.

 $(\mathbf{a} \lor \mathbf{c}) \land \underbrace{(\mathbf{b} \lor \mathbf{c})}_{\mathbf{c}} = \mathbf{c}$

$$(\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{c}$$

 $(\mathbf{a} \lor \mathbf{c}) = \mathbf{c}$

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **b**.

$$(\mathbf{a} \lor \mathbf{c}) \land \underbrace{(\mathbf{b} \lor \mathbf{c})}_{\mathbf{c}} = \mathbf{c}$$

 $(\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{c}$

 $(\mathbf{a} \lor \mathbf{c}) = \mathbf{c}$

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_{e}$ and the degree \mathbf{a} is low.

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **b**.

$$(\mathbf{a} \lor \mathbf{c}) \land \underbrace{(\mathbf{b} \lor \mathbf{c})}_{\mathbf{c}} = \mathbf{c}$$

$$(\mathbf{a} \lor \mathbf{c}) \land \mathbf{0'_e} = \mathbf{c}$$

 $(\mathbf{a} \lor \mathbf{c}) = \mathbf{c}$

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **b**.

$$(\mathbf{a} \lor \mathbf{c}) \land \underbrace{(\mathbf{b} \lor \mathbf{c})}_{\mathbf{c}} = \mathbf{c}$$

$$(\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{c}$$

 $(\mathbf{a} \lor \mathbf{c}) = \mathbf{c}$

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **b**.

$$(\mathsf{a} \lor \mathsf{c}) \land \underbrace{(\mathsf{b} \lor \mathsf{c})}_{\bullet} = \mathsf{c}$$

$$(\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{c}$$

 $(a \lor c) = c$

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **b**.

$$(\mathsf{a} \lor \mathsf{c}) \land \underbrace{(\mathsf{b} \lor \mathsf{c})}_{\bullet} = \mathsf{c}$$

$$(\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{c}$$

 $(\mathbf{a} \lor \mathbf{c}) = \mathbf{c}$

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 1: **b** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **b**.

$$(\mathsf{a} \lor \mathsf{c}) \land \underbrace{(\mathsf{b} \lor \mathsf{c})}_{\bullet} = \mathsf{c}$$

$$(\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{c}$$

 $(\mathbf{a} \lor \mathbf{c}) = \mathbf{c}$

Hence $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and the degree \mathbf{a} is low.
Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 2: **a** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **a**.

$$\underbrace{(\mathbf{a} \lor \mathbf{c})}_{\mathbf{0}_{e}} \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$
$$\mathbf{0}_{e}' \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$
$$(\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$

So $\mathbf{b} \leq \mathbf{c}$ and hence \mathbf{b} is low. Every low degree is Δ_2^0 hence low cuppable. So \mathbf{b} is low cuppable and we are back to Case 1.

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 2: **a** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **a**.

$$\underbrace{(\mathbf{a} \lor \mathbf{c})}_{\mathbf{0}'_{\mathbf{e}}} \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$
$$(\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$
$$(\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$

So $\mathbf{b} \leq \mathbf{c}$ and hence \mathbf{b} is low.

Every low degree is Δ_2^0 hence low cuppable. So **b** is low cuppable and we are back to Case 1.

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 2: **a** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **a**.

$$\underbrace{(\mathbf{a} \lor \mathbf{c})}_{\mathbf{0}'_{\mathbf{e}}} \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$
$$(\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$
$$(\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$

So $\mathbf{b} \leq \mathbf{c}$ and hence \mathbf{b} is low. Every low degree is Δ_2^0 hence low cuppable. So \mathbf{b} is low cuppable and we are back to Case 1.

Corollary

The formula $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e)$ defines in \mathcal{G}_e a nonempty set of low enumeration degrees.

Proof:

Case 2: **a** is low cuppable. Let **c** be a low Δ_2^0 e-degree which cups **a**.

$$\underbrace{(\mathbf{a} \lor \mathbf{c})}_{\mathbf{0}'_{\mathbf{e}}} \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$
$$(\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$
$$(\mathbf{b} \lor \mathbf{c}) = \mathbf{c}$$

So $\mathbf{b} \leq \mathbf{c}$ and hence \mathbf{b} is low. Every low degree is Δ_2^0 hence low cuppable. So \mathbf{b} is low cuppable and we are back to Case 1.

Main theorem

Theorem (The main theorem)

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low cuppable or **v** is low cuppable.

Proof:(Sketch) Uses a construction very similar to the construction of a non-splitting enumeration degree.

Theorem (S)

There is an incomplete Σ_2^0 e-degree **a** such that there is no splitting of $\mathbf{0}'_e$ in the e-degrees above **a**.

Proof idea: Construct a Π_1^0 set *E* and a Σ_2^0 set *A* such that the following requirements are satified:

 $\mathcal{N}_{\Psi}: \Psi_{e}(A) \neq E.$

 $\mathcal{R}_{\Theta,U,V}:\Theta(U,V)=E\Rightarrow \exists \Gamma, \Lambda(\Gamma(U,A)=\overline{K}\vee \Lambda(V,A)=\overline{K}).$

So the constructed degree $\mathbf{a} = d_e(A)$ has the following property:

If (\mathbf{u}, \mathbf{v}) is a splitting of $\mathbf{0}'_e$ then **a** cups **u** or **a** cups **v**.

マロト イラト イラ

Theorem (S)

There is an incomplete Σ_2^0 e-degree **a** such that there is no splitting of $\mathbf{0}'_e$ in the e-degrees above **a**.

Proof idea: Construct a Π_1^0 set *E* and a Σ_2^0 set *A* such that the following requirements are satified:

 $\mathcal{N}_{\Psi}: \Psi_{e}(\mathcal{A}) \neq \mathcal{E}.$

 $\mathcal{R}_{\Theta,U,V}:\Theta(U,V)=E\Rightarrow \exists \Gamma, \Lambda(\Gamma(U,A)=\overline{K}\vee \Lambda(V,A)=\overline{K}).$

So the constructed degree $\mathbf{a} = d_e(A)$ has the following property:

If (\mathbf{u}, \mathbf{v}) is a splitting of $\mathbf{0}'_e$ then **a** cups **u** or **a** cups **v**.

20/35

Theorem (S)

There is an incomplete Σ_2^0 e-degree **a** such that there is no splitting of $\mathbf{0}'_e$ in the e-degrees above **a**.

Proof idea: Construct a Π_1^0 set *E* and a Σ_2^0 set *A* such that the following requirements are satified:

 $\mathcal{N}_{\Psi}: \Psi_{e}(A) \neq E.$

 $\mathcal{R}_{\Theta,U,V}:\Theta(U,V)=E\Rightarrow\exists\Gamma,\Lambda(\Gamma(U,A)=\overline{K}\vee\Lambda(V,A)=\overline{K}).$

So the constructed degree $\mathbf{a} = d_e(A)$ has the following property:

If (\mathbf{u}, \mathbf{v}) is a splitting of $\mathbf{0}'_e$ then **a** cups **u** or **a** cups **v**.

Theorem (S)

There is an incomplete Σ_2^0 e-degree **a** such that there is no splitting of $\mathbf{0}'_e$ in the e-degrees above **a**.

Proof idea: Construct a Π_1^0 set *E* and a Σ_2^0 set *A* such that the following requirements are satified:

$$\mathcal{N}_{\Psi}: \Psi_{e}(\mathcal{A}) \neq \mathcal{E}.$$

 $\mathcal{R}_{\Theta,U,V}:\Theta(U,V)=E\Rightarrow \exists \Gamma, \Lambda(\Gamma(U,A)=\overline{K}\vee\Lambda(V,A)=\overline{K}).$

So the constructed degree $\mathbf{a} = d_e(A)$ has the following property:

If (\mathbf{u}, \mathbf{v}) is a splitting of $\mathbf{0}'_e$ then **a** cups **u** or **a** cups **v**.

・ロット (雪) (き) (き)

Theorem (S)

There is an incomplete Σ_2^0 e-degree **a** such that there is no splitting of $\mathbf{0}'_e$ in the e-degrees above **a**.

Proof idea: Construct a Π_1^0 set *E* and a Σ_2^0 set *A* such that the following requirements are satified:

$$\mathcal{N}_{\Psi}: \Psi_{e}(\mathcal{A}) \neq \mathcal{E}.$$

 $\mathcal{R}_{\Theta,U,V}:\Theta(U,V)=E\Rightarrow \exists \Gamma, \Lambda(\Gamma(U,A)=\overline{K}\vee\Lambda(V,A)=\overline{K}).$

So the constructed degree $\mathbf{a} = d_e(A)$ has the following property:

If (\mathbf{u}, \mathbf{v}) is a splitting of $\mathbf{0}'_e$ then **a** cups **u** or **a** cups **v**.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

- Let U and V be Σ₂⁰ degrees such that U ⊕ V ≡_e K̄. Fix good Σ₂⁰ approximations to U, V and U ⊕ V.
- We will construct a Π_1^0 set *E*, which we use to force changes in the approximations to *U* and *V*.
- As U ⊕ V has complete e-degree there is an enumeration operator Θ such that Θ(U, V) = E.
- The length of agreement function *I*(⊖(*U*, *V*)^{s}, *E*^{s}, *s*) is unbounded in *s*.
- The first level of the construction tries to single out such an operator ⊖.

イロト イポト イラト イラト

- Let U and V be Σ₂⁰ degrees such that U ⊕ V ≡_e K̄. Fix good Σ₂⁰ approximations to U, V and U ⊕ V.
- We will construct a Π₁⁰ set *E*, which we use to force changes in the approximations to *U* and *V*.
- As U ⊕ V has complete e-degree there is an enumeration operator ⊖ such that ⊖(U, V) = E.
- The length of agreement function *I*(⊖(*U*, *V*)^{s}, *E*^{s}, *s*) is unbounded in *s*.
- The first level of the construction tries to single out such an operator Θ.

- Let U and V be Σ₂⁰ degrees such that U ⊕ V ≡_e K̄. Fix good Σ₂⁰ approximations to U, V and U ⊕ V.
- We will construct a Π⁰₁ set *E*, which we use to force changes in the approximations to *U* and *V*.
- As U ⊕ V has complete e-degree there is an enumeration operator Θ such that Θ(U, V) = E.
- The length of agreement function *I*(Θ(*U*, *V*)^{s}, *E*^{s}, *s*) is unbounded in *s*.
- The first level of the construction tries to single out such an operator Θ.

- Let U and V be Σ₂⁰ degrees such that U ⊕ V ≡_e K̄. Fix good Σ₂⁰ approximations to U, V and U ⊕ V.
- We will construct a Π⁰₁ set *E*, which we use to force changes in the approximations to *U* and *V*.
- As U ⊕ V has complete e-degree there is an enumeration operator Θ such that Θ(U, V) = E.
- The length of agreement function *I*(Θ(*U*, *V*)^{s}, *E*^{s}, *s*) is unbounded in *s*.
- The first level of the construction tries to single out such an operator Θ.

- Let U and V be Σ₂⁰ degrees such that U ⊕ V ≡_e K̄. Fix good Σ₂⁰ approximations to U, V and U ⊕ V.
- We will construct a Π⁰₁ set *E*, which we use to force changes in the approximations to *U* and *V*.
- As U ⊕ V has complete e-degree there is an enumeration operator Θ such that Θ(U, V) = E.
- The length of agreement function *I*(Θ(*U*, *V*)^{s}, *E*^{s}, *s*) is unbounded in *s*.
- The first level of the construction tries to single out such an operator ⊖.

Level 2: Working below outcome e

Suppose α is monitoring $I(\Theta(U, V), E, s)$ and see infinitely many expansionary stages.

The strategy α starts the construction of a set *A* and an operator Γ so that $\Gamma(U, A) = \overline{K}$.

On every visit it rectifies Γ on all $n \leq s$.

- If $n \in \overline{K}^{\{s\}}$ enumerate an axiom in Γ of the form $\langle n, U^{\{s\}} \upharpoonright u(n) + 1, A^{\{s\}} \upharpoonright a(n) + 1 \rangle$
- ② If $n \notin \overline{K}^{\{s\}}$ then extract a(n) from A invalidating the axiom.

23/35

Level 2: Working below outcome e

Suppose α is monitoring $I(\Theta(U, V), E, s)$ and see infinitely many expansionary stages.

The strategy α starts the construction of a set A and an operator Γ so that $\Gamma(U, A) = \overline{K}$.

On every visit it rectifies Γ on all $n \leq s$.

- If $n \in \overline{K}^{\{s\}}$ enumerate an axiom in Γ of the form $\langle n, U^{\{s\}} \upharpoonright u(n) + 1, A^{\{s\}} \upharpoonright a(n) + 1 \rangle$
- ② If $n \notin \overline{K}^{\{s\}}$ then extract a(n) from A invalidating the axiom.

Level 2: Working below outcome e

Suppose α is monitoring $I(\Theta(U, V), E, s)$ and see infinitely many expansionary stages.

The strategy α starts the construction of a set A and an operator Γ so that $\Gamma(U, A) = \overline{K}$.

On every visit it rectifies Γ on all $n \leq s$.

- If $n \in \overline{K}^{\{s\}}$ enumerate an axiom in Γ of the form $\langle n, U^{\{s\}} \upharpoonright u(n) + 1, A^{\{s\}} \upharpoonright a(n) + 1 \rangle$
- 2 If $n \notin \overline{K}^{\{s\}}$ then extract a(n) from *A* invalidating the axiom.

Making A low

Definition

A set A is 1-generic if for every c.e. set W viewed as a set of finite binary strings

$$(\exists \tau \subseteq A)(\tau \in W \lor (\forall \mu \supseteq \tau)\mu \notin W)).$$

Theorem (Copestake)

Everey Δ_2^0 1-generic set is low.

For each c.e. set W_e add a strategy β_e ensuring:

 $(\exists \tau \subseteq A)(\tau \in W_e \lor (\forall \mu \supseteq \tau)\mu \notin W_e)$

イロト イポト イラト イラ

Making A low

Definition

A set A is 1-generic if for every c.e. set W viewed as a set of finite binary strings

$$(\exists \tau \subseteq A)(\tau \in W \lor (\forall \mu \supseteq \tau)\mu \notin W)).$$

Theorem (Copestake)

Everey Δ_2^0 1-generic set is low.

For each c.e. set W_e add a strategy β_e ensuring:

$$(\exists \tau \subseteq A)(\tau \in W_e \lor (\forall \mu \supseteq \tau)\mu \notin W_e)$$

Mariya I. Soskova (Faculty of Mathematics arA Locally Definable Set of Low Enumeration D

A (10) A (10)

Making A low

Definition

A set A is 1-generic if for every c.e. set W viewed as a set of finite binary strings

$$(\exists \tau \subseteq A)(\tau \in W \lor (\forall \mu \supseteq \tau)\mu \notin W)).$$

Theorem (Copestake)

Everey Δ_2^0 1-generic set is low.

For each c.e. set W_e add a strategy β_e ensuring:

$$(\exists \tau \subseteq A)(\tau \in W_e \lor (\forall \mu \supseteq \tau)\mu \notin W_e)$$

A (10) A (10)

- Select a threshold $d \in \overline{K}$.
- Wait until α is done correction the operator Γ on elements n ≤ d and set τ = A ↾ a(d) + 1.
- If there is no extension µ ⊇ τ such that µ ∈ W^{s} then the outcome is w.
- If there is a an extension $\mu \supseteq \tau$ such that $\mu \in W$ then make μ an initial segment of *A* and let the outcome be *f*.

- Select a threshold $d \in \overline{K}$.
- Wait until α is done correction the operator Γ on elements n ≤ d and set τ = A ↾ a(d) + 1.
- If there is no extension µ ⊇ τ such that µ ∈ W^{s} then the outcome is w.
- If there is a an extension $\mu \supseteq \tau$ such that $\mu \in W$ then make μ an initial segment of *A* and let the outcome be *f*.

- Select a threshold $d \in \overline{K}$.
- Wait until α is done correction the operator Γ on elements n ≤ d and set τ = A ↾ a(d) + 1.
- If there is no extension µ ⊇ τ such that µ ∈ W^{s} then the outcome is w.
- If there is a an extension µ ⊇ τ such that µ ∈ W then make µ an initial segment of A and let the outcome be f.

- Select a threshold $d \in \overline{K}$.
- Wait until α is done correction the operator Γ on elements n ≤ d and set τ = A ↾ a(d) + 1.
- If there is no extension $\mu \supseteq \tau$ such that $\mu \in W^{\{s\}}$ then the outcome is *w*.
- If there is a an extension µ ⊇ τ such that µ ∈ W then make µ an initial segment of A and let the outcome be f.

Including the set E to force changes

Solution: β will use an agitator.

- **()** Select an agitator $e \in E$.
- **2** As β is working under the assumption that $\Theta(U, V) = E$ so $e \in \Theta(U, V)$ with axiom $\langle e, U_e, V_e \rangle$.
- Sextracting *e* from the set *E* forces *e* out of $\Theta(U, V)$ and $\langle e, U_e, V_e \rangle$ is not valid at further stages. This is called an attack.
- Arrange things so that $U_e \nsubseteq U$ invalidates all axioms in Γ for elements $n \ge d$.
- Solution This moves α's influence on A on elements larger than |µ| and we can preserve µ ⊆ A.

・ロット 御り とうりょうり 一日

Honestification before an attack

- Make sure that $u(d) > \max U_e$ so that $U_e \nsubseteq U$ ensures $\langle d, U \upharpoonright u(n) + 1, A \upharpoonright a(d) + 1 \rangle$ invalid.
- This must be repeated every time the valid axiom for e in ⊖ changes before the attack.
- If this happens infinitely many times then there are no valid axioms for *e* in ⊖ and ⊖(*U*, *V*) ≠ *E*.
- A new outcome *h* is added to signify this.

Honestification

イロト イヨト イヨト イヨト

æ

< 6 b

3 > 4 3

< 6 b

∃ ► < ∃</p>

< 6 b

∃ ► < ∃</p>

< 6 b

3 > 4 3

< 6 b

3 > 4 3

< 6 b

∃ ► < ∃</p>

Bibliography

- S. B. Cooper: Enumeration reducibility, nondeterminitsic computations and relative computability of partial functions. In: K. Ambos-Spies, G. H. Muller, G. E. Sacks (eds.) Recursion Theory Week, Proceedings Oberwolfach 1989, pp 57–110. LNM 1432 (1990)
- S. B. Cooper, A. Sorbi, X. Yi: Cupping and noncupping in the enumeration degrees of Σ⁰₂ sets. Ann. Pure Appl. Logic 82, 317–342 (1996)
- A. H. Lachlan, R. A. Shore: The n-rea enumeration degrees are dense. Arch. Math. Logic 31, 277–285 (1992)
- M. I. Soskova, G. Wu: Cupping Δ⁰₂ enumeration degrees to 0'. In: S. Cooper, B. Löwe, A. Sorbi (eds.) Computation and Logic in the Real World, pp 727–738. LNCS 4497 (2007)

3