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Introduction: What



Problems and Weihrauch reduction

Weihrauch reduction is a way of comparing the computational strength of
various “problems”, represented as partial multifunctions on ωω.

We may think of Weihrauch reduction f ≤W g as a computation of values of
f , given the ability to query g as an oracle exactly once.

Definition
Let f and g be multifunctions on ωω. We say that f ≤W g if there are Turing
operators (Φ,Ψ) such that

1 α ∈ dom f ⇒ Φ(α) ∈ dom g

2 for any α ∈ dom f and β ∈ g(Φ(α)), we have Ψ(α⊕ β) ∈ f(α).
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Enumeration reducibility

Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: a set of natural numbers A is enumeration reducible to another set
B if every enumeration of B uniformly computes an enumeration of A.

Here an enumeration of a set X is a function eX ∈ ωω with ran(eX) = X .

Definition
A ≤e B if there is a c.e. set W such that

A = {n : (∃u) 〈n, u〉 ∈W and Du ⊆ B},

where Du is the uth finite set in a canonical enumeration.

The c.e. set W gives rise to an operator, which we call an enumeration
operator.
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eW -problems and eW -reductions

An eW -problem is a partial multifunction from P(ω) to itself.

Definition
Given problems f, g, we say that f 6eW g if there are enumeration operators
Γ,∆ such that

1 if A ∈ dom f then Γ(A) ∈ dom g,
2 and for any A ∈ dom f and X ∈ g(Γ(A)), ∆(A⊕X) ∈ f(A).

In other words, eW -reduction is just Weihrauch reduction where the problems
operate on P(ω), and enumeration reducibility is our notion of computation.
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Introduction: Why



Motivation for enumeration reducibility

First, enumeration operators have a robust computational structure, and their
use to study problems-as-multifunctions is intrinsically interesting.

Enumeration reducibility gives a notion of computation that works on positive
information, and was introduced several times by various authors who wanted
to extend Turing reducibility to partial functions.

Define P to be P(N) equipped with a binary operation (called application)
given by

AB = {n : ∃m(〈n,m〉 ∈ A ∧Dm ⊆ B)}.
We read application as left associative (e.g. ABC means (AB)C.)

The algebra P] is the substructure of P consisting of the c.e. sets (i.e.
enumeration operators).

Dana Scott proved that both these algebras can interpret the untyped lambda
calculus.
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Motivation from category theory

Second, they are related to an under-studied realizability topos.

A topos is a category theoretic model of a kind of intuitionistic set theory.
Realizability toposes are built from a model of computation (see van Oosten
2008 for an overview of the area).

Kihara wrote a paper “Lawvere-Tierney topologies for computability
theorists”. In it he shows a strong relationship between a generalized form of
Weihrauch reduction and the lattice of subtoposes of the effective topos. He
uses computability to solve open problems about this lattice. For instance, he
shows that there exists no minimal LT topology which is strictly above the
identity topology on the effective topos.

There is a realizability topos where the underlying model of computation is
enumeration reducibility—the topos RT(P,P]). It is not hard to see that there
is a similar relationship between a generalized form of eW -reducibility and
LT topologies on RT(P,P]).
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Why not just use Weihrauch reducibility?

Weihrauch reducibility was introduced to study functions on represented
spaces: pairs (X, δX) where δX : ωω → X is a partial surjection.

Example
A set of natural numbers A can be represented by any enumeration eA of A.

We can represent a (multi)function f on P(ω) by a function f̂ on ωω that
maps enumerations of the set A to the set of enumerations of sets in f(A).

We can say that f is reducible to g if f̂ ≤W ĝ.

Indeed, if f ≤eW g then f̂ ≤W ĝ.

Problem: The converse need not be true! Different enumeration of A may be
mapped to enumerations of different instances of g, which in turn produce
different solutions to f(A).
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Basic results about eW -reduction



The eW degrees form a lattice

By identifying problems that are reducible to each other we get the eW
degrees.

Proposition
The eW degrees form a distributive lattice with join and meet as in the
Weihrauch degrees.

The least upper bound of f and g is f ∪ g with instances
{0} × dom f ∪ {1} × dom g and (f ∪ g)(0, X) = {0} × f(X) and
f ∪ g(1, Y ) = {0} × g(Y ).

The greatest lower bound of f and g is f ∩ g with instances dom f × dom g
and (f ∩ g)(X,Y ) = {0} × f(X) ∪ {1} × g(Y ).
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The eW degrees extend the Weihrauch

Turing reducibility can be captured using ≤e: if α, β ∈ ωω then α ≤T β if
and only if Gα ≤e Gβ .

We call sets (such as Gα) that can enumerate their complements total. Thus
DT lives inside De as the total degrees.

This extends to the Weihrauch setting:

Proposition
There is an embedding of the Weihrauch degrees into the eW degrees.

We map a function f on ωω to a function f̃ on P(ω) by replacing every
instance α of f with Gα and setting Gβ ∈ f̃(Gα) for every β ∈ f(α).

It is straightforward to check that f ≤W g if and only if f̃ 6eW g̃.
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The eW degrees extend the Weihrauch

Proposition
This mapping is not surjective.

If X is 1-generic and Gα ≤e X for some α ∈ ωω then α is computable.

Let g :⊆ P⇒ P have domain consisting of a single 1-generic set X , to
which every element of P is a solution. Suppose that there is a
Weihrauch problem f with g ≡eW f̃ .

Since every element in the domain of f̃ is the graph of some function,
Γ : dom g → dom f̃ occurring in a reduction g 6eW f̃ must send X to a
computable element.

But now a reduction f̃ 6eW g must send that computable element of
dom f̃ to X , requiring X to be a c.e. set, contradicting 1-genericity.
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Sample problems



Choice problems

The choice problem for a represented topological space X , CX , maps a
nonempty closed subset A of X to a member of A. We can represent such
problems differently in the Weihrauch setting and in the enumeration
Weihrauch setting.

Example
Consider C2ω

In the Weihrauch setting we represent a closed set F via an enumeration
of a set U ⊆ 2<ω with F = 2ω r [U ]≺ 6= ∅. A member of F can be
represented by itself.

In the enumeration Weihrauch case we represent F by U . A member of
F can be represented by the set of its initial segments.

We can compare both of these problems in the eW setting by considering C̃2ω

and C2ω .
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C− and C̃−

The eW versions of choice problems tend to fall strictly above their
Weihrauch counterparts.

Proposition

C̃2ω <eW C2ω .

The reduction is straightforward.
Suppose C2ω 6eW C̃2ω via the enumeration operators Γ and Λ.
Miller and co-authors proved that there are sets U of nontotal
enumeration degree such that: the set of total sets below U is a Scott set
S and the closed set represented by U is nonempty and consists of total
sets above U .
Since all instances of C̃2ω are total sets Γ(U) = α is (the graph of) some
total function in S.
So C̃2ω(α) has a solution β in S.
But then Λ(U ⊕ β) ≤e U and cannot be a member of the closed set
coded by U .
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CN & UCN

The first separation that develops in the eW setting concerns CN and its
restriction to singletons, UCN.

Fact. C̃N ≡eW ŨCN.

Proposition
UCN <eW CN.

The reduction is immediate from the fact that unique choice is just a
restriction of closed choice.
If CN 6eW UCN witnessed by (Γ,Λ) then Γ(∅) = Nr {k} is the
complement of a singleton.
For any other A ∈ domCN, Γ(A) ⊇ Γ(∅) and is the complement of a
singleton so Γ(A) = Γ(∅).
But then Λ(∅ ⊕ {k}) = {n} is a subset of any Λ(A⊕ {k}) including
those A that contain n.
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C2N and WKL

WKL takes as input an infinite binary tree T and produces a path in [T ].

Fact. C̃2N ≡eW W̃KL.

Proposition
C2N |eW WKL

Suppose in each case below that (Γ,∆) witnesses the specified reduction.
1 (C2N 66eW WKL). We have that ∅ is an instance of C2N . So Γ(∅) is a c.e.

tree that is a subtree of Γ(A) for any other instance A. Γ(∅) has ∆0
3

solutions which won’t help sufficiently complicated A to enumerate a
member.

2 (WKL 66eW C2N). Consider the full tree T = 2<ω, and the closed set
represented by Γ(T ). If S is any other tree then Γ(S) ⊆ Γ(T ) and so
solutions to Γ(T ) are solutions to Γ(S).

In fact, for very similar reasons, we even have WKL |eW CNN!
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A zoo in the making

Figure: Reducibilities among choice problems and König’s lemmas
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The problem id

Definition
The problem id is the identity function on P.

id 6eW f if and only if f has a c.e. instance.

f 6eW id if and only if there is an enumeration operator Γ such that for
all A ∈ dom f , Γ(A) ∈ f(A).

So if f, g 6eW id then f 6eW g if an only if there is an enumeration
operator Γ so that for every element A ∈ dom f we have Γ(A) ∈ dom g.
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The Dyment lattice

The Dyment lattice was introduced by Dyment (later Skvortsova) in 1976 and
studied by her and Andrea Sorbi. It is the enumeration analog of Medvedev
reducibility.

Definition
Let A, B be set of sets of natural numbers. We say that A ≤D B (Dyment
reducible to) if there is an enumeration operator Γ so that for every element
B ∈ B we have Γ(B) ∈ A.

So the interval [∅, id] in the eW degrees is isomorphic to the reverse ordering
on the Dyment lattice.

(Echoing that the interval [∅, id] in the W degrees is isomorphic to the reverse
ordering on the Medvedev lattice.)
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The structure of the eW degrees



The W /eW relationship

Question
Are the Weihrauch and eW degrees non-isomorphic? Is there a first order
difference between them?

The answer to this turns out to be affirmative.
1 The Dyment lattice is not elementary equivalent to the Medvedev lattice.
2 id is definable in the the Weihrauch degrees and in the eW degrees by

the same formula.
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Definability in the Dyment lattice

In the Medvedev lattice we have a copy of the Turing degrees: degT (A) is
mapped to degM ({A}). The degree of {(Ψ, B) : ΨB = A & B >T A} is a
strong maximal cover of degM ({A}).

Theorem (Dyment)
A Medvedev degree is Turing if and only if it has a strong maximal cover.

In the Dyment lattice we have a copy of the enumeration degrees De:
dege(A) is mapped to degD({A}).

Theorem (Dyment)
1 There are sets A and B such that A ≤e B but {A} �D {A,B}.
2 A Dyment degree is enumeration if and only if it has a strong maximal

cover.

The e-degrees are downwards dense, but the Turing degrees are not.
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Definability of id

Theorem (Lempp, Miller, Pauly, Soskova, and Valenti 2023)
In the Weihrauch degrees id is the greatest degree that is a strong minimal
cover.

We will see that the same definition works in the eW setting.

Lemma 0. id is a strong minimal cover of id restricted to non-c.e sets.

Lemma 1. If f is a problem whose eW degree is a strong minimal cover then
it contains a problem with singleton domain.

Lemma 2. If f has singleton domain and is not below id then f is not a
strong minimal cover.
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Lemma 1

Lemma 1. If f is a problem whose eW degree is a strong minimal cover then
it contains a problem with singleton domain.

Suppose f is a strong minimal cover of g.

First we build h with finite domain {(n0, X0), . . . (nk, Xk)} where
Xi ∈ dom f and ni 6= nj and with h(ni, Xi) = f(Xi).

At even stages s = 2e we check whether f 6eW hs via (Γe,Λe) and if
not we preserve the difference: If Γe(X) = (k, Y ) that is not in the
domain of hs then we promise never to use k again.

As odd stages s = 2e+ 1 we extend hs to h∗s allowing all nonforbidden
(n,X) in the domain. Since h∗ is equivalent to f it is not reducible to g
via (Γe,Λe). We preserve this difference by adding a problematic
instance to the domain of hs.

We must stop at some even stage or else we contradict that f is a strong
minimal cover of g.
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Lemma 1 cont.

Lemma 1. If f is a problem whose eW degree is a strong minimal cover then
it contains a problem with singleton domain.

We have f ≡eW h where domh = {Y0, . . . Yk} where Yi ∩ Yj = ∅ for
i 6= j.

Since h � {Y0} ∪ h � {Y1, . . . Yk} = h and h is a strong minimal cover
one of the two sides must be equivalent to h.

Inductively we reduce h to a problem with singleton domain.
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Lemma 2

Lemma 2. If f has singleton domain {A} and is not below id then f is not a
strong minimal cover.

Suppose f is as above and g <eW f .

Build a set D so that f ∩ χD <eW f and f ∩ χD �eW g.

Since f �eW id we know that f(A) �e A. Since every instance of
f ∩ χD has a computable solution, we know that f �eW f ∩ χD.

Suppose (Γ,Λ) are a threat to making f ∩ χD 6eW g.

If for some n we have that Γ(A,n) = Y is an instance of g and for every
X to solution to g(Y ) we have that Λ(A,n,X) = {0} × f(A). Then
f 6eW g contradicting our choice of g.

So fix n such that D(n) is not yet determined. If Γ(A,n) = Y is an
instance of g then for some solution to g(Y ) , say X we have that
Λ(A,n,X) = {1} × {i}. Set D(n) = 1− i.
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One more consequence of the definability of id

Lewis-Pye, Nies, and Sorbi and independently Shafer proved that the theory
of the Medvedev degrees is computably isomorphic to third order arithmetic.

The definability of the total degrees in the enumeration degrees and the
enumeration degrees in the Dyment degrees allow us to transfer this result.

Theorem
The theories of the Dyment degrees and of the eW degrees are each
computably isomorphic to third order arithmetic.
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The End: Thank you!
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