Definability and interpretability in the Σ_2^0 enumeration degrees

Mariya I. Soskova¹

Faculty of Mathematics and Informatics Sofia University

joint work with H. Ganchev

¹Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework Programme.

Mariya I. Soskova (Faculty of Mathematics a Definability and interpretability in the Σ_2^0 enum

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

- $A \equiv_e B$ iff $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = [A]_{\equiv_e}$ and $D_e = \{d_e(A) \mid A \subseteq \mathbb{N}\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

• $A \equiv_e B$ iff $A \leq_e B$ and $B \leq_e A$.

• $d_e(A) = [A]_{\equiv_e}$ and $D_e = \{d_e(A) \mid A \subseteq \mathbb{N}\}.$

• $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.

- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

イロト イポト イラト イラト

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

- $A \equiv_e B$ iff $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = [A]_{\equiv_e}$ and $D_e = \{d_e(A) \mid A \subseteq \mathbb{N}\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

- $A \equiv_e B$ iff $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = [A]_{\equiv_e}$ and $D_e = \{d_e(A) \mid A \subseteq \mathbb{N}\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

- $A \equiv_e B$ iff $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = [A]_{\equiv_e}$ and $D_e = \{d_e(A) \mid A \subseteq \mathbb{N}\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.

 D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

- $A \equiv_e B$ iff $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = [A]_{\equiv_e}$ and $D_e = \{d_e(A) \mid A \subseteq \mathbb{N}\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.

 D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

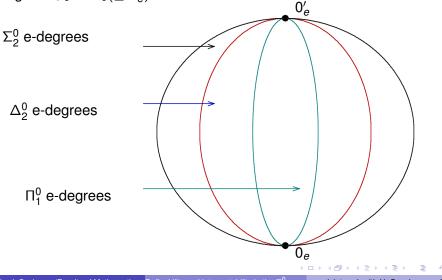
Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

- $A \equiv_e B$ iff $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = [A]_{\equiv_e}$ and $D_e = \{d_e(A) \mid A \subseteq \mathbb{N}\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- *D_e* = ⟨*D_e*, ≤, ∨,', **0**_{*e*}⟩ is an upper semi-lattice with jump operation and least element.

- ロ ト - (同 ト - (回 ト -) 回 ト -) 回

The jump operation gives rise to the local structure of the enumeration degrees $\mathcal{G}_e = \mathcal{D}_e (\leq 0'_e)$.



The local structure \mathcal{G}_e can be partitioned into classes with respect to the jump hierarchy:

Definition

A degree $\mathbf{a} \in \mathcal{G}_e$ is low if $\mathbf{a}' = \mathbf{0}'_e$.

Or in terms of its relation ship to the Turing degrees.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as $\mathcal{TOT} = \iota(D_T)$.

- Every low e-degree is Δ_2^0 .
- Every total e-degree in \mathcal{G}_e is Δ_2^0 .
- There are properly Σ_2^0 degrees.

The local structure \mathcal{G}_e can be partitioned into classes with respect to the jump hierarchy:

Definition

A degree $\mathbf{a} \in \mathcal{G}_e$ is low if $\mathbf{a}' = \mathbf{0}'_e$.

Or in terms of its relation ship to the Turing degrees.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as $TOT = \iota(D_T)$.

- Every low e-degree is Δ_2^0 .
- Every total e-degree in \mathcal{G}_e is Δ_2^0 .
- There are properly Σ_2^0 degrees.

The local structure \mathcal{G}_e can be partitioned into classes with respect to the jump hierarchy:

Definition

A degree $\mathbf{a} \in \mathcal{G}_e$ is low if $\mathbf{a}' = \mathbf{0}'_e$.

Or in terms of its relation ship to the Turing degrees.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as $TOT = \iota(D_T)$.

- Every low e-degree is Δ_2^0 .
- Every total e-degree in \mathcal{G}_e is Δ_2^0 .
- There are properly Σ_2^0 degrees.

The local structure \mathcal{G}_e can be partitioned into classes with respect to the jump hierarchy:

Definition

A degree $\mathbf{a} \in \mathcal{G}_e$ is low if $\mathbf{a}' = \mathbf{0}'_e$.

Or in terms of its relation ship to the Turing degrees.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as $TOT = \iota(D_T)$.

- Every low e-degree is Δ_2^0 .
- Every total e-degree in \mathcal{G}_e is Δ_2^0 .
- There are properly Σ_2^0 degrees.

The local structure \mathcal{G}_e can be partitioned into classes with respect to the jump hierarchy:

Definition

A degree $\mathbf{a} \in \mathcal{G}_e$ is low if $\mathbf{a}' = \mathbf{0}'_e$.

Or in terms of its relation ship to the Turing degrees.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as $TOT = \iota(D_T)$.

- Every low e-degree is Δ⁰₂.
- Every total e-degree in \mathcal{G}_e is Δ_2^0 .
- There are properly Σ_2^0 degrees.

< ロ > < 同 > < 回 > < 回 >

4/46

Characterizing the theory of these structures

Theorem (Slaman and Woodin)

The theory of \mathcal{D}_e is computably isomorphic to the theory of second order arithmetic. The theory of \mathcal{G}_e is undecidable.

Theorem (Kent)

The theory of the Δ_2^0 enumeration degrees is computably isomorphic to the theory of first order arithmetic.

Question

Is the theory of \mathcal{G}_e computably isomorphic to first order arithmetic?

Characterizing the theory of these structures

Theorem (Slaman and Woodin)

The theory of \mathcal{D}_e is computably isomorphic to the theory of second order arithmetic. The theory of \mathcal{G}_e is undecidable.

Theorem (Kent)

The theory of the Δ_2^0 enumeration degrees is computably isomorphic to the theory of first order arithmetic.

Question

Is the theory of \mathcal{G}_e computably isomorphic to first order arithmetic?

5/46

Characterizing the theory of these structures

Theorem (Slaman and Woodin)

The theory of \mathcal{D}_e is computably isomorphic to the theory of second order arithmetic. The theory of \mathcal{G}_e is undecidable.

Theorem (Kent)

The theory of the Δ_2^0 enumeration degrees is computably isomorphic to the theory of first order arithmetic.

Question

Is the theory of \mathcal{G}_e computably isomorphic to first order arithmetic?

イロト イヨト イヨト イヨト

The general plan: Coding standard models of arithmetic

Given a sentence in the langauge of true arithmetic φ we want to be able to computably translate it into a sentence φ_e in the langauge of the \mathcal{G}_e so that:

$\langle \mathbb{N},+,*\rangle\vDash\varphi \text{ iff }\mathcal{G}_{\pmb{e}}\vDash\varphi_{\pmb{e}}$

- I Represent $\langle \mathbb{N}, +, * \rangle$ as a partial order (PO).
- II Embed this partial order in \mathcal{G}_e and code it with a finite number of parameters.
- III Find a first order condition on the parameters, which ensures that they code a SMA.

イロト 不得 トイヨト イヨト

The general plan: Coding standard models of arithmetic

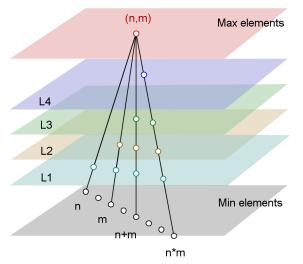
Given a sentence in the langauge of true arithmetic φ we want to be able to computably translate it into a sentence φ_e in the langauge of the \mathcal{G}_e so that:

 $\langle \mathbb{N},+,*\rangle\vDash\varphi\text{ iff }\mathcal{G}_{\pmb{e}}\vDash\varphi_{\pmb{e}}$

- I Represent $\langle \mathbb{N}, +, * \rangle$ as a partial order (PO).
- II Embed this partial order in \mathcal{G}_e and code it with a finite number of parameters.
- III Find a first order condition on the parameters, which ensures that they code a SMA.

A special type of partial order

We can represent an SMA $\langle \mathbb{N},+,*\rangle$ as follows:



< 回 > < 三 > < 三 >

First tool: Coding antichains

$\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}, \mathbf{q}) \iff \mathbf{x} \le \mathbf{a}$ is a minimal solution to $\mathbf{x} \ne (\mathbf{x} \lor \mathbf{p}) \land (\mathbf{x} \lor \mathbf{q}).$

Theorem (Slaman, Woodin)

Let $\{X_i \mid i \in \mathbb{N}\}\$ be a system of incomparable sets uniformly enumeration reducible to a low set A with degree **a**. There are Σ_2^0 e-degrees **p** and **q**, such that for arbitrary Σ_2^0 degree **x**

$$\mathcal{G}_{e} \models \varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}, \mathbf{q}) \iff \exists i [X_{i} \in \mathbf{x}].$$

A (1) > A (2) > A (2) >

8/46

Goal: Embed the PO so that each level is well presented.

Second tool: *K*-pairs

Iskander Kalimullin: Definability of the jump operator in the enumeration degrees Journal of Mathematical Logic (2003)

Definition

Let *A* and *B* be a pair sets of natural numbers. The pair (*A*, *B*) is a \mathcal{K} -pair (e-ideal) if there exists a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

A (10) A (10) A (10)

\mathcal{K} -pairs: A trivial example

Example

Let V be a c.e set. Then (V, A) is a \mathcal{K} -pair for any set of natural numbers A.

Let $W = V \times \mathbb{N}$. Then $V \times A \subseteq W$ and $\overline{V} \times \overline{A} \subseteq \overline{W}$.

We will only be interested in non-trivial \mathcal{K} -pairs.

A D N A B N A B N A B

\mathcal{K} -pairs: A trivial example

Example

Let V be a c.e set. Then (V, A) is a \mathcal{K} -pair for any set of natural numbers A.

Let $W = V \times \mathbb{N}$. Then $V \times A \subseteq W$ and $\overline{V} \times \overline{A} \subseteq \overline{W}$.

We will only be interested in non-trivial \mathcal{K} -pairs.

4 A 1

$\mathcal K\text{-pairs:}$ A more interesting example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

$$\bullet s_{\mathcal{A}}(x,y) \in \{x,y\}$$

3 If $x \in A$ or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

$\mathcal K\text{-pairs:}$ A more interesting example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

$$s_{\mathcal{A}}(x,y) \in \{x,y\}$$

If
$$x \in A$$
 or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

< 日 > < 同 > < 回 > < 回 > < □ > <

$\mathcal K\text{-pairs:}$ A more interesting example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

$$s_{\mathcal{A}}(x,y) \in \{x,y\}$$

If
$$x \in A$$
 or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

・ロト ・ 四ト ・ ヨト ・ ヨト

An order theoretic characterization of \mathcal{K} -pairs

Theorem (Kalimullin)

(A, B) is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ have the following property:

$$\mathcal{K}(\textbf{a},\textbf{b}) \leftrightarrows (\forall \textbf{x})((\textbf{a} \lor \textbf{x}) \land (\textbf{b} \lor \textbf{x}) = \textbf{x})$$

A pair of degrees (\mathbf{a}, \mathbf{b}) will be called a \mathcal{K} -pair if and only if there are representatives $A \in \mathbf{a}$ and $B \in \mathbf{b}$ such that (A, B) is a \mathcal{K} -pair.

A B b 4 B b

Properties of *K*-pairs

Theorem (Kallimulin)

- If (a, b) are a nontrivial Σ⁰₂ K-pair then a and b are low and do not bound any total degree.
- 2 Every nontrivial \mathcal{K} -pair is a minimal pair.
- **3** Every nonzero Δ_2^0 enumeration degree bounds a \mathcal{K} -pair.
- The set of degrees b which form a K-pair with a fixed degree a is an ideal.

K-systems

Definition

We shall say that a system of nonzero degrees $\{\mathbf{a}_i \mid i \in I\} \ (|I| \ge 2)$ is a \mathcal{K} -system, if $\mathcal{K}(\mathbf{a}_i, \mathbf{a}_j)$ for each $i, j \in I$, such that $i \neq j$.

• Every \mathcal{K} -system is an antichain.

• If $\{\mathbf{a}_i \mid i \in I\}$ is a \mathcal{K} -system and $i_1 \neq i_2 \in I$ then $\{\mathbf{a}_{i_1} \lor \mathbf{a}_{i_2}\} \cup \{\mathbf{a}_i \mid i \in I, i \neq i_1, i_2\}$ is a \mathcal{K} -system.

Theorem

Let A be a Δ_2^0 non-c.e. set. There is a sequence $\{A_i\}_{i < \omega}$ uniformly enumeration reducible to A such that $\{d_e(A_i)\}_{i < \omega}$ is a \mathcal{K} -system.

K-systems

Definition

We shall say that a system of nonzero degrees $\{\mathbf{a}_i \mid i \in I\} \ (|I| \ge 2)$ is a \mathcal{K} -system, if $\mathcal{K}(\mathbf{a}_i, \mathbf{a}_j)$ for each $i, j \in I$, such that $i \neq j$.

- Every \mathcal{K} -system is an antichain.
- If $\{\mathbf{a}_i \mid i \in I\}$ is a \mathcal{K} -system and $i_1 \neq i_2 \in I$ then $\{\mathbf{a}_{i_1} \lor \mathbf{a}_{i_2}\} \cup \{\mathbf{a}_i \mid i \in I, i \neq i_1, i_2\}$ is a \mathcal{K} -system.

Theorem

Let A be a Δ_2^0 non-c.e. set. There is a sequence $\{A_i\}_{i < \omega}$ uniformly enumeration reducible to A such that $\{d_e(A_i)\}_{i < \omega}$ is a \mathcal{K} -system.

A (10) A (10) A (10) A

K-systems

Definition

We shall say that a system of nonzero degrees $\{\mathbf{a}_i \mid i \in I\} \ (|I| \ge 2)$ is a \mathcal{K} -system, if $\mathcal{K}(\mathbf{a}_i, \mathbf{a}_j)$ for each $i, j \in I$, such that $i \neq j$.

• Every \mathcal{K} -system is an antichain.

• If
$$\{\mathbf{a}_i \mid i \in I\}$$
 is a \mathcal{K} -system and $i_1 \neq i_2 \in I$ then $\{\mathbf{a}_{i_1} \lor \mathbf{a}_{i_2}\} \cup \{\mathbf{a}_i \mid i \in I, i \neq i_1, i_2\}$ is a \mathcal{K} -system.

Theorem

Let A be a Δ_2^0 non-c.e. set. There is a sequence $\{A_i\}_{i < \omega}$ uniformly enumeration reducible to A such that $\{d_e(A_i)\}_{i < \omega}$ is a \mathcal{K} -system.

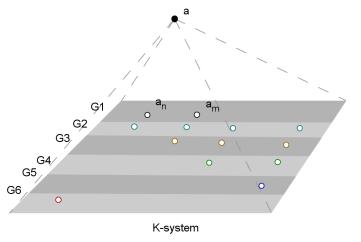
Construction:

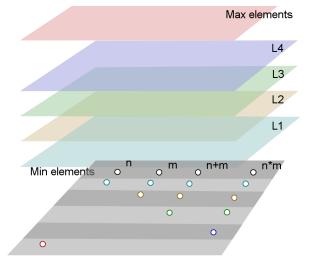
Let $\mathbf{a} = d_e(A)$ be half of a nontrivial \mathcal{K} -pair. (Hence a low nonzero Δ_2^0 enumeration degree.)

Let $\{A_i\}_{i < \omega}$ be the uniformly e-reducible to A sequence whose degrees $\{\mathbf{a}_i\}_{i < \omega}$ form a \mathcal{K} -system. This is a *well presented system*.

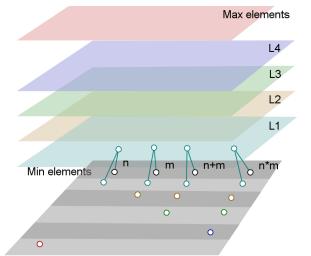
We computably divide the system $\{\mathbf{a}_i\}_{i < \omega}$ into six infinite groups.

To every pair of elements from G1 we assign 4 unique elements of G2, 3 of G3, 2 of G4 and 1 of each G5 and G6.

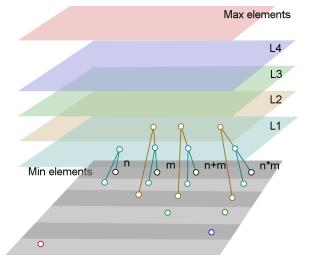




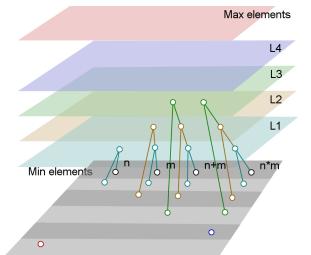
The elements of G1 will represent the natural numbers. There are parameters \mathbf{p}_0 and \mathbf{q}_0 such that $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_0, \mathbf{q}_0)$ defines them.



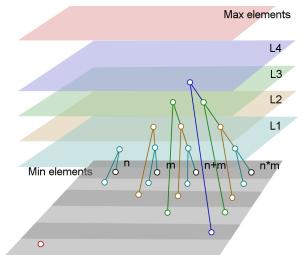
L1 is constructed from lub's of elements from G1 and G2. There are parameters \mathbf{p}_1 and \mathbf{q}_1 such that $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_1, \mathbf{q}_1)$ defines them.



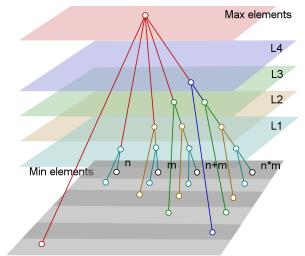
L2 is constructed from lub's of elements from L1 and G3. There are parameters \mathbf{p}_2 and \mathbf{q}_2 such that $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_2, \mathbf{q}_2)$ defines them.



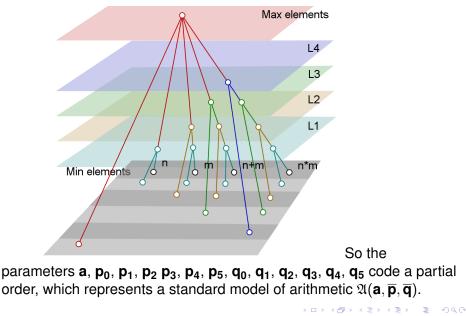
L3 is constructed from lub's of elements from L2 and G4. There are parameters \mathbf{p}_3 and \mathbf{q}_3 such that $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_3, \mathbf{q}_3)$ defines them.



L4 is constructed from lub's of elements from L3 and G5. There are parameters \mathbf{p}_4 and \mathbf{q}_4 such that $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_4, \mathbf{q}_4)$ defines them.



Finally the maximal elements are constructed from lub's of elements from L1, L2, L3, L4 and G6. $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_5, \mathbf{q}_5)$ defines them.



Given parameters **a**, **p**₀, **p**₁, **p**₂ **p**₃, **p**₄, **p**₅, **q**₀, **q**₁, **q**₂, **q**₃, **q**₄, **q**₅, let $PO = \{\mathbf{x} \mid \varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_i, \mathbf{q}_i) \text{ for some } i = 0, 1, 2, 3, 4, 5\}.$ We can define a first order condition $ST_0(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ so that the partial order (PO, \leq) satisfies:

- (M1) Every element belongs to one of six levels in the PO.
- (M2) For every pair of minimal elements there exists a unique maximal element above them at distance 1 from the first and 2 from the second.
- (M3) For every maximal element *m* there are 4 unique minimal elements below it, such that the first one is at distance 1 from *m*, the second is at distance 2, the third at distance 3 and the fourth at distance 4 from *m*.

不同 いんちいんちいしち

If $(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ satisfy M1, M2, M3 then we have definable relations which represent two binary operations:

 R_+ The relation

 $\begin{array}{l} R_+(x,y,z) =_{def} \min(x)\&\min(y)\&\min(z)\&\exists m(\max(m)\&x<_1\\ m\&\ y<_2\ m\&\ z<_3\ m) \ \text{defines an operation }+; \end{array}$

R_{*} The relation

 $R_*(x, y, z) =_{def} \min(x) \& \min(y) \& \min(z) \& \exists m(\max(m) \& x <_1 m \& y <_2 m \& z <_4 m) \text{ defines an operation } *;$

Then $(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ codes a structure defined as $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}}) = \langle \{x \in PO \mid \min(x)\}, +, * \rangle.$

We add requirements to ST_0 which ensure that $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ is a model of arithmetic which contains a standard part.

If $(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ satisfy M1, M2, M3 then we have definable relations which represent two binary operations:

 R_+ The relation

 $\begin{array}{l} R_+(x,y,z) =_{def} \min(x)\&\min(y)\&\min(z)\&\exists m(\max(m)\&x<_1\\ m\&\ y<_2\ m\&\ z<_3\ m) \ \text{defines an operation }+; \end{array}$

R_{*} The relation

 $R_*(x, y, z) =_{def} \min(x) \& \min(y) \& \min(z) \& \exists m(\max(m) \& x <_1 m \& y <_2 m \& z <_4 m) \text{ defines an operation } *;$

Then $(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ codes a structure defined as $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}}) = \langle \{x \in PO \mid \min(x)\}, +, * \rangle$.

We add requirements to ST_0 which ensure that $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ is a model of arithmetic which contains a standard part.

If $(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ satisfy M1, M2, M3 then we have definable relations which represent two binary operations:

 R_+ The relation

 $\begin{array}{l} R_+(x,y,z) =_{def} \min(x)\&\min(y)\&\min(z)\&\exists m(\max(m)\&x<_1\\ m\&\ y<_2\ m\&\ z<_3\ m) \ \text{defines an operation }+; \end{array}$

R_{*} The relation

 $\begin{aligned} R_*(x, y, z) =_{def} \min(x) \& \min(y) \& \min(z) \& \exists m(\max(m) \& x <_1 \\ m \& y <_2 m \& z <_4 m) \text{ defines an operation } *; \end{aligned}$

Then $(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ codes a structure defined as $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}}) = \langle \{x \in PO \mid \min(x)\}, +, * \rangle$.

We add requirements to ST_0 which ensure that $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ is a model of arithmetic which contains a standard part.

ヘロト 不通 とうき とうとう ほう

Isolating parameters which code SMA'a

Suppose that we can ask additionally that $ST_0(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ ensures:

- **a** is half of a nontrivial \mathcal{K} -pair;
- The minimal elements in *PO* form a \mathcal{K} -system.

Let **b** be such that **a** and **b** are a \mathcal{K} -pair.

If we ask additionally that the model coded bolew **a** is embedded in all models coded below **b**, then $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ will be embedded into a SMA and hence will be itself a SMA.

A B F A B F

Isolating parameters which code SMA'a

Suppose that we can ask additionally that $ST_0(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ ensures:

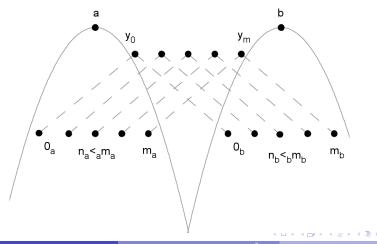
- **a** is half of a nontrivial \mathcal{K} -pair;
- The minimal elements in *PO* form a \mathcal{K} -system.

Let **b** be such that **a** and **b** are a \mathcal{K} -pair.

If we ask additionally that the model coded bolew **a** is embedded in all models coded below **b**, then $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ will be embedded into a SMA and hence will be itself a SMA.

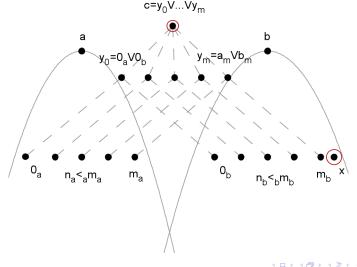
Comparison maps

For every model $\mathfrak{A}(\mathbf{b}, \overline{\mathbf{p}}', \overline{\mathbf{q}}')$ we ask that $\mathcal{M}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}}, \mathbf{b}, \overline{\mathbf{p}}', \overline{\mathbf{q}}')$ holds: $\forall m_a \in \mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ there is an $m_b \in \mathfrak{A}(\mathbf{b}, \overline{\mathbf{p}}', \overline{\mathbf{q}}')$ and an antichain (y_0, y_1, \dots, y_m) coded by parameters \mathbf{c}, \mathbf{p}'' and \mathbf{q}'' such that:



Comparison maps

If $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ is an SMA then for every $\mathfrak{A}(\mathbf{b}, \overline{\mathbf{p}}', \overline{\mathbf{q}}')$ the condition $\mathcal{M}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}}, \mathbf{b}, \overline{\mathbf{p}}', \overline{\mathbf{q}}')$ is true.



SMA condition

If the property "**x** and **y** form a \mathcal{K} -pair" is first order definable in the Σ_2^0 e-degrees by the formula $\mathcal{LK}(\mathbf{x}, \mathbf{y})$ then:

Theorem

There are first order conditions ST_0 and \mathcal{M} such that if $\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}}$ satisfy:

 $ST_0(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ and

 $\exists b(\mathcal{LK}(a,b) \& \forall \overline{p'}, \forall \overline{q'}[ST_0(b,\overline{p}',\overline{q}') \Longrightarrow \mathcal{M}(a,\overline{p},\overline{q},b,\overline{p}',\overline{q}')]$

then $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ is a standard model of arithmetic.

4 E N 4 E N

An order theoretic characterization of \mathcal{K} -pairs

Theorem (Kalimullin)

(A, B) is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ have the following property:

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (orall \mathsf{x} \in \mathcal{D}_{\mathsf{e}})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to check that:

$$(\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}$$

for all $\mathbf{x} \in \mathcal{G}_e$?

< 6 b

An order theoretic characterization of \mathcal{K} -pairs

Theorem (Kalimullin)

(A, B) is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ have the following property:

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x} \in \mathcal{D}_{\mathsf{e}})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to check that:

$$(\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}$$

for all $\mathbf{x} \in \mathcal{G}_{e}$?

Definability of \mathcal{K} -pairs

Theorem (Kalimullin)

If (A, B) is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)$

- If a and b are Δ⁰₂ then C is also Δ⁰₂ and K(a, b) ensures "a and b are a true K-pair".
- If a and b are properly Σ⁰₂ then C is at best Δ⁰₃. So it is possible that there is a fake *K*-pair a and b such that

$$\mathcal{G}_{e} \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_{e} \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$$

(4) (2) (4) (2)

Definability of *K*-pairs

Theorem (Kalimullin)

If (A, B) is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)$

- If a and b are Δ⁰₂ then C is also Δ⁰₂ and K(a, b) ensures "a and b are a true K-pair".
- If a and b are properly Σ⁰₂ then C is at best Δ⁰₃. So it is possible that there is a fake *K*-pair a and b such that

$$\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_e \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$$

Definability of \mathcal{K} -pairs

Theorem (Kalimullin)

If (A, B) is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)$

- If a and b are Δ⁰₂ then C is also Δ⁰₂ and K(a, b) ensures "a and b are a true K-pair".
- If **a** and **b** are properly Σ⁰₂ then *C* is at best Δ⁰₃. So it is possible that there is a fake *K*-pair **a** and **b** such that

$$\mathcal{G}_{e} \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_{e} \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$$

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The \mathcal{K} -cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}.$

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

< ロ > < 同 > < 回 > < 回 >

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{a} \lor \mathbf{c}$$

 $a \le c$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}.$

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Theorem (S,Wu)

Every nonzero Δ_2^0 enumeration degree **a** is low-cuppable, i.e. there is a low **b** such that $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$.

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable nonzero Σ_2^0 enumeration degrees.

Question

Are all cuppable degrees also low-cuppable?

Theorem (S,Wu)

Every nonzero Δ_2^0 enumeration degree **a** is low-cuppable, i.e. there is a low **b** such that $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$.

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable nonzero Σ_2^0 enumeration degrees.

Question

Are all cuppable degrees also low-cuppable?

Theorem (S,Wu)

Every nonzero Δ_2^0 enumeration degree **a** is low-cuppable, i.e. there is a low **b** such that $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$.

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable nonzero Σ_2^0 enumeration degrees.

Question

Are all cuppable degrees also low-cuppable?

4 A N

A B F A B F

Cupping 0'_e-splittings

Theorem

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low-cuppable or **v** is low-cuppable.

Proof:

Uses a construction very similar to the construction of a non-splitting enumeration degree.

A non-splitting theorem

Theorem (S)

There is a degree $\mathbf{a} < \mathbf{0}'_e$ such that no pair of incomplete Σ_2^0 degrees \mathbf{u} and \mathbf{v} above \mathbf{a} splits $\mathbf{0}'_e$.

We build a Σ_2^0 set *A* and an auxiliary Π_1^0 set *E* so that:

 $\mathcal{N}_\Phi:\Phi(\textbf{\textit{A}})\neq \textbf{\textit{E}}$

$\mathcal{P}_{\Theta,U,V}:\Theta(U\oplus V)=E\Rightarrow \exists \Gamma, \Lambda(\Gamma(U\oplus A)=\overline{K}\vee\Lambda(V\oplus A)=\overline{K})$

Corollary

There exists an incomplete Σ_2^0 e-degree **a**, such that for every pair of Σ_2^0 enumeration degrees **u** and **v** with $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ either $\mathbf{u} \vee \mathbf{a} = \mathbf{0}'_e$ or $\mathbf{v} \vee \mathbf{a} = \mathbf{0}'_e$

A non-splitting theorem

Theorem (S)

There is a degree $\mathbf{a} < \mathbf{0}'_e$ such that no pair of incomplete Σ_2^0 degrees \mathbf{u} and \mathbf{v} above \mathbf{a} splits $\mathbf{0}'_e$.

We build a Σ_2^0 set *A* and an auxiliary Π_1^0 set *E* so that:

 $\mathcal{N}_\Phi:\Phi(\textbf{\textit{A}})\neq\textbf{\textit{E}}$

 $\mathcal{P}_{\Theta,U,V}:\Theta(U\oplus V)=E\Rightarrow \exists \Gamma, \Lambda(\Gamma(U\oplus A)=\overline{K}\vee\Lambda(V\oplus A)=\overline{K})$

Corollary

There exists an incomplete Σ_2^0 e-degree **a**, such that for every pair of Σ_2^0 enumeration degrees **u** and **v** with $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ either $\mathbf{u} \vee \mathbf{a} = \mathbf{0}'_e$ or $\mathbf{v} \vee \mathbf{a} = \mathbf{0}'_e$

A non-splitting theorem

Theorem (S)

There is a degree $\mathbf{a} < \mathbf{0}'_e$ such that no pair of incomplete Σ_2^0 degrees \mathbf{u} and \mathbf{v} above \mathbf{a} splits $\mathbf{0}'_e$.

We build a Σ_2^0 set *A* and an auxiliary Π_1^0 set *E* so that:

 $\mathcal{N}_\Phi:\Phi(\textbf{\textit{A}})\neq\textbf{\textit{E}}$

$$\mathcal{P}_{\Theta,U,V}:\Theta(U\oplus V)=E\Rightarrow \exists \Gamma, \Lambda(\Gamma(U\oplus A)=\overline{K}\vee \Lambda(V\oplus A)=\overline{K})$$

Corollary

There exists an incomplete Σ_2^0 e-degree **a**, such that for every pair of Σ_2^0 enumeration degrees **u** and **v** with $\mathbf{u} \lor \mathbf{v} = \mathbf{0}'_e$ either $\mathbf{u} \lor \mathbf{a} = \mathbf{0}'_e$ or $\mathbf{v} \lor \mathbf{a} = \mathbf{0}'_e$

Cupping 0'_e-splittings

Theorem

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low-cuppable or **v** is low-cuppable.

Proof: Fix *U*, *V* such that $U \oplus V \equiv_{e} \overline{K}$.

We construct an auxiliary Π_1^0 set *E* and find an e-operator Θ such that $\Theta(U \oplus V) = E$.

First we try to construct a 1-generic Δ_2^0 set A such that $A \oplus U \equiv_e \overline{K}$.

If this plan fails we have acquired sufficient information to construct a 1-generic Δ_2^0 set *B* such that $B \oplus V \equiv_e \overline{K}$.

Cupping **0**[']_e-splittings

Theorem

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low-cuppable or **v** is low-cuppable.

Proof: Fix *U*, *V* such that $U \oplus V \equiv_e \overline{K}$.

We construct an auxiliary Π_1^0 set *E* and find an e-operator Θ such that $\Theta(U \oplus V) = E$.

First we try to construct a 1-generic Δ_2^0 set A such that $A \oplus U \equiv_e \overline{K}$.

If this plan fails we have acquired sufficient information to construct a 1-generic Δ_2^0 set *B* such that $B \oplus V \equiv_e \overline{K}$.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Cupping **0**[']_e-splittings

Theorem

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low-cuppable or **v** is low-cuppable.

Proof: Fix *U*, *V* such that $U \oplus V \equiv_e \overline{K}$.

We construct an auxiliary Π_1^0 set *E* and find an e-operator Θ such that $\Theta(U \oplus V) = E$.

First we try to construct a 1-generic Δ_2^0 set *A* such that $A \oplus U \equiv_e \overline{K}$.

If this plan fails we have acquired sufficient information to construct a 1-generic Δ_2^0 set *B* such that $B \oplus V \equiv_e \overline{K}$.

Cupping 0'_e-splittings

Theorem

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low-cuppable or **v** is low-cuppable.

Proof: Fix *U*, *V* such that $U \oplus V \equiv_e \overline{K}$.

We construct an auxiliary Π_1^0 set *E* and find an e-operator Θ such that $\Theta(U \oplus V) = E$.

First we try to construct a 1-generic Δ_2^0 set *A* such that $A \oplus U \equiv_e \overline{K}$.

If this plan fails we have acquired sufficient information to construct a 1-generic Δ_2^0 set *B* such that $B \oplus V \equiv_e \overline{K}$.

イロト 不得 トイヨト イヨト

Corollary

If **a**, **b** are nonzero Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$ then (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair.

Proof:

By the previous theorem **a** is low-cuppable or **b** is low-cuppable.

b is low-cuppable \Rightarrow **a** is low \Rightarrow **a** is $\Delta_2^0 \Rightarrow$ **a** is low cuppable \Rightarrow **b** is low \Rightarrow **b** is $\Delta_2^0 \Rightarrow$ **b** is low cuppable.

In either case both **a** and **b** are Δ_2^0 and hence $\mathcal{K}(\mathbf{a}, \mathbf{b})$ ensures that they form a true \mathcal{K} -pair.

不同 トイモトイモ

Corollary

If **a**, **b** are nonzero Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$ then (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair.

Proof:

By the previous theorem **a** is low-cuppable or **b** is low-cuppable.

b is low-cuppable \Rightarrow **a** is low \Rightarrow **a** is $\Delta_2^0 \Rightarrow$ **a** is low cuppable \Rightarrow **b** is low \Rightarrow **b** is $\Delta_2^0 \Rightarrow$ **b** is low cuppable.

In either case both **a** and **b** are Δ_2^0 and hence $\mathcal{K}(\mathbf{a}, \mathbf{b})$ ensures that they form a true \mathcal{K} -pair.

Corollary

If **a**, **b** are nonzero Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$ then (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair.

Proof:

By the previous theorem **a** is low-cuppable or **b** is low-cuppable.

b is low-cuppable \Rightarrow **a** is low \Rightarrow **a** is $\triangle_2^0 \Rightarrow$ **a** is low cuppable \Rightarrow **b** is low \Rightarrow **b** is $\triangle_2^0 \Rightarrow$ **b** is low cuppable.

In either case both **a** and **b** are Δ_2^0 and hence $\mathcal{K}(\mathbf{a}, \mathbf{b})$ ensures that they form a true \mathcal{K} -pair.

Corollary

If **a**, **b** are nonzero Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$ then (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair.

Proof:

By the previous theorem **a** is low-cuppable or **b** is low-cuppable.

b is low-cuppable \Rightarrow **a** is low \Rightarrow **a** is $\Delta_2^0 \Rightarrow$

a is low cuppable \Rightarrow **b** is low \Rightarrow **b** is $\Delta_2^0 \Rightarrow$ **b** is low cuppable.

In either case both **a** and **b** are Δ_2^0 and hence $\mathcal{K}(\mathbf{a}, \mathbf{b})$ ensures that they form a true \mathcal{K} -pair.

不同 トイモトイモ

Corollary

If **a**, **b** are nonzero Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$ then (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair.

Proof:

By the previous theorem **a** is low-cuppable or **b** is low-cuppable.

b is low-cuppable \Rightarrow **a** is low \Rightarrow **a** is $\Delta_2^0 \Rightarrow$ **a** is low cuppable \Rightarrow **b** is low \Rightarrow **b** is $\Delta_2^0 \Rightarrow$ **b** is low cuppable.

In either case both **a** and **b** are Δ_2^0 and hence $\mathcal{K}(\mathbf{a}, \mathbf{b})$ ensures that they form a true \mathcal{K} -pair.

4 **A A A A A A A A A**

Corollary

If **a**, **b** are nonzero Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$ then (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair.

Proof:

By the previous theorem **a** is low-cuppable or **b** is low-cuppable.

b is low-cuppable \Rightarrow **a** is low \Rightarrow **a** is $\Delta_2^0 \Rightarrow$ **a** is low cuppable \Rightarrow **b** is low \Rightarrow **b** is $\Delta_2^0 \Rightarrow$ **b** is low cuppable.

In either case both **a** and **b** are Δ_2^0 and hence $\mathcal{K}(\mathbf{a}, \mathbf{b})$ ensures that they form a true \mathcal{K} -pair.

- A TE N - A TE N

Corollary

If **a**, **b** are nonzero Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$ then (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair.

Proof:

By the previous theorem **a** is low-cuppable or **b** is low-cuppable.

 $\label{eq:bis} \begin{array}{l} \textbf{b} \text{ is low-cuppable} \Rightarrow \textbf{a} \text{ is low} \Rightarrow \textbf{a} \text{ is } \Delta_2^0 \Rightarrow \\ \textbf{a} \text{ is low cuppable} \Rightarrow \textbf{b} \text{ is low} \Rightarrow \textbf{b} \text{ is } \Delta_2^0 \Rightarrow \textbf{b} \text{ is low cuppable}. \end{array}$

In either case both **a** and **b** are Δ_2^0 and hence $\mathcal{K}(\mathbf{a}, \mathbf{b})$ ensures that they form a true \mathcal{K} -pair.

4 3 5 4 3 5 5

A locally definable set of low degrees

Kallimulin has proved that there is a true nontrivial \mathcal{K} -pair (\mathbf{a} , \mathbf{b}), such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_{e}$, so:

Theorem

The formula

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow \mathbf{a} > \mathbf{0}_e \ \& \ (\exists \mathbf{b} > \mathbf{0}_e)(\mathcal{K}(\mathbf{a}, \mathbf{b}) \& (\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e))$

defines in \mathcal{G}_e a nonempty set of true halves of nontrivial \mathcal{K} -pairs.

Note! This is already sufficient to complete the proof of the interpretability theorem!

A locally definable set of low degrees

Kallimulin has proved that there is a true nontrivial \mathcal{K} -pair (\mathbf{a} , \mathbf{b}), such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_{e}$, so:

Theorem

The formula

$$\mathcal{L}(\mathbf{a}) \Leftrightarrow \mathbf{a} > \mathbf{0}_e \ \& \ (\exists \mathbf{b} > \mathbf{0}_e)(\mathcal{K}(\mathbf{a},\mathbf{b}) \& (\mathbf{a} \lor \mathbf{b} = \mathbf{0}_e'))$$

defines in \mathcal{G}_e a nonempty set of true halves of nontrivial \mathcal{K} -pairs.

Note! This is already sufficient to complete the proof of the interpretability theorem!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A locally definable set of low degrees

Kallimulin has proved that there is a true nontrivial \mathcal{K} -pair (\mathbf{a} , \mathbf{b}), such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_{e}$, so:

Theorem

The formula

$$\mathcal{L}(\mathbf{a}) \Leftrightarrow \mathbf{a} > \mathbf{0}_e \ \& \ (\exists \mathbf{b} > \mathbf{0}_e)(\mathcal{K}(\mathbf{a}, \mathbf{b}) \& (\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e))$$

defines in \mathcal{G}_e a nonempty set of true halves of nontrivial \mathcal{K} -pairs.

Note! This is already sufficient to complete the proof of the interpretability theorem!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Denote by \mathcal{L} the definable set of all degrees **a**, such that

 $\mathcal{G}_{e} \models \mathcal{L}(\mathbf{a}).$

Definition

x is downwards properly Σ_2^0 every $\mathbf{y} \in (\mathbf{0}_e, \mathbf{x}]$ is properly Σ_2^0 .

Example

If **x** is not low cuppable then it is downwards properly Σ_2^0 .

If (a, b) is a fake \mathcal{K} -pair then i.e.:

 $\mathcal{G}_{e} \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_{e} \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$

then **a** and **b** are non-low cuppable, hence downwards properly Σ_2^0 , hence incomparable with every member of \mathcal{L} .

Denote by \mathcal{L} the definable set of all degrees **a**, such that

$$\mathcal{G}_{e} \models \mathcal{L}(\mathbf{a}).$$

Definition

 \mathbf{x} is downwards properly Σ_2^0 every $\mathbf{y} \in (\mathbf{0}_e, \mathbf{x}]$ is properly Σ_2^0 .

Example

If **x** is not low cuppable then it is downwards properly Σ_2^0 .

If (\mathbf{a}, \mathbf{b}) is a fake \mathcal{K} -pair then i.e.:

 $\mathcal{G}_{e} \models \mathcal{K}(\mathbf{a}, \mathbf{b})$, but $\mathcal{D}_{e} \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$

then **a** and **b** are non-low cuppable, hence downwards properly Σ_2^0 , hence incomparable with every member of \mathcal{L} .

Denote by \mathcal{L} the definable set of all degrees **a**, such that

 $\mathcal{G}_{e} \models \mathcal{L}(\mathbf{a}).$

Definition

 \mathbf{x} is downwards properly Σ_2^0 every $\mathbf{y} \in (\mathbf{0}_e, \mathbf{x}]$ is properly Σ_2^0 .

Example

If **x** is not low cuppable then it is downwards properly Σ_2^0 .

If (\mathbf{a}, \mathbf{b}) is a fake \mathcal{K} -pair then i.e.:

 $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_e \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$

then **a** and **b** are non-low cuppable, hence downwards properly Σ_2^0 , hence incomparable with every member of \mathcal{L} .

イロト 不得 トイヨト イヨト

э

Denote by \mathcal{L} the definable set of all degrees **a**, such that

$$\mathcal{G}_{e} \models \mathcal{L}(\mathbf{a}).$$

Definition

 \mathbf{x} is downwards properly Σ_2^0 every $\mathbf{y} \in (\mathbf{0}_e, \mathbf{x}]$ is properly Σ_2^0 .

Example

If **x** is not low cuppable then it is downwards properly Σ_2^0 .

If (\mathbf{a}, \mathbf{b}) is a fake \mathcal{K} -pair then i.e.:

$$\mathcal{G}_{e} \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_{e} \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$$

then **a** and **b** are non-low cuppable, hence downwards properly Σ_2^0 , hence incomparable with every member of \mathcal{L} .

Theorem

For every nonzero Δ_2^0 degree **b** there is a nontrivial \mathcal{K} -pair, (**c**, **d**), such that

$$\mathbf{b} \lor \mathbf{c} = \mathbf{c} \lor \mathbf{d} = \mathbf{0}'_e.$$

Hence if (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair of Σ_2^0 e-degrees (hence low and Δ_2^0) we apply this theorem to get a \mathcal{K} -pair (\mathbf{c}, \mathbf{d}) such that:

• $\mathbf{b} \lor \mathbf{c} = \mathbf{0}'_e$ and hence $\mathbf{a} \le \mathbf{c}$ by:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = (\mathbf{a} \lor \mathbf{c}).$$

• $\mathbf{c} \lor \mathbf{d} = \mathbf{0}'_{e}$ and hence $\mathbf{c} \in \mathcal{L}$

Theorem

For every nonzero Δ_2^0 degree **b** there is a nontrivial \mathcal{K} -pair, (**c**, **d**), such that

$$\mathbf{b} \lor \mathbf{c} = \mathbf{c} \lor \mathbf{d} = \mathbf{0}'_{e}.$$

Hence if (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair of Σ_2^0 e-degrees (hence low and Δ_2^0) we apply this theorem to get a \mathcal{K} -pair (\mathbf{c}, \mathbf{d}) such that:

• **b** \vee **c** = **0**^{\prime} and hence **a** \leq **c** by:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = (\mathbf{a} \lor \mathbf{c}).$$

• $\mathbf{c} \lor \mathbf{d} = \mathbf{0}'_{e}$ and hence $\mathbf{c} \in \mathcal{L}$

Theorem

For every nonzero Δ_2^0 degree **b** there is a nontrivial \mathcal{K} -pair, (**c**, **d**), such that

$$\mathbf{b} \lor \mathbf{c} = \mathbf{c} \lor \mathbf{d} = \mathbf{0}'_e.$$

Hence if (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair of Σ_2^0 e-degrees (hence low and Δ_2^0) we apply this theorem to get a \mathcal{K} -pair (\mathbf{c}, \mathbf{d}) such that:

•
$$\mathbf{b} \lor \mathbf{c} = \mathbf{0}'_{e}$$
 and hence $\mathbf{a} \leq \mathbf{c}$ by:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = (\mathbf{a} \lor \mathbf{c}).$$

• $\mathbf{c} \lor \mathbf{d} = \mathbf{0}'_{e}$ and hence $\mathbf{c} \in \mathcal{L}$

Theorem

For every nonzero Δ_2^0 degree **b** there is a nontrivial \mathcal{K} -pair, (**c**, **d**), such that

$$\mathbf{b} \lor \mathbf{c} = \mathbf{c} \lor \mathbf{d} = \mathbf{0}'_e.$$

Hence if (\mathbf{a}, \mathbf{b}) is a true \mathcal{K} -pair of Σ_2^0 e-degrees (hence low and Δ_2^0) we apply this theorem to get a \mathcal{K} -pair (\mathbf{c}, \mathbf{d}) such that:

•
$$\mathbf{b} \lor \mathbf{c} = \mathbf{0}'_{e}$$
 and hence $\mathbf{a} \leq \mathbf{c}$ by:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = (\mathbf{a} \lor \mathbf{c}).$$

• $\mathbf{c} \lor \mathbf{d} = \mathbf{0}_{e}'$ and hence $\mathbf{c} \in \mathcal{L}$

 If (a, b) is a fake *K*-pair then a and b are incomparable with all members of *L*.

If (a, b) is a true *K*-pair then a is bounded by a member of *L*.

Let $\mathcal{LK}(\mathbf{a}, \mathbf{b}) \Leftrightarrow \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} > \mathbf{0}_e \& \mathbf{b} > \mathbf{0}_e \& \exists \mathbf{c}(\mathbf{c} \ge \mathbf{a} \& \mathcal{L}(\mathbf{c}))$

Corollary

A pair of Σ_2^0 enumeration degrees **a**, **b** forms a nontrivial \mathcal{K} -pair if and only if:

 $\mathcal{G}_{e} \models \mathcal{LK}(\mathbf{a}, \mathbf{b}).$

- If (a, b) is a fake *K*-pair then a and b are incomparable with all members of *L*.
- If (**a**, **b**) is a true *K*-pair then **a** is bounded by a member of *L*.

Let $\mathcal{LK}(\mathbf{a}, \mathbf{b}) \Leftrightarrow \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} > \mathbf{0}_e \& \mathbf{b} > \mathbf{0}_e \& \exists \mathbf{c}(\mathbf{c} \ge \mathbf{a} \& \mathcal{L}(\mathbf{c}))$

Corollary

A pair of Σ_2^0 enumeration degrees **a**, **b** forms a nontrivial \mathcal{K} -pair if and only if:

 $\mathcal{G}_{e} \models \mathcal{LK}(\mathbf{a}, \mathbf{b}).$

< ロ > < 同 > < 回 > < 回 >

- If (a, b) is a fake *K*-pair then a and b are incomparable with all members of *L*.
- If (**a**, **b**) is a true *K*-pair then **a** is bounded by a member of *L*.

Let $\mathcal{LK}(\mathbf{a}, \mathbf{b}) \Leftrightarrow \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} > \mathbf{0}_e \& \mathbf{b} > \mathbf{0}_e \& \exists \mathbf{c}(\mathbf{c} \ge \mathbf{a} \& \mathcal{L}(\mathbf{c}))$

Corollary

A pair of Σ_2^0 enumeration degrees **a**, **b** forms a nontrivial \mathcal{K} -pair if and only if:

$$\mathcal{G}_{e} \models \mathcal{LK}(\mathbf{a}, \mathbf{b}).$$

イロト イポト イラト イラト

Defining the downwards properly Σ_2^0 degrees

If **a** is a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** bounds a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair. If **a** is a downwards properly Σ_2^0 degree, then it bounds no \mathcal{K} -pair.

Theorem

A degree **a** is downwards properly Σ_2^0 if and only if:

 $\mathcal{G}_{e} \models \forall b, c[(b \leq a \& c \leq a) \Rightarrow \neg \mathcal{LK}(b, c)].$

マロト イモト イモ

Defining the downwards properly Σ_2^0 degrees

If **a** is a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** bounds a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** is a downwards properly Σ_2^0 degree, then it bounds no \mathcal{K} -pair.

Theorem

A degree **a** is downwards properly Σ_2^0 if and only if:

$$\mathcal{G}_{m{ extsf{e}}} \models orall \mathbf{b}, \mathbf{c}[(\mathbf{b} \leq \mathbf{a} \ \& \ \mathbf{c} \leq \mathbf{a}) \Rightarrow
eg \mathcal{LK}(\mathbf{b}, \mathbf{c})].$$

不同 いんきいんき

Defining the downwards properly Σ_2^0 degrees

If **a** is a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** bounds a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** is a downwards properly Σ_2^0 degree, then it bounds no \mathcal{K} -pair.

Theorem

A degree **a** is downwards properly Σ_2^0 if and only if:

 $\mathcal{G}_{m{ extsf{e}}} \models orall \mathbf{b}, \mathbf{c}[(\mathbf{b} \leq \mathbf{a} \And \mathbf{c} \leq \mathbf{a}) \Rightarrow
eg \mathcal{LK}(\mathbf{b}, \mathbf{c})],$

4 日本 4 周本 4 日本 4 日本

Defining the downwards properly Σ_2^0 degrees

If **a** is a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** bounds a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** is a downwards properly Σ_2^0 degree, then it bounds no \mathcal{K} -pair.

Theorem

A degree **a** is downwards properly Σ_2^0 if and only if:

$$\mathcal{G}_{e} \models \forall \mathbf{b}, \mathbf{c}[(\mathbf{b} \leq \mathbf{a} \& \mathbf{c} \leq \mathbf{a}) \Rightarrow \neg \mathcal{LK}(\mathbf{b}, \mathbf{c})].$$

4 **A** N A **B** N A **B** N

Defining the upwards properly Σ_2^0 degrees

Definition

x is upwards properly Σ_2^0 every $\mathbf{y} \in [\mathbf{x}, \mathbf{0}'_e)$ is properly Σ_2^0 .

Example

- If **a** is a non-splitting degree then it is upwards properly Σ_2^0 .
- (Cooper, Copestake) There is a properly Σ_2^0 degree that is incomaparable with all nonzero incomplete Δ_2^0 degrees.
- (Bereznyuk, Coles, Sorbi) For every enumeration degree a < 0'_e there exists an upwards properly Σ⁰₂ degree c ≥ a.

Defining the upwards properly Σ_2^0 degrees

Definition

 \boldsymbol{x} is upwards properly $\boldsymbol{\Sigma}_2^0$ every $\boldsymbol{y} \in [\boldsymbol{x}, \boldsymbol{0}_e')$ is properly $\boldsymbol{\Sigma}_2^0.$

Example

If a is a non-splitting degree then it is upwards properly Σ₂⁰.

- (Cooper, Copestake) There is a properly Σ⁰₂ degree that is incomaparable with all nonzero incomplete Δ⁰₂ degrees.
- ③ (Bereznyuk, Coles, Sorbi) For every enumeration degree a < 0'_e there exists an upwards properly Σ⁰₂ degree c ≥ a.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Defining the upwards properly Σ_2^0 degrees

Definition

 \boldsymbol{x} is upwards properly $\boldsymbol{\Sigma}_2^0$ every $\boldsymbol{y} \in [\boldsymbol{x}, \boldsymbol{0}_e')$ is properly $\boldsymbol{\Sigma}_2^0.$

Example

- If **a** is a non-splitting degree then it is upwards properly Σ_2^0 .
- (Cooper, Copestake) There is a properly Σ_2^0 degree that is incomaparable with all nonzero incomplete Δ_2^0 degrees.
- (Bereznyuk, Coles, Sorbi) For every enumeration degree a < 0'_e there exists an upwards properly Σ₂⁰ degree c ≥ a.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Defining the upwards properly Σ_2^0 degrees

Definition

 \mathbf{x} is upwards properly Σ_2^0 every $\mathbf{y} \in [\mathbf{x}, \mathbf{0}'_e)$ is properly Σ_2^0 .

Example

- If a is a non-splitting degree then it is upwards properly Σ₂⁰.
- (Cooper, Copestake) There is a properly Σ_2^0 degree that is incomaparable with all nonzero incomplete Δ_2^0 degrees.
- (Bereznyuk, Coles, Sorbi) For every enumeration degree a < 0'_e there exists an upwards properly Σ⁰₂ degree c ≥ a.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Defining the upwards properly Σ_2^0 degrees

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_e$ there is a total enumeration degree \mathbf{b} such that $\mathbf{a} \le \mathbf{b} < \mathbf{0}'_e$.

Defining the upwards properly Σ_2^0 degrees

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_e$ there is a total enumeration degree \mathbf{b} such that $\mathbf{a} \le \mathbf{b} < \mathbf{0}'_e$.

Defining the upwards properly Σ_2^0 degrees

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_e$ there is a total enumeration degree \mathbf{b} such that $\mathbf{a} \le \mathbf{b} < \mathbf{0}'_e$.

< ロ > < 同 > < 回 > < 回 >

The least upper bound of every \mathcal{K} -pair is a Δ_2^0 degree.

So a degree **a** is upwards properly Σ_2^0 if and only if no element above it other than $\mathbf{0}'_e$ can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem

A degree **a** is upwards properly Σ_2^0 if and only if:

 $\mathcal{G}_{\boldsymbol{\varTheta}} \models \forall \boldsymbol{\mathsf{c}}, \boldsymbol{\mathsf{d}}(\mathcal{LK}(\boldsymbol{\mathsf{c}},\boldsymbol{\mathsf{d}}) \And \boldsymbol{\mathsf{a}} \leq \boldsymbol{\mathsf{c}} \lor \boldsymbol{\mathsf{d}} \Rightarrow \boldsymbol{\mathsf{c}} \lor \boldsymbol{\mathsf{d}} = \boldsymbol{\mathsf{0}}_{\boldsymbol{\varTheta}}').$

A (10) × A (10) × A (10)

The least upper bound of every \mathcal{K} -pair is a Δ_2^0 degree.

So a degree **a** is upwards properly Σ_2^0 if and only if no element above it other than $\mathbf{0}'_e$ can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem

A degree **a** is upwards properly Σ_2^0 if and only if:

 $\mathcal{G}_e \models orall \mathbf{c}, \mathbf{d}(\mathcal{LK}(\mathbf{c}, \mathbf{d}) \And \mathbf{a} \leq \mathbf{c} \lor \mathbf{d} \Rightarrow \mathbf{c} \lor \mathbf{d} = \mathbf{0}'_e).$

4 日本 4 周本 4 日本 4 日本

The least upper bound of every \mathcal{K} -pair is a Δ_2^0 degree.

So a degree **a** is upwards properly Σ_2^0 if and only if no element above it other than $\mathbf{0}'_e$ can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem

A degree **a** is upwards properly Σ_2^0 if and only if:

$$\mathcal{G}_{e} \models \forall \mathbf{c}, \mathbf{d}(\mathcal{LK}(\mathbf{c}, \mathbf{d}) \& \mathbf{a} \leq \mathbf{c} \lor \mathbf{d} \Rightarrow \mathbf{c} \lor \mathbf{d} = \mathbf{0}'_{e}).$$

The end

Thank you!

Mariya I. Soskova (Faculty of Mathematics aDefinability and interpretability in the Σ⁰₂ enum joint work with H. Ganchev 46 / 46