The three quantifier theory of the partial order of the enumeration degrees

Mariya I. Soskova University of Wisconsin–Madison

12th Panhellenic Logic Symposium Crete, June 26 2019 Joint work with S. Lempp and T. Slaman

Supported by the NSF Grant No. DMS-1762648

The theory of a degree structure Let \mathcal{D} be a degree structure.

Question

- Is the theory of the structure in the language of partial orders decidable?
- How complicated is the theory?
- How many quantifiers does it take to break decidability?

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists \forall \exists \text{-} Th(\mathcal{D})$	$\forall \exists \text{-} Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0)$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Open
	Harrington 80s	Nies-Slaman 98	
\mathcal{D}_e	Slaman-	Open	Open
	Woodin 97		
$\mathcal{D}_e(\leqslant \mathbf{0'})$	Ganchev-	Kent 06	Open
	Soskova 12		

Related problems

- To understand what existential sentences are true \mathcal{D} we need to understand what finite partial orders can be embedded into \mathcal{D} ;
- At the next level of complexity is the *extension of embeddings problem*:

Problem

We are given a finite partial order P and a finite partial order $Q \supseteq P$. Does every embedding of P extend to an embedding of Q?

• To understand what $\forall \exists$ -sentences are true in \mathcal{D} we need to solve a slightly more complicated problem:

Problem

We are given a finite partial order P and finite partial orders $Q_0, \ldots, Q_n \supseteq P$. Does every embedding of P extend to an embedding of one of the Q_i ?

The Turing degrees and initial segment embeddings

Theorem (Lerman 71)

Every finite lattice can be embedded into \mathcal{D}_T as an initial segment.

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- \bullet We can extend P to a lattice by adding extra points for joins when necessary.
- The initial segment embedding of the lattice P can be extended to an embedding of Q only if new elements in $Q \smallsetminus P$ are compatible with joins in P:
 - If $q \in Q \smallsetminus P$ is bounded by some element in P then q is one of the added joins.
 - $\textcircled{0} \ \text{If} \ x \in Q \smallsetminus P \ \text{and} \ u, v \in P \ \text{and} \ x \geqslant u, v \ \text{then} \ x \geqslant u \lor v.$

Theorem (Shore 78; Lerman 83)

That is the only obstacle.

The theory of a degree structure Let \mathcal{D} be a degree structure.

Question

- Is the theory of the structure in the language of partial orders decidable?
- How complicated is the theory?
- How many quantifiers does it take to break decidability?

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists \forall \exists \text{-} Th(\mathcal{D})$	$\forall \exists \text{-} Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0)$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Open
	Harrington 80s	Nies-Slaman 98	
\mathcal{D}_e	Slaman-	Open	Open
	Woodin 97		
$\mathcal{D}_e(\leqslant \mathbf{0'})$	Ganchev-	Kent 06	Open
	Soskova 12		

The enumeration degrees

Theorem (Gutteridge 71)

The enumeration degrees are downwards dense.

A degree **b** is a *minimal cover* of a degree **a** if $\mathbf{a} < \mathbf{b}$ and the interval (\mathbf{a}, \mathbf{b}) is empty.

Theorem (Slaman, Calhoun 96)

There are Π_2^0 enumeration degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} is a minimal cover of \mathbf{a}

A degree **b** is a *strong minimal cover* of a degree **a** if $\mathbf{a} < \mathbf{b}$ and for every degree $\mathbf{x} < \mathbf{b}$ we have that $\mathbf{x} \leq \mathbf{a}$.

Theorem (Kent, Lewis-Pye, Sorbi 12)

There is a Δ_3^0 degree **a** and Π_2^0 enumeration degree **b** such that **b** is a strong minimal cover of **a**

The simplest lattice

Consider the lattice $\mathcal{L} = \{a < b\}$. What properties should possible extensions $Q_0, Q_1 \dots Q_n$ have so that every embedding of \mathcal{L} extends to Q_i for some *i*:

b|a

- We can embed this lattice as degrees a < b such that b is a strong minimal cover of a. Thus we need at least one Q_i where all new x satisfy: if x < b then x < a.
- **2** We can embed this lattice as degrees $\mathbf{0}_e < \mathbf{b}$. Thus we need at least one Q_i where all new x satisfy: if x < b then x > a.

Theorem (Slaman, Sorbi 14)

Every countable partial order can be embedded below any nonzero enumeration degree.

So these two conditions suffice.

A wild conjecture

Conjecture (Lempp, Slaman, Soskova)

Every finite lattice can be embedded into \mathcal{D}_e as an interval of Π_2^0 enumeration degrees $[\mathbf{a}, \mathbf{b}]$ so that if $\mathbf{x} \leq \mathbf{b}$ then $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$ or $\mathbf{x} < \mathbf{a}$.

- Note! This would only solve the extension of embeddings problem: Every embedding of P would extend to an embedding of Q if Q satisfies the same two properties: have no new degree below any member of P and respect least upper bounds.
- $\bullet\,$ If we allow more than one Q then we need a wilder conjecture, e.g.:

Conjecture

Every finite lattice can be embedded into \mathcal{D}_e so that:

- If x ≤ b, where b is the image of the largest element then x is the image of an element from the lattice or bounded by an atom of the lattice.
- **2** Incomparable atoms and co-atoms form minimal pairs.

This implies the existence of strong minimal pairs.

Our results: Step 1 Slightly extend the Kent, Lewis-Pye, Sorbi result:

Theorem

There are Π_2^0 degrees $\mathbf{b} < \mathbf{a}$ such that \mathbf{a} is a strong minimal cover of \mathbf{b} .

Proof.

Construct Π_2^0 sets A and B so that:

- \mathcal{M}_e : $\Psi_e(A, B) = \Gamma(B)$ or $A, B \leq_e \Psi_e(A, B)$;
- $\mathcal{T}_e: A \neq \Phi_e(B).$

A number is in A or B if and only if it is in A_s or B_s at infinitely many stages. \mathcal{M}_e -strategies promise to add numbers to B if certain numbers enter A, B. Attempts at diagonalization of \mathcal{T} may fail: a witness $x \in A$ if and only if $y \in \Psi(A, B)$ influencing what a higher priority \mathcal{M} -strategy wants in B. Instead we produce a stream of elements x_0, x_1, \ldots whose membership in A is reflected in membership in $\Psi(A, B)$. We code B using x_{2i} .

 $A \leq_{e} \Psi(A, B)$ because A consists of (1) elements enumerated by higher priority strategies, (2) elements in the stream, (3) elements enumerated in A to code B at higher priority strategies.

Step 2, 3, 4

Generalize the previous construction to show that each of the following lattices can be embedded in a *strong minimal cover* way.

A small victory

Theorem (Lempp, Slaman, Soskova)

Every finite distributive lattice can be embedded as an interval $[\mathbf{a},\mathbf{b}]$ so that if $\mathbf{x}\leqslant\mathbf{b}$ then $\mathbf{x}\in[\mathbf{a},\mathbf{b}]$ or $\mathbf{x}\leqslant\mathbf{b}$.

Corollary

The $\exists \forall \exists$ -theory of \mathcal{D}_e is undecidable.

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists \forall \exists \text{-} Th(\mathcal{D})$	$\forall \exists \text{-} Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0)$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Onen
	Harrington 80s	Nies-Slaman 98	Open
\mathcal{D}_e	Slaman-	Lempp-Slaman-	Onen
	Woodin 97	Soskova 19	Open
$\mathcal{D}_e(\leqslant \mathbf{0'})$	Ganchev-	Kent 06	Open
	Soskova 12		

An additional application

Theorem (Lempp, Slaman, Soskova)

The extension of embeddings problem in \mathcal{D}_e is decidable.

Proof sketch:

- Fix partial orders $P \subseteq Q$.
- If $q \in Q \setminus P$ is a point that violates the conditions of the usual algorithm (the one for \mathcal{D}_T) then we build a specific embedding that blocks q.
- We extend P to P^* by carefully adding points to make $B(q) = \{p \in P^* \mid p < q\}$ a distributive lattice and embed that strongly.
- We use generic extensions for the rest of P to make $\bigwedge A(q) = \bigvee B(q)$, where $A(q) = \{ p \in P^* \mid q$
- This leaves $\bigvee B(q)$ as the only possible position for q.

Questions

Question

Can we embed all finite lattices in \mathcal{D}_e as strong intervals?

Important test cases are N_5 and M_3 :

Question

Are there strong minimal pairs in \mathcal{D}_e : minimal pairs **a** and **b** such that all nonzero $\mathbf{x} \leq \mathbf{a}$ we have that $\mathbf{x} \vee \mathbf{b} \geq \mathbf{a}$?

Question

Can we embed all countable (distributive) lattices into \mathcal{D}_e as strong intervals?

Thank you!