Cototality and the skip operator

Mariya I. Soskova¹

Sofia University

joint work with Andrews, Ganchev, Kuyper, Lempp, Miller and A. Soskova

Fall Central Sectional Meeting, Minneapolis, Minnesota Effective Mathematics in Discrete and Continuous Worlds

¹Supported by the "Women in Science" program and Sofia University Science Fund.

Motivation from symbolic dynamics

Definition

- A subshift is a closed set $X \subseteq 2^{\omega}$ such that if $a\alpha \in X$ then $\alpha \in X$.
- X is minimal if there is no $Y \subset X$, such that Y is a subshift.

Given a minimal subshift X, we would like to characterize the set of Turing degrees of members of X.

Definition

The *language* of subshift X is the set $L_X = \{ \sigma \in 2^{<\omega} \mid \exists \alpha \in X(\sigma \text{ is a subword of } \alpha) \}.$

- If X is minimal and σ ∈ L_X then for every α ∈ X, σ is a subword of α.
 So every element of X can enumerate the set L_X.
- **2** If we can enumerate L_X then we can compute a member of X.

The enumeration degrees and cototal sets

Definition

 $A \leq_e B$ if every enumeration of B can compute an enumeration of A.

The enumeration degree of L_X characterizes the set of Turing degrees of members of X.

(Jaendel:) If we can enumerate the set of *forbidden words* $\overline{L_X}$ then we can enumerate L_X .

So $L_X \leq_e \overline{L_X}$.

Definition

A set A is cototal if $A \leq_e \overline{A}$.

Four classes of degrees

- A set A is total if A ≤_e A. A degree a is total if it contains a total set. Equivalently, a contains the graph of a total function G_f or even the graph of a {0,1}-valued total function.
- (Solon:) A degree a is *graph-cototal* if it contains the complement of the graph of a total function.
- A degree **a** is *cototal* if it contains a cototal set.
- (Solon:) A degree a is Solon cototal if it contains a set A, such that A is of total degree.

total \Rightarrow graph-cototal \Rightarrow cototal \Rightarrow Solon cototal.

Σ^0_2 enumeration degrees are graph-cototal

The degrees that contain Σ_2^0 sets are called Σ_2^0 *enumeration degrees*.

Proposition

Every Σ_2^0 e-degree is graph-cototal.

Proof.

Fix a Σ_2^0 set A and an approximation $\{A_s\}_{s < \omega}$.

 $f(a) = \begin{cases} 0, & \text{if } a \notin A; \\ \text{the least stage } s \text{ such that } a \in A_t \text{ for all } t \ge s - 1, & \text{otherwise.} \end{cases}$

Graph-cototal does not imply total.

Universal examples of cototal degrees

Definition

Let $G = (\omega, E)$ be a graph. A set $M \subseteq \omega$ is *independent*, if no two members of M are edge related. M is a *maximal independent* set, if it has no independent proper superset.

Any enumeration of M computes an enumeration of \overline{M} .

Theorem

Every cototal enumeration degree contains the complement of a maximal independent set for the graph $\omega^{<\omega}$.

Theorem

There is a maximal independent set S for $\omega^{<\omega}$, such that \overline{S} does not have graph-cototal degree.

Cototal does not imply graph-cototal.

Universal examples of cototal degrees

Theorem (McCarthy)

Every cototal enumeration degree contains:

- The complement of a maximal antichain in $\omega^{<\omega}$.
- A perfect uniformly enumeration pointed tree.

A tree $T \subseteq 2^{<\omega}$ is uniformly enumeration pointed if there is a single algorithm that allows us to enumerate T given any infinite path in T.

Theorem (McCarthy)

Every cototal enumeration degree is the degree of the language of a minimal subshift.

The skip operator

Definition

$$\begin{split} X \leq_e Y \text{ if an only if there is a c.e. set } \Gamma \text{ such that} \\ X = \Gamma(Y) = \{ x \mid \exists D(\langle x, D \rangle \in \Gamma \land D \subseteq Y) \}. \end{split}$$

Let $K_A = \bigoplus_e \Gamma_e(A)$. Then $K_A \equiv_e A$.

The enumeration jump of A is defined by $A' = K_A \oplus \overline{K_A}$.

If A is cototal then K_A ≤_e A ≤_e A ≤_e K_A.
If A ≤_e B then K_A ≤₁ K_B.

Definition

The skip of A is the set $A^{\Diamond} = \overline{K_A}$. The skip of a degree **a** is $\mathbf{a}^{\Diamond} = \mathbf{d}_e(A^{\Diamond})$.

Proposition

A degree **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\Diamond}$ (if and only if $\mathbf{a}^{\Diamond} = \mathbf{a}'$).

Skip inversion

Theorem

Let $S \ge_e \emptyset'$. There is a set A such that $A^{\Diamond} \equiv_e S$.

We further ensure that if S is not total then A is not of cototal degree.

Corollary

Solon cototal does not imply cototal.

Start with S that is not total, but of total degree. Skip-invert to A. Then the degree of A is not cototal, but it is *Solon cototal*, because the complement of K_A is of total degree.

Iterated skips

Two properties of skips:

Examples of skips

Proposition

If G is generic relative to a total set X then $(G \oplus X)^{\Diamond} \equiv_e \overline{G} \oplus X'$.

If G is arithmetically generic then the skips of G and \overline{G} form a double zigzag.

A skip two-cycle

Proposition

There are sets A and B such that $B = A^{\Diamond}$ and $A = B^{\Diamond}$. The sets A and B are above all hyperarithmetical sets.

The double skip operator is monotone. Apply Knaster-Tarski's fixed point theorem.

The end

Thank you!