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Motivation from symbolic dynamics

Definition
A subshift is a closed set X ⊆ 2ω such that if aα ∈ X then α ∈ X .

X is minimal if there is no Y ⊂ X , such that Y is a subshift.

Given a minimal subshift X , we would like to characterize the set of Turing
degrees of members of X .

Definition
The language of subshift X is the set
LX = {σ ∈ 2<ω | ∃α ∈ X(σ is a subword of α)}.

1 If X is minimal and σ ∈ LX then for every α ∈ X , σ is a subword of α.
So every element of X can enumerate the set LX .

2 If we can enumerate LX then we can compute a member of X .
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The enumeration degrees and cototal sets

Definition
A ≤e B if every enumeration of B can compute an enumeration of A.

The enumeration degree of LX characterizes the set of Turing degrees of
members of X .

(Jaendel:) If we can enumerate the set of forbidden words LX then we can
enumerate LX .

So LX ≤e LX .

Definition
A set A is cototal if A ≤e A.
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Four classes of degrees

1 A set A is total if A ≤e A. A degree a is total if it contains a total set.

Equivalently, a contains the graph of a total function Gf or even the
graph of a {0, 1}-valued total function.

2 (Solon:) A degree a is graph-cototal if it contains the complement of the
graph of a total function.

3 A degree a is cototal if it contains a cototal set.
4 (Solon:) A degree a is Solon cototal if it contains a set A, such that A is

of total degree.

total⇒ graph-cototal⇒ cototal⇒ Solon cototal.
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Σ0
2 enumeration degrees are graph-cototal

The degrees that contain Σ0
2 sets are called Σ0

2 enumeration degrees.

Proposition

Every Σ0
2 e-degree is graph-cototal.

Proof.
Fix a Σ0

2 set A and an approximation {As}s<ω.

f(a) =

{
0, if a /∈ A;
the least stage s such that a ∈ At for all t ≥ s− 1, otherwise.

Graph-cototal does not imply total.
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Universal examples of cototal degrees
Definition
Let G = (ω,E) be a graph. A set M ⊆ ω is independent, if no two members
of M are edge related. M is a maximal independent set, if it has no
independent proper superset.

Any enumeration of M computes an enumeration of M .

Theorem
Every cototal enumeration degree contains the complement of a maximal
independent set for the graph ω<ω.

Theorem
There is a maximal independent set S for ω<ω, such that S does not have
graph-cototal degree.

Cototal does not imply graph-cototal.
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Universal examples of cototal degrees

Theorem (McCarthy)
Every cototal enumeration degree contains:

1 The complement of a maximal antichain in ω<ω.
2 A perfect uniformly enumeration pointed tree.

A tree T ⊆ 2<ω is uniformly enumeration pointed if there is a single
algorithm that allows us to enumerate T given any infinite path in T .

Theorem (McCarthy)
Every cototal enumeration degree is the degree of the language of a minimal
subshift.
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The skip operator
Definition
X ≤e Y if an only if there is a c.e. set Γ such that
X = Γ(Y ) = {x | ∃D(〈x,D〉 ∈ Γ ∧ D ⊆ Y )}.

Let KA =
⊕

e Γe(A). Then KA ≡e A.

The enumeration jump of A is defined by A′ = KA ⊕KA.

1 If A is cototal then KA ≤e A ≤e A ≤e KA.
2 If A ≤e B then KA ≤1 KB .

Definition
The skip of A is the set A♦ = KA. The skip of a degree a is a♦ = de(A

♦).

Proposition

A degree a is cototal if and only if a ≤ a♦ (if and only if a♦ = a′).
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Skip inversion

Theorem
Let S ≥e ∅′. There is a set A such that A♦ ≡e S.

We further ensure that if S is not total then A is not of cototal degree.

Corollary
Solon cototal does not imply cototal.

Start with S that is not total, but of total degree. Skip-invert to A. Then the
degree of A is not cototal, but it is Solon cototal, because the complement of
KA is of total degree.
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Iterated skips

0e

a

0′e

a♦

0′e

a♦♦

0′′′e

a〈3〉
...

a

a♦

a♦♦

a〈3〉

Two properties of skips:
1 If a ≤ b then a♦ ≤ b♦;
2 a ≤ a♦♦.
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Examples of skips
Proposition

If G is generic relative to a total set X then (G⊕X)♦ ≡e G⊕X ′.

If G is arithmetically generic then the skips of G and G form a double zigzag.

0e

g g

0′e

g♦g♦

0′′e

g♦♦ g♦♦

0′′′e

g〈3〉g〈3〉
...

g

g♦

g♦♦

g〈3〉

g

g♦

g♦♦

g〈3〉
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A skip two-cycle

Proposition

There are sets A and B such that B = A♦ and A = B♦. The sets A and B are
above all hyperarithmetical sets.

The double skip operator is monotone. Apply Knaster-Tarski’s fixed point
theorem.
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The end

Thank you!
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