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Prologue

The continuous degrees measure the computability-theoretic content of
elements of computable metric spaces.

They properly extend the Turing degrees and naturally embed into the
enumeration degrees.

In this talk we will see a few characterizations of the continuous degrees
inside the enumeration degrees.

Our main characterization captures the continuous degrees using a
simple structural property.

From this it follows that the continuous degrees are first-order definable
in the partial order of the enumeration degrees.
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The enumeration degrees

A is enumeration reducible to B if every enumeration of B can compute an
enumeration of A.

Formally, for every function f P ωω with rangepfq “ B there is a function
g P ωω with rangepgq “ A such that g ďT f .

Selman proved that it is equivalent to demand that f uniformly computes g.

Definition
A Ď ω is enumeration reducible to B Ď ω (A ďe B) if there is a c.e. set ∆
such that

x P A ðñ pDvqpxx, vy P ∆ & Dv Ď Bq.

The degree structure De induced by ďe is called the enumeration degrees. It
is an upper semi-lattice with a least element (the degree of all c.e. sets).
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The total enumeration degrees

Proposition

A ďT B ðñ A‘A is B-c.e. ðñ A‘A ďe B ‘B.

The embedding ι : DT Ñ De, defined by ιpdT pAqq “ depA‘Aq, preserves
the order and the least upper bound.

The total degrees are the image of the Turing degrees under this embedding.

Note! Consider the set of enumerations of a total set A‘A. It has an element
of least Turing degrees: dT pAq.

On the other hand if the set of enumerations of a set X has an element of least
Turing degree dT pAq then X ”e A‘A.

It is easy to see that nontotal degrees exist: every sufficiently generic/random
set must have nontotal degree.
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The simple structural property

Definition
An enumeration degree a is almost total if whenever b ę a is total, a_ b is
also total.

Note! Total degrees are almost total.

Are there nontotal almost total degrees?

Proposition (Cai, Lempp, Miller, S. 2014 (unpublished))
Continuous enumeration degrees are almost total.

There are nontotal continuous degrees, so there are nontotal almost total
degrees. We need some background from computable analysis.
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Computable analysis: the real numbers
Definition
λ : Q` Ñ Q is a name of a real x P R if for all rationals ε ą 0 we have
|λpεq ´ x| ă ε.

Names can be easily coded as binary sequences, allowing us to transfer
computability-theoretic notions. For example:

Definition
A function f : RÑ R is computable if there is a Turing functional that takes
a name for any real x P R to a name for fpxq.

The binary expansion of a real x is computable from every name. (But
this is nonuniform because of the dyadic rationals!)
The binary expansion of x computes a name for x.
This is the least Turing degree name for x; it is natural to take this as the
Turing degree of x.
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Computable metric spaces
Definition
A computable metric space is a metric space M together with a countable
dense sequence QM “ tqMn unPω on which the metric is computable (as a
function ω2 Ñ R).

Examples:
R with QR “ Q.
The Hilbert cube r0, 1sω with the metric

dpα, βq “
ř

nPω |αpnq ´ βpnq|{2
n

and Qr0,1s
ω

the sequences of rationals in r0, 1s with finite support.
2ω, ωω, Cr0, 1s.

Definition
A name of a point x PM is a function λ that maps positive rationals ε ą 0 to
natural numbers so that dMpx, qMλpεqq ă ε.
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The continuous degrees

Recall, that real numbers x P R always have a name of least Turing degree
(the degree of their binary expansion).

Question (Pour-El, Lempp)
Does every point in a computable metric space have a name of least Turing
degrees?

Definition (Miller 2004)
If x and y are points in computable metric spaces, then x ďr y if there is a
uniform way to compute a name for x from every name for y.

This reducibility induces the continuous degrees.
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The continuous degrees within known structures
The Turing degrees can be embedded in the continuous degrees: they
correspond to the continuous degrees of points in R (or 2ω, or even r0, 1s).

Proposition
Every continuous degree contains a point in Cr0, 1s and a point in r0, 1sω.

For α P r0, 1sω, let

Cα “
à

iPω

tq P Q | q ă αpiqu ‘ tq P Q | q ą αpiqu .

Enumerating Cα is as hard as computing a name for α. So α ÞÑ Cα induces
an embedding of the continuous degrees into the enumeration degrees.

Question (Pour El, Lempp)
Is there a continuous enumeration degree that is nontotal?
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Nontotal continuous degrees
If α has no rational points then
Cα “

À

iPω tq P Q | q ă αpiqu ‘ tq P Q | q ą αpiqu is total.

Theorem (Miller 2004)
There is a nontotal continuous degree.

Three proofs are known, all essentially topological.

Miller uses a generalization of Brouwer’s fixed point theorem to
multivalued functions on r0, 1sω.

Levin’s neutral measures (1976) have nontotal continuous degree (Day
and Miller 2013). Levin uses Sperner’s lemma, a combinatorial analogue
of the Brouwer fixed point theorem.

Kihara & Pauly and, independently, Hoyrup gave a short proof using the
fact that r0, 1sω is not a countable union of zero dimensional subspaces.
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Nontotal continuous degrees

Theorem (Miller 2004)
There is a nontotal continuous degree.

Proof

If x P r0, 1sω has total degree, then there is a y P 2ω and Turing
functionals Γ, Ψ that map (names of) x to (names of) y and back.

The subspaces on which the functions induced by Γ and Ψ are inverses
are homeomorphic (because computable functionals induce continuous
functions).

Subspaces of 2ω are zero dimensional, so if x P r0, 1sω has total degree,
then it is in one of countably many zero dimensional “patches”.

The Hilbert cube r0, 1sω is strongly infinite dimensional, hence not a
countable union of zero dimensional subspaces.

So some x P r0, 1sω is not covered by one of these patches.
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Continuous degrees are almost total

An enumeration degree a is almost total if whenever b ę a is total, a_ b is
also total.

Proposition (Cai, Lempp, Miller, S. 2014 (unpublished))
Continuous enumeration degrees are almost total.

Proof: Take α P r0, 1sω and x P r0, 1s such that x ęr α. Define

β P r0, 1sω by βpnq “ pαpnq ` xq{2.

Note that

No component of β is rational, so β has total degree.

α‘ x ”r β ‘ x, hence it is also total.
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Metalogue

What do we know so far?

Every continuous degrees is almost total.

There are nontotal continuous degrees, so there are nontotal almost total
degrees.

This is the only way we know how to produce nontotal almost total
degrees. (In particular, we have no “direct” construction.)

This suggests that the almost total degrees might be exactly the continuous
degrees, but we originally thought that this was too surprising to be true.
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Codability
Definition
U Ď 2ω is a Σ0

1xAy class if there is a set of binary strings W ďe A, such that

U “ rW să “ tX P 2ω | pDσ PW q X ľ σu .

A Π0
1xAy class is the complement of a Σ0

1xAy class.

Note that a Π0
1xA‘Ay class is just a Π0

1rAs class in the usual sense.

Definition (AIMS)
A Ď ω is (uniformly) codable if there is a nonempty Π0

1xAy class P such that
every X P P (uniformly) enumerates A.

Codability is equivalent to uniform codability.
Uniform codability relates to work of Cai, Lempp, Miller, and S. (2014,
unpublished) and Kihara and Pauly.
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Almost total degrees should not exist
Goal: Given a set A Ď ω, we try to build a sufficiently generic set X P 2ω so
that X ‘X witnesses that A is not cototal.

We build X by initial segments as
Ť

s σs, satisfying for all e:

Re : ΓepAq ‰ X ‘X.

Pe : ∆epA‘X ‘Xq is not an enumeration of A.

Suppose we have built σ and we want to extend and satisfy a requirement.

We can never fail to satisfy a requirement Re: Check if 2|σ| P ΓpAq and if so
extend by σ̂ 0 otherwise extend by σ̂ 1.

We can satisfy Pe if we can extend σ to ρ that forces ∆epA‘X ‘Xq to be:
1 A multifunction.
2 To have range outside of A.
3 To not be a total function.
4 To not enumerate all of A.
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A failed forcing argument

Proposition (AIMS)
Assume that A is almost total. There is an enumeration operator ∆ such that
if X is sufficiently generic, then ∆pA‘X ‘Xq is the graph of a total
function that enumerates A.

Let P Ď 2ω be the set of all B such that A Ď B and there is no X P 2ω

that causes ∆pB ‘X ‘Xq to be a proper multifunction.

P is a Π0
1xAy class. It is nonempty because A P P .

If B P P , then A is the set of elements in the range of ∆pB ‘ σ ‘ σq, as
σ ranges over 2ăω.

Conclusion (AIMS)
Every almost total degree is uniformly codable.
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Exploiting uniform codability
Assume that A is uniformly codable as witnessed by the Π0

1xAy class P and
the c.e. operator W .

If z P A, then by compactness, there is a finite set C Ď 2ăω such that
P Ď rCsă and every member of rCsĺ enumerates z via W .

If z R A and C Ď 2ăω is such a set, then P X rCsă “ H.

By compactness both facts are Σ0
1xAy.

We think of finite sets C Ď 2ăω such that p@X P rCsăq z PWX as
potential witnesses that z P A.

If z P A, then at least one witness is verified (positively from an
enumeration of A). If z R A, then all witnesses are refuted (. . . ).

Iterating this observation, we get the notion of holistic sets.
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Holistic sets

Definition
S Ď ωăω is holistic if for every σ P ωăω,

1 p@nq σ"p2nq and σ"p2n` 1q are not both in S,
2 If σ P S, then pDnq σ"p2n` 1q P S.
3 If σ R S, then p@nq σ"p2nq P S,

Think of the n’s as indexing potential witnesses that σ P S. Either:

at least one witnesses is verified: pDnq σ"p2n` 1q P S,

or all witnesses are refuted: p@nq σ"p2nq P S.

Conclusion (AIMS)
If A Ď ω is uniformly codable, then there is a holistic set S ”e A.
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The holistic space
Definition
Let H “ tS Ď ωăω : S is holisticu. A subbasis for a topology on H is given
by

Oσ “ tS P H : σ P Su

for each σ P ωăω. The resulting topological space is the holistic space.

Proposition (AIMS)
H is second countable, Hausdorff, and regular.

Therefore, H satisfies the hypotheses of Urysohn’s metrization theorem
(1925–1926):

Proposition (AIMS)
H is metrizable.
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Effective Urysohn’s theorem

Theorem ( Schröder 1998)
Let X be a computable topological space. If X is Hausdorff and computably
regular, then there is a computable metric on X that generates the original
topology.

Lemma (AIMS)
H satisfies the hypotheses of Schröder’s theorem, so it admits a computable
metric d.

This metric is computable in the sense we need, i.e., if S, T P H, then from
enumerations of S and T we can compute dpS, T q.
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Final step

It is easy to produce a computable dense set of points in H. Therefore:

Lemma (AIMS)
pH, dq is a computable metric space.

Finally, we can show:

Lemma (AIMS)
If S P H, then the continuous degree of S as a point in pH, dq is the same as
the enumeration degree of S.
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The main theorem

Putting it all together:

Theorem (AIMS)
Let a be an enumeration degree. The following are equivalent:

1 a is almost total,

2 the sets in a are (uniformly) codable,

3 a contains a holistic set,

4 a is continuous.
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Definability in the enumeration degrees

Theorem (Cai, Ganchev, Lempp, Miller, and S. (2016))
The set of total enumeration degrees and the relation “c.e. in” on total degrees
are first order definable in De.

Corollary (AIMS)
The almost total, and hence the continuous degrees are definable in the
enumeration degrees.
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The relation “PA above”
Definition
Let a and b be total enumeration degrees. We say that a is PA above b if the
pre-image of a is PA above the pre-image of b.

Theorem (Miller (2004))
If a and b are total degrees, then a is PA above b iff there is a nontotal
continuous degree c P pb,aq.

Corollary (AIMS)
The relation “a is PA above b” (on total degrees) is first order definable in the
enumeration degrees.

Question
Can there be a nontrivial automorphism of DT that preserves both relations
“c.e. in” and “PA above”?
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http://ludovicpatey.com/zooviewer/
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Epilogue

We have discussed various characterizations of the continuous degrees
inside the enumeration degrees.

The main one, almost totality, is a natural structural property.

We do not know how to directly build a nontotal almost total degree.

All known constructions of nontotal continuous degrees involve a
nontrivial topological component.

Question
Why would a structural property in the enumeration degrees reflect a
topological obstruction?
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