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Prologue

The continuous degrees measure the computability-theoretic content of
elements of computable metric spaces.

They properly extend the Turing degrees and naturally embed into the
enumeration degrees.

In this talk we will see a few characterizations of the continuous degrees
inside the enumeration degrees.

Our main characterization captures the continuous degrees using a
simple structural property.

From this it follows that the continuous degrees are first-order definable
in the partial order of the enumeration degrees.
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The enumeration degrees
Definition
A ⊆ ω is enumeration reducible to B ⊆ ω (A ≤e B) if there is a c.e. set ∆
such that

x ∈ A ⇐⇒ (∃v)(〈x, v〉 ∈ ∆ & Dv ⊆ B).

The degree structure De induced by ≤e is called the enumeration degrees. It
is an upper semi-lattice with a least element (the degree of all c.e. sets).

Proposition

A ≤T B ⇐⇒ A⊕A is B-c.e. ⇐⇒ A⊕A ≤e B ⊕B.

The embedding ι : DT → De, defined by

ι(dT (A)) = de(A⊕A),

preserves the order and the least upper bound.

The total degrees are the image of the Turing degrees under this embedding.
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Computable metric spaces
Definition
A computable metric space is a metric spaceM together with a countable
dense sequence QM = {qMn }n∈ω on which the metric is computable (as a
function ω2 → R).

Examples:
R with QR = Q.
The Hilbert cube [0, 1]ω with the metric

d(α, β) =
∑

n∈ω |α(n)− β(n)|/2n

and Q[0,1]ω the sequences of rationals in [0, 1] with finite support.
2ω, ωω, C[0, 1].

Definition
A name of a point x ∈M is a function λ that maps positive rationals ε > 0 to
natural numbers so that dM(x, qMλ(ε)) < ε.
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The continuous degrees
Definition (Miller 2004)
If x and y are points in computable metric spaces, then x ≤r y if there is a
uniform way to compute a name for x from every name for y. This
reducibility induces the continuous degrees.

Turing degrees correspond to continuous degrees of points in R (or 2ω).

Proposition
Every continuous degree contains a point in C[0, 1] and a point in [0, 1]ω.

For α ∈ [0, 1]ω, let

Cα =
⊕
i∈ω
{q ∈ Q | q < α(i)} ⊕ {q ∈ Q | q > α(i)} .

Enumerating Cα is as hard as computing a name for α. So α 7→ Cα induces
an embedding of the continuous degrees into the enumeration degrees.
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Nontotal continuous degrees
If α has no rational points then
Cα =

⊕
i∈ω {q ∈ Q | q < α(i)} ⊕ {q ∈ Q | q > α(i)} is total.

Theorem (Miller 2004)
There is a nontotal continuous degree.

Three proofs are known, all essentially topological.

Miller uses a generalization of Brouwer’s fixed point theorem to
multivalued functions on [0, 1]ω.

Levin’s neutral measures (1976) have nontotal continuous degree (Day
and Miller 2013). Levin uses Sperner’s lemma, a combinatorial analogue
of the Brouwer fixed point theorem.

Kihara & Pauly and, independently, Hoyrup gave a short proof using the
fact that [0, 1]ω is not a countable union of zero dimensional subspaces.
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The simple structural property

Definition
An enumeration degree a is almost total if whenever b � a is total, a ∨ b is
also total.

Note! The join of any two total degrees is total, so total degrees are almost
total.

Are there nontotal almost total degrees?
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Continuous degrees are almost total

Proposition (Cai, Lempp, Miller, S. 2014 (unpublished))
Continuous enumeration degrees are almost total.

Proof: Take α ∈ [0, 1]ω and x ∈ [0, 1] such that x �r α. Define

β ∈ [0, 1]ω by β(n) = (α(n) + x)/2.

Note that

No component of β is rational, so β has total degree.

α⊕ x ≡r β ⊕ x, hence it is also total.

There are nontotal continuous degrees, so there are nontotal almost total
degrees. This is the only way we know how to produce nontotal almost total
degrees. (In particular, we have no “direct” construction.)
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Codability
Definition
U ⊆ 2ω is a Σ0

1〈A〉 class if there is a set of binary strings W ≤e A, such that

U = [W ]≺ = {X ∈ 2ω | (∃σ ∈W ) X � σ} .
A Π0

1〈A〉 class is the complement of a Σ0
1〈A〉 class.

Note that a Π0
1〈A⊕A〉 class is just a Π0

1[A] class in the usual sense.

Definition
A ⊆ ω is (uniformly) codable if there is a nonempty Π0

1〈A〉 class P such that
every X ∈ P (uniformly) enumerates A.

Codability is equivalent to uniform codability.
Uniform codability relates to work of Cai, Lempp, Miller, and S. (2014,
unpublished) and Kihara and Pauly.
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Almost total degrees should not exist

Proposition (AIMS)
Assume that A 6= ∅ is almost total. There is an enumeration operator ∆ such
that if X is sufficiently generic, then ∆(A⊕X ⊕X) is the graph of a total
function that enumerates A.

Let P ⊆ 2ω be the set of all B such that A ⊆ B and there is no X ∈ 2ω

that causes ∆(B ⊕X ⊕X) to be a proper multifunction.

P is a Π0
1〈A〉 class. It is nonempty because A ∈ P .

If B ∈ P , then A is the set of element in the range of ∆(B ⊕ σ ⊕ σ), as
σ ranges over 2<ω.

Conclusion (AIMS)
Every almost total degree is uniformly codable.
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Exploiting uniform codability

Assume that A is uniformly codable as witnessed by the Π0
1〈A〉 class P and

the c.e. operator W .

If z ∈ A, then by compactness, there is a finite set C ⊆ 2<ω such that
P ⊆ [C]≺ and every member of [C]� enumerates z via W .

If z /∈ A and C ⊆ 2<ω is such a set, then P ∩ [C]≺ = ∅.

By compactness both facts are Σ0
1〈A〉.

Iterating this observation, we get the notion of holistic sets.
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Holistic sets

Definition
S ⊆ ω<ω is holistic if for every σ ∈ ω<ω,

1 (∀n) σ_(2n) and σ_(2n+ 1) are not both in S,
2 If σ ∈ S, then (∃n) σ_(2n+ 1) ∈ S.
3 If σ /∈ S, then (∀n) σ_(2n) ∈ S,

Think of the n’s as indexing potential witnesses that σ ∈ S. Either:

at least one witnesses is verified: (∃n) σ_(2n+ 1) ∈ S,

or all witnesses are refuted: (∀n) σ_(2n) ∈ S.

Conclusion (AIMS)
If A ⊆ ω is uniformly codable, then there is a holistic set S ≡e A.
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The holistic space

Definition
LetH = {S ⊆ ω<ω : S is holistic}. A subbasis for a topology onH is given
by

Oσ = {S ∈ H : σ ∈ S}

for each σ ∈ ω<ω. The resulting topological space is the holistic space.

H is second countable, Hausdorff, and regular, therefore, satisfies the
hypotheses of Urysohn’s metrization theorem (1925–1926).

Theorem ( Schröder 1998)
Let X be a computable topological space. If X is Hausdorff and computably
regular, then there is a computable metric on X that generates the original
topology.
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The final step in our proof

Lemma (AIMS)
H satisfies the hypotheses of Schröder’s theorem, so it admits a computable
metric d.

It is easy to produce a computable dense set of points inH. Therefore:

Lemma (AIMS)
(H, d) is a computable metric space.

Finally, we can show:

Lemma (AIMS)
If S ∈ H, then the continuous degree of S as a point in (H, d) is the same as
the enumeration degree of S.
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The main theorem

Putting it all together:

Theorem (AIMS)
Let a be an enumeration degree. The following are equivalent:

1 a is almost total,

2 the sets in a are (uniformly) codable,

3 a contains a holistic set,

4 a is continuous.
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Definability in the enumeration degrees
Cai, Ganchev, Lempp, Miller, and S. (2016) proved that the total degrees and
the relation “c.e. in” on total degrees are first order definable in De.

Corollary (AIMS)
The continuous degrees are definable in the enumeration degrees.

Miller (2004) proved that if a and b are total degrees, then a is PA above b iff
there is a nontotal continuous degree c ∈ (b,a).

Corollary (AIMS)
The relation “a is PA above b” (on total degrees) is first order definable in the
enumeration degrees.

Question
Can there be a nontrivial automorphism of DT that preserves both relations
“c.e. in” and “PA above’?
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Thank you!
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