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Abstract

Enumeration reducibility captures a natural relationship between sets of
natural numbers in which positive information about the first set is used to
produce positive information about the second set.

By identifying sets that are reducible to each other we obtain an algebraic
representation of this reducibility as a partial order: the structure of the
enumeration degrees De.

Motivation for the interest in this area comes from its nontrivial connections
to the study of the Turing degrees and computable mathematics.

We will outline a series of interactions between the structure of the
enumeration degrees and notions stemming from topology and descriptive set
theory that give rise to a zoo of subclasses within the enumeration degrees.
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Enumeration reducibility

Definition (Friedberg and Rogers 1959)
A ďe B if there is a program that transforms an enumeration of B (i.e. a
function on the natural numbers with range B) to an enumeration of A.

The program is a c.e. table of axioms of the sort:
If tx1, x2, . . . , xku Ď B then x P A.

Compare this to Turing reducibility, which can be defined as follows:
A ďT B if there is a c.e. table of axioms of two sorts:

If tx1, x2, . . . , xku Ď B and ty1, y2, . . . , ynu Ď Bc then x P A.
If tx1, x2, . . . , xku Ď B and ty1, y2, . . . , ynu Ď Bc then x P Ac.

Of course this c.e. table must not give contradictory instructions.

Proposition. A ďT B if and only if A‘Ac ďe B ‘Bc.
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Degree structures

Definition
1 A ” B if and only if A ď B and B ď A.
2 dpAq “ tB | A ” Bu.
3 dpAq ď dpBq if an only if A ď B.
4 Let A‘B “ t2n | n P Au Y t2n` 1 | n P Bu. Then

dpA‘Bq “ dpAq _ dpBq.

And so we have two partial orders with least upper bound:
1 The Turing degrees DT with least element 0T consisting of all computable

sets.
2 The enumeration degrees De with least element 0e consisting of all

computably enumerable sets..
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The total enumeration degrees
Proposition. A ďT B iff A‘Ac ďe B ‘Bc.

This suggests a natural embedding of the Turing degrees into the enumeration
degrees.

Proposition. The function ι : DT Ñ De, where
ιpdT pAqq “ depA‘A

cq,

is an embedding of DT into De.

Definition
A set A is total if A ěe Ac (or equivalently if A ”e A‘Ac). An enumeration
degree is total if it contains a total set.

The image of the Turing degrees under the embedding ι is exactly the set of
total enumeration degrees.

Theorem (Medvedev 1955). There are quasiminimal degrees—degrees
that are nontotal and do not bound any nonzero total degree.
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Definability of the total enumeration degrees

Definition (Kalimullin 2003)
A pair of sets tA,Bu is a K-pair relative to U if and only if there is a set
W ďe U such that AˆB ĎW and Ac ˆBc ĎW c.

Example. If A is a left cut in a linear ordering L on ω then tA,Acu is a
K-pair relative to L as witnessed by the set tpn,mq | n ďL mu.

Theorem(Kalimullin 2003). tA,Bu is a K-pair relative to U if and only if
the degrees degepAq “ a, degepBq “ b and degepUq “ u satisfy:

p@x ě uqrpa_ xq ^ pb_ xq “ x.s

Theorem(Cai, Ganchev, Lempp, Miller, S 2016). A nonzero degree x
is total if and only if x “ a_ b for a maximal K-pair ta,bu.
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The complexity of points in computable metric spaces
Definition (Lacombe 1957)
A computable metric space is a metric space M together with a countable
dense sequence QM “ tqMn unPω on which the metric is computable.

Examples. 2ω, ωω, R, Cr0, 1s, and Hilbert cube r0, 1sω.

Definition
λ : Q` Ñ ω is a name of a point x PM if for all rationals ε ą 0 we have
dMpx, q

M
λpεqq ă ε.

Note that points in 2ω, ωω and R have a name of least Turing degree. For
example, if r P R then consider the degree of tq P Q | q ă ru‘ tq P Q | q ą ru.

Question (Pour-El, Lempp). Does every point in a computable metric
space have a name of least Turing degree?
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The continuous degrees

Definition (Miller 2004)
If x and y are members of (possibly different) computable metric spaces, then
x ďr y if there is a uniform way to compute a name for x from a name for y.

This reducibility induces the continuous degrees Dr.

Theorem (Miller 2004). Every continuous degree contains a point from
r0, 1sω and a point from Cr0, 1s.
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Nontotal continuous degrees exist
For α P r0, 1sω, let

Cα “
à

iPω

tq P Q | q ă αpiqu ‘ tq P Q | q ą αpiqu.

Observation. Enumerating Cα is exactly as hard as computing a name for
α. So α ÞÑ Cα induces an embedding of the continuous degrees into the
enumeration degrees.

Elements of 2ω, ωω, and R are mapped onto the total degree of their least
Turing degree name. And so we have

DT ãÑ Dr ãÑ De.
Theorem (Miller 2004). There is a nontotal continuous degree.

Every known proof of this result uses nontrivial topological facts: Brouwer’s
fixed point theorem for multivalued functions on an infinite dimensional space,
or Sperner’s lemma, or results from topological dimension theory: r0, 1sω is
strongly infinite dimensional.
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Topology realized as a structural property

Theorem (Andrews, Igusa, Miller, S 2018). The continuous degrees are
definable in De: they are the degrees that join every total degree not below
them to a total degree—the almost total degrees.

Uses the effective version of Urysohn’s metrization theorem proved by
Schröder (1998).

Theorem (Ganchev, Kalimullin, Miller, S 2019). An enumeration
degree is continuous if and only if it is not half of a nontrivial K-pair relative
to any degree x.

It follows that there is a structural dichotomy: an e-degree is either continuous
or quasiminimal relative to some total degree.

Theorem (Miller 2018). The existence of nontotal almost total degrees in
every cone implies that r0, 1sω is strongly infinite dimensional.
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The enumeration degree zoo
Definition (Kihara, Pauly 2018)
A represented space is a pair of a second countable T0 space X and a listing of
an open basis BX “ tBiuiăω.
A name for a point x P X is an enumeration of the set Nx “ ti | x P Biu.
For x, y P X, say that x ď y if every name for y (uniformly) computes a name
for x.

Thus a represented space X gives rise to a class of e-degrees DX Ď De.

Examples:.
D2ω “ DR is the total enumeration degrees.
Dr0,1sω is the continuous degrees.
DSω “ De, where S is the Sierpinski topology tH, t1u, t0, 1uu.

Kihara, Ng, and Pauly (2019) investigate DX , where X is the ω-power of the:
cofinite topology on ω, telophase space, double origin space, quasi-Polish Roy
space, irregular lattice space.
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The semicomputable sets

Definition (Jockusch 1968)
A set A is semicomputable if and only if there is a computable selector
function sA : ω2 Ñ ω such that sApx, yq P tx, yu and if tx, yu XA ‰ H then
sApx, yq P A.
Equivalently, A is a left cut in a computable linear ordering.

Theorem (Kihara, Pauly 2018). DRă , where Ră is the real line with
topology generated by tpq,8quqPQ, is exactly the semicomputable degrees.

Theorem (Cai, Ganchev, Lempp, Miller, S 2016). The
semicomputable degrees are first order definable as the halves of maximal
nontrivial K-pairs.

Question. Can K-pairs be captured through a topological definition?
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PA relative to an enumeration oracle

Definition
A set P Ď 2ω is a Π0

1 class relative to the enumeration oracle A or a
Π0

1xAy-class if there is a set W Ď 2ăω such that W ďe A and
P “ tα P 2ω | @σpσ PW Ñ σ ł αqu.

So a Π0
1 class relative to a Turing oracle A is just a Π0

1 class relative to the
enumeration oracle A‘Ac.

Recall that B is PA relative to A if and only if B computes a member of any
nonzero Π0

1pAq.

Definition
We will say that xBy is PA relative to xAy if B enumerates (the set of initial
segments of) a member of any nonzero Π0

1xAy.

Question. Which oracles behave "well" with respect to the relation PA?
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Good oracles and bad oracles
If X has continuous degree then there is a nonempty Π0

1xXy class whose
members uniformly enumerate X.

Theorem(Ganchev, Kalimullin, Miller, S 2019). If X has continuous
degree:

1 If xY y is PA relative to xXy then X ďe Y—we will say that X is
PA-bounded.

2 There is a Π0
1xXy class P such that for every nonempty Π0

1xXy class Q
every path in P uniformly enumerates a path in Q—the oracle X has a
universal class.

Theorem(Franklin, Lempp, Miller, Schweber, and S 2019). The
continuous degrees are exactly the PA bounded enumeration degrees.

Theorem(Miller, S 2014). There are enumeration oracles X such that xXy
is PA relative to xXy. We call these xselfy-PA oracles.

If X is xselfy-PA then X cannot have a universal class P :otherwise, let
Y ďe X represent a member of P . Y ”e Y ‘ Y c so every Π0

1pY q-class is a
Π0

1xXy class and Y computes a member of it.
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Other ways to have a universal class

Definition
An enumeration oracle xAy is low for PA if every set X ‘Xc that is PA (in
the Turing sense) is PA relative to xAy.

Low for PA oracles have a universal class (e.g. DNC2) and are quasiminimal.

Theorem(Goh, Kalimullin, Miller, S). The following classes of
enumeration oracles are low for PA.

1 The 1-generic degrees.
2 Halves of nontrivial K-pairs (and hence degrees of semi-computable sets).

Note that these two classes are disjoint from the continuous degrees as they
consist of quasiminimal degrees.
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The picture so far
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Notions from descriptive set theory

Definition (Kalimullin, Puzarenko 2005)
Let X be an enumeration oracle.

1 X has the reduction property if for all pairs of set A,B ďe X there are
sets A0, B0 ďe X such that A0 Ď A, B0 Ď B, A0 XB0 “ H, and
A0 YB0 “ AYB;

2 X has the uniformization property if whenever R ďe X is a binary relation
there is a function f with graph Gf ďe X such that dompfq “ dompRq.

3 X has the separation property if for every pair of disjoint sets A,B ďe X
there is a separator C such that A Ď C, B Ď Cc, and C ‘ Cc ďe X.

4 X has the computable extension property if every partial function ϕ with
Gϕ ďe X has a (partial) computable extension ψ Ď ϕ.

5 X has a universal function if there is a partial function U with GU ďe X
such that if ϕ is a partial function with Gϕ ďe X then for some e we have
that ϕ “ λx.Upe, xq
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Kalimullin and Puzarenko’s theorem
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The reduction property
X has the reduction property if whenever A,B ďe X there are disjoint
A0, B0 ďe X with A0 Ď A, B0 Ď B, and A0 YB0 “ AYB;

We want to construct a Π0
1xXy class U such that if Pe “ 2ω r rΓepXqs then

the e-th column in any member of U uniformly codes a member of Pe.
If X were total we would fix enumerations of ΓepXq relative to X and let U be
the class of separators for

1 The set A of all xe, σy such that all extensions of σ0 are enumerated in
ΓepXq first.

2 The set B of all xe, σy such that all extensions of σ1 are enumerated in
ΓepXq first.

If X is not total then we cannot fix the order in which ΓepXq is enumerated
and so must not use the word first!
But then for σ with no extension in Pe we will have xe, σy P AXB.
The reduction property lets us solve exactly this problem!

Theorem(Goh, Kalimullin, Miller, S). The reduction property implies
having a universal class.
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Separation classes

Definition
A Π0

1xXy class P is a separation class if P “ tC | A Ď C &B Ď Ccu for some
disjoint A,B ďe X. Call such classes SepxXy for short.

Theorem(Goh, Kalimullin, Miller, S). Let X be an enumeration oracle.
1 X has the separation property if and only if X is xselfy-SepxXy, i.e. X

enumerates a member in any SepxXy-class.
2 X has the computable extension property if and only if X is low for

SepxXy-classes.
3 X has a universal function if and only if X has a universal class for

SepxXy-classes, i.e., there is a (separation) class U such that for every
separation class Pe there is a uniform way to compute a path in Pe from
any path in U .
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A summary of the results by Goh, Kalimullin, Miller,
and Soskova
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A challenge

Question. Can we find a uniform topological classification of the new
members of the zoo?
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Thank you!


