The relationship between local and global structure

Mariya I. Soskova University of Wisconsin–Madison

CiE 2023 Special Session on Degree Theory, July 24-28, Batumi, Georgia

Supported by NSF Grant No. DMS-2053848

Abstract

This talk is about:

- The relationship between degree structures and arithmetic.
- The coding theorem.
- The biinterpretability conjecture in local and global structures.
- The enumeration degrees, where certain first order definability facts lead to interesting local and global structural interactions.

Interpreting the Turing degrees in arithmetic

Second order arithmetic \mathcal{Z}_2 is the theory of $(\mathbb{N}, 0, 1, +, \times, \leq)$ with an additional sort for sets of natural numbers and a membership relation.

Classical results due to Kleene and Post show that the relations $\leq T$ and $C(X)$: "X is computable" are definable in second order arithmetic.

Thus we can translate statements about the Turing degrees (in the language of partial orderings) to statements about \mathcal{Z}_2 .

Example

The statement: there exists a minimal Turing degrees

$$
(\exists \mathbf{x} \neq \mathbf{0}_T)(\forall \mathbf{y})[\mathbf{y} \leqslant \mathbf{x} \rightarrow \mathbf{y} = \mathbf{0}_T \vee \mathbf{y} = \mathbf{x}]
$$

translates to

$$
(\exists X)[\neg C(X) \& (\forall Y)[Y \leq_T X \to C(Y) \lor Y \equiv_T X]].
$$

The coding theorem

Theorem (Simpson 77)

The theory of \mathcal{D}_T is computably isomorphic to \mathcal{Z}_2 .

One way to prove this is using the coding theorem:

Theorem (Slaman, Woodin 1986)

Every countable relation $\mathcal{R} \subseteq \mathcal{D}_{T}^{n}$ is uniformly in n definable from finitely many parameters, i.e. for every n there is a fix length $|\vec{p}|$ and a formula φ_n such that if $\mathcal{R} \subseteq \mathcal{D}_{T}^{n}$ then there are parameters \vec{p} of that length so that

$$
\vec{\mathbf{a}} \in \mathcal{R} \leftrightarrow \mathcal{D}_T \models \varphi_n(\mathbf{a}, \vec{\mathbf{p}}).
$$

Example

Every countable antichain A in \mathcal{D}_T can be coded by three parameters **a**, **b**, **c**: $x \in \mathcal{A} \leftrightarrow x \le a \& x \ne (b \vee x) \wedge (c \vee x) \& x$ is minimal with these properties.

Interpreting arithmetic in the Turing degrees

We can code a model of arithmetic:

- **•** Let $\mathcal{N} \subseteq \mathcal{D}_T$ be a countable set. We use parameters \vec{p}_1 code it.
- **2** If we think of the elements of $\mathcal{N} = {\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2 ...}$ as natural numbers $0, 1, 2, \ldots$ then the graphs of \pm , \times and \leq are just relations on \mathcal{D}_T coded by parameters \vec{p}_2 , \vec{p}_3 , and \vec{p}_4 .
- \bullet Any set $X \subseteq \mathbb{N}$ corresponds to a countable set $\mathcal{X} \subseteq \mathcal{N}$ and can also be coded by parameters \vec{p}_5 .
- **•** The parameters $\vec{\mathbf{p}} = (\mathbf{a}_0, \mathbf{a}_1, \vec{\mathbf{p}}_1, \vec{\mathbf{p}}_2, \vec{\mathbf{p}}_3, \vec{\mathbf{p}}_4, \vec{\mathbf{p}}_5)$ code a model of arithmetic $\mathbb{N}_{\vec{p}}$ with a unary predicate X.

It is a definable property of \vec{p} that they *code* a standard model $\mathbb{N}_{\vec{p}}$ of arithmetic with a unary predicate X.

We can translate arithmetic statements back into statements about \mathcal{D}_T :

Example

The statement $\forall X \exists n [n \in X \& \forall m [m \geq n \lor m \notin X]]$ translates^{*a*} to:

 $\forall \vec{p}$ if \vec{p} code a standard model $\mathbb{N}_{\vec{p}}$ with a unary predicate X then there exists $\mathbf{n} \in \mathbb{N}_{\mathbf{p}} \& X_{\mathbf{p}}(\mathbf{n}) \&$ \forall m $[m \in \mathbb{N}_{\vec{p}} \& [m \geq_{\vec{p}} n \vee \neg X_{\vec{p}}(m)]].$

^aTo make this statement true, we need $X \neq \emptyset$.

The biinterpretability conjecture

Slaman and Woodin conjecture that the relationship between \mathcal{D}_T and \mathcal{Z}_2 is even stronger:

Conjecture

The relation $Bi(\vec{p}, x)$ which is true when \vec{p} code a model $\mathbb{N}_{\vec{p}}$ of arithmetic with a unary predicate for a set X and $\deg_T(X) = \mathbf{x}$ is first order definable in \mathcal{D}_T .

Theorem (Slaman, Woodin 1990)

The following are equivalent for \mathcal{D}_T :

- **1** The biinterpretability conjecture is true;
- There are no nontrivial automorphisms of \mathcal{D}_T ;
- \bullet Every relation on \mathcal{Z}_2 that is definable and invariant under Turing reducibility induces a definable relation on Turing degrees.

Slaman and Woodin's automorphism analysis

Using metamathematical methods from set theory Slaman and Wooding came very close to proving the biinterpretability conjecture:

- There are at most countably many automorphisms of \mathcal{D}_T ;
- \bullet The relation Bi can be defined using one parameter;
- **3** Every automorphism on \mathcal{D}_T is the identity on the cone above $\mathbf{0}_T^{\prime\prime}$.

Definition

An automorphism base is a set $\mathcal{B} \subseteq \mathcal{D}_T$ such that if π is an automorphism of \mathcal{D}_T and for all **x** in B we have that $\pi(\mathbf{x}) = \mathbf{x}$ the π is trivial.

Theorem (Slaman, Woodin)

There exists a single degree $\mathbf{g} \leq \mathbf{0}_T^{(5)}$ such that $\{\mathbf{g}\}\$ is an automorphism base.

The local structure and first order arithmetic

An effective analysis of the Slaman Woodin theorem yields:

Theorem (The local coding theorem)

Any uniformly low sequence of degrees is definable using finitely many parameters in $\mathcal{D}_T(\leqslant 0'_T)$.

Here $\{a_n\}_{n\leq \omega}$ is uniformly low if it is represented by a sequence $\{A_n\}_{n\leq \omega}$ such that for all *n* the set $(\bigoplus_{i is uniformly computable from $\mathbf{0}_T'$.$

Using the local coding theorem we can show:

Theorem (Shore 81)

The theory of $\mathcal{D}_T(\leq \mathbf{0}'_T)$ is computably isomorphic to first order arithmetic.

In fact, there is a model of arithmetic that is definable in $\mathcal{D}_T(\leq \mathbf{0}'_T)$ without parameters.

The local biinterpretability conjecture

Definition

Fix some $\mathcal{Z} \subseteq \mathcal{D}(\leq \mathbf{0}'_T)$ represented by $\{Z_n\}_{n<\omega}$. We say that $\vec{\mathbf{p}}$ define an *indexing* of $\mathcal Z$ if \vec{p} define a standard model of arithmetic $\mathbb N_{\vec{p}}$ along with a bijection $\varphi_{\vec{p}}$ such that $\varphi_{\vec{p}}(n_{\vec{p}}) = \deg_T(Z_n)$.

We can list all Δ_2^0 sets as $\{X_e\}_{e \leq \omega}$ in some standard way, say $X_e = \Phi_e^{\mathbf{0}'}$, whenever this is well defined and \varnothing otherwise.

Note that if \vec{p} are Δ_2^0 parameters that code a model of arithmetic with an indexing of Δ_2^0 degrees then \vec{p} are an automorphism base for $\mathcal{D}_T(\leq \mathbf{0}_T')$.

This is because the degree representing every fixed natural number $e_{\vec{p}}$ is definable from \vec{p} and hence so is $\varphi(e_{\vec{p}}) = \deg_T(X_e)$.

Conjecture (The local biinterpretability conjecture)

There is a definable (without parameters) indexing of the Δ_2^0 Turing degrees.

An indexing of the c.e. Turing degrees

Theorem (Slaman and Woodin 1986)

There are finitely many Δ_2^0 parameters \vec{p} that code an indexing of the c.e. degrees: a function φ such that $\varphi(e_{\vec{p}}) = \deg_T(W_e)$.

Consider the set $K = \bigoplus_{e \prec \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K = A \cup B$.

Represent A and B as $\bigoplus_{e\prec\omega}A_e$ and $\bigoplus_{e\prec\omega}B_e$.

The sets $\mathcal{A} = \{d_T(A_e) \mid e < \omega\}$ and $\mathcal{B} = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence definable with parameters.

Note that $\deg_T(W_e) = \deg_T(A_e) \vee \deg_T(B_e)$.

The rest of the argument (finding a suitable model of arithmetic and the bijection that defines the indexing) is fairly standard.

Biinterpretability with parameters in the $\mathcal{D}_T(\leq 0)$ $_T^{\prime})$

Theorem (Slaman, Soskova 2015)

There are finitely many Δ_2^0 parameters that code an indexing of the Δ_2^0 degrees.

- **1** The automorphism group of $\mathcal{D}_T(\leq \mathbf{0}'_T)$ is countable.
- **2** Every relation $S \subseteq \mathcal{D}_T(\leq \mathbf{0}'_T)$ induced by an arithmetically definable degree invariant relation is definable with finitely many Δ_2^0 parameters.
- **3** $\mathcal{D}_T(\leq \mathbf{0}'_T)$ is rigid if and only if $\mathcal{D}_T(\leq \mathbf{0}'_T)$ is biinterpretable with first order arithmetic.

Biinterpretability with parameters in the $\mathcal{D}_T(\leq 0)$ $'_{T})$

Lemma (Slaman, Soskova 2015)

If $\mathbf{x} \leq_T 0'$ then there are low degrees $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \mathbf{g}_4$, such that $\mathbf{x} = (\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4).$

Theorem (Slaman, Soskova 2015)

There exists a uniformly low set of Turing degrees \mathcal{Z} , such that every low Turing degree x is uniquely positioned with respect to the c.e. degrees and the elements of Z.

If $x, y \le 0'$, $x' = 0'$ and $y \le x$ then there are $g_i \le 0'$, c.e. degrees a_i and Δ_2^0 degrees $\mathbf{c}_i, \mathbf{b}_i$ for $i = 1, 2$ such that:

- \bullet b_i and **c**_i are elements of Z .
- **2** \mathbf{g}_i is the least element below \mathbf{a}_i which joins \mathbf{b}_i above \mathbf{c}_i .
- $\bullet \mathbf{x} \leqslant \mathbf{g}_1 \vee \mathbf{g}_2.$
- \bullet y \leqslant g₁ \vee g₂.

The enumeratoin degrees

Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: $A \subseteq \omega$ is enumeration reducible to $B \subseteq \omega$ $(A \leq_e B)$ if there is a uniform way to enumerate A from an enumeration of B .

Definition

 $A \leqslant_{e} B$ if there is a c.e. set W such that

 $A = \{n: (\exists e) \langle n, e \rangle \in W \text{ and } D_e \subseteq B\},\$

where D_e is the eth finite set in a canonical enumeration.

The degree structure $\mathcal{D}_{\varepsilon}$ induced by \leq_{ε} is called the *enumeration degrees*. It is an upper semi-lattice with a least element (the degree of all c.e. sets).

There is a way to define a jump operator in this structure: $\deg_e(A)' = \deg_e(K_A \oplus \overline{K_A})$, where $K_A = \bigoplus_e \Gamma_e(A)$.

The total enumeration degrees

 $A \leq_T B \iff A \oplus \overline{A} \leq_{e} B \oplus \overline{B}.$

We can embed \mathcal{D}_T in \mathcal{D}_e by $\iota(d_T(A)) = d_e(A \oplus \overline{A}).$ This embedding preserves the order, the least upper bound, and the jump.

Definition

 $A \subseteq \omega$ is total if $\overline{A} \leq_{\epsilon} A$. A degree is total if it contains a total set.

The image of the Turing degrees under the embedding ι is exactly the set of total enumeration degrees.

Nontotal enumeration degrees exist: any generic $A \subseteq \omega$ has nontotal degree.

Theorem (Selman 1971)

 $A \leq_{e} B$ if and only if for every set X if $B \leq_{e} X \oplus \overline{X}$ then $A \leq_{e} X \oplus \overline{X}$.

Definability in the enumeration degrees

Theorem (Kalimulli 2003)

The jump operator is first order definable in \mathcal{D}_{e} .

Theorem (Cai, Lempp, Ganchev, Miller, and Soskova 2016) The total enumeration degree are first order definable in \mathcal{D}_{e} .

Theorem (Cai, Lempp, Ganchev, Miller, and Soskova 2016) The relation "c.e. in" restricted to total enumeration degrees is first order definable in \mathcal{D}_e .

The automorphism group of the enumeration degrees

Corollary

The total (Turing) degrees are a definable automorphism base for \mathcal{D}_{e} .

- **I** Every automorphism π of \mathcal{D}_e gives rise to an automorphism π^* of \mathcal{D}_T .
- **2** If π is nontrivial then so is π^* .
- **3** There is a total degree below $\mathbf{0}_e^{(5)}$ which is an automorphism base for \mathcal{D}_e .
- \bullet There are at most countably many automorphisms of \mathcal{D}_e .

The local structure of the enumeration degrees

The structure $\mathcal{D}_e(\leq \mathbf{0}'_e)$ consists of the enumeration degree of Σ_2^0 sets. It has a copy of $\mathcal{D}_T(\leq \mathbf{0}_T')$. The image of $\mathcal R$ is exactly the set of enumeration degrees of Π_1^0 sets.

Theorem (Slaman, Woodin 1996)

Every uniformly low set of degrees is codable by parameters in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

Theorem (Ganchev, Soskova 2012)

The theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is computably isomorphic to first order arithmetic.

Theorem (Slaman, Soskova 2017)

Let $\mathcal L$ be any of the local structures $\mathcal R$, $\mathcal D_T(\leqslant 0'_T)$, or $\mathcal D_e(\leqslant 0'_e)$. The rigidity of $\mathcal L$ implies the rigidity of $\mathcal D_e$.

A sequence of indexings

Recall, the indexing of the c.e. degrees definable from Δ_2^0 Turing parameters.

Theorem (Slaman Woodin 1986)

There is an indexing of the Π_1^0 enumeration degrees that is definable from finitely many total Δ_2^0 enumeration degrees.

We extend this to:

- ¹ An indexing of all degrees of low 3-c.e. sets;
- **2** All low Δ_2^0 enumeration degrees;
- All total Δ_2^0 enumeration degrees;
- All total degrees that are in the interval $[\mathbf{a}, \mathbf{a}']$ for some total Δ_2^0 enumeration degree.
- **5** All total Δ_3^0 enumeration degrees;
- All total Δ_4^0 enumeration degrees;
- **0** ... All total Δ_n^0 enumeration degrees;

Two sample technical theorems used to produce these

Theorem (Slaman, Soskova 2017)

If Y and W are c.e. sets and A is a low c.e. set such that $W \leq T A$ and $Y \leq T A$ then there are sets U and V computable from W such that:

- $\bullet \; V \leqslant_T Y \oplus U$
- \bullet $V \leq_T A \oplus U$

Relative to X and with $W = \emptyset'$ we get:

Within the class of low and c.e.a. degrees relative to x which do not compute $\emptyset',$ y is uniquely positioned with respect to the Δ_2^0 Turing degrees.

Theorem (Slaman, Soskova 2017)

There are high Δ_2^0 degrees \mathbf{h}_1 and \mathbf{h}_2 such that every 2-generic Δ_3^0 Turing degree **g** satisfies $(\mathbf{h}_1 \vee \mathbf{g}) \wedge (\mathbf{h}_2 \vee \mathbf{g}) = \mathbf{g}$.

So every 2-generic below $\mathbf{0}_{T}''$ can be uniquely determined from degrees in the set $[\mathbf{h}_1, \mathbf{h}'_1] \cup [\mathbf{h}_2, \mathbf{h}'_2]$.

The main theorem and its consequences

Theorem (Slaman, Soskova 2017)

There are finitely many Δ_2^0 total parameters \vec{p} that define an indexing of the total Δ_n^0 enumeration degrees.

- Recall that there is $\mathbf{g} \leq \mathbf{0}_T^{(5)}$ such that $\{\mathbf{g}\}\$ is an automorphism base for \mathcal{D}_T .
- It follows that $\iota(g) \leq 0_e^{(5)}$ and that $\{\iota(g)\}\$ is an automorphism base for \mathcal{D}_e .
- If \vec{p} are indexing parameters for the total Δ_6^0 degrees then $\{\iota(g)\}\$ is definable from \vec{p} .

Theorem (Slaman, Soskova 2017)

There are finitely many Δ_2^0 total parameters \vec{p} that form an automorphism base for \mathcal{D}_e .

Open questions

Question

Are there any nontrivial automorphisms of any of the mentioned structures: $\mathcal{R}, \mathcal{D}_T(\leqslant \mathbf{0}_T'), \mathcal{D}_e(\leqslant \mathbf{0}_e'), \mathcal{D}_T, \mathcal{D}_e?$

Question

Is there an indexing of the Σ^0_2 enumeration degrees that is definable (with parameters) in $\mathcal{D}_e(\leqslant 0_e')$?

Question

Does the rigidity of $\mathcal{D}_T(\leq \mathbf{0}'_T)$ or \mathcal{R} imply the rigidity of \mathcal{D}_T ?

References

Slaman, T. A. and Soskova, M. I. (2017). The enumeration degrees: local and global structural interactions, Foundations of mathematics, Contemp. Math., Vol. 690 (Amer. Math. Soc., Providence, RI), pp. 31–67.

Slaman, T. A. and Soskova, M. I. (2018). The Δ_2^0 Turing degrees: automorphisms and definability, Trans. Amer. Math. Soc. 370, 2, pp. 1351–1375.

Theodore A. Slaman and W. Hugh Woodin. Definability in the Turing degrees. Illinois J. Math., 30(2):320–334, 1986.

Thank you!