The relationship between local and global structure

Mariya I. Soskova University of Wisconsin–Madison

CiE 2023 Special Session on Degree Theory, July 24-28, Batumi, Georgia

Supported by NSF Grant No. DMS-2053848

Abstract

This talk is about:

- The relationship between degree structures and arithmetic.
- The coding theorem.
- The biinterpretability conjecture in local and global structures.
- The enumeration degrees, where certain first order definability facts lead to interesting local and global structural interactions.

Interpreting the Turing degrees in arithmetic

Second order arithmetic \mathbb{Z}_2 is the theory of $(\mathbb{N}, 0, 1, +, \times, \leq)$ with an additional sort for sets of natural numbers and a membership relation.

Classical results due to Kleene and Post show that the relations \leq_T and C(X): "X is computable" are definable in second order arithmetic.

Thus we can translate statements about the Turing degrees (in the language of partial orderings) to statements about Z_2 .

Example

The statement: there exists a minimal Turing degrees

$$(\exists \mathbf{x} \neq \mathbf{0}_T)(\forall \mathbf{y}) [\mathbf{y} \leqslant \mathbf{x} \rightarrow \mathbf{y} = \mathbf{0}_T \lor \mathbf{y} = \mathbf{x}]$$

translates to

$$(\exists X)[\neg C(X) \And (\forall Y)[Y \leqslant_T X \to C(Y) \lor Y \equiv_T X]].$$

The coding theorem

Theorem (Simpson 77)

The theory of \mathcal{D}_T is computably isomorphic to \mathcal{Z}_2 .

One way to prove this is using the coding theorem:

Theorem (Slaman, Woodin 1986)

Every countable relation $\mathcal{R} \subseteq \mathcal{D}_T^n$ is uniformly in *n* definable from finitely many parameters, i.e. for every *n* there is a fix length $|\vec{\mathbf{p}}|$ and a formula φ_n such that if $\mathcal{R} \subseteq \mathcal{D}_T^n$ then there are parameters $\vec{\mathbf{p}}$ of that length so that

$$\vec{\mathbf{a}} \in \mathcal{R} \leftrightarrow \mathcal{D}_T \models \varphi_n(\mathbf{a}, \vec{\mathbf{p}}).$$

Example

Every countable antichain \mathcal{A} in \mathcal{D}_T can be coded by three parameters $\mathbf{a}, \mathbf{b}, \mathbf{c}$: $\mathbf{x} \in \mathcal{A} \leftrightarrow \mathbf{x} \leq \mathbf{a} \& \mathbf{x} \neq (\mathbf{b} \lor \mathbf{x}) \land (\mathbf{c} \lor \mathbf{x}) \& \mathbf{x}$ is minimal with these properties.

Interpreting arithmetic in the Turing degrees

We can code a model of arithmetic:

- Let $\mathcal{N} \subseteq \mathcal{D}_T$ be a countable set. We use parameters $\vec{\mathbf{p}}_1$ code it.
- **②** If we think of the elements of $\mathcal{N} = \{\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2 \dots\}$ as natural numbers $0, 1, 2, \dots$ then the graphs of $+, \times$ and \leq are just relations on \mathcal{D}_T coded by parameters $\vec{\mathbf{p}}_2, \vec{\mathbf{p}}_3$, and $\vec{\mathbf{p}}_4$.
- Any set $X \subseteq \mathbb{N}$ corresponds to a countable set $\mathcal{X} \subseteq \mathcal{N}$ and can also be coded by parameters $\vec{\mathbf{p}}_5$.
- The parameters $\vec{\mathbf{p}} = (\mathbf{a}_0, \mathbf{a}_1, \vec{\mathbf{p}}_1, \vec{\mathbf{p}}_2, \vec{\mathbf{p}}_3, \vec{\mathbf{p}}_4, \vec{\mathbf{p}}_5)$ code a model of arithmetic $\mathbb{N}_{\vec{\mathbf{p}}}$ with a unary predicate X.

It is a definable property of $\vec{\mathbf{p}}$ that they *code* a standard model $\mathbb{N}_{\vec{\mathbf{p}}}$ of arithmetic with a unary predicate X.

We can translate arithmetic statements back into statements about \mathcal{D}_T :

Example

The statement $\forall X \exists n [n \in X \& \forall m [m \ge n \lor m \notin X]]$ translates^{*a*} to:

 $\forall \vec{\mathbf{p}} \text{ if } \vec{\mathbf{p}} \text{ code a standard model } \mathbb{N}_{\vec{\mathbf{p}}} \text{ with a unary predicate } X \text{ then there exists } \mathbf{n} \in \mathbb{N}_{\vec{\mathbf{p}}} \& X_{\vec{\mathbf{p}}}(\mathbf{n}) \& \\ \forall \mathbf{m} [\mathbf{m} \in \mathbb{N}_{\vec{\mathbf{p}}} \& [\mathbf{m} \geq_{\vec{\mathbf{p}}} \mathbf{n} \lor \neg X_{\vec{\mathbf{p}}}(\mathbf{m})]].$

^aTo make this statement true, we need $X \neq \emptyset$.

The biinterpretability conjecture

Slaman and Woodin conjecture that the relationship between \mathcal{D}_T and \mathcal{Z}_2 is even stronger:

Conjecture

The relation $Bi(\vec{\mathbf{p}}, \mathbf{x})$ which is true when $\vec{\mathbf{p}}$ code a model $\mathbb{N}_{\vec{\mathbf{p}}}$ of arithmetic with a unary predicate for a set X and $\deg_T(X) = \mathbf{x}$ is first order definable in \mathcal{D}_T .

Theorem (Slaman, Woodin 1990)

The following are equivalent for \mathcal{D}_T :

- The biinterpretability conjecture is true;
- **2** There are no nontrivial automorphisms of \mathcal{D}_T ;
- Every relation on Z₂ that is definable and invariant under Turing reducibility induces a definable relation on Turing degrees.

Slaman and Woodin's automorphism analysis

Using metamathematical methods from set theory Slaman and Wooding came very close to proving the biinterpretability conjecture:

- **③** There are at most countably many automorphisms of \mathcal{D}_T ;
- **2** The relation Bi can be defined using one parameter;
- **③** Every automorphism on \mathcal{D}_T is the identity on the cone above $\mathbf{0}''_T$.

Definition

An automorphism base is a set $\mathcal{B} \subseteq \mathcal{D}_T$ such that if π is an automorphism of \mathcal{D}_T and for all \mathbf{x} in \mathcal{B} we have that $\pi(\mathbf{x}) = \mathbf{x}$ the π is trivial.

Theorem (Slaman, Woodin)

There exists a single degree $\mathbf{g} \leq \mathbf{0}_T^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base.

The local structure and first order arithmetic

An effective analysis of the Slaman Woodin theorem yields:

Theorem (The local coding theorem)

Any uniformly low sequence of degrees is definable using finitely many parameters in $\mathcal{D}_T (\leq \mathbf{0}'_T)$.

Here $\{\mathbf{a}_n\}_{n<\omega}$ is uniformly low if it is represented by a sequence $\{A_n\}_{n<\omega}$ such that for all n the set $(\bigoplus_{i< b} A_i)'$ is uniformly computable from $\mathbf{0}'_T$.

Using the local coding theorem we can show:

Theorem (Shore 81)

The theory of $\mathcal{D}_T(\leq \mathbf{0}'_T)$ is computably isomorphic to first order arithmetic.

In fact, there is a model of arithmetic that is definable in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ without parameters.

The local biinterpretability conjecture

Definition

Fix some $\mathcal{Z} \subseteq \mathcal{D}(\leq \mathbf{0}'_T)$ represented by $\{Z_n\}_{n < \omega}$. We say that $\vec{\mathbf{p}}$ define an *indexing* of \mathcal{Z} if $\vec{\mathbf{p}}$ define a standard model of arithmetic $\mathbb{N}_{\vec{\mathbf{p}}}$ along with a bijection $\varphi_{\vec{\mathbf{p}}}$ such that $\varphi_{\vec{\mathbf{p}}}(n_{\vec{\mathbf{p}}}) = \deg_T(Z_n)$.

We can list all Δ_2^0 sets as $\{X_e\}_{e<\omega}$ in some standard way, say $X_e = \Phi_e^{0'}$, whenever this is well defined and \emptyset otherwise.

Note that if $\vec{\mathbf{p}}$ are Δ_2^0 parameters that code a model of arithmetic with an indexing of Δ_2^0 degrees then $\vec{\mathbf{p}}$ are an automorphism base for $\mathcal{D}_T (\leq \mathbf{0}'_T)$.

This is because the degree representing every fixed natural number $e_{\vec{\mathbf{p}}}$ is definable from $\vec{\mathbf{p}}$ and hence so is $\varphi(e_{\vec{\mathbf{p}}}) = \deg_T(X_e)$.

Conjecture (The local biinterpretability conjecture)

There is a definable (without parameters) indexing of the Δ_2^0 Turing degrees.

An indexing of the c.e. Turing degrees

Theorem (Slaman and Woodin 1986)

There are finitely many Δ_2^0 parameters $\vec{\mathbf{p}}$ that code an indexing of the c.e. degrees: a function φ such that $\varphi(e_{\vec{\mathbf{p}}}) = \deg_T(W_e)$.

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K = A \cup B$.

Represent A and B as $\bigoplus_{e < \omega} A_e$ and $\bigoplus_{e < \omega} B_e$.

The sets $\mathcal{A} = \{d_T(A_e) \mid e < \omega\}$ and $\mathcal{B} = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence definable with parameters.

Note that $\deg_T(W_e) = \deg_T(A_e) \lor \deg_T(B_e)$.

The rest of the argument (finding a suitable model of arithmetic and the bijection that defines the indexing) is fairly standard.

Biinterpretability with parameters in the $\mathcal{D}_T(\leq \mathbf{0}'_T)$

Theorem (Slaman, Soskova 2015)

There are finitely many Δ_2^0 parameters that code an indexing of the Δ_2^0 degrees.

- The automorphism group of $\mathcal{D}_T(\leq \mathbf{0}'_T)$ is countable.
- Every relation $S \subseteq D_T (\leq \mathbf{0}'_T)$ induced by an arithmetically definable degree invariant relation is definable with finitely many Δ_2^0 parameters.
- $\mathcal{D}_T(\leq \mathbf{0}'_T)$ is rigid if and only if $\mathcal{D}_T(\leq \mathbf{0}'_T)$ is biinterpretable with first order arithmetic.

Biinterpretability with parameters in the $\mathcal{D}_T(\leq \mathbf{0}'_T)$)

Lemma (Slaman, Soskova 2015)

If $\mathbf{x} \leq_T 0'$ then there are low degrees \mathbf{g}_1 , \mathbf{g}_2 , \mathbf{g}_3 , \mathbf{g}_4 , such that $\mathbf{x} = (\mathbf{g}_1 \lor \mathbf{g}_2) \land (\mathbf{g}_3 \lor \mathbf{g}_4).$

Theorem (Slaman, Soskova 2015)

There exists a uniformly low set of Turing degrees \mathcal{Z} , such that every low Turing degree \mathbf{x} is uniquely positioned with respect to the c.e. degrees and the elements of \mathcal{Z} .

If $\mathbf{x}, \mathbf{y} \leq \mathbf{0}', \mathbf{x}' = \mathbf{0}'$ and $\mathbf{y} \leq \mathbf{x}$ then there are $\mathbf{g}_i \leq \mathbf{0}'$, c.e. degrees \mathbf{a}_i and Δ_2^0 degrees $\mathbf{c}_i, \mathbf{b}_i$ for i = 1, 2 such that:

- **9** \mathbf{b}_i and \mathbf{c}_i are elements of \mathcal{Z} .
- **2** \mathbf{g}_i is the least element below \mathbf{a}_i which joins \mathbf{b}_i above \mathbf{c}_i .
- $\mathbf{0} \ \mathbf{x} \leqslant \mathbf{g}_1 \lor \mathbf{g}_2.$

The enumeratoin degrees

Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: $A \subseteq \omega$ is enumeration reducible to $B \subseteq \omega$ $(A \leq_e B)$ if there is a uniform way to enumerate A from an enumeration of B.

Definition

 $A \leq_e B$ if there is a c.e. set W such that

$$A = \{n \colon (\exists e) \langle n, e \rangle \in W \text{ and } D_e \subseteq B\},\$$

where D_e is the *e*th finite set in a canonical enumeration.

The degree structure \mathcal{D}_e induced by \leq_e is called the *enumeration degrees*. It is an upper semi-lattice with a least element (the degree of all c.e. sets).

There is a way to define a jump operator in this structure: $\deg_e(A)' = \deg_e(K_A \oplus \overline{K_A})$, where $K_A = \bigoplus_e \Gamma_e(A)$.

The total enumeration degrees

 $A \leqslant_T B \iff A \oplus \overline{A} \leqslant_e B \oplus \overline{B}.$

We can embed \mathcal{D}_T in \mathcal{D}_e by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$. This embedding preserves the order, the least upper bound, and the jump.

Definition

 $A \subseteq \omega$ is *total* if $\overline{A} \leq_e A$. A degree is *total* if it contains a total set.

The image of the Turing degrees under the embedding ι is exactly the set of total enumeration degrees.

Nontotal enumeration degrees exist: any generic $A \subseteq \omega$ has nontotal degree.

Theorem (Selman 1971)

 $A \leq_e B$ if and only if for every set X if $B \leq_e X \oplus \overline{X}$ then $A \leq_e X \oplus \overline{X}$.

Definability in the enumeration degrees

Theorem (Kalimulli 2003)

The jump operator is first order definable in \mathcal{D}_e .

Theorem (Cai, Lempp, Ganchev, Miller, and Soskova 2016) The total enumeration degree are first order definable in \mathcal{D}_e .

Theorem (Cai, Lempp, Ganchev, Miller, and Soskova 2016) The relation "c.e. in" restricted to total enumeration degrees is first order definable in \mathcal{D}_e . The automorphism group of the enumeration degrees

Corollary

The total (Turing) degrees are a definable automorphism base for \mathcal{D}_e .

- Every automorphism π of \mathcal{D}_e gives rise to an automorphism π^* of \mathcal{D}_T .
- **2** If π is nontrivial then so is π^* .
- **③** There is a total degree below $\mathbf{0}_{e}^{(5)}$ which is an automorphism base for \mathcal{D}_{e} .
- **(9)** There are at most countably many automorphisms of \mathcal{D}_e .

The local structure of the enumeration degrees

The structure $\mathcal{D}_e(\leq \mathbf{0}'_e)$ consists of the enumeration degree of Σ_2^0 sets. It has a copy of $\mathcal{D}_T(\leq \mathbf{0}'_T)$. The image of \mathcal{R} is exactly the set of enumeration degrees of Π_1^0 sets.

Theorem (Slaman, Woodin 1996)

Every uniformly low set of degrees is codable by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Ganchev, Soskova 2012)

The theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is computably isomorphic to first order arithmetic.

Theorem (Slaman, Soskova 2017)

Let \mathcal{L} be any of the local structures \mathcal{R} , $\mathcal{D}_T(\leq \mathbf{0}'_T)$, or $\mathcal{D}_e(\leq \mathbf{0}'_e)$. The rigidity of \mathcal{L} implies the rigidity of \mathcal{D}_e .

A sequence of indexings

Recall, the indexing of the c.e. degrees definable from Δ_2^0 Turing parameters.

Theorem (Slaman Woodin 1986)

There is an indexing of the Π_1^0 enumeration degrees that is definable from finitely many total Δ_2^0 enumeration degrees.

We extend this to:

- An indexing of all degrees of low 3-c.e. sets;
- 2 All low Δ_2^0 enumeration degrees;
- All total Δ_2^0 enumeration degrees;
- All total degrees that are in the interval [a, a'] for some total Δ⁰₂ enumeration degree.
- All total Δ_3^0 enumeration degrees;
- All total Δ_4^0 enumeration degrees;
- \bigcirc ... All total Δ_n^0 enumeration degrees;

Two sample technical theorems used to produce these

Theorem (Slaman, Soskova 2017)

If Y and W are c.e. sets and A is a low c.e. set such that $W \leq_T A$ and $Y \leq_T A$ then there are sets U and V computable from W such that:

- $\bullet V \leqslant_T Y \oplus U$
- $V \leqslant_T A \oplus U$

Relative to X and with $W = \emptyset'$ we get:

Within the class of low and c.e.a. degrees relative to \mathbf{x} which do not compute \emptyset' , \mathbf{y} is uniquely positioned with respect to the Δ_2^0 Turing degrees.

Theorem (Slaman, Soskova 2017)

There are high Δ_2^0 degrees \mathbf{h}_1 and \mathbf{h}_2 such that every 2-generic Δ_3^0 Turing degree \mathbf{g} satisfies $(\mathbf{h}_1 \vee \mathbf{g}) \wedge (\mathbf{h}_2 \vee \mathbf{g}) = \mathbf{g}$.

So every 2-generic below $\mathbf{0}_T'$ can be uniquely determined from degrees in the set $[\mathbf{h}_1, \mathbf{h}_1'] \cup [\mathbf{h}_2, \mathbf{h}_2']$.

The main theorem and its consequences

Theorem (Slaman, Soskova 2017)

There are finitely many Δ_2^0 total parameters $\vec{\mathbf{p}}$ that define an indexing of the total Δ_n^0 enumeration degrees.

- Recall that there is $\mathbf{g} \leq \mathbf{0}_T^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for \mathcal{D}_T .
- It follows that $\iota(\mathbf{g}) \leq \mathbf{0}_e^{(5)}$ and that $\{\iota(\mathbf{g})\}$ is an automorphism base for \mathcal{D}_e .
- If $\vec{\mathbf{p}}$ are indexing parameters for the total Δ_6^0 degrees then $\{\iota(\mathbf{g})\}$ is definable from $\vec{\mathbf{p}}$.

Theorem (Slaman, Soskova 2017)

There are finitely many Δ_2^0 total parameters $\vec{\mathbf{p}}$ that form an automorphism base for \mathcal{D}_e .

Open questions

Question

Are there any nontrivial automorphisms of any of the mentioned structures: $\mathcal{R}, \mathcal{D}_T (\leq \mathbf{0}'_T), \mathcal{D}_e (\leq \mathbf{0}'_e), \mathcal{D}_T, \mathcal{D}_e$?

Question

Is there an indexing of the Σ_2^0 enumeration degrees that is definable (with parameters) in $\mathcal{D}_e(\leq \mathbf{0}'_e)$?

Question

Does the rigidity of $\mathcal{D}_T(\leq \mathbf{0}'_T)$ or \mathcal{R} imply the rigidity of \mathcal{D}_T ?

References

Slaman, T. A. and Soskova, M. I. (2017). The enumeration degrees: local and global structural interactions, *Foundations of mathematics, Contemp. Math.*, Vol. 690 (Amer. Math. Soc., Providence, RI), pp. 31–67.

Slaman, T. A. and Soskova, M. I. (2018). The Δ⁰₂ Turing degrees: automorphisms and definability, *Trans. Amer. Math. Soc.* **370**, 2, pp. 1351–1375.

Theodore A. Slaman and W. Hugh Woodin. Definability in the Turing degrees. *Illinois J. Math.*, 30(2):320–334, 1986. Thank you!