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Relative computability

How can a set of natural numbers B be used to define a set of natural
numbers A.

There is an algorithm, which determines whether x ∈ A using
finite information about memberships in B: Turing reducibility.
There is an algorithm, which enumerates instances of
memberships in A from instances of memberships in B:
enumeration reducibility.
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Turing reducibility
There is an algorithm, which determines whether x ∈ A using finite
information about memberships in B.

Algorithm: A Turing machine, or a program written in any common
programming language or a natural number: ϕe.

The algorithm is allowed to consult an oracle: ϕB
e .

A ≤T B if an only if the characteristic function of A is computable
using oracle B: χA = ϕB

e for some e.

Example
Let B be any set of natural numbers.

Every computable set is Turing reducible to B.
B ≤T B and if C ≤T D and D ≤T B then C ≤T B.
The halting set relative to B, denoted as KB =

{
n | ϕB

n (n) halts
}

is
not Turing reducible to B.
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Scooping the loop snooper
Geoffrey K. Pullum

. . .

For imagine we have a procedure called P
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

. . .

Well, the truth is that P cannot possibly be,
because if you wrote it and gave it to me,
I could use it to set up a logical bind
that would shatter your reason and scramble your mind.
. . .
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Enumeration reducibility
There is an algorithm, which enumerates instances of memberships in
A from instances of memberships in B.

We have an algorithm which enumerates a list of axioms: 〈x ,D〉: a
c.e. set We.
The oracle set B is revealing it elements one by one in some order.
We combine both enumerations into one: If we see an axiom
〈x ,D〉 and all of the elements in D have been enumerated by the
oracle then we enumerate x : We(B)

A ≤e B if A = We(B) for some e.

Example
Let B be any set of natural numbers.

Every computably enumerable set is enumeration reducible to B.
B ≤e B and if C ≤e D and D ≤e B then C ≤e B.
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Enumeration reducibility

Example
Let B be any set of natural numbers.

The set LB = {n | n ∈Wn(B)} is e-reducible to B. We have a
universal c.e. set.

The set LB = {n | n /∈Wn(B)} is not e-reducible to B.

For imagine we have an enumeration called e
which outputs a p only if you see
the p-th program with oracle B
will not in our lifetime enumerate p.

Well, then e too cannot be,
because if you wrote it and gave it to me,
I would make you seem foolish, I will not be kind
with a trick I learned from Cantor and always keep in mind.
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The structure of degrees

From pre-order to equivalence relation: A ≡ B iff A ≤ B and
B ≤ A. The degree of a set A is d(A) = {B | A ≡ B}.

From equivalence relation to partial order: d(A) ≤ d(B) iff A ≤ B.

Least element 0 = d(∅). In particular 0T consist of the computable
sets and 0e consists of the c.e. sets.

d(A) ∨ d(B) = d(A⊕ B). Here A⊕ B = (2A) ∪ (2B + 1)

Define a jump operation ′. For the Turing degrees:
dT (A)′ = dT (KA). For the e-degrees: de(A)′ = de(LA ⊕ LA).

D = 〈D,≤,∨,′ 0〉 is an upper semi-lattice with least element and
jump operation.
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What connects DT and De

Proposition
Let A and B be sets of natural numbers. The following are equivalent:

1 A ≤T B;
2 Both A and A can be enumerated by a computable in B function,

A⊕ A is c.e. in B;
3 A⊕ A ≤e B ⊕ B.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as T OT = ι(DT ).

(DT ,≤T ,∨,′ 0T ) ∼= (T OT ,≤e,∨,′ ,0e) ⊆ (De,≤e,∨,′ 0e)
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More connections between DT and De

Theorem (Selman (1971))
Selman’s Theorem: A ≤e B if and only if the set of total enumeration
degrees above B is a subset of the set of total enumeration degrees
above A.

Corollary
T OT is an automorphism base for De.

Theorem (Soskov’s Jump Inversion Theorem (2000))
For every x ∈ De there exists a total e-degree a ≥ x, such that a′ = x′.
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Computable model theory

Fix a countable relational structure A = (N,R1 . . .Rk ).

Definition (Richter)
The degree spectrum of A, denoted by DST (A), is the set of Turing
degrees of the diagrams of structures B ∼= A.

If DST (A) has a least member, it is the (Turing) degree of A.

Definition (Jockusch)
The jump spectrum of A is DS′

T (A) = {d
′ | d ∈ DST (A)}.

If DS′
T (A) has a least member, it is the (Turing) jump degree of A.
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Torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 G is a subgroup of (Q,+).

Baer introduced the type of a group G, χ(G), in terms of divisibility
properties of nonzero elements of G.
Two torsion free abelian groups of rank 1 are isomorphic if and
only if they have the same type.
There is a standard representation of χ(G) as a set of natural
numbers S(G), the standard type of G.
Every set of natural numbers can be coded as the standard type
of some group G.

Theorem (Downey, Jockusch)
The degree spectrum of G is precisely {dT (Y ) | S(G) is c.e. in Y}.

Given a set A , characterize the set S(A) = {dT (Y ) | A is c.e. in Y}.
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Least jump enumeration

S(A) = {dT (Y ) | A is c.e. in Y}.

Theorem (Richter (1981))
There is a non-c.e. set A such that A is c.e. in two sets B and C which
form a minimal pair.

Hence there is a set A, such that S(A) does not have a least member.

Theorem (Coles, Downey, Slaman (2000))
For every sets A the set: S(A)′ = {dT (Y )′ | A is c.e. in Y} has a
member of least degree.

Every torsion free abelian group of rank 1 has a jump degree.

The proof is a forcing construction of this least member.
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Enumeration degree spectrum

Fix a countable relational structure A = (N,R1 . . .Rk ).

Definition (Soskov (2003))
The enumeration degree spectrum of A, denoted by DSe(A), is the set
of e-degrees of the positive diagrams of structures B ∼= A.

If DSe(A) has a least member, it is the (enumeration) degree of A.

Consider the structure A+ = (N,R1,R1 . . .Rk ,Rk ).
Then DSe(A+) = {ι(a) | a ∈ DST (A)}.
A has T-degree a if and only if A+ has e-degree ι(a).
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TFA1 groups in the e-degrees

Let G be a torsion-free abelian group of rank 1.

Note that the diagram of a group is enumeration equivalent to its
positive diagram, as addition is a total function.

In particular DSe(G) = DSe(G+) = ι(DST (G)).

Recall that the Turing degree spectrum of G is precisely
{dT (Y ) | S(G) is c.e. in Y}.
Denote de(S(G)) by sG-the type degree of G. The enumeration
degree spectrum of G is:

DSe(G) = {a | a ∈ T OT & sG ≤e a} .
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TFA1 groups in the e-degrees

DSe(G) = {a | a ∈ T OT & sG ≤e a}

By Selman’s Theorem sG is completely determined by the set of
total degrees above it.
G has a degree (both e- and T-) if and only if the type degree sG is
total.
If G has an e-degree then this e-degree is precisely sG.
By Soskov’s Jump inversion Theorem G always has first jump
degree (both e- and T-) and it is s′

G.
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Global properties of the degree structures

1 Algebraic complexity.
2 Theory strength.
3 First order definability.
4 Characterization of the automorphism group of the structure.
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Defining the Turing jump operator

Theorem (Shore, Slaman (1999))
The Turing jump operator is first order definable in DT .

There is a first order formula ϕJ in the language of partial orderings, so
that:

DT |= ϕJ(x,y)⇔ x′ = y.

1 Slaman and Woodin: The double jump is first order definable in
DT .

Slaman and Woodin’s analysis of the automorphisms of the Turing
degrees (1996) and “involves explicit translation of automorphism
facts in definability facts via a coding of second order arithmetic”.

2 An additional structural fact, involving a sharp analysis of
Kumabe-Slaman forcing.
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Semi-computable sets in the enumeration degrees

Definition (Jockusch (1968))
A set of natural numbers A is semi-computable if there is a total
computable selector function sA, such that sA(x , y) ∈ {x , y} and if
{x , y} ∩ A 6= ∅ then sA(x , y) ∈ A.

Theorem (Jockusch)
For every noncomputable set B there is a semi-computable set A ≡T B
such that both A and A are not c.e.

Theorem (Arslanov, Cooper, Kalimullin (2003))
If A is a semi-computable set, which is not c.e. and not co-c.e then
de(A) and de(A) form a minimal pair.

(∀x ∈ De)((de(A) ∨ x) ∧ (de(A) ∨ x) = x).
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K-pairs in the enumeration degrees

Definition (Kalimullin (2003))
A pair of sets A,B are called a K-pair if there is a c.e. set W , such that
A× B ⊆W and A× B ⊆W .

A trivial example is {A,U} and {U,A}, where U is c.e.
If A is a semi-computable set, then {A,A} is a K-pair.
W = {〈x , y〉 | sA(x , y) = x} .

Theorem (Kalimullin)
A pair of sets A,B are a K-pair if and only if their enumeration degrees
a and b satisfy:

K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).
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K-pairs are invisible in the Turing universe

K-pairs are never total enumeration degrees, the only total degree
below either of them is 0e.

A consequence of the existence of nontrivial K-pairs in De is that
the second ingredient from the Slaman-Shore definition of the
Turing jump fails in De.
There are no K-pairs in the structure of the Turing degrees.
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K-pairs and the definability of the enumeration jump

Theorem (Kalimullin (2003))
0′

e is the largest degree which can be represented as the least upper
bound of a triple a,b,c, such that K(a,b), K(b,c) and K(c,a).

Corollary (Kalimullin)
The enumeration jump is first order definable in De.

Theorem ( Ganchev, S (2012))
For every nonzero enumeration degree u ∈ De, u′ is the largest among
all least upper bounds a ∨ b of nontrivial K-pairs {a,b}, such that
a ≤e u.
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Zooming in: the local structures

The local structure of the Turing degrees DT (≤ 0′
T ) consists of all

Turing degrees reducible to 0′
T .

The local structure of the enumeration degrees De(≤ 0′
e), consists

of all enumeration degrees reducible to 0′
e.

Recall that ι : DT → De preserves the jump, hence DT (≤ 0′)
embeds in De(≤ 0′

e).

DT (≤ 0′
T )
∼= T OT (≤ 0′

e) ⊆ De(≤ 0′
e)
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Definability in the local structures
Definition

1 A degree a is low if a′ = 0′.
2 A degree a is high if a′ = 0′′.

Theorem (Shore (2012))
The high degrees are first order definable in DT (≤ 0′).

1 The theory of first order arithmetic can be interpreted DT (≤ 0′).
2 There is a definable way of mapping a degree a to a set A in any

interpretation of arithmetic so that A′′ ∈ a′′.
3 Every relation which is invariant under double jump and definable

in arithmetic is definable.
4 An additional structural property by Nies, Shore and Slaman

(1998).

It is not known if the low degrees are first order definable in DT (≤ 0′
T ).
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Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(≤ 0′

e).

Theorem (Slaman, Woodin (1997))
The theory of De(≤ 0′

e) is undecidable.

Idea: Use K-pairs to extend this result.
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An obstacle

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)

Is it enough to require that this formula is satisfied just by the degrees
below 0′

e?

Theorem (Ganchev, S (2012))
There is a first order formula LK(x , y), which defines the K-pairs in
De(≤ 0′

e).

LK(x , y) : K(x , y) ∧ ∃u, v(u ∨ v = 0′
e & K(u, v) & x ≤e u)

Theorem (Ganchev, S )
The first order theory of De(≤ 0′

e) is computably isomorphic to the first
order theory of true arithmetic.
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A surprising consequence

Extending a result of Giorgi, Sorbi and Yang:

Theorem (Ganchev, S)
An enumeration degree a is low if and only if every degree b ≤e a
bounds a K-pair.

The class L1 is first order definable in De(≤ 0′
e).

Extending Jouckusch’s theorem:

Theorem (Ganchev, S)
A degree a ≤e 0′

e is total if and only if it is the least upper bound of a
maximal K-pair.

The class of total degrees is first order definable in De(≤ 0′
e).
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Open question

We know that:
T OT ∩ De(≥ 0′

e) is first order definable.

T OT ∩ De(≤ 0′
e) is first order definable.

Question (Rogers 1967)
Is T OT first order definable in De?

Recall that the total degrees are an automorphism base for De.

A positive answer would connect the problems of the existence of a
non-trivial automorphism in both structures.
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One step further in the dream world

Theorem (Ganchev,S)
For every nonzero enumeration degree u ∈ De,

u′ = max {a ∨ b | K(a,b) & a ≤e u} .

Suppose that a degree is total if and only if it is the least upper
bound of a maximal K-pair.
The relation x is c.e. in u would also be definable for total degrees
by :

∃a∃b(x = a ∨ b & K(a,b) & a ≤e u).

Then for total u, our definition of the jump would read u′ is the
largest total degree, which is c.e. in u.
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Slaman and Woodin’s automorphism analysis

Let D be the structure of the Turing degrees or the structure of the
enumeration degrees.

1 There are at most countably many automorphisms of the structure
D.

2 Every automorphism of D is arithmetically presentable.
3 There exists a finite automorphism base of D.
4 Definability with parameters: Every relation on D induced by a

degree invariant relation on sets of natural numbers, which is
definable in second order arithmetic, is definable in D with
parameters.

Corollary (S (2013))
T OT is definable with parameters in De.
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The end

Thank you!
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