The Turing universe in the context of enumeration reducibility

Mariya I. Soskova¹

Sofia University

CiE, Milano, July 5, 2013

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471) , Sofia University Science Fund grant No. 44/15.04.2013 and BNSF grant No. DMU 03/07/12.12.2011

Mariya I. Soskova (Sofia University) [The Turing universe in context](#page-117-0) Cipensium Cipensium Cipensium Cipensium 1/30

How can a set of natural numbers *B* be used to define a set of natural numbers *A*.

4 0 8 1

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

 QQ

- How can a set of natural numbers *B* be used to define a set of natural numbers *A*.
	- **•** There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*: Turing reducibility.

How can a set of natural numbers *B* be used to define a set of natural numbers *A*.

- **•** There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*: Turing reducibility.
- There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*: enumeration reducibility.

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

Algorithm: A Turing machine, or a program written in any common programming language or a natural number: ϕ*e*.

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

- *Algorithm*: A Turing machine, or a program written in any common programming language or a natural number: ϕ*e*.
- The algorithm is allowed to consult an *oracle*: φ_e^B .

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

- *Algorithm*: A Turing machine, or a program written in any common programming language or a natural number: ϕ*e*.
- The algorithm is allowed to consult an *oracle*: φ_e^B .
- *A* ≤*^T B* if an only if the characteristic function of *A* is computable using oracle $B: \chi_{\mathcal{A}} = \varphi_{\mathcal{e}}^B$ for some $\mathcal{e}.$

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

- *Algorithm*: A Turing machine, or a program written in any common programming language or a natural number: ϕ*e*.
- The algorithm is allowed to consult an *oracle*: φ_e^B .
- *A* ≤*^T B* if an only if the characteristic function of *A* is computable using oracle $B: \chi_{\mathcal{A}} = \varphi_{\mathcal{e}}^B$ for some $\mathcal{e}.$

Example

Let *B* be any set of natural numbers.

Every computable set is Turing reducible to *B*.

 Ω

4 (D) 3 (F) 3 (F) 3 (F)

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

- *Algorithm*: A Turing machine, or a program written in any common programming language or a natural number: ϕ*e*.
- The algorithm is allowed to consult an *oracle*: φ_e^B .
- *A* ≤*^T B* if an only if the characteristic function of *A* is computable using oracle $B: \chi_{\mathcal{A}} = \varphi_{\mathcal{e}}^B$ for some $\mathcal{e}.$

Example

Let *B* be any set of natural numbers.

- Every computable set is Turing reducible to *B*.
- $B \leq_T B$ and if $C \leq_T D$ and $D \leq_T B$ then $C \leq_T B$.

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

- *Algorithm*: A Turing machine, or a program written in any common programming language or a natural number: ϕ*e*.
- The algorithm is allowed to consult an *oracle*: φ_e^B .
- *A* ≤*^T B* if an only if the characteristic function of *A* is computable using oracle $B: \chi_{\mathcal{A}} = \varphi_{\mathcal{e}}^B$ for some $\mathcal{e}.$

Example

Let *B* be any set of natural numbers.

- Every computable set is Turing reducible to *B*.
- $B \leq_T B$ and if $C \leq_T D$ and $D \leq_T B$ then $C \leq_T B$.
- The halting set relative to *B*, denoted as $\mathcal{K}_\mathcal{B} = \big\{ n \mid \varphi_n^\mathcal{B} (n)$ halts $\big\}$ is not Turing reducible to *B*.

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Scooping the loop snooper

Geoffrey K. Pullum

 299

 \mathbf{p}

イロトメ 倒 トメ 差 トメ 差

Scooping the loop snooper Geoffrey K. Pullum

For imagine we have a procedure called P that for specified input permits you to see whether specified source code, with all of its faults, defines a routine that eventually halts.

Well, the truth is that P cannot possibly be, because if you wrote it and gave it to me, I could use it to set up a logical bind that would shatter your reason and scramble your mind.

. . .

. . .

. . .

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*.

4 D.K.

 \rightarrow \rightarrow \rightarrow

There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*.

• We have an algorithm which enumerates a list of axioms: $\langle x, D \rangle$: a c.e. set *We*.

There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*.

- We have an algorithm which enumerates a list of axioms: $\langle x, D \rangle$: a c.e. set *We*.
- **•** The oracle set *B* is revealing it elements one by one in some order.

There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*.

- We have an algorithm which enumerates a list of axioms: $\langle x, D \rangle$: a c.e. set *We*.
- **The oracle set** *B* is revealing it elements one by one in some order.
- We combine both enumerations into one: If we see an axiom $\langle x, D \rangle$ and all of the elements in *D* have been enumerated by the oracle then we enumerate *x*: *We*(*B*)

There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*.

- We have an algorithm which enumerates a list of axioms: $\langle x, D \rangle$: a c.e. set *We*.
- **The oracle set** *B* is revealing it elements one by one in some order.
- We combine both enumerations into one: If we see an axiom $\langle x, D \rangle$ and all of the elements in *D* have been enumerated by the oracle then we enumerate *x*: *We*(*B*)

•
$$
A \leq_e B
$$
 if $A = W_e(B)$ for some *e*.

There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*.

- We have an algorithm which enumerates a list of axioms: $\langle x, D \rangle$: a c.e. set *We*.
- **The oracle set** *B* is revealing it elements one by one in some order.
- We combine both enumerations into one: If we see an axiom $\langle x, D \rangle$ and all of the elements in *D* have been enumerated by the oracle then we enumerate *x*: *We*(*B*)

•
$$
A \leq_e B
$$
 if $A = W_e(B)$ for some *e*.

Example

Let *B* be any set of natural numbers.

Every computably enumerable set is enumeration reducible to *B*.

 Ω

イロト イ押ト イヨト イヨ

There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*.

- We have an algorithm which enumerates a list of axioms: $\langle x, D \rangle$: a c.e. set *We*.
- **The oracle set** *B* is revealing it elements one by one in some order.
- We combine both enumerations into one: If we see an axiom $\langle x, D \rangle$ and all of the elements in *D* have been enumerated by the oracle then we enumerate *x*: *We*(*B*)

•
$$
A \leq_e B
$$
 if $A = W_e(B)$ for some *e*.

Example

Let *B* be any set of natural numbers.

- Every computably enumerable set is enumeration reducible to *B*.
- **•** $B \leq_{e} B$ and if $C \leq_{e} D$ and $D \leq_{e} B$ then $C \leq_{e} B$.

 Ω

イロト イ押ト イヨト イヨト

Example

Let *B* be any set of natural numbers.

• The set $L_B = \{n \mid n \in W_n(B)\}$ is e-reducible to *B*. We have a universal c.e. set.

Example

Let *B* be any set of natural numbers.

- The set $L_B = \{n \mid n \in W_n(B)\}$ is e-reducible to *B*. We have a universal c.e. set.
- The set $\overline{L_B} = \{ n \mid n \notin W_n(B) \}$ is not e-reducible to *B*.

Example

Let *B* be any set of natural numbers.

- The set $L_B = \{n \mid n \in W_n(B)\}$ is e-reducible to *B*. We have a universal c.e. set.
- The set $\overline{L_B} = \{ n \mid n \notin W_n(B) \}$ is not e-reducible to *B*.

For imagine we have an enumeration called *e* which outputs a *p* only if you see the *p*-th program with oracle *B* will not in our lifetime enumerate *p*.

Well, then *e* too cannot be, because if you wrote it and gave it to me, I would make you seem foolish, I will not be kind with a trick I learned from Cantor and always keep in mind.

 Ω

The South The

• From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and *B* \leq *A*. The degree of a set *A* is $d(A) = \{B \mid A \equiv B\}.$

- From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and *B* \le *A*. The degree of a set *A* is $d(A) = \{B \mid A \equiv B\}.$
- From equivalence relation to partial order: $d(A) \leq d(B)$ iff $A \leq B$.

- From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and *B* \le *A*. The degree of a set *A* is $d(A) = \{B \mid A \equiv B\}.$
- From equivalence relation to partial order: $d(A) < d(B)$ iff $A < B$.
- **■** Least element **0** = $d(\emptyset)$. In particular **0**_{*T*} consist of the computable sets and **0***^e* consists of the c.e. sets.

- From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and *B* \le *A*. The degree of a set *A* is $d(A) = \{B \mid A \equiv B\}.$
- From equivalence relation to partial order: $d(A) < d(B)$ iff $A < B$.
- **■** Least element **0** = $d(\emptyset)$. In particular **0**_{*T*} consist of the computable sets and **0***^e* consists of the c.e. sets.
- *o* $d(A) ∨ d(B) = d(A ⊕ B)$. Here $A ⊕ B = (2A) ∪ (2B + 1)$

- From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and *B* \le *A*. The degree of a set *A* is $d(A) = \{B \mid A \equiv B\}.$
- From equivalence relation to partial order: $d(A) \leq d(B)$ iff $A \leq B$.
- **■** Least element **0** = $d(\emptyset)$. In particular **0**_{*T*} consist of the computable sets and **0***^e* consists of the c.e. sets.
- *o* $d(A) ∨ d(B) = d(A ⊕ B)$. Here $A ⊕ B = (2A) ∪ (2B + 1)$
- Define a jump operation '. For the Turing degrees: $d_{\mathcal{T}}(A)' = d_{\mathcal{T}}(K_A)$. For the *e*-degrees: $d_e(A)' = d_e(L_A \oplus \overline{L_A})$.

 Ω

イロト イ押ト イヨト イヨト

- From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and *B* \le *A*. The degree of a set *A* is $d(A) = \{B \mid A \equiv B\}.$
- From equivalence relation to partial order: $d(A) < d(B)$ iff $A < B$.
- **■** Least element **0** = $d(\emptyset)$. In particular **0**_{*T*} consist of the computable sets and **0***^e* consists of the c.e. sets.
- *o* $d(A) ∨ d(B) = d(A ⊕ B)$. Here $A ⊕ B = (2A) ∪ (2B + 1)$
- Define a jump operation '. For the Turing degrees: $d_{\mathcal{T}}(A)' = d_{\mathcal{T}}(K_A)$. For the *e*-degrees: $d_e(A)' = d_e(L_A \oplus \overline{L_A})$.
- $\mathcal{D} = \langle \boldsymbol{D}, \leq, \vee, ' \boldsymbol{0} \rangle$ is an upper semi-lattice with least element and jump operation.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Proposition

Let A and B be sets of natural numbers. The following are equivalent:

- $A <_{\tau} B$;
- ² *Both A and A can be enumerated by a computable in B function,* $A \oplus \overline{A}$ *is c.e. in B:*
- **3** $A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$.

Proposition

Let A and B be sets of natural numbers. The following are equivalent:

- $A <_{\tau} B$;
- ² *Both A and A can be enumerated by a computable in B function,* $A \oplus \overline{A}$ *is c.e. in B:*
- **3** $A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus A)$, preserves the order, the least upper bound and the jump operation.

Proposition

Let A and B be sets of natural numbers. The following are equivalent:

- $A <_{\tau} B$;
- ² *Both A and A can be enumerated by a computable in B function,* $A \oplus \overline{A}$ *is c.e. in B:*
- **3** $A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus A)$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

Proposition

Let A and B be sets of natural numbers. The following are equivalent:

 $A <_{\tau} B$;

² *Both A and A can be enumerated by a computable in B function,* $A \oplus \overline{A}$ *is c.e. in B:*

3 $A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus A)$, preserves the order, the least upper bound and the jump operation. The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

$$
(\mathcal{D}_\mathcal{T},\leq_\mathcal{T},\vee,^\prime\textbf{0}_\mathcal{T})\cong(\mathcal{TOT},\leq_{e},\vee,^\prime,\textbf{0}_e)\subseteq(\mathcal{D}_e,\leq_{e},\vee,^\prime\textbf{0}_e)
$$

More connections between D*^T* and D*^e*

Theorem (Selman (1971))

Selman's Theorem: A ≤*^e B if and only if the set of total enumeration degrees above B is a subset of the set of total enumeration degrees above A.*

Corollary

T OT *is an automorphism base for* D*e.*

Theorem (Soskov's Jump Inversion Theorem (2000))

For every $\mathbf{x} \in \mathcal{D}_{e}$ there exists a total e-degree $\mathbf{a} \geq \mathbf{x}$, such that $\mathbf{a}' = \mathbf{x}'$.

 Ω

イロト イ押ト イヨト イヨト

Computable model theory

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

 299

イロト イ押ト イヨト イヨ

Computable model theory

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of A, denoted by $DS_T(A)$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

Computable model theory

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of A, denoted by $DS_T(A)$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(A)$ has a least member, it is the (Turing) degree of A.

 Ω

 \rightarrow \equiv \rightarrow
Computable model theory

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of A, denoted by $DS_T(A)$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(A)$ has a least member, it is the (Turing) degree of A.

Definition (Jockusch)

The jump spectrum of $\mathcal A$ is $DS_{\mathcal T}'(\mathcal A) = {\mathbf d}' {\mathbf d} \in DS_{\mathcal T}(\mathcal A)$.

 Ω

イロト イ押ト イヨト イヨト

Computable model theory

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of A, denoted by $DS_T(A)$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(A)$ has a least member, it is the (Turing) degree of A.

Definition (Jockusch)

The jump spectrum of $\mathcal A$ is $DS_{\mathcal T}'(\mathcal A) = {\mathbf d}' {\mathbf d} \in DS_{\mathcal T}(\mathcal A)$.

If $DS_{\mathcal{T}}^{\prime}(\mathcal{A})$ has a least member, it is the (Turing) jump degree of $\mathcal{A}.$

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

A torsion free abelian group of rank 1 *G* is a subgroup of $(\mathbb{Q}, +)$.

 QQ

イロト イ押ト イヨト イヨ

A torsion free abelian group of rank 1 *G* is a subgroup of $(\mathbb{Q}, +)$.

• Baer introduced the type of a group G , $\chi(G)$, in terms of divisibility properties of nonzero elements of *G*.

in the se

A torsion free abelian group of rank 1 *G* is a subgroup of $(\mathbb{Q}, +)$.

- Baer introduced the type of a group G , $\chi(G)$, in terms of divisibility properties of nonzero elements of *G*.
- Two torsion free abelian groups of rank 1 are isomorphic if and only if they have the same type.

 \rightarrow \rightarrow \rightarrow

A torsion free abelian group of rank 1 *G* is a subgroup of $(\mathbb{Q}, +)$.

- Baer introduced the type of a group G , $\chi(G)$, in terms of divisibility properties of nonzero elements of *G*.
- Two torsion free abelian groups of rank 1 are isomorphic if and only if they have the same type.
- There is a standard representation of $\chi(G)$ as a set of natural numbers *S*(*G*), the standard type of *G*.

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

A torsion free abelian group of rank 1 *G* is a subgroup of $(\mathbb{Q}, +)$.

- Baer introduced the type of a group G , $\chi(G)$, in terms of divisibility properties of nonzero elements of *G*.
- Two torsion free abelian groups of rank 1 are isomorphic if and only if they have the same type.
- There is a standard representation of $\chi(G)$ as a set of natural numbers *S*(*G*), the standard type of *G*.
- Every set of natural numbers can be coded as the standard type of some group *G*.

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{B} \rightarrow \mathcal{B}$

A torsion free abelian group of rank 1 *G* is a subgroup of $(Q, +)$.

- Baer introduced the type of a group G , $\chi(G)$, in terms of divisibility properties of nonzero elements of *G*.
- Two torsion free abelian groups of rank 1 are isomorphic if and only if they have the same type.
- There is a standard representation of $\chi(G)$ as a set of natural numbers *S*(*G*), the standard type of *G*.
- Every set of natural numbers can be coded as the standard type of some group *G*.

Theorem (Downey, Jockusch)

The degree spectrum of G is precisely $\{d_T(Y) \mid S(G)$ is c.e. in $Y\}$.

 Ω

イロト イ押ト イヨト イヨト ニヨ

A torsion free abelian group of rank 1 *G* is a subgroup of $(Q, +)$.

- Baer introduced the type of a group G , $\chi(G)$, in terms of divisibility properties of nonzero elements of *G*.
- Two torsion free abelian groups of rank 1 are isomorphic if and only if they have the same type.
- There is a standard representation of $\chi(G)$ as a set of natural numbers *S*(*G*), the standard type of *G*.
- Every set of natural numbers can be coded as the standard type of some group *G*.

Theorem (Downey, Jockusch)

The degree spectrum of G is precisely $\{d_T(Y) \mid S(G)$ is c.e. in $Y\}$.

Given a set *A*, characterize the set $S(A) = \{d_T(Y) | A \text{ is c.e. in } Y\}.$

 QQ

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Least jump enumeration

 $S(A) = \{d_T(Y) | A \text{ is c.e. in } Y\}.$

Theorem (Richter (1981))

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair.

Least jump enumeration

 $S(A) = \{d_T(Y) | A \text{ is c.e. in } Y\}.$

Theorem (Richter (1981))

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair.

Hence there is a set A, such that $S(A)$ does not have a least member.

Least jump enumeration

 $S(A) = \{d_T(Y) | A \text{ is c.e. in } Y\}.$

Theorem (Richter (1981))

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair.

Hence there is a set A, such that $S(A)$ does not have a least member.

Theorem (Coles, Downey, Slaman (2000))

For every sets A the set: $S(A)' = \{d_T(Y)' \mid A \text{ is c.e. in } Y\}$ has a *member of least degree.*

Every torsion free abelian group of rank 1 has a jump degree.

The proof is a forcing construction of this least member.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

Þ

 QQ

イロト イ押ト イヨト イヨ

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov (2003))

The enumeration degree spectrum of A, denoted by $DS_e(A)$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov (2003))

The enumeration degree spectrum of A, denoted by $DS_e(A)$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(\mathcal{A})$ has a least member, it is the (enumeration) degree of \mathcal{A} .

 Ω

医单侧 医单

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov (2003))

The enumeration degree spectrum of A, denoted by $DS_e(A)$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(\mathcal{A})$ has a least member, it is the (enumeration) degree of \mathcal{A} .

Consider the structure $\mathcal{A}^+=(\mathbb{N},\overline{R_1},\overline{R_1} \ldots \overline{R_k},\overline{R_k}).$

 Ω

医单位 医单

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov (2003))

The enumeration degree spectrum of A, denoted by $DS_e(A)$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(\mathcal{A})$ has a least member, it is the (enumeration) degree of \mathcal{A} .

- Consider the structure $\mathcal{A}^+=(\mathbb{N},\overline{R_1},\overline{R_1} \ldots \overline{R_k},\overline{R_k}).$
- Then $DS_e(A^+) = \{ \iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(A) \}.$

 Ω

イ何 トマ ヨ トマ ヨ トー ヨー

Fix a countable relational structure $A = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov (2003))

The enumeration degree spectrum of A, denoted by $DS_e(A)$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(\mathcal{A})$ has a least member, it is the (enumeration) degree of \mathcal{A} .

- Consider the structure $\mathcal{A}^+=(\mathbb{N},\overline{R_1},\overline{R_1} \ldots \overline{R_k},\overline{R_k}).$
- Then $DS_e(A^+) = \{ \iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(A) \}.$
- \bullet A has T-degree **a** if and only if A^+ has e-degree $\iota(\mathbf{a})$.

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{B} \rightarrow \mathcal{B}$

Let *G* be a torsion-free abelian group of rank 1.

4 0 8

∋⇒

- Let *G* be a torsion-free abelian group of rank 1.
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.

- Let *G* be a torsion-free abelian group of rank 1.
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.

- Let *G* be a torsion-free abelian group of rank 1.
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G)).$
- **•** Recall that the Turing degree spectrum of G is precisely ${d_7(Y) \mid S(G) \text{ is c.e. in } Y}.$

- Let *G* be a torsion-free abelian group of rank 1.
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G)).$
- **•** Recall that the Turing degree spectrum of G is precisely ${d_T(Y) \mid S(G) \text{ is c.e. in } Y}.$
- Denote $d_e(S(G))$ by s_G -the type degree of G .

 Ω

A BAKEN

- Let *G* be a torsion-free abelian group of rank 1.
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G)).$
- **•** Recall that the Turing degree spectrum of G is precisely ${d_T(Y) \mid S(G) \text{ is c.e. in } Y}.$
- Denote $d_e(S(G))$ by \mathbf{s}_G -the type degree of *G*. The enumeration degree spectrum of *G* is:

$$
\textit{DS}_e(G)=\{\textbf{a} \mid \textbf{a} \in \mathcal{TOT} \ \& \ \textbf{s}_G \leq_e \textbf{a}\}\,.
$$

 Ω

4 何 ト 4 ヨ ト 4 ヨ トー

$DS_e(G) = \{a \mid a \in \mathcal{TOT} \& \mathbf{s}_G \leq_e a\}$

Mariya I. Soskova (Sofia University) [The Turing universe in context](#page-0-0) CiE 2013 15/30

D.

 299

イロト イ押 トイラト イラト

$$
DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}
$$

■ By Selman's Theorem **s**_{*G*} is completely determined by the set of total degrees above it.

∋⇒

$$
DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}
$$

- **•** By Selman's Theorem s_G is completely determined by the set of total degrees above it.
- *G* has a degree (both e- and T-) if and only if the type degree **s**_G is total.

$$
\mathit{DS}_e(G) = \{ \bm{a} \mid \bm{a} \in \mathcal{TOT} \ \& \ \bm{s}_G \leq_e \bm{a} \}
$$

- By Selman's Theorem **s***^G* is completely determined by the set of total degrees above it.
- *G* has a degree (both e- and T-) if and only if the type degree **s**_G is total.
- If *G* has an e-degree then this e-degree is precisely **s***G*.

$$
\mathit{DS}_e(G) = \{ \bm{a} \mid \bm{a} \in \mathcal{TOT} \ \& \ \bm{s}_G \leq_e \bm{a} \}
$$

- By Selman's Theorem **s***^G* is completely determined by the set of total degrees above it.
- *G* has a degree (both e- and T-) if and only if the type degree **s**_G is total.
- If *G* has an e-degree then this e-degree is precisely **s***G*.
- By Soskov's Jump inversion Theorem *G* always has first jump degree (both e- and T-) and it is \mathbf{s}'_{G} .

Global properties of the degree structures

- **1** Algebraic complexity.
- 2 Theory strength.
- **3** First order definability.
- ⁴ Characterization of the automorphism group of the structure.

Defining the Turing jump operator

Theorem (Shore, Slaman (1999))

The Turing jump operator is first order definable in D_T *.*

There is a first order formula φ_J in the language of partial orderings, so that:

$$
\mathcal{D}_{\mathcal{T}}\models \varphi_J(\mathbf{x},\mathbf{y})\Leftrightarrow \mathbf{x}'=\mathbf{y}.
$$

 Ω

 \rightarrow \equiv \rightarrow

Defining the Turing jump operator

Theorem (Shore, Slaman (1999))

The Turing jump operator is first order definable in D_T *.*

There is a first order formula φ_J in the language of partial orderings, so that:

$$
\mathcal{D}_\mathcal{T} \models \varphi_J(\bm{x}, \bm{y}) \Leftrightarrow \bm{x}' = \bm{y}.
$$

1 Slaman and Woodin: The double jump is first order definable in \mathcal{D}_{τ} .

Slaman and Woodin's analysis of the automorphisms of the Turing degrees (1996) and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

 Ω

REPAREM

Defining the Turing jump operator

Theorem (Shore, Slaman (1999))

The Turing jump operator is first order definable in D_T *.*

There is a first order formula φ_J in the language of partial orderings, so that:

$$
\mathcal{D}_\mathcal{T} \models \varphi_J(\bm{x}, \bm{y}) \Leftrightarrow \bm{x}' = \bm{y}.
$$

1 Slaman and Woodin: The double jump is first order definable in \mathcal{D}_{τ} .

Slaman and Woodin's analysis of the automorphisms of the Turing degrees (1996) and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

2 An additional structural fact, involving a sharp analysis of Kumabe-Slaman forcing. イロト イ押 トイラト イラト

 QQ

Semi-computable sets in the enumeration degrees

Definition (Jockusch (1968))

A set of natural numbers *A* is semi-computable if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Semi-computable sets in the enumeration degrees

Definition (Jockusch (1968))

A set of natural numbers *A* is semi-computable if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Theorem (Jockusch)

For every noncomputable set B there is a semi-computable set $A \equiv_T B$ *such that both A and A are not c.e.*

Semi-computable sets in the enumeration degrees

Definition (Jockusch (1968))

A set of natural numbers *A* is semi-computable if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} ∩ A ≠ ∅$ then $s_A(x, y) ∈ A$.

Theorem (Jockusch)

For every noncomputable set B there is a semi-computable set $A \equiv_T B$ *such that both A and A are not c.e.*

Theorem (Arslanov, Cooper, Kalimullin (2003))

If A is a semi-computable set, which is not c.e. and not co-c.e then $d_e(A)$ *and* $d_e(\overline{A})$ *form a minimal pair.*

 Ω

イロト イ押ト イヨト イヨ
Semi-computable sets in the enumeration degrees

Definition (Jockusch (1968))

A set of natural numbers *A* is semi-computable if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\}$ ∩ *A* \neq *Ø* then *s_A*(*x*, *y*) ∈ *A*.

Theorem (Jockusch)

For every noncomputable set B there is a semi-computable set $A \equiv_T B$ *such that both A and A are not c.e.*

Theorem (Arslanov, Cooper, Kalimullin (2003))

If A is a semi-computable set, which is not c.e. and not co-c.e then $d_e(A)$ *and* $d_e(\overline{A})$ *form a minimal pair.*

$$
(\forall \mathbf{x} \in \mathcal{D}_{e})((d_{e}(A) \vee \mathbf{x}) \wedge (d_{e}(\overline{A}) \vee \mathbf{x}) = \mathbf{x}).
$$

 Ω

イロト イ押ト イヨト イヨ

Definition (Kalimullin (2003))

A pair of sets A, B are called a K -pair if there is a c.e. set W , such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Definition (Kalimullin (2003))

A pair of sets A , B are called a K -pair if there is a c.e. set W , such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

• A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.

Definition (Kalimullin (2003))

A pair of sets A , B are called a K -pair if there is a c.e. set W , such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- **•** If *A* is a semi-computable set, then $\{A, \overline{A}\}$ is a *K*-pair.

Definition (Kalimullin (2003))

A pair of sets A , B are called a K -pair if there is a c.e. set W , such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- **•** If *A* is a semi-computable set, then $\{A, \overline{A}\}$ is a *K*-pair. $W = \{ \langle x, y \rangle \mid s_A(x, y) = x \}.$

Definition (Kalimullin (2003))

A pair of sets A , B are called a K -pair if there is a c.e. set W , such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- **•** If *A* is a semi-computable set, then $\{A, \overline{A}\}$ is a *K*-pair. $W = \{ \langle x, y \rangle \mid s_A(x, y) = x \}.$

Theorem (Kalimullin)

A pair of sets A, *B are a* K*-pair if and only if their enumeration degrees* **a** *and* **b** *satisfy:*

$$
\mathcal{K}(\bm{a},\bm{b})\leftrightharpoons (\forall \bm{x}\in \mathcal{D}_{\bm{e}})((\bm{a}\vee \bm{x})\wedge (\bm{b}\vee \bm{x})=\bm{x}).
$$

 Ω

医单位 医单位

K -pairs are invisible in the Turing universe

 \bullet K-pairs are never total enumeration degrees, the only total degree below either of them is **0***e*.

K -pairs are invisible in the Turing universe

- \bullet K-pairs are never total enumeration degrees, the only total degree below either of them is **0***e*.
- \bullet A consequence of the existence of nontrivial K-pairs in \mathcal{D}_{e} is that the second ingredient from the Slaman-Shore definition of the Turing jump fails in D*e*.

K -pairs are invisible in the Turing universe

- \bullet K-pairs are never total enumeration degrees, the only total degree below either of them is **0***e*.
- \bullet A consequence of the existence of nontrivial K-pairs in \mathcal{D}_{e} is that the second ingredient from the Slaman-Shore definition of the Turing jump fails in D*e*.
- There are no K -pairs in the structure of the Turing degrees.

 K -pairs and the definability of the enumeration jump

Theorem (Kalimullin (2003))

0 0 *e is the largest degree which can be represented as the least upper bound of a triple* $\mathbf{a}, \mathbf{b}, \mathbf{c}$ *, such that* $\mathcal{K}(\mathbf{a}, \mathbf{b})$ *,* $\mathcal{K}(\mathbf{b}, \mathbf{c})$ *and* $\mathcal{K}(\mathbf{c}, \mathbf{a})$ *.*

3 B X 3 B

 K -pairs and the definability of the enumeration jump

Theorem (Kalimullin (2003))

0 0 *e is the largest degree which can be represented as the least upper bound of a triple* $\mathbf{a}, \mathbf{b}, \mathbf{c}$ *, such that* $\mathcal{K}(\mathbf{a}, \mathbf{b})$ *,* $\mathcal{K}(\mathbf{b}, \mathbf{c})$ *and* $\mathcal{K}(\mathbf{c}, \mathbf{a})$ *.*

Corollary (Kalimullin)

The enumeration jump is first order definable in D*e.*

 Ω

化重氮化重氮

 K -pairs and the definability of the enumeration jump

Theorem (Kalimullin (2003))

0 0 *e is the largest degree which can be represented as the least upper bound of a triple* $\mathbf{a}, \mathbf{b}, \mathbf{c}$ *, such that* $\mathcal{K}(\mathbf{a}, \mathbf{b})$ *,* $\mathcal{K}(\mathbf{b}, \mathbf{c})$ *and* $\mathcal{K}(\mathbf{c}, \mathbf{a})$ *.*

Corollary (Kalimullin)

The enumeration jump is first order definable in D*e.*

Theorem (Ganchev, S (2012))

For every nonzero enumeration degree **u** ∈ D*e,* **u** 0 *is the largest among all least upper bounds* **a** ∨ **b** *of nontrivial* K*-pairs* {**a**, **b**}*, such that* **a** ≤*^e* **u***.*

 Ω

イロト イ押ト イヨト イヨト

The local structure of the Turing degrees $\mathcal{D}_\mathcal{T}(\leq \mathbf{0}'_{\mathcal{T}})$ consists of all Turing degrees reducible to $\mathbf{0}'_{\mathcal{T}}$.

REA

- The local structure of the Turing degrees $\mathcal{D}_\mathcal{T}(\leq \mathbf{0}'_{\mathcal{T}})$ consists of all Turing degrees reducible to $\mathbf{0}'_{\mathcal{T}}$.
- The local structure of the enumeration degrees $\mathcal{D}_{\bm{e}} (\leq \bm{0}'_{\bm{e}})$, consists of all enumeration degrees reducible to **0** 0 *e* .

- The local structure of the Turing degrees $\mathcal{D}_\mathcal{T}(\leq \mathbf{0}'_{\mathcal{T}})$ consists of all Turing degrees reducible to $\mathbf{0}'_{\mathcal{T}}$.
- The local structure of the enumeration degrees $\mathcal{D}_{\bm{e}} (\leq \bm{0}'_{\bm{e}})$, consists of all enumeration degrees reducible to **0** 0 *e* .
- Recall that $\iota: \mathcal{D}_\mathcal{T} \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_\mathcal{T} (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- The local structure of the Turing degrees $\mathcal{D}_\mathcal{T}(\leq \mathbf{0}'_{\mathcal{T}})$ consists of all Turing degrees reducible to $\mathbf{0}'_{\mathcal{T}}$.
- The local structure of the enumeration degrees $\mathcal{D}_{\bm{e}} (\leq \bm{0}'_{\bm{e}})$, consists of all enumeration degrees reducible to **0** 0 *e* .
- Recall that $\iota: \mathcal{D}_\mathcal{T} \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_\mathcal{T} (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

$$
\mathcal{D}_\mathcal{T}(\leq \bm{0}'_\mathcal{T}) \cong \mathcal{T} \mathcal{OT}(\leq \bm{0}'_e) \subseteq \mathcal{D}_e(\leq \bm{0}'_e)
$$

Definition

- **1** A degree **a** is low if $a' = 0'$.
- **2** A degree **a** is high if $a' = 0$.

4 0 8

 \rightarrow \equiv \rightarrow する

A B

Definition

- **1** A degree **a** is low if $a' = 0'$.
- **2** A degree **a** is high if $a' = 0$.

Theorem (Shore (2012))

The high degrees are first order definable in $D_T(\leq 0')$ *.*

1 The theory of first order arithmetic can be interpreted $\mathcal{D}_\mathcal{T}(\leq \mathbf{0}')$.

 Ω

A + + = + + =

Definition

- **1** A degree **a** is low if $a' = 0'$.
- **2** A degree **a** is high if $a' = 0$.

Theorem (Shore (2012))

The high degrees are first order definable in $D_T(\leq 0')$ *.*

- **1** The theory of first order arithmetic can be interpreted $\mathcal{D}_\mathcal{T}(\leq \mathbf{0}')$.
- ² There is a definable way of mapping a degree **a** to a set *A* in any interpretation of arithmetic so that $A'' \in \mathbf{a}''$.

 Ω

押 トイヨ トイヨト

Definition

- **1** A degree **a** is low if $a' = 0'$.
- **2** A degree **a** is high if $a' = 0$.

Theorem (Shore (2012))

The high degrees are first order definable in $D_T(\leq 0')$ *.*

- **1** The theory of first order arithmetic can be interpreted $\mathcal{D}_\mathcal{T}(\leq \mathbf{0}')$.
- ² There is a definable way of mapping a degree **a** to a set *A* in any interpretation of arithmetic so that $A'' \in \mathbf{a}''$.
- ³ Every relation which is invariant under double jump and definable in arithmetic is definable.

 Ω

 \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{B} \rightarrow \mathcal{B}

Definition

- **1** A degree **a** is low if $a' = 0'$.
- **2** A degree **a** is high if $a' = 0$.

Theorem (Shore (2012))

The high degrees are first order definable in $D_T(\leq 0')$ *.*

- **1** The theory of first order arithmetic can be interpreted $\mathcal{D}_\mathcal{T}(\leq \mathbf{0}')$.
- ² There is a definable way of mapping a degree **a** to a set *A* in any interpretation of arithmetic so that $A'' \in \mathbf{a}''$.
- ³ Every relation which is invariant under double jump and definable in arithmetic is definable.
- ⁴ An additional structural property by Nies, Shore and Slaman (1998).

 Ω

イロト イ押ト イヨト イヨト

Definition

- **1** A degree **a** is low if $a' = 0'$.
- **2** A degree **a** is high if $a' = 0$.

Theorem (Shore (2012))

The high degrees are first order definable in $D_T(\leq 0')$ *.*

- **1** The theory of first order arithmetic can be interpreted $\mathcal{D}_\mathcal{T}(\leq \mathbf{0}')$.
- ² There is a definable way of mapping a degree **a** to a set *A* in any interpretation of arithmetic so that $A'' \in \mathbf{a}''$.
- ³ Every relation which is invariant under double jump and definable in arithmetic is definable.
- ⁴ An additional structural property by Nies, Shore and Slaman (1998).

It is not known if the low degrees are first orde[r d](#page-92-0)[efi](#page-94-0)[n](#page-87-0)[a](#page-93-0)[bl](#page-94-0)[e](#page-0-0) [in](#page-117-0) $\mathcal{D}_\mathcal{I}(\leq \mathbf{0}'_{\mathcal{T}})$ $\mathcal{D}_\mathcal{I}(\leq \mathbf{0}'_{\mathcal{T}})$ $\mathcal{D}_\mathcal{I}(\leq \mathbf{0}'_{\mathcal{T}})$ $\mathcal{D}_\mathcal{I}(\leq \mathbf{0}'_{\mathcal{T}})$ $\mathcal{D}_\mathcal{I}(\leq \mathbf{0}'_{\mathcal{T}})$.

Mariya I. Soskova (Sofia University) [The Turing universe in context](#page-0-0) Cia Cia 23/30

Definability in the local structure of the enumeration degrees

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

Definability in the local structure of the enumeration degrees

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

Theorem (Slaman, Woodin (1997))

The theory of $\mathcal{D}_e(\leq \mathbf{0}_e')$ *is undecidable.*

Idea: Use K-pairs to extend this result.

 Ω

 \rightarrow \equiv \rightarrow

$$
\mathcal{K}(\bm{a},\bm{b})\leftrightharpoons (\forall \bm{x})((\bm{a}\vee\bm{x})\wedge(\bm{b}\vee\bm{x})=\bm{x})
$$

Mariya I. Soskova (Sofia University) [The Turing universe in context](#page-0-0) CiE 2013 25/30

重

 2990

メロトメ 御 トメ 君 トメ 君 ト

$$
\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightharpoons (\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})
$$

Is it enough to require that this formula is satisfied just by the degrees below $\mathbf{0}_{e}'$?

 QQ

イロト イ押ト イヨト イヨ

$$
\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightharpoons (\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})
$$

Is it enough to require that this formula is satisfied just by the degrees below $\mathbf{0}_{e}'$?

Theorem (Ganchev, S (2012))

There is a first order formula $\mathcal{LK}(x, y)$ *, which defines the* \mathcal{K} *-pairs in* $\mathcal{D}_{e}(\leq \mathbf{0}_{e}^{\prime}).$

 Ω

 \rightarrow \equiv \rightarrow

$$
\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightharpoons (\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})
$$

Is it enough to require that this formula is satisfied just by the degrees below $\mathbf{0}_{e}'$?

Theorem (Ganchev, S (2012))

There is a first order formula $\mathcal{LK}(x, y)$ *, which defines the* \mathcal{K} *-pairs in* $\mathcal{D}_{e}(\leq \mathbf{0}_{e}^{\prime}).$

$$
\mathcal{LK}(x, y) : \mathcal{K}(x, y) \wedge \exists u, v(u \vee v = \mathbf{0}'_e \& \mathcal{K}(u, v) \& x \leq_e u)
$$

 Ω

 \rightarrow \equiv \rightarrow

$$
\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightharpoons (\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})
$$

Is it enough to require that this formula is satisfied just by the degrees below $\mathbf{0}_{e}'$?

Theorem (Ganchev, S (2012))

There is a first order formula $\mathcal{LK}(x, y)$ *, which defines the* \mathcal{K} *-pairs in* $\mathcal{D}_{e}(\leq \mathbf{0}_{e}^{\prime}).$

$$
\mathcal{LK}(x,y): \mathcal{K}(x,y) \wedge \exists u, v(u \vee v = \mathbf{0}'_e \& \mathcal{K}(u,v) \& x \leq_e u)
$$

Theorem (Ganchev, S)

The first order theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ *is computably isomorphic to the first order theory of true arithmetic.*

Mariya I. Soskova (Sofia University) [The Turing universe in context](#page-0-0) Cipensium Cipensium Cipensium 25/30

 Ω

化重新分量

A surprising consequence

Extending a result of Giorgi, Sorbi and Yang:

Theorem (Ganchev, S)

An enumeration degree **a** *is low if and only if every degree* **b** ≤*^e* **a** *bounds a* K*-pair.*

*The class L*₁ *is first order definable in* $\mathcal{D}_e(\leq \mathbf{0}_e')$ *.*

REA

A surprising consequence

Extending a result of Giorgi, Sorbi and Yang:

Theorem (Ganchev, S)

An enumeration degree **a** *is low if and only if every degree* **b** ≤*^e* **a** *bounds a* K*-pair.*

*The class L*₁ *is first order definable in* $\mathcal{D}_e(\leq \mathbf{0}_e')$ *.*

Extending Jouckusch's theorem:

Theorem (Ganchev, S)

A degree **a** ≤*^e* **0** 0 *e is total if and only if it is the least upper bound of a maximal* K*-pair.*

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}_e')$ *.*

 Ω

イロト イ押ト イヨト イヨト ニヨ

We know that:

 $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_e')$ is first order definable.

 \rightarrow

 299

イロト イ押ト イヨト イヨ

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_e')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

4 0 8

 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

A B

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_e')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

Question (Rogers 1967)

Is TOT *first order definable in* \mathcal{D}_e ?

E K

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_e')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

Question (Rogers 1967)

Is T OT *first order definable in* D*e?*

Recall that the total degrees are an automorphism base for D*e*.

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_e')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

Question (Rogers 1967)

Is T OT *first order definable in* D*e?*

Recall that the total degrees are an automorphism base for D*e*.

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.
One step further in the dream world

```
Theorem (Ganchev,S)
```

```
For every nonzero enumeration degree \mathbf{u} \in \mathcal{D}_{e},
```

```
\mathbf{u}' = max \{ \mathbf{a} \vee \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_e \mathbf{u} \}.
```
 Ω

A T \rightarrow \pm \rightarrow One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_{e}$,

```
\mathbf{u}' = max \{ \mathbf{a} \vee \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_e \mathbf{u} \}.
```
- Suppose that a degree is total if and only if it is the least upper bound of a maximal K -pair.
- The relation **x** is c.e. in **u** would also be definable for total degrees by :

$$
\exists a \exists b(x = a \vee b \& \mathcal{K}(a, b) \& a \leq_e u).
$$

 Ω

One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_{e}$,

```
\mathbf{u}' = max \{ \mathbf{a} \vee \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_e \mathbf{u} \}.
```
- Suppose that a degree is total if and only if it is the least upper bound of a maximal K -pair.
- The relation **x** is c.e. in **u** would also be definable for total degrees by :

$$
\exists a \exists b(x = a \vee b \& \mathcal{K}(a, b) \& a \leq_e u).
$$

Then for total **u**, our definition of the jump would read u' is the largest total degree, which is c.e. in **u**.

 Ω

化重新分量

Let D be the structure of the Turing degrees or the structure of the enumeration degrees.

 Ω

イロト イ押ト イヨト イヨ

Let D be the structure of the Turing degrees or the structure of the enumeration degrees.

1 There are at most countably many automorphisms of the structure \mathcal{D} .

 Ω

 \rightarrow \equiv \rightarrow

Let D be the structure of the Turing degrees or the structure of the enumeration degrees.

- ¹ There are at most countably many automorphisms of the structure \mathcal{D} .
- **2** Every automorphism of D is arithmetically presentable.

 Ω

Let D be the structure of the Turing degrees or the structure of the enumeration degrees.

- ¹ There are at most countably many automorphisms of the structure \mathcal{D} .
- **2** Every automorphism of D is arithmetically presentable.
- \bullet There exists a finite automorphism base of \mathcal{D} .

 Ω

Let $\mathcal D$ be the structure of the Turing degrees or the structure of the enumeration degrees.

- ¹ There are at most countably many automorphisms of the structure \mathcal{D} .
- **2** Every automorphism of D is arithmetically presentable.
- \bullet There exists a finite automorphism base of \mathcal{D} .
- Definability with parameters: Every relation on $\mathcal D$ induced by a degree invariant relation on sets of natural numbers, which is definable in second order arithmetic, is definable in D with parameters.

 Ω

REPAREM

Let $\mathcal D$ be the structure of the Turing degrees or the structure of the enumeration degrees.

- ¹ There are at most countably many automorphisms of the structure \mathcal{D} .
- **2** Every automorphism of D is arithmetically presentable.
- \bullet There exists a finite automorphism base of \mathcal{D} .
- \bullet Definability with parameters: Every relation on $\mathcal D$ induced by a degree invariant relation on sets of natural numbers, which is definable in second order arithmetic, is definable in D with parameters.

Corollary (S (2013))

T OT *is definable with parameters in* D*e.*

 Ω

化重新分离

Thank you!

Mariya I. Soskova (Sofia University) [The Turing universe in context](#page-0-0) Cie 2013 30/30

重

 299

メロトメ 御 トメ ヨ トメ ヨト