The Turing universe in the context of enumeration reducibility

Mariya I. Soskova¹

Sofia University

CiE, Milano, July 5, 2013

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471), Sofia University Science Fund grant No. 44/15.04.2013 and BNSF grant No. DMU 03/07/12.12.2011

Mariya I. Soskova (Sofia University)

The Turing universe in context

CiE 2013 1 / 30

How can a set of natural numbers *B* be used to define a set of natural numbers *A*.

How can a set of natural numbers *B* be used to define a set of natural numbers *A*.

There is an algorithm, which determines whether *x* ∈ *A* using finite information about memberships in *B*: Turing reducibility.

How can a set of natural numbers *B* be used to define a set of natural numbers *A*.

- There is an algorithm, which determines whether *x* ∈ *A* using finite information about memberships in *B*: Turing reducibility.
- There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*: enumeration reducibility.

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

 Algorithm: A Turing machine, or a program written in any common programming language or a natural number: φ_e.

A (10) > A (10) > A (10)

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

- Algorithm: A Turing machine, or a program written in any common programming language or a natural number: φ_e.
- The algorithm is allowed to consult an *oracle*: φ_e^B .

< 回 ト < 三 ト < 三

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

- Algorithm: A Turing machine, or a program written in any common programming language or a natural number: φ_e.
- The algorithm is allowed to consult an *oracle*: φ_e^B .
- A ≤_T B if an only if the characteristic function of A is computable using oracle B: χ_A = φ^B_e for some e.

周レイモレイモ

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

- Algorithm: A Turing machine, or a program written in any common programming language or a natural number: φ_e.
- The algorithm is allowed to consult an *oracle*: φ_e^B .
- A ≤_T B if an only if the characteristic function of A is computable using oracle B: χ_A = φ^B_e for some e.

Example

Let *B* be any set of natural numbers.

• Every computable set is Turing reducible to B.

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

- Algorithm: A Turing machine, or a program written in any common programming language or a natural number: φ_e.
- The algorithm is allowed to consult an *oracle*: φ_e^B .
- A ≤_T B if an only if the characteristic function of A is computable using oracle B: χ_A = φ^B_e for some e.

Example

Let *B* be any set of natural numbers.

- Every computable set is Turing reducible to B.
- $B \leq_T B$ and if $C \leq_T D$ and $D \leq_T B$ then $C \leq_T B$.

There is an algorithm, which determines whether $x \in A$ using finite information about memberships in *B*.

- Algorithm: A Turing machine, or a program written in any common programming language or a natural number: φ_e.
- The algorithm is allowed to consult an *oracle*: φ_e^B .
- A ≤_T B if an only if the characteristic function of A is computable using oracle B: χ_A = φ^B_e for some e.

Example

Let *B* be any set of natural numbers.

- Every computable set is Turing reducible to B.
- $B \leq_T B$ and if $C \leq_T D$ and $D \leq_T B$ then $C \leq_T B$.
- The halting set relative to B, denoted as K_B = {n | φ_n^B(n) halts} is not Turing reducible to B.

Scooping the loop snooper

Geoffrey K. Pullum

イロト イヨト イヨト イヨト

Scooping the loop snooper

Geoffrey K. Pullum

. . .

. . .

. . .

For imagine we have a procedure called P that for specified input permits you to see whether specified source code, with all of its faults, defines a routine that eventually halts.

Well, the truth is that P cannot possibly be, because if you wrote it and gave it to me, I could use it to set up a logical bind that would shatter your reason and scramble your mind.

< ロ > < 同 > < 回 > < 回 >

There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*.

There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*.

We have an algorithm which enumerates a list of axioms: (x, D): a c.e. set W_e.

There is an algorithm, which enumerates instances of memberships in A from instances of memberships in B.

- We have an algorithm which enumerates a list of axioms: (x, D): a c.e. set W_e.
- The oracle set *B* is revealing it elements one by one in some order.

There is an algorithm, which enumerates instances of memberships in A from instances of memberships in B.

- We have an algorithm which enumerates a list of axioms: (x, D): a c.e. set W_e.
- The oracle set *B* is revealing it elements one by one in some order.
- We combine both enumerations into one: If we see an axiom (x, D) and all of the elements in D have been enumerated by the oracle then we enumerate x: W_e(B)

There is an algorithm, which enumerates instances of memberships in A from instances of memberships in B.

- We have an algorithm which enumerates a list of axioms: (x, D): a c.e. set W_e.
- The oracle set *B* is revealing it elements one by one in some order.
- We combine both enumerations into one: If we see an axiom (x, D) and all of the elements in D have been enumerated by the oracle then we enumerate x: W_e(B)

•
$$A \leq_e B$$
 if $A = W_e(B)$ for some e .

There is an algorithm, which enumerates instances of memberships in A from instances of memberships in B.

- We have an algorithm which enumerates a list of axioms: (x, D): a c.e. set W_e.
- The oracle set *B* is revealing it elements one by one in some order.
- We combine both enumerations into one: If we see an axiom (x, D) and all of the elements in D have been enumerated by the oracle then we enumerate x: W_e(B)

•
$$A \leq_e B$$
 if $A = W_e(B)$ for some e .

Example

Let *B* be any set of natural numbers.

• Every computably enumerable set is enumeration reducible to B.

There is an algorithm, which enumerates instances of memberships in A from instances of memberships in B.

- We have an algorithm which enumerates a list of axioms: (x, D): a c.e. set W_e.
- The oracle set *B* is revealing it elements one by one in some order.
- We combine both enumerations into one: If we see an axiom (x, D) and all of the elements in D have been enumerated by the oracle then we enumerate x: W_e(B)

•
$$A \leq_e B$$
 if $A = W_e(B)$ for some e .

Example

Let *B* be any set of natural numbers.

- Every computably enumerable set is enumeration reducible to *B*.
- $B \leq_e B$ and if $C \leq_e D$ and $D \leq_e B$ then $C \leq_e B$.

Example

Let *B* be any set of natural numbers.

The set L_B = {n | n ∈ W_n(B)} is e-reducible to B. We have a universal c.e. set.

- A - E - N

Example

Let *B* be any set of natural numbers.

- The set L_B = {n | n ∈ W_n(B)} is e-reducible to B. We have a universal c.e. set.
- The set $\overline{L_B} = \{n \mid n \notin W_n(B)\}$ is not e-reducible to *B*.

伺下 イヨト イヨ

Example

Let *B* be any set of natural numbers.

- The set L_B = {n | n ∈ W_n(B)} is e-reducible to B. We have a universal c.e. set.
- The set $\overline{L_B} = \{n \mid n \notin W_n(B)\}$ is not e-reducible to *B*.

For imagine we have an enumeration called e which outputs a p only if you see the p-th program with oracle Bwill not in our lifetime enumerate p.

Well, then *e* too cannot be, because if you wrote it and gave it to me, I would make you seem foolish, I will not be kind with a trick I learned from Cantor and always keep in mind.

(4) (5) (4) (5)

• From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and $B \leq A$. The degree of a set A is $d(A) = \{B \mid A \equiv B\}$.

- From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and $B \leq A$. The degree of a set A is $d(A) = \{B \mid A \equiv B\}$.
- From equivalence relation to partial order: $d(A) \le d(B)$ iff $A \le B$.

- From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and $B \leq A$. The degree of a set A is $d(A) = \{B \mid A \equiv B\}$.
- From equivalence relation to partial order: $d(A) \le d(B)$ iff $A \le B$.
- Least element 0 = d(∅). In particular 0_T consist of the computable sets and 0_e consists of the c.e. sets.

- From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and $B \leq A$. The degree of a set A is $d(A) = \{B \mid A \equiv B\}$.
- From equivalence relation to partial order: $d(A) \le d(B)$ iff $A \le B$.
- Least element 0 = d(∅). In particular 0_T consist of the computable sets and 0_e consists of the c.e. sets.
- $d(A) \lor d(B) = d(A \oplus B)$. Here $A \oplus B = (2A) \cup (2B + 1)$

不得る とうちょうちょ

- From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and $B \leq A$. The degree of a set A is $d(A) = \{B \mid A \equiv B\}$.
- From equivalence relation to partial order: $d(A) \le d(B)$ iff $A \le B$.
- Least element 0 = d(∅). In particular 0_T consist of the computable sets and 0_e consists of the c.e. sets.
- $d(A) \lor d(B) = d(A \oplus B)$. Here $A \oplus B = (2A) \cup (2B + 1)$
- Define a jump operation '. For the Turing degrees: $d_T(A)' = d_T(K_A)$. For the *e*-degrees: $d_e(A)' = d_e(L_A \oplus \overline{L_A})$.

- From pre-order to equivalence relation: $A \equiv B$ iff $A \leq B$ and $B \leq A$. The degree of a set A is $d(A) = \{B \mid A \equiv B\}$.
- From equivalence relation to partial order: $d(A) \le d(B)$ iff $A \le B$.
- Least element 0 = d(∅). In particular 0_T consist of the computable sets and 0_e consists of the c.e. sets.
- $d(A) \lor d(B) = d(A \oplus B)$. Here $A \oplus B = (2A) \cup (2B + 1)$
- Define a jump operation '. For the Turing degrees: $d_T(A)' = d_T(K_A)$. For the *e*-degrees: $d_e(A)' = d_e(L_A \oplus \overline{L_A})$.
- D = ⟨D, ≤, ∨,' 0⟩ is an upper semi-lattice with least element and jump operation.

Proposition

Let A and B be sets of natural numbers. The following are equivalent:

- $A \leq_T B;$
- **2** Both A and \overline{A} can be enumerated by a computable in B function, $A \oplus \overline{A}$ is c.e. in B;

Proposition

Let A and B be sets of natural numbers. The following are equivalent:

- $\bullet A \leq_T B;$
- **2** Both A and \overline{A} can be enumerated by a computable in B function, $A \oplus \overline{A}$ is c.e. in B;

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

Proposition

Let A and B be sets of natural numbers. The following are equivalent:

- $\bullet A \leq_T B;$
- **2** Both A and \overline{A} can be enumerated by a computable in B function, $A \oplus \overline{A}$ is c.e. in B;

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

< 回 > < 回 > < 回 >

Proposition

Let A and B be sets of natural numbers. The following are equivalent:

• $A \leq_T B;$

2 Both A and \overline{A} can be enumerated by a computable in B function, $A \oplus \overline{A}$ is c.e. in B;

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

$$(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,'\mathbf{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq_{e},\vee,',\mathbf{0}_{e})\subseteq(\mathcal{D}_{e},\leq_{e},\vee,'\mathbf{0}_{e})$$

< 回 > < 回 > < 回 >

More connections between $\mathcal{D}_{\mathcal{T}}$ and \mathcal{D}_{e}

Theorem (Selman (1971))

Selman's Theorem: $A \leq_e B$ if and only if the set of total enumeration degrees above B is a subset of the set of total enumeration degrees above A.

Corollary

TOT is an automorphism base for D_e .

Theorem (Soskov's Jump Inversion Theorem (2000))

For every $\mathbf{x} \in \mathcal{D}_e$ there exists a total e-degree $\mathbf{a} \ge \mathbf{x}$, such that $\mathbf{a}' = \mathbf{x}'$.

< ロ > < 同 > < 回 > < 回 >

Computable model theory

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Computable model theory

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of \mathcal{A} , denoted by $DS_{\mathcal{T}}(\mathcal{A})$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

Computable model theory

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of \mathcal{A} , denoted by $DS_{\mathcal{T}}(\mathcal{A})$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(\mathcal{A})$ has a least member, it is the (Turing) degree of \mathcal{A} .

< 回 > < 回 > < 回 >
Computable model theory

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of \mathcal{A} , denoted by $DS_{\mathcal{T}}(\mathcal{A})$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(\mathcal{A})$ has a least member, it is the (Turing) degree of \mathcal{A} .

Definition (Jockusch)

The jump spectrum of \mathcal{A} is $DS'_{\mathcal{T}}(\mathcal{A}) = \{ \mathbf{d}' \mid \mathbf{d} \in DS_{\mathcal{T}}(\mathcal{A}) \}.$

Computable model theory

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Richter)

The degree spectrum of \mathcal{A} , denoted by $DS_{\mathcal{T}}(\mathcal{A})$, is the set of Turing degrees of the diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_T(\mathcal{A})$ has a least member, it is the (Turing) degree of \mathcal{A} .

Definition (Jockusch)

The jump spectrum of \mathcal{A} is $DS'_{\mathcal{T}}(\mathcal{A}) = \{ \mathbf{d}' \mid \mathbf{d} \in DS_{\mathcal{T}}(\mathcal{A}) \}.$

If $DS'_{T}(\mathcal{A})$ has a least member, it is the (Turing) jump degree of \mathcal{A} .

A torsion free abelian group of rank 1 G is a subgroup of $(\mathbb{Q}, +)$.

A torsion free abelian group of rank 1 G is a subgroup of $(\mathbb{Q}, +)$.

 Baer introduced the type of a group G, χ(G), in terms of divisibility properties of nonzero elements of G.

< 回 ト < 三 ト < 三

A torsion free abelian group of rank 1 G is a subgroup of $(\mathbb{Q}, +)$.

- Baer introduced the type of a group G, $\chi(G)$, in terms of divisibility properties of nonzero elements of G.
- Two torsion free abelian groups of rank 1 are isomorphic if and only if they have the same type.

< 回 > < 三 > < 三 >

A torsion free abelian group of rank 1 G is a subgroup of $(\mathbb{Q}, +)$.

- Baer introduced the type of a group G, χ(G), in terms of divisibility properties of nonzero elements of G.
- Two torsion free abelian groups of rank 1 are isomorphic if and only if they have the same type.
- There is a standard representation of χ(G) as a set of natural numbers S(G), the standard type of G.

A torsion free abelian group of rank 1 G is a subgroup of $(\mathbb{Q}, +)$.

- Baer introduced the type of a group G, χ(G), in terms of divisibility properties of nonzero elements of G.
- Two torsion free abelian groups of rank 1 are isomorphic if and only if they have the same type.
- There is a standard representation of χ(G) as a set of natural numbers S(G), the standard type of G.
- Every set of natural numbers can be coded as the standard type of some group *G*.

A torsion free abelian group of rank 1 G is a subgroup of $(\mathbb{Q}, +)$.

- Baer introduced the type of a group G, χ(G), in terms of divisibility properties of nonzero elements of G.
- Two torsion free abelian groups of rank 1 are isomorphic if and only if they have the same type.
- There is a standard representation of χ(G) as a set of natural numbers S(G), the standard type of G.
- Every set of natural numbers can be coded as the standard type of some group *G*.

Theorem (Downey, Jockusch)

The degree spectrum of G is precisely $\{d_T(Y) \mid S(G) \text{ is c.e. in } Y\}$.

イロト イポト イヨト イヨト 二日

A torsion free abelian group of rank 1 G is a subgroup of $(\mathbb{Q}, +)$.

- Baer introduced the type of a group G, χ(G), in terms of divisibility properties of nonzero elements of G.
- Two torsion free abelian groups of rank 1 are isomorphic if and only if they have the same type.
- There is a standard representation of χ(G) as a set of natural numbers S(G), the standard type of G.
- Every set of natural numbers can be coded as the standard type of some group *G*.

Theorem (Downey, Jockusch)

The degree spectrum of G is precisely $\{d_T(Y) \mid S(G) \text{ is c.e. in } Y\}$.

Given a set A, characterize the set $S(A) = \{ d_T(Y) \mid A \text{ is c.e. in } Y \}.$

Least jump enumeration

 $\mathcal{S}(A) = \{ d_T(Y) \mid A \text{ is c.e. in } Y \}.$

Theorem (Richter (1981))

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair.

(4) (5) (4) (5)

Least jump enumeration

 $\mathcal{S}(A) = \{ d_T(Y) \mid A \text{ is c.e. in } Y \}.$

Theorem (Richter (1981))

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair.

Hence there is a set A, such that S(A) does not have a least member.

4 3 5 4 3 5

Least jump enumeration

 $\mathcal{S}(A) = \{ d_T(Y) \mid A \text{ is c.e. in } Y \}.$

Theorem (Richter (1981))

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair.

Hence there is a set A, such that S(A) does not have a least member.

Theorem (Coles, Downey, Slaman (2000))

For every sets A the set: $S(A)' = \{d_T(Y)' \mid A \text{ is c.e. in } Y\}$ has a member of least degree.

Every torsion free abelian group of rank 1 has a jump degree.

The proof is a forcing construction of this least member.

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov (2003))

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

A > + > + > + >

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov (2003))

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

A (10) A (10)

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov (2003))

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

A (10) A (10)

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov (2003))

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$

Fix a countable relational structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition (Soskov (2003))

The enumeration degree spectrum of \mathcal{A} , denoted by $DS_e(\mathcal{A})$, is the set of e-degrees of the positive diagrams of structures $\mathcal{B} \cong \mathcal{A}$.

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$
- \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

• Let *G* be a torsion-free abelian group of rank 1.

< 6 b

- Let *G* be a torsion-free abelian group of rank 1.
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.

- Let *G* be a torsion-free abelian group of rank 1.
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.

周レイモレイモ

- Let G be a torsion-free abelian group of rank 1.
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.
- Recall that the Turing degree spectrum of *G* is precisely $\{d_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

< 回 > < 三 > < 三 >

- Let G be a torsion-free abelian group of rank 1.
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.
- Recall that the Turing degree spectrum of *G* is precisely $\{d_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$
- Denote $d_e(S(G))$ by \mathbf{s}_G -the type degree of G.

< 回 > < 回 > < 回 > -

- Let G be a torsion-free abelian group of rank 1.
- Note that the diagram of a group is enumeration equivalent to its positive diagram, as addition is a total function.
- In particular $DS_e(G) = DS_e(G^+) = \iota(DS_T(G))$.
- Recall that the Turing degree spectrum of *G* is precisely $\{d_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$
- Denote d_e(S(G)) by s_G-the type degree of G. The enumeration degree spectrum of G is:

$$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}.$$

く 同 ト く ヨ ト く ヨ ト

$DS_e(G) = \{ a \mid a \in TOT \& s_G \leq_e a \}$

Mariya I. Soskova (Sofia University)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$DS_e(G) = \{ a \mid a \in TOT \& s_G \leq_e a \}$$

 By Selman's Theorem s_G is completely determined by the set of total degrees above it.

CiE 2013 15 / 30

< A > < A > >

$$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}$$

- By Selman's Theorem s_G is completely determined by the set of total degrees above it.
- G has a degree (both e- and T-) if and only if the type degree s_G is total.

$$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}$$

- By Selman's Theorem s_G is completely determined by the set of total degrees above it.
- G has a degree (both e- and T-) if and only if the type degree s_G is total.
- If *G* has an e-degree then this e-degree is precisely **s**_{*G*}.

$$DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq_e \mathbf{a} \}$$

- By Selman's Theorem s_G is completely determined by the set of total degrees above it.
- G has a degree (both e- and T-) if and only if the type degree s_G is total.
- If *G* has an e-degree then this e-degree is precisely **s**_{*G*}.
- By Soskov's Jump inversion Theorem G always has first jump degree (both e- and T-) and it is s[']_G.

・ 同 ト ・ ヨ ト ・ ヨ ト

Global properties of the degree structures

- Algebraic complexity.
- O Theory strength.
- First order definability.
- Oharacterization of the automorphism group of the structure.

- E - N

Defining the Turing jump operator

Theorem (Shore, Slaman (1999))

The Turing jump operator is first order definable in \mathcal{D}_{T} .

There is a first order formula φ_J in the language of partial orderings, so that:

$$\mathcal{D}_{\mathcal{T}} \models \varphi_{\mathcal{J}}(\mathbf{x}, \mathbf{y}) \Leftrightarrow \mathbf{x}' = \mathbf{y}.$$

A (10) A (10) A (10)

Defining the Turing jump operator

Theorem (Shore, Slaman (1999))

The Turing jump operator is first order definable in \mathcal{D}_T .

There is a first order formula φ_J in the language of partial orderings, so that:

$$\mathcal{D}_{\mathcal{T}} \models \varphi_{\mathcal{J}}(\mathbf{x}, \mathbf{y}) \Leftrightarrow \mathbf{x}' = \mathbf{y}.$$

Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.

Slaman and Woodin's analysis of the automorphisms of the Turing degrees (1996) and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic"*.

A (10) A (10)

Defining the Turing jump operator

Theorem (Shore, Slaman (1999))

The Turing jump operator is first order definable in \mathcal{D}_T .

There is a first order formula φ_J in the language of partial orderings, so that:

$$\mathcal{D}_{\mathcal{T}} \models \varphi_{\mathcal{J}}(\mathbf{x}, \mathbf{y}) \Leftrightarrow \mathbf{x}' = \mathbf{y}.$$

Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.

Slaman and Woodin's analysis of the automorphisms of the Turing degrees (1996) and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

An additional structural fact, involving a sharp analysis of Kumabe-Slaman forcing.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Semi-computable sets in the enumeration degrees

Definition (Jockusch (1968))

A set of natural numbers *A* is semi-computable if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

一日

Semi-computable sets in the enumeration degrees

Definition (Jockusch (1968))

A set of natural numbers *A* is semi-computable if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Theorem (Jockusch)

For every noncomputable set B there is a semi-computable set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

A B A A B A

Semi-computable sets in the enumeration degrees

Definition (Jockusch (1968))

A set of natural numbers *A* is semi-computable if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Theorem (Jockusch)

For every noncomputable set B there is a semi-computable set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Theorem (Arslanov, Cooper, Kalimullin (2003))

If A is a semi-computable set, which is not c.e. and not co-c.e then $d_e(A)$ and $d_e(\overline{A})$ form a minimal pair.

< ロ > < 同 > < 回 > < 回 >
Semi-computable sets in the enumeration degrees

Definition (Jockusch (1968))

A set of natural numbers *A* is semi-computable if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Theorem (Jockusch)

For every noncomputable set B there is a semi-computable set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Theorem (Arslanov, Cooper, Kalimullin (2003))

If A is a semi-computable set, which is not c.e. and not co-c.e then $d_e(A)$ and $d_e(\overline{A})$ form a minimal pair.

$$(\forall \mathbf{x} \in \mathcal{D}_{e})((d_{e}(A) \lor \mathbf{x}) \land (d_{e}(\overline{A}) \lor \mathbf{x}) = \mathbf{x}).$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$\mathcal K\text{-pairs}$ in the enumeration degrees

Definition (Kalimullin (2003))

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Definition (Kalimullin (2003))

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

• A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.

Definition (Kalimullin (2003))

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If A is a semi-computable set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair.

Definition (Kalimullin (2003))

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If *A* is a semi-computable set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair. $W = \{\langle x, y \rangle \mid s_A(x, y) = x\}.$

Definition (Kalimullin (2003))

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- A trivial example is $\{A, U\}$ and $\{U, A\}$, where U is c.e.
- If *A* is a semi-computable set, then $\{A, \overline{A}\}$ is a \mathcal{K} -pair. $W = \{\langle x, y \rangle \mid s_A(x, y) = x\}.$

Theorem (Kalimullin)

A pair of sets A, B are a \mathcal{K} -pair if and only if their enumeration degrees **a** and **b** satisfy:

$$\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_e)((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\mathcal K\text{-pairs}$ are invisible in the Turing universe

K-pairs are never total enumeration degrees, the only total degree below either of them is **0**_e.

\mathcal{K} -pairs are invisible in the Turing universe

- *K*-pairs are never total enumeration degrees, the only total degree below either of them is **0**_e.
- A consequence of the existence of nontrivial \mathcal{K} -pairs in \mathcal{D}_e is that the second ingredient from the Slaman-Shore definition of the Turing jump fails in \mathcal{D}_e .

\mathcal{K} -pairs are invisible in the Turing universe

- *K*-pairs are never total enumeration degrees, the only total degree below either of them is **0**_e.
- A consequence of the existence of nontrivial \mathcal{K} -pairs in \mathcal{D}_e is that the second ingredient from the Slaman-Shore definition of the Turing jump fails in \mathcal{D}_e .
- There are no \mathcal{K} -pairs in the structure of the Turing degrees.

 \mathcal{K} -pairs and the definability of the enumeration jump

Theorem (Kalimullin (2003))

 $\mathbf{0}'_e$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b})$, $\mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

< 回 > < 回 > < 回 >

 \mathcal{K} -pairs and the definability of the enumeration jump

Theorem (Kalimullin (2003))

 $\mathbf{0}'_e$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b}), \mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

A (10) A (10)

 $\mathcal K\text{-}\mathsf{pairs}$ and the definability of the enumeration jump

Theorem (Kalimullin (2003))

 $\mathbf{0}'_e$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b})$, $\mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Ganchev, S (2012))

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \leq_e \mathbf{u}$.

 The local structure of the Turing degrees D_T(≤ 0'_T) consists of all Turing degrees reducible to 0'_T.

- The local structure of the Turing degrees D_T(≤ 0'_T) consists of all Turing degrees reducible to 0'_T.
- The local structure of the enumeration degrees D_e(≤ 0'_e), consists of all enumeration degrees reducible to 0'_e.

- The local structure of the Turing degrees D_T(≤ 0'_T) consists of all Turing degrees reducible to 0'_T.
- The local structure of the enumeration degrees D_e(≤ 0'_e), consists of all enumeration degrees reducible to 0'_e.
- Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

- The local structure of the Turing degrees D_T(≤ 0'_T) consists of all Turing degrees reducible to 0'_T.
- The local structure of the enumeration degrees D_e(≤ 0'_e), consists of all enumeration degrees reducible to 0'_e.
- Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

$$\mathcal{D}_{\mathcal{T}}(\leq \mathbf{0}'_{\mathcal{T}}) \cong \mathcal{T}\mathcal{O}\mathcal{T}(\leq \mathbf{0}'_{e}) \subseteq \mathcal{D}_{e}(\leq \mathbf{0}'_{e})$$

Definition

- A degree **a** is low if $\mathbf{a}' = \mathbf{0}'$.
- **2** A degree **a** is high if $\mathbf{a}' = \mathbf{0}''$.

A (10) A (10) A (10)

Definition

- **()** A degree **a** is low if $\mathbf{a}' = \mathbf{0}'$.
- **2** A degree **a** is high if $\mathbf{a}' = \mathbf{0}''$.

Theorem (Shore (2012))

The high degrees are first order definable in $\mathcal{D}_T (\leq \mathbf{0}')$.

① The theory of first order arithmetic can be interpreted $\mathcal{D}_T (\leq \mathbf{0}')$.

A (10) A (10)

Definition

- **()** A degree **a** is low if $\mathbf{a}' = \mathbf{0}'$.
- **2** A degree **a** is high if $\mathbf{a}' = \mathbf{0}''$.

Theorem (Shore (2012))

The high degrees are first order definable in $\mathcal{D}_T (\leq \mathbf{0}')$.

- **①** The theory of first order arithmetic can be interpreted $\mathcal{D}_T (\leq \mathbf{0}')$.
- **②** There is a definable way of mapping a degree **a** to a set *A* in any interpretation of arithmetic so that $A'' \in \mathbf{a}''$.

A (10) A (10)

Definition

- A degree **a** is low if $\mathbf{a}' = \mathbf{0}'$.
- **2** A degree **a** is high if $\mathbf{a}' = \mathbf{0}''$.

Theorem (Shore (2012))

The high degrees are first order definable in $\mathcal{D}_T (\leq \mathbf{0}')$.

- **()** The theory of first order arithmetic can be interpreted $\mathcal{D}_T (\leq \mathbf{0}')$.
- **②** There is a definable way of mapping a degree **a** to a set *A* in any interpretation of arithmetic so that $A'' \in \mathbf{a}''$.
- Every relation which is invariant under double jump and definable in arithmetic is definable.

Definition

- A degree **a** is low if $\mathbf{a}' = \mathbf{0}'$.
- **2** A degree **a** is high if $\mathbf{a}' = \mathbf{0}''$.

Theorem (Shore (2012))

The high degrees are first order definable in $\mathcal{D}_T (\leq \mathbf{0}')$.

- **()** The theory of first order arithmetic can be interpreted $\mathcal{D}_T (\leq \mathbf{0}')$.
- **②** There is a definable way of mapping a degree **a** to a set *A* in any interpretation of arithmetic so that $A'' \in \mathbf{a}''$.
- Every relation which is invariant under double jump and definable in arithmetic is definable.
- An additional structural property by Nies, Shore and Slaman (1998).

Definition

- A degree **a** is low if $\mathbf{a}' = \mathbf{0}'$.
- **2** A degree **a** is high if $\mathbf{a}' = \mathbf{0}''$.

Theorem (Shore (2012))

The high degrees are first order definable in $\mathcal{D}_T (\leq \mathbf{0}')$.

- The theory of first order arithmetic can be interpreted $\mathcal{D}_T (\leq \mathbf{0}')$.
- **②** There is a definable way of mapping a degree **a** to a set *A* in any interpretation of arithmetic so that $A'' \in \mathbf{a}''$.
- Every relation which is invariant under double jump and definable in arithmetic is definable.
- An additional structural property by Nies, Shore and Slaman (1998).

It is not known if the low degrees are first order definable in $\mathcal{D}_{\mathcal{I}}(\leq \mathbf{0}'_{\mathcal{I}})_{\sim}$

Mariya I. Soskova (Sofia University)

The Turing universe in context

Definability in the local structure of the enumeration degrees

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

A (10) A (10) A (10)

Definability in the local structure of the enumeration degrees

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman, Woodin (1997))

The theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is undecidable.

Idea: Use \mathcal{K} -pairs to extend this result.

A > + = + + =

$$\mathcal{K}(\textbf{a},\textbf{b}) \leftrightarrows (\forall \textbf{x})((\textbf{a} \lor \textbf{x}) \land (\textbf{b} \lor \textbf{x}) = \textbf{x})$$

Mariya I. Soskova (Sofia University)

◆ ■ ● ○ ○ ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

イロト イヨト イヨト イヨト

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to require that this formula is satisfied just by the degrees below $\mathbf{0}'_{e}$?

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to require that this formula is satisfied just by the degrees below $\mathbf{0}'_{e}$?

Theorem (Ganchev, S (2012))

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

▲ 同 ▶ → 三 ▶

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to require that this formula is satisfied just by the degrees below $\mathbf{0}'_{e}$?

Theorem (Ganchev, S (2012))

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

$$\mathcal{LK}(x,y):\mathcal{K}(x,y)\wedge \exists u,v(u\vee v=\mathbf{0}_{e}'\&\mathcal{K}(u,v)\&x\leq_{e}u)$$

< 回 > < 回 > < 回

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to require that this formula is satisfied just by the degrees below $\mathbf{0}'_{e}$?

Theorem (Ganchev, S (2012))

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

$$\mathcal{LK}(x,y):\mathcal{K}(x,y)\wedge \exists u, v(u\vee v=\mathbf{0}'_{e} \& \mathcal{K}(u,v) \& x\leq_{e} u)$$

Theorem (Ganchev, S)

The first order theory of $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is computably isomorphic to the first order theory of true arithmetic.

Mariya I. Soskova (Sofia University)

< ロ > < 同 > < 回 > < 回 >

A surprising consequence

Extending a result of Giorgi, Sorbi and Yang:

Theorem (Ganchev, S)

An enumeration degree **a** is low if and only if every degree $\mathbf{b} \leq_e \mathbf{a}$ bounds a \mathcal{K} -pair.

The class L_1 is first order definable in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

A (10) A (10) A (10)

A surprising consequence

Extending a result of Giorgi, Sorbi and Yang:

Theorem (Ganchev, S)

An enumeration degree **a** is low if and only if every degree $\mathbf{b} \leq_e \mathbf{a}$ bounds a \mathcal{K} -pair.

The class L_1 is first order definable in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

Extending Jouckusch's theorem:

Theorem (Ganchev, S)

A degree $\mathbf{a} \leq_{e} \mathbf{0}'_{e}$ is total if and only if it is the least upper bound of a maximal \mathcal{K} -pair.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

We know that:

• $\mathcal{TOT} \cap \mathcal{D}_e (\geq \mathbf{0}'_e)$ is first order definable.

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_e (\geq \mathbf{0}'_e)$ is first order definable.
- $TOT \cap D_e (\leq \mathbf{0}'_e)$ is first order definable.

< 回 > < 回 > < 回

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question (Rogers 1967)

Is TOT first order definable in D_e ?

(4) (5) (4) (5)

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question (Rogers 1967)

Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

- E 🕨

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question (Rogers 1967)

Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

A B F A B F
One step further in the dream world

```
Theorem (Ganchev,S)
```

```
For every nonzero enumeration degree \mathbf{u} \in \mathcal{D}_{e},
```

```
\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \right\}.
```

< 回 ト < 三 ト < 三

One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_{e}$,

```
\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \right\}.
```

- Suppose that a degree is total if and only if it is the least upper bound of a maximal *K*-pair.
- The relation **x** is c.e. in **u** would also be definable for total degrees by :

$$\exists a \exists b (x = a \lor b \& \mathcal{K}(a, b) \& a \leq_e u).$$

One step further in the dream world

Theorem (Ganchev,S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_{e}$,

```
\mathbf{u}' = max \left\{ \mathbf{a} \lor \mathbf{b} \mid \mathcal{K}(\mathbf{a}, \mathbf{b}) \& \mathbf{a} \leq_{e} \mathbf{u} \right\}.
```

- Suppose that a degree is total if and only if it is the least upper bound of a maximal *K*-pair.
- The relation **x** is c.e. in **u** would also be definable for total degrees by :

$$\exists \mathsf{a} \exists \mathsf{b}(\mathsf{x} = \mathsf{a} \lor \mathsf{b} \& \mathcal{K}(\mathsf{a}, \mathsf{b}) \& \mathsf{a} \leq_{e} \mathsf{u}).$$

 Then for total u, our definition of the jump would read u' is the largest total degree, which is c.e. in u.

(A) (B) (A) (B)

Let \mathcal{D} be the structure of the Turing degrees or the structure of the enumeration degrees.

Let \mathcal{D} be the structure of the Turing degrees or the structure of the enumeration degrees.

There are at most countably many automorphisms of the structure D.

< 同 > < 回 > .

Let \mathcal{D} be the structure of the Turing degrees or the structure of the enumeration degrees.

- There are at most countably many automorphisms of the structure D.
- 2 Every automorphism of \mathcal{D} is arithmetically presentable.

< 同 > < 回 > .

Let \mathcal{D} be the structure of the Turing degrees or the structure of the enumeration degrees.

- There are at most countably many automorphisms of the structure D.
- 2 Every automorphism of \mathcal{D} is arithmetically presentable.
- **③** There exists a finite automorphism base of \mathcal{D} .

< 回 ト < 三 ト < 三

Let \mathcal{D} be the structure of the Turing degrees or the structure of the enumeration degrees.

- There are at most countably many automorphisms of the structure D.
- **2** Every automorphism of \mathcal{D} is arithmetically presentable.
- **③** There exists a finite automorphism base of \mathcal{D} .
- Definability with parameters: Every relation on D induced by a degree invariant relation on sets of natural numbers, which is definable in second order arithmetic, is definable in D with parameters.

< 回 > < 三 > < 三 >

Let \mathcal{D} be the structure of the Turing degrees or the structure of the enumeration degrees.

- There are at most countably many automorphisms of the structure D.
- 2 Every automorphism of \mathcal{D} is arithmetically presentable.
- **③** There exists a finite automorphism base of \mathcal{D} .
- Definability with parameters: Every relation on D induced by a degree invariant relation on sets of natural numbers, which is definable in second order arithmetic, is definable in D with parameters.

Corollary (S (2013))

TOT is definable with parameters in D_e .

< ロ > < 同 > < 回 > < 回 >

Thank you!

Mariya I. Soskova (Sofia University)

The Turing universe in context

イロト イヨト イヨト イヨト