Embedding Partial Orderings in Degree Structures

Mariya I. Soskova and Ivan N. Soskov ¹

CiE 09, Heidelberg 2009

 $^{^1}$ Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework Programme. $_{\odot}$

Embeddability in the Turing degrees

Definition (Kleene, Post 1954)

A sequence of sets $\{A_i\}_{i<\omega}$ is called computably independent if for every i:

$$A_i \nleq_T \bigoplus_{j \neq i} A_j$$
.

- ▶ Mostowski 1938: There exists a computable partial ordering $\mathcal{R} = \langle \mathbb{N}, \leq \rangle$ in which every countable partial ordering can be embedded.
- Sacks 1963: The existence of a computably independent sequence of sets gives an embedding of any computable partial ordering.

Embeddability in the Turing degrees

Localizing independent sequences of sets:

Corollary

Every countable partial ordering can be embedded

- 1. Kleene and Post 1954: in the Turing degrees, even in the Δ_2^0 Turing degrees.
- 2. Muchnik 1958: in the c.e. Turing degrees.
- 3. Robinson 1971: densely in the c.e. Turing degrees, i.e. in any nonempty interval of c.e. Turing degrees.

The enumeration degrees

- Case 1971: Any countable partial ordering can be embedded in the e-degrees below the degree of any generic function.
- Copestake 1988: below any 1-generic enumeration degree.
- ▶ Lageman 1972: below any nonzero Δ_2^0 e-degree.
- ▶ Bianchini 2000: densely in the Σ_2^0 enumeration degrees.

Theorem

Let **b** < **a** be enumeration degrees such that **a** contains a member with a good approximation. Then every countable partial ordering can be embedded in the interval [**b**, **a**].

Method: *e*-independent sequences of sets.

The general picture

The ω e-degrees: Basic definitions

Let $\mathcal S$ be the set of all sequences of sets of natural numbers.

Definition

Let $\mathcal{A} = \{A_n\}_{n<\omega}$ be a sequence of sets natural numbers and V be an e-operator. The result of applying the enumeration operator V to the sequence \mathcal{A} , denoted by $V(\mathcal{A})$, is the sequence $\{V[n](A_n)\}_{n<\omega}$. We say that $V(\mathcal{A})$ is enumeration reducible (\leq_e) to the sequence \mathcal{A} .

So $A \leq_e B$ is a combination of two notions:

- ► Enumeration reducibility: for every n we have that $A_n \leq_e B_n$ via, say, Γ_n .
- ▶ Uniformity: the sequence $\{\Gamma_n\}_{n<\omega}$ is uniform.

Basic definitions

With every member $A \in S$ we connect a *jump sequence* P(A).

Definition

The *jump sequence* of the sequence A, denoted by P(A) is the sequence $\{P_n(A)\}_{n<\omega}$ defined inductively as follows:

- ▶ $P_0(A) = A_0$.
- ▶ $P_{n+1}(A) = A_{n+1} \oplus P'_n(A)$, where $P'_n(A)$ denotes the enumeration jump of the set $P_n(A)$.

The ω -enumeration degrees

Let $A, B \in S$.

Definition

- ω -enumeration reducibility: $A \leq_{\omega} B$, if $A \leq_{e} P(B)$.
- $ightharpoonup \mathcal{A} \equiv_{\omega} \mathcal{B} \text{ iff } \mathcal{A} \leq_{\omega} \mathcal{B} \text{ and } \mathcal{B} \leq_{\omega} \mathcal{A}.$
- ▶ \mathcal{D}_{ω} is an upper semi-lattice with jump operation and least element $\mathbf{0}_{\omega} = d_{\omega}((\emptyset, \emptyset, \dots))$.

The e-degrees as a substructure

 $\langle \mathcal{D}_{e}, \leq_{e}, \vee, ' \rangle$ can be embedded in $\langle \mathcal{D}_{\omega}, \leq_{\omega}, \vee, ' \rangle$ via the embedding κ defined as follows:

$$\kappa(d_{\mathsf{e}}(A)) = d_{\omega}((A,\emptyset,\emptyset,\dots)) = d_{\omega}((A,A',A'',\dots)).$$

Theorem (Soskov, Ganchev)

- ▶ The structure $\mathcal{D}_1 = \kappa(\mathcal{D}_e)$ is first order definable in \mathcal{D}_{ω} .
- ▶ The structures \mathcal{D}_e and \mathcal{D}_ω with jump operation have isomorphic automorphism groups.

The embeddability question

Consider the structure \mathcal{L}_{ω} consisting of all degrees reducible to $0'_{\omega}=d_{\omega}((\emptyset',\emptyset'',\emptyset''',\dots))$ also called the Σ^0_2 ω -enumeration degrees.

Theorem (Soskov)

The structure \mathcal{L}_{ω} is dense.

Theorem

Let $\mathbf{b} <_{\omega} \mathbf{a} \leq_{\omega} \mathbf{0}'_{\omega}$. Every countable partial ordering can be embedded in the interval $[\mathbf{b}, \mathbf{a}]$.

Proof techniques: Independent sequences of sequences sets, embeddability results in the enumeration degrees, good approximations for sequences, recursion theorem.

The c.e. degrees modulo iterated jump

Definition (Jockusch, Lerman, Soare and Solovay)

Let **a** and **b** be c.e. Turing degrees. **a** \sim_{∞} **b** iff there exists a natural number n such that $\mathbf{a}^n = \mathbf{b}^n$.

- ▶ Induced degree structure $\mathcal{R}/\sim_{\infty}$ with $[\mathbf{a}]_{\sim_{\infty}} \leq [\mathbf{b}]_{\sim_{\infty}}$ if and only if there exists a natural number n such that $\mathbf{a}^n \leq_{\mathcal{T}} \mathbf{b}^n$.
- ▶ Least element $L = \bigcup_{n < \omega} L_n$.
- ▶ Greatest element $H = \bigcup_{n < \omega} H_n$.
- ▶ R/\sim_{∞} is a dense structure.
- ▶ Lempp : There is a splitting of the highest ∞ -degree and a minimal pair of ∞ -degrees.

Starting with other classes of degree

▶ $\mathcal{L}_T/\sim_\infty$: the Δ_2^0 Turing degrees modulo iterated jump. Shoenfield, Sacks: The range of the jump operator restricted to the c.e. Turing degrees coincides with the range of the jump operator restricted to the Δ_2^0 Turing degrees. It is namely the set of all Turing degrees c.e. in and above $\mathbf{0}'$. Hence:

$$\mathcal{L}_T/\sim_\infty \simeq \mathcal{R}/\sim_\infty$$
.

▶ $\mathcal{L}_e/\sim_\infty$: the Σ_2^0 e-degrees modulo iterated jump. McEvoy: The range of the enumeration jump operator restricted to the Σ_2^0 -enumeration degrees coincides with the range of the enumeration jump operator restricted to the Π_1^0 enumeration degrees. Hence:

$$\mathcal{R}/\sim_{\infty} \simeq (\Pi_1^0 \text{ e-degrees})/\sim_{\infty} \simeq \mathcal{L}_e/\sim_{\infty}.$$

The ω -enumeration degrees modulo iterated jump

Consider $\mathcal{L}_{\omega}/\sim_{\infty}$. $\mathcal{R}/\sim_{\infty}$ embeds in $\mathcal{L}_{\omega}/\sim_{\infty}$.

$$\mathcal{R} \subseteq \mathcal{L}_{\mathcal{T}} \hookrightarrow \iota(\mathcal{L}_{\mathcal{T}}) = \textit{Tot} \subseteq \mathcal{L}_{e} \hookrightarrow \kappa(\mathcal{L}_{e}) = \mathcal{D}_{1} \subseteq \mathcal{L}_{\omega}$$

Lemma

Let **a** and **b** be two $\Sigma_2^0 \omega$ -enumeration degrees.

- 1. If $\mathbf{a} \leq_{\omega} \mathbf{b}$ then $[\mathbf{a}]_{\sim_{\infty}} \leq [\mathbf{b}]_{\sim_{\infty}}$. Proof idea: Monotonicity of the jump.
- 2. If $[\mathbf{a}]_{\sim_{\infty}} \leq [\mathbf{b}]_{\sim_{\infty}}$ then there is a representative $\mathbf{c} \in [\mathbf{a}]_{\sim_{\infty}}$ such that $\mathbf{c} \leq_{\omega} \mathbf{b}$.

 Proof idea: Existence of least jump inverts.

The almost degrees

Definition

Let $\mathcal{A}=\{A_n\}_{n<\omega}$ be a sequence of sets of natural numbers. We shall say that the sequence $\mathcal{B}=\{B_n\}_{n<\omega}$ is almost- \mathcal{A} if for every n we have that $P_n(\mathcal{A})\equiv_e P_n(\mathcal{B})$.

If A is almost-B then we shall say that $d_{\omega}(A)$ is almost- $d_{\omega}(B)$.

Properties:

- ▶ If $\mathbf{a} <_{\omega} \mathbf{b}$ and $\mathbf{a} <_{\infty} \mathbf{b}$ then there exists an almost- \mathbf{a} degree \mathbf{z} such that $\mathbf{a} <_{\omega} \mathbf{z} \leq_{\omega} \mathbf{b}$.
- ω -reducibility and ∞ -reducibility coincide when restricted to the almost **a**-degrees.

The final result

Theorem

- 1. $\mathcal{L}_{\omega}/\sim_{\infty}$ properly extends $\mathcal{R}/\sim_{\infty}$.
- 2. Every countable partial ordering can be embedded densely in $\mathcal{L}_{\omega}/\sim_{\infty}$.

The final result

Theorem

- 1. $\mathcal{L}_{\omega}/\sim_{\infty}$ properly extends $\mathcal{R}/\sim_{\infty}$.
- 2. Every countable partial ordering can be embedded densely in $\mathcal{L}_{\omega}/\sim_{\infty}$.

Thank you!