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Embeddability in the Turing degrees

Definition (Kleene, Post 1954)
A sequence of sets {Ai}i<ω is called computably independent if
for every i :

Ai �T

⊕
j 6=i

Aj .

I Mostowski 1938: There exists a computable partial
ordering R = 〈N,≤〉 in which every countable partial
ordering can be embedded.

I Sacks 1963: The existence of a computably independent
sequence of sets gives an embedding of any computable
partial ordering.



Embeddability in the Turing degrees

Localizing independent sequences of sets:

Corollary
Every countable partial ordering can be embedded

1. Kleene and Post 1954: in the Turing degrees, even in the
∆0

2 Turing degrees.
2. Muchnik 1958: in the c.e. Turing degrees.
3. Robinson 1971: densely in the c.e. Turing degrees, i.e. in

any nonempty interval of c.e. Turing degrees.



The enumeration degrees

I Case 1971: Any countable partial ordering can be
embedded in the e-degrees below the degree of any
generic function.

I Copestake 1988: below any 1-generic enumeration
degree.

I Lageman 1972: below any nonzero ∆0
2 e-degree.

I Bianchini 2000: densely in the Σ0
2 enumeration degrees.

Theorem
Let b < a be enumeration degrees such that a contains a
member with a good approximation. Then every countable
partial ordering can be embedded in the interval [b,a].

Method: e-independent sequences of sets.



The general picture
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The ω e-degrees: Basic definitions

Let S be the set of all sequences of sets of natural numbers.

Definition
Let A = {An}n<ω be a sequence of sets natural numbers and V
be an e-operator. The result of applying the enumeration
operator V to the sequence A, denoted by V (A), is the
sequence {V [n](An)}n<ω. We say that V (A) is enumeration
reducible (≤e) to the sequence A.
So A ≤e B is a combination of two notions:

I Enumeration reducibility: for every n we have that
An ≤e Bn via, say, Γn.

I Uniformity: the sequence {Γn}n<ω is uniform.



Basic definitions

With every member A ∈ S we connect a jump sequence P(A).

Definition
The jump sequence of the sequence A, denoted by P(A) is the
sequence {Pn(A)}n<ω defined inductively as follows:

I P0(A) = A0.
I Pn+1(A) = An+1 ⊕ P ′n(A), where P ′n(A) denotes the

enumeration jump of the set Pn(A).



The ω-enumeration degrees

Let A,B ∈ S.

Definition
I ω-enumeration reducibility: A ≤ω B, if A ≤e P(B).
I A ≡ω B iff A ≤ω B and B ≤ω A.
I dω(A) = {B | A ≡ω B}
I Dω is an upper semi-lattice with jump operation and least

element 0ω = dω((∅, ∅, . . . )).



The e-degrees as a substructure

〈De,≤e,∨,′ 〉 can be embedded in 〈Dω,≤ω,∨,′ 〉 via the
embedding κ defined as follows:

κ(de(A)) = dω((A, ∅, ∅, . . . )) = dω((A,A′,A′′, . . . )).

Theorem (Soskov, Ganchev)

I The structure D1 = κ(De) is first order definable in Dω.
I The structures De and Dω with jump operation have

isomorphic automorphism groups.



The embeddability question

Consider the structure Lω consisting of all degrees reducible to
0′ω = dω((∅′, ∅′′, ∅′′′, . . . )) also called the Σ0

2 ω-enumeration
degrees.

Theorem (Soskov)
The structure Lω is dense.

Theorem
Let b <ω a ≤ω 0′ω. Every countable partial ordering can be
embedded in the interval [b,a].
Proof techniques: Independent sequences of sequences sets,
embeddability results in the enumeration degrees, good
approximations for sequences, recursion theorem.



The c.e. degrees modulo iterated jump

Definition (Jockusch, Lerman, Soare and Solovay )
Let a and b be c.e. Turing degrees. a ∼∞ b iff there exists a
natural number n such that an = bn.

I Induced degree structure R/ ∼∞ with [a]∼∞ ≤ [b]∼∞ if and
only if there exists a natural number n such that an ≤T bn.

I Least element L =
⋃

n<ω Ln.
I Greatest element H =

⋃
n<ω Hn.

I R/ ∼∞ is a dense structure.
I Lempp : There is a splitting of the highest∞-degree and a

minimal pair of∞-degrees.



Starting with other classes of degree

I LT/ ∼∞: the ∆0
2 Turing degrees modulo iterated jump.

Shoenfield, Sacks: The range of the jump operator
restricted to the c.e. Turing degrees coincides with the
range of the jump operator restricted to the ∆0

2 Turing
degrees. It is namely the set of all Turing degrees c.e. in
and above 0′. Hence:

LT/ ∼∞' R/ ∼∞ .

I Le/ ∼∞: the Σ0
2 e-degrees modulo iterated jump.

McEvoy: The range of the enumeration jump operator
restricted to the Σ0

2-enumeration degrees coincides with
the range of the enumeration jump operator restricted to
the Π0

1 enumeration degrees. Hence:

R/ ∼∞' (Π0
1 e-degrees)/ ∼∞' Le/ ∼∞ .



The ω-enumeration degrees modulo iterated jump

Consider Lω/ ∼∞.
R/ ∼∞ embeds in Lω/ ∼∞.

R ⊆ LT ↪→ ι(LT ) = Tot ⊆ Le ↪→ κ(Le) = D1 ⊆ Lω

Lemma
Let a and b be two Σ0

2 ω-enumeration degrees.
1. If a ≤ω b then [a]∼∞ ≤ [b]∼∞ .

Proof idea: Monotonicity of the jump.
2. If [a]∼∞ ≤ [b]∼∞ then there is a representative c ∈ [a]∼∞

such that c ≤ω b.
Proof idea: Existence of least jump inverts.



The almost degrees

Definition
Let A = {An}n<ω be a sequence of sets of natural numbers.
We shall say that the sequence B = {Bn}n<ω is almost-A if for
every n we have that Pn(A) ≡e Pn(B).
If A is almost-B then we shall say that dω(A) is almost-dω(B).
Properties:

I If a <ω b and a <∞ b then there exists an almost-a degree
z such that a <ω z ≤ω b.

I ω-reducibility and∞-reducibility coincide when restricted to
the almost a-degrees.



The final result

Theorem

1. Lω/ ∼∞ properly extends R/ ∼∞.
2. Every countable partial ordering can be embedded

densely in Lω/ ∼∞.
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Thank you!


