Definability in the local structure of the enumeration degrees

Mariya I. Soskova¹

Faculty of Mathematics and Informatics Sofia University joint work with H. Ganchev

March 30, 2011

¹Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework Programme.

Mariya I. Soskova (FMI)

Definability

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

- $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨, ′, 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

•
$$d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$$

• $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.

- $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨, ′, 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

• $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨, ′, 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

• $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

•
$$\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$$

- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

•
$$d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

•
$$\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$$

•
$$d_e(A) \lor d_e(B) = d_e(A \oplus B).$$

• $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.

 D_e = ⟨D_e, ≤, ∨, ′, 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

•
$$d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

•
$$\mathbf{0}_{e} = d_{e}(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$$

•
$$d_e(A) \lor d_e(B) = d_e(A \oplus B).$$

- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨, ′, 0_e⟩ is an upper semi-lattice with jump operation and least element.

Definition

• $A \leq_e B$ iff there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

•
$$d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$$

•
$$d_e(A) \leq d_e(B)$$
 iff $A \leq_e B$.

•
$$\mathbf{0}_{e} = d_{e}(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$$

•
$$d_e(A) \lor d_e(B) = d_e(A \oplus B).$$

- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- *D_e* = ⟨*D_e*, ≤, ∨,', **0**_{*e*}⟩ is an upper semi-lattice with jump operation and least element.

3 + 4 = +

A D b 4 A b 4

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation:

The sub structure of the total e-degrees is defined as $TOT = \iota(D_T)$.

э.

With respect to the arithmetic hierarchy the degrees can be partitioned into three classes.

	4	ロト・日本・日本・日本・日本	୬୯୯
Mariya I. Soskova (FMI)	Definability	March 30, 2011	5 / 40

The total degrees below $\mathbf{0}'_e$ are images of the Turing degrees below $\mathbf{0}'$. Every total degree is Δ_2^0 , but not all Δ_2^0 are total.

A degree is low if its jump is as low as possible: $\mathbf{0}'_e$. Every low degree is Δ_2^0 .

э

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The upwards properly Σ_2^0 have no incomplete Δ_2^0 above them. The downwards properly Σ_2^0 have no nonzero Δ_2^0 below them.

・ 回 ト ・ ヨ ト ・ ヨ ト

\mathcal{K} -pairs

Iskander Kalimullin: Definability of the jump operator in the enumeration degrees Journal of Mathematical Logic (2003)

Definition

Let *A*, *B* be sets of natural numbers. The pair (A, B) is a \mathcal{K} -pair if there exists a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

イロト イ団ト イヨト イヨト

\mathcal{K} -pairs: A trivial example

Example

Let V be a c.e set. Then (V, A) is a \mathcal{K} -pair (over \emptyset) for any set of natural numbers A.

Let $W = V \times \mathbb{N}$. Then $V \times A \subseteq W$ and $\overline{V} \times \overline{A} \subseteq \overline{W}$.

We will only be interested in non-trivial \mathcal{K} -pairs.

$\mathcal K\text{-pairs:}$ A more interesting example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

$$I s_{\mathcal{A}}(x,y) \in \{x,y\}$$

2 If
$$x \in A$$
 or $y \in A$ then $s_A(x, y) \in A$.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

$\mathcal K\text{-pairs:}$ A more interesting example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

$$I s_{\mathcal{A}}(x,y) \in \{x,y\}$$

2 If
$$x \in A$$
 or $y \in A$ then $s_A(x, y) \in A$.

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Example

Let *A* be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Proof:

$$\bar{s}_{A}(x,y) = \begin{cases} x \text{, if } s_{A}(x,y) = y \\ y \text{, if } s_{A}(x,y) = x. \end{cases}$$

Let $W = \{ \langle s_A(x, y), \overline{s}_A(x, y) \rangle \mid x, y \in \mathbb{N} \}.$

Then $A \times \overline{A} \subseteq W$ and $\overline{A} \times \overline{\overline{A}} = \overline{A} \times A \subseteq \overline{W}$.

3

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Proof:

$$ar{s}_{\mathcal{A}}(x,y) = egin{cases} x \ , \ ext{if } s_{\mathcal{A}}(x,y) = y \ y \ , \ ext{if } s_{\mathcal{A}}(x,y) = x. \end{cases}$$

Let $W = \{ \langle s_A(x, y), \overline{s}_A(x, y) \rangle \mid x, y \in \mathbb{N} \}.$

Then $A \times \overline{A} \subseteq W$ and $\overline{A} \times \overline{\overline{A}} = \overline{A} \times A \subseteq \overline{W}$.

E N 4 E N

4 6 1 1 4

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Proof:

$$ar{s}_{A}(x,y) = egin{cases} x \ , \ ext{if } s_{A}(x,y) = y \ y \ , \ ext{if } s_{A}(x,y) = x. \end{cases}$$

Let $W = \{ \langle s_A(x, y), \overline{s}_A(x, y) \rangle \mid x, y \in \mathbb{N} \}.$

Then $A \times \overline{A} \subseteq W$ and $\overline{A} \times \overline{\overline{A}} = \overline{A} \times A \subseteq \overline{W}$.

3

BA 4 BA

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

Proof:

$$ar{s}_{A}(x,y) = egin{cases} x \ , \ ext{if } s_{A}(x,y) = y \ y \ , \ ext{if } s_{A}(x,y) = x. \end{cases}$$

Let $W = \{ \langle s_A(x, y), \overline{s}_A(x, y) \rangle \mid x, y \in \mathbb{N} \}.$

Then $A \times \overline{A} \subseteq W$ and $\overline{A} \times \overline{\overline{A}} = \overline{A} \times A \subseteq \overline{W}$.

An order theoretic characterization of \mathcal{K} -pairs

Kalimullin has proved that the property of being a \mathcal{K} -pair is degree theoretic and first order definable in \mathcal{D}_e .

Theorem (Kalimullin)

(A, B) is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ have the following property:

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x} \in \mathcal{D}_e)((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x}).$$

Let *A* and *B* be Σ_2^0 degree which form a nontrivial \mathcal{K} -pair.

• $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.

Fix x and let $W^{[x]} = \{y \mid \langle x, y \rangle\} \in W$ If $x \in A$ then $B \subset W^{[x]}$. If $x \in \overline{A}$ then $W^{[x]} \subset B$. $x \in A$ iff $\exists y (y \in W^{[x]} \& y \in \overline{B})$. $x \in \overline{A}$ iff $\exists y (y \in B \& y \in \overline{W^{[x]}})$.

Let *A* and *B* be Σ_2^0 degree which form a nontrivial \mathcal{K} -pair.

• $A \leq_{e} \overline{B}$ and $\overline{A} \leq_{e} \overline{K}$. Fix x and let $W^{[x]} = \{y \mid \langle x, y \rangle\} \in W$. If $x \in A$ then $B \subset W^{[x]}$. If $x \in \overline{A}$ then $W^{[x]} \subset B$. $x \in A$ iff $\exists y (y \in W^{[x]} \& y \in \overline{B})$. $x \in \overline{A}$ iff $\exists y (y \in B \& y \in \overline{W^{[x]}})$.

Let *A* and *B* be Σ_2^0 degree which form a nontrivial \mathcal{K} -pair.

• $A \leq_{e} \overline{B}$ and $\overline{A} \leq_{e} \overline{K}$. Fix x and let $W^{[x]} = \{y \mid \langle x, y \rangle\} \in W$. If $x \in A$ then $B \subset W^{[x]}$. If $x \in \overline{A}$ then $W^{[x]} \subset B$. $x \in A$ iff $\exists y (y \in W^{[x]} \& y \in \overline{B})$. $x \in \overline{A}$ iff $\exists y (y \in B \& y \in \overline{W^{[x]}})$.

Let *A* and *B* be Σ_2^0 degree which form a nontrivial \mathcal{K} -pair.

• $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$. Fix x and let $W^{[x]} = \{y \mid \langle x, y \rangle\} \in W$. If $x \in A$ then $B \subset W^{[x]}$. If $x \in \overline{A}$ then $W^{[x]} \subset B$. $x \in A$ iff $\exists y (y \in W^{[x]} \& y \in \overline{B})$. $x \in \overline{A}$ iff $\exists y (y \in B \& y \in \overline{W^{[x]}})$.

Let *A* and *B* be Σ_2^0 degree which form a nontrivial \mathcal{K} -pair.

• $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$. Fix x and let $W^{[x]} = \{y \mid \langle x, y \rangle\} \in W$. If $x \in A$ then $B \subset W^{[x]}$. If $x \in \overline{A}$ then $W^{[x]} \subset B$. $x \in A$ iff $\exists y (y \in W^{[x]} \& y \in \overline{B})$. $x \in \overline{A}$ iff $\exists y (y \in B \& y \in \overline{W^{[x]}})$.

Let *A* and *B* be Σ_2^0 degree which form a nontrivial \mathcal{K} -pair.

• $A \leq_{e} \overline{B}$ and $\overline{A} \leq_{e} \overline{K}$. Fix x and let $W^{[x]} = \{y \mid \langle x, y \rangle\} \in W$. If $x \in A$ then $B \subset W^{[x]}$. If $x \in \overline{A}$ then $W^{[x]} \subset B$. $x \in A$ iff $\exists y (y \in W^{[x]} \& y \in \overline{B})$. $x \in \overline{A}$ iff $\exists y (y \in B \& y \in \overline{W^{[x]}})$.

Let A and B be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.
- **2** If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Let $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ and $\mathbf{c} = d_e(C)$.

Then for all **x**:

 $\mathbf{x} \leq (\mathbf{c} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) \leq (\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}.$

3 The degrees of *A* and *B* form a minimal pair.

$$\mathbf{0}_e = (\mathbf{a} \lor \mathbf{0}_e) \land (\mathbf{b} \lor \mathbf{0}_e) = \mathbf{a} \land \mathbf{b}.$$

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

$$I A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \overline{K}.$$

If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Let
$$\mathbf{a} = d_e(A)$$
, $\mathbf{b} = d_e(B)$ and $\mathbf{c} = d_e(C)$.

Then for all x:

 $\mathbf{x} \leq (\mathbf{c} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) \leq (\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}.$

3 The degrees of *A* and *B* form a minimal pair.

$$\mathbf{0}_e = (\mathbf{a} \lor \mathbf{0}_e) \land (\mathbf{b} \lor \mathbf{0}_e) = \mathbf{a} \land \mathbf{b}.$$

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

$$I A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \overline{K}.$$

If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Let $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ and $\mathbf{c} = d_e(C)$.

Then for all **x**:

$$\mathbf{x} \leq (\mathbf{c} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) \leq (\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}.$$

The degrees of A and B form a minimal pair.

$$\mathbf{0}_e = (\mathbf{a} \lor \mathbf{0}_e) \land (\mathbf{b} \lor \mathbf{0}_e) = \mathbf{a} \land \mathbf{b}.$$

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

$$I A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \overline{K}.$$

If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Let $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ and $\mathbf{c} = d_e(C)$.

Then for all **x**:

$$\mathbf{x} \leq (\mathbf{c} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) \leq (\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}.$$

The degrees of A and B form a minimal pair.

$$\mathbf{0}_e = (\mathbf{a} \lor \mathbf{0}_e) \land (\mathbf{b} \lor \mathbf{0}_e) = \mathbf{a} \land \mathbf{b}.$$

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

$$I A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \overline{K}.$$

If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Let $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ and $\mathbf{c} = d_e(C)$.

Then for all **x**:

$$\mathbf{x} \leq (\mathbf{c} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) \leq (\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}.$$

The degrees of A and B form a minimal pair.

$$\mathbf{0}_e = (\mathbf{a} \lor \mathbf{0}_e) \land (\mathbf{b} \lor \mathbf{0}_e) = \mathbf{a} \land \mathbf{b}.$$

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.
- If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.
- The degrees of A and B form a minimal pair.
- The enumeration degrees of A and B are quasi minimal, i.e. the only total degree bounded by either of them is 0_e.

Assume towards a contradiction that $C \oplus \overline{C} \leq_e A$.

Then $C \oplus C$ and *B* form a \mathcal{K} -pair.

So $B \leq_e \overline{C \oplus \overline{C}} = \overline{C} \oplus C \leq_e A$.

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.
- If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.
- 3 The degrees of A and B form a minimal pair.
- The enumeration degrees of A and B are quasi minimal, i.e. the only total degree bounded by either of them is 0_e.

Assume towards a contradiction that $C \oplus \overline{C} \leq_e A$.

Then $C \oplus \overline{C}$ and *B* form a \mathcal{K} -pair.

So $B \leq_e C \oplus \overline{C} = \overline{C} \oplus C \leq_e A$.
Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.
- If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.
- 3 The degrees of A and B form a minimal pair.
- The enumeration degrees of A and B are quasi minimal, i.e. the only total degree bounded by either of them is 0_e.

Assume towards a contradiction that $C \oplus \overline{C} \leq_e A$.

Then $C \oplus \overline{C}$ and *B* form a \mathcal{K} -pair.

So $B \leq_e \overline{C \oplus \overline{C}} = \overline{C} \oplus C \leq_e A$.

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.
- If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.
- The degrees of A and B form a minimal pair.
- The enumeration degrees of A and B are quasi minimal, i.e. the only total degree bounded by either of them is 0_e.

Assume towards a contradiction that $C \oplus \overline{C} \leq_e A$.

Then $C \oplus \overline{C}$ and *B* form a \mathcal{K} -pair.

So $B \leq_e \overline{C \oplus \overline{C}} = \overline{C} \oplus C \leq_e A$.

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.
- **2** If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.
- The degrees of *A* and *B* form a minimal pair.
- The enumeration degrees of A and B are quasi minimal, i.e. the only total degree bounded by either of them is 0_e.
- **(**) The enumeration degrees of the elements of a \mathcal{K} pair are low.

Recall that $A' = L_A \oplus \overline{L_A}$.

 $L_A \equiv_e A$, so L_A forms a \mathcal{K} -pair with B.

Hence $\overline{L_A} \leq \overline{K}$.

 $A' = L_A \oplus \overline{L_A}$ is Σ_2^0 .

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.
- **2** If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.
- The degrees of *A* and *B* form a minimal pair.
- The enumeration degrees of A and B are quasi minimal, i.e. the only total degree bounded by either of them is 0_e.
- **(**) The enumeration degrees of the elements of a \mathcal{K} pair are low.

Recall that $A' = L_A \oplus \overline{L_A}$.

 $L_A \equiv_e A$, so L_A forms a \mathcal{K} -pair with B. Hence $\overline{L_A} \leq \overline{K}$. $A' = L_A \oplus \overline{L_A}$ is Σ_2^0 .

(日本)(日本)(日本)(日本)

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.
- **2** If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.
- The degrees of *A* and *B* form a minimal pair.
- The enumeration degrees of A and B are quasi minimal, i.e. the only total degree bounded by either of them is 0_e.
- **(**) The enumeration degrees of the elements of a \mathcal{K} pair are low.

Recall that $A' = L_A \oplus \overline{L_A}$.

$$L_A \equiv_e A$$
, so L_A forms a \mathcal{K} -pair with B .

Hence $\overline{L_A} \leq \overline{K}$.

 $A' = L_A \oplus \overline{L_A}$ is Σ_2^0 .

3

4 E N 4 E N

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.
- If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.
- The degrees of A and B form a minimal pair.
- The enumeration degrees of A and B are quasi minimal, i.e. the only total degree bounded by either of them is 0_e.
- **(**) The enumeration degrees of the elements of a \mathcal{K} pair are low.

Recall that $A' = L_A \oplus \overline{L_A}$.

$$L_A \equiv_e A$$
, so L_A forms a \mathcal{K} -pair with B .

Hence $\overline{L_A} \leq \overline{K}$.

 $A' = L_A \oplus \overline{L_A}$ is Σ_2^0 .

3

4 E N 4 E N

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $A \leq_e \overline{B}$ and $\overline{A} \leq_e \overline{K}$.
- **2** If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.
- The degrees of *A* and *B* form a minimal pair.
- The enumeration degrees of A and B are quasi minimal, i.e. the only total degree bounded by either of them is 0_e.
- **(**) The enumeration degrees of the elements of a \mathcal{K} pair are low.

Recall that $A' = L_A \oplus \overline{L_A}$.

$$L_A \equiv_e A$$
, so L_A forms a \mathcal{K} -pair with B .

Hence $\overline{L_A} \leq \overline{K}$.

$$A' = L_A \oplus \overline{L_A}$$
 is Σ_2^0 .

3

不是 医不是 医下

Let *A* and *B* be Σ_2^0 degrees which form a nontrivial \mathcal{K} -pair.

- $\bullet A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \overline{K}.$
- 2 If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.
- 3 The degrees of A and B form a minimal pair.
- The enumeration degrees of A and B are quasi minimal, i.e. the only total degree bounded by either of them is 0_e.
- **(5)** The enumeration degrees of the elements of a \mathcal{K} pair are low.
- Solution Series 5.2 Every nonzero Δ_2^0 enumeration degree bounds a nontrivial \mathcal{K} -pair.

The \mathcal{K} -pairs in the local structure \mathcal{G}_e .

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

$$\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Kalimullin)

If (A, B) is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)$

- If a and b are Δ⁰₂ then C is also Δ⁰₂ and K(a, b) ensures "a and b are a true K-pair".
- Every \mathcal{K} -pair in \mathcal{G}_e consists of low (hence Δ_2^0) e-degrees.
- If a and b are properly Σ⁰₂ then C is at best Δ⁰₃. So it is possible that there is a fake *K*-pair a and b such that

$$\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_e \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$$

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Kalimullin)

If (A, B) is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)$

- If a and b are Δ⁰₂ then C is also Δ⁰₂ and K(a, b) ensures "a and b are a true K-pair".
- Every \mathcal{K} -pair in \mathcal{G}_e consists of low (hence Δ_2^0) e-degrees.
- If a and b are properly Σ⁰₂ then C is at best Δ⁰₃. So it is possible that there is a fake *K*-pair a and b such that

$$\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_e \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$$

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Kalimullin)

If (A, B) is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)$

- If a and b are Δ⁰₂ then C is also Δ⁰₂ and K(a, b) ensures "a and b are a true K-pair".
- Every \mathcal{K} -pair in \mathcal{G}_e consists of low (hence Δ_2^0) e-degrees.
- If a and b are properly Σ⁰₂ then C is at best Δ⁰₃. So it is possible that there is a fake *K*-pair a and b such that

$$\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_e \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$$

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Kalimullin)

If (A, B) is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)$

- If a and b are Δ⁰₂ then C is also Δ⁰₂ and K(a, b) ensures "a and b are a true K-pair".
- Every \mathcal{K} -pair in \mathcal{G}_e consists of low (hence Δ_2^0) e-degrees.
- If a and b are properly Σ⁰₂ then C is at best Δ⁰₃. So it is possible that there is a fake *K*-pair a and b such that

$$\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_e \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$$

A B F A B F

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Kalimullin)

If (A, B) is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)$

- If a and b are Δ⁰₂ then C is also Δ⁰₂ and K(a, b) ensures "a and b are a true K-pair".
- Every \mathcal{K} -pair in \mathcal{G}_e consists of low (hence Δ_2^0) e-degrees.
- If a and b are properly Σ⁰₂ then C is at best Δ⁰₃. So it is possible that there is a fake *K*-pair a and b such that

$$\mathcal{G}_{e} \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_{e} \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$$

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Kalimullin)

If (A, B) is not a \mathcal{K} -pair then there is a witness C computable from $A \oplus B \oplus K$ such that:

 $(d_e(A) \lor d_e(C)) \land (d_e(B) \lor d_e(C)) \neq d_e(C)$

- If a and b are Δ⁰₂ then C is also Δ⁰₂ and K(a, b) ensures "a and b are a true K-pair".
- Every \mathcal{K} -pair in \mathcal{G}_e consists of low (hence Δ_2^0) e-degrees.
- If **a** and **b** are properly Σ⁰₂ then *C* is at best Δ⁰₃. So it is possible that there is a fake *K*-pair **a** and **b** such that

$$\mathcal{G}_{e} \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{ but } \mathcal{D}_{e} \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})$$

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The \mathcal{K} -cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_{e} = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = \mathbf{a} \lor \mathbf{c}$$

 $\mathbf{a} \leq \mathbf{c}.$

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Definition

A Σ_2^0 enumeration degree **a** is called *cuppable* if there is an incomplete Σ_2^0 e-degree **b**, such that $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'_e$. If furthermore **b** is low, then **a** will be called *low-cuppable*.

Proposition (The *K*-cupping property)

Let **a** and **b** are Σ_2^0 degrees such that $\mathcal{G}_e \models \mathcal{K}(\mathbf{a}, \mathbf{b})$. If **c** is a Σ_2^0 degree, such that $\mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$ then $\mathbf{a} \le \mathbf{c}$.

Proof:

$$\mathbf{c} = (\mathbf{a} \lor \mathbf{c}) \land (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} \lor \mathbf{c}) \land \mathbf{0}'_e = \mathbf{a} \lor \mathbf{c}$$

 $a \le c$.

Note! If **c** is low then $\mathbf{a} \leq \mathbf{c}$ is low.

Image: A mathematical states in the second states in the second

Step 1: Inspired by non-splitting

Theorem

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low-cuppable or **v** is low-cuppable.

Proof:

Uses a construction very similar to the construction of a non-splitting enumeration degree.

Theorem (S)

There is a degree $\mathbf{a} < \mathbf{0}'_e$ such that for every pair of Σ_2^0 degrees \mathbf{u} and \mathbf{v} with $\mathbf{u} \lor \mathbf{v} = \mathbf{0}'_e$ then \mathbf{a} cups \mathbf{u} or \mathbf{v} to $\mathbf{0}'_e$.

Step 1: Inspired by non-splitting

Theorem

If **u** and **v** are Σ_2^0 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then **u** is low-cuppable or **v** is low-cuppable.

Proof:

Uses a construction very similar to the construction of a non-splitting enumeration degree.

Theorem (S)

There is a degree $\mathbf{a} < \mathbf{0}'_e$ such that for every pair of Σ_2^0 degrees \mathbf{u} and \mathbf{v} with $\mathbf{u} \lor \mathbf{v} = \mathbf{0}'_e$ then \mathbf{a} cups \mathbf{u} or \mathbf{v} to $\mathbf{0}'_e$.

Theorem (Cooper, Sorbi, Yi)

Every nonzero Δ_2^0 degree is cuppable.

Theorem (S,Wu)

Every nonzero Δ_2^0 degree is low-cuppable.

Theorem

Every for every nonzero Δ_2^0 degree **a** there is a nontrivial \mathcal{K} -pair {**b**, **c**} such that $\mathbf{a} \lor \mathbf{b} = \mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$.

Theorem (Cooper, Sorbi, Yi)

Every nonzero Δ_2^0 degree is cuppable.

Theorem (S,Wu)

Every nonzero Δ_2^0 degree is low-cuppable.

Theorem

Every for every nonzero Δ_2^0 degree **a** there is a nontrivial \mathcal{K} -pair {**b**, **c**} such that $\mathbf{a} \lor \mathbf{b} = \mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$.

3

Theorem (Cooper, Sorbi, Yi)

Every nonzero Δ_2^0 degree is cuppable.

Theorem (S,Wu)

Every nonzero Δ_2^0 degree is low-cuppable.

Theorem

Every for every nonzero Δ_2^0 degree **a** there is a nontrivial \mathcal{K} -pair {**b**, **c**} such that $\mathbf{a} \lor \mathbf{b} = \mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$.

3

Theorem (Cooper, Sorbi, Yi)

Every nonzero Δ_2^0 degree is cuppable.

Theorem (S,Wu)

Every nonzero Δ_2^0 degree is low-cuppable.

Theorem

Every for every nonzero Δ_2^0 degree **a** there is a nontrivial \mathcal{K} -pair {**b**, **c**} such that $\mathbf{a} \lor \mathbf{b} = \mathbf{c} \lor \mathbf{b} = \mathbf{0}'_e$.

3

Theorem (G, S)

There is a first order formula \mathcal{LK} , such that for any Σ_2^0 sets A and B, $\{A, B\}$ is a non-trivial \mathcal{K} -pair if and only if $\mathcal{G}_e \models \mathcal{LK}(\mathbf{d}_e(A), \mathbf{d}_e(B))$.

Step 1: Define a nonempty subclass ${\cal L}$ of halves of nontrivial ${\cal K}\mbox{-pairs}$ by:

$$\mathcal{L}(\mathbf{a}) \leftrightarrows \exists \mathbf{b}(\mathcal{K}(\mathbf{a},\mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_{e}).$$

Step 2: Show that every half of a nontrivial \mathcal{K} -pair is bounded by some element in \mathcal{L} .

Theorem (G, S)

There is a first order formula \mathcal{LK} , such that for any Σ_2^0 sets A and B, $\{A, B\}$ is a non-trivial \mathcal{K} -pair if and only if $\mathcal{G}_e \models \mathcal{LK}(\mathbf{d}_e(A), \mathbf{d}_e(B))$.

Step 1: Define a nonempty subclass ${\mathcal L}$ of halves of nontrivial ${\mathcal K}\text{-pairs}$ by:

$$\mathcal{L}(\mathbf{a}) \leftrightarrows \exists \mathbf{b}(\mathcal{K}(\mathbf{a},\mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_{e}).$$

Step 2: Show that every half of a nontrivial \mathcal{K} -pair is bounded by some element in \mathcal{L} .

3

Theorem (G, S)

There is a first order formula \mathcal{LK} , such that for any Σ_2^0 sets A and B, $\{A, B\}$ is a non-trivial \mathcal{K} -pair if and only if $\mathcal{G}_e \models \mathcal{LK}(\mathbf{d}_e(A), \mathbf{d}_e(B))$.

Step 1: Define a nonempty subclass ${\mathcal L}$ of halves of nontrivial ${\mathcal K}\text{-pairs}$ by:

$$\mathcal{L}(\mathbf{a}) \leftrightarrows \exists \mathbf{b}(\mathcal{K}(\mathbf{a},\mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_{e}).$$

Step 2: Show that every half of a nontrivial \mathcal{K} -pair is bounded by some element in \mathcal{L} .

3

Theorem (G, S)

There is a first order formula \mathcal{LK} , such that for any Σ_2^0 sets A and B, $\{A, B\}$ is a non-trivial \mathcal{K} -pair if and only if $\mathcal{G}_e \models \mathcal{LK}(\mathbf{d}_e(A), \mathbf{d}_e(B))$.

Step 1: Define a nonempty subclass ${\mathcal L}$ of halves of nontrivial ${\mathcal K}\text{-pairs}$ by:

$$\mathcal{L}(\mathbf{a}) \leftrightarrows \exists \mathbf{b}(\mathcal{K}(\mathbf{a},\mathbf{b}) \land \mathbf{a} \lor \mathbf{b} = \mathbf{0}'_{e}).$$

Step 2: Show that every half of a nontrivial \mathcal{K} -pair is bounded by some element in \mathcal{L} .

3

The first example of a definable class of degrees in the local structure: $\mathcal{K}\mbox{-}pairs.$

э

An easy consequence

If **a** bounds a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** is a downwards properly Σ_2^0 degree, then it bounds no \mathcal{K} -pair.

Corollary

The class of downwards properly Σ_2^0 is first order definable in \mathcal{G}_e by the formula:

 $\mathcal{DP}\Sigma_2^0(\textbf{x}) \rightleftharpoons \forall \textbf{b}, \textbf{c}[(\textbf{b} \leq \textbf{x} \And \textbf{c} \leq \textbf{x}) \Rightarrow \neg \mathcal{LK}(\textbf{b}, \textbf{c})].$

An easy consequence

If **a** bounds a nonzero Δ_2^0 degree then it bounds a nontrivial \mathcal{K} -pair.

If **a** is a downwards properly Σ_2^0 degree, then it bounds no \mathcal{K} -pair.

Corollary

The class of downwards properly Σ_2^0 is first order definable in \mathcal{G}_e by the formula:

$$\mathcal{DP}\Sigma_2^0(\mathbf{x}) \rightleftharpoons orall \mathbf{b}, \mathbf{c}[(\mathbf{b} \leq \mathbf{x} \ \& \ \mathbf{c} \leq \mathbf{x}) \Rightarrow
eg \mathcal{LK}(\mathbf{b}, \mathbf{c})].$$

The second example of a definable class of degrees in the local structure: Downwards properly Σ_2^0 degrees.

< 回 > < 三 > < 三 >
Definition

x is upwards properly Σ_2^0 every $\mathbf{y} \in [\mathbf{x}, \mathbf{0}'_e)$ is properly Σ_2^0 .

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

A (10) A (10) A (10)

Definition

 \boldsymbol{x} is upwards properly $\boldsymbol{\Sigma}_2^0$ every $\boldsymbol{y} \in [\boldsymbol{x}, \boldsymbol{0}_e')$ is properly $\boldsymbol{\Sigma}_2^0.$

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

 \boldsymbol{x} is upwards properly $\boldsymbol{\Sigma}_2^0$ every $\boldsymbol{y} \in [\boldsymbol{x},\boldsymbol{0}_e')$ is properly $\boldsymbol{\Sigma}_2^0.$

Theorem (Jockusch)

For every noncomputable set B there is a semi recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

3

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_e$ there is a total enumeration degree \mathbf{b} such that $\mathbf{a} \le \mathbf{b} < \mathbf{0}'_e$.

So a degree **a** is upwards properly Σ_2^0 if and only if no element above it other than $\mathbf{0}'_e$ can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Corollary

The class of upwards properly Σ_2^0 is first order definable in \mathcal{G}_e by the formula :

 $\mathcal{U}P\Sigma_2^0(\textbf{x}) \rightleftharpoons \forall \textbf{c}, \textbf{d}(\mathcal{LK}(\textbf{c},\textbf{d}) \And \textbf{x} \leq \textbf{c} \lor \textbf{d} \Rightarrow \textbf{c} \lor \textbf{d} = \textbf{0}_e').$

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_e$ there is a total enumeration degree \mathbf{b} such that $\mathbf{a} \le \mathbf{b} < \mathbf{0}'_e$.

So a degree **a** is upwards properly Σ_2^0 if and only if no element above it other than $\mathbf{0}'_e$ can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Corollary

The class of upwards properly Σ^0_2 is first order definable in \mathcal{G}_e by the formula :

$\mathcal{U}P\Sigma_2^0(\textbf{x}) \rightleftharpoons \forall \textbf{c}, \textbf{d}(\mathcal{LK}(\textbf{c},\textbf{d}) \And \textbf{x} \leq \textbf{c} \lor \textbf{d} \Rightarrow \textbf{c} \lor \textbf{d} = \textbf{0}_e').$

Theorem (Arslanov, Cooper, Kalimullin)

For every Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_e$ there is a total enumeration degree \mathbf{b} such that $\mathbf{a} \le \mathbf{b} < \mathbf{0}'_e$.

So a degree **a** is upwards properly Σ_2^0 if and only if no element above it other than $\mathbf{0}'_e$ can be represented as the least upper bound of a nontrivial \mathcal{K} -pair.

Corollary

The class of upwards properly Σ_2^0 is first order definable in \mathcal{G}_e by the formula :

$$\mathcal{U}P\Sigma^0_2(\textbf{x}) \rightleftharpoons \forall \textbf{c}, \textbf{d}(\mathcal{LK}(\textbf{c},\textbf{d}) \And \textbf{x} \leq \textbf{c} \lor \textbf{d} \Rightarrow \textbf{c} \lor \textbf{d} = \textbf{0}'_e).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The third example of a definable class of degrees in the local structure: Upwards properly Σ_2^0 degrees.

A b

$A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \overline{K}.$

2 If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$.

Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$.

By property (2) A forms a \mathcal{K} -pair with D.

By property (1) $D \leq_e \overline{A}$.

- $A \leq_{e} \overline{B} \text{ and } \overline{A} \leq_{e} \overline{K}.$
- If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$.

Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$.

By property (2) A forms a \mathcal{K} -pair with D.

By property (1) $D \leq_e \overline{A}$.

- $A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \overline{K}.$
- If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$.

Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$.

By property (2) A forms a \mathcal{K} -pair with D.

By property (1) $D \leq_e \overline{A}$.

- $A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \overline{K}.$
- **2** If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$.

Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$.

By property (2) A forms a \mathcal{K} -pair with D.

By property (1) $D \leq_e \overline{A}$.

- $A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \overline{K}.$
- **2** If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$.

Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$.

By property (2) A forms a \mathcal{K} -pair with D.

By property (1) $D \leq_e \overline{A}$.

- $A \leq_e \overline{B} \text{ and } \overline{A} \leq_e \overline{K}.$
- **2** If $C \leq_e A$ the *C* and *B* form a \mathcal{K} -pair.

Consider a nontrivial \mathcal{K} -pair of a semi recursive set and its complement: $\{A, \overline{A}\}$.

Assume that there is a \mathcal{K} -pair $\{C, D\}$ such that $A <_e C$ and $\overline{A} <_e D$.

By property (2) A forms a \mathcal{K} -pair with D.

By property (1) $D \leq_e \overline{A}$.

Maximal \mathcal{K} -pairs

Definition

We say that $\{A, B\}$ is a maximal \mathcal{K} -pair if there is no \mathcal{K} -pair $\{C, D\}$, such that $A \leq_e C$ and $B \leq_e D$.

Corollary

Every nonzero total set is enumeration equivalent to the join of a maximal \mathcal{K} -pair.

Goal

Prove that the join of every maximal \mathcal{K} -pair is e-equivalent to a total set.

3

Maximal *K*-pairs

Definition

We say that $\{A, B\}$ is a maximal \mathcal{K} -pair if there is no \mathcal{K} -pair $\{C, D\}$, such that $A \leq_e C$ and $B \leq_e D$.

Corollary

Every nonzero total set is enumeration equivalent to the join of a maximal \mathcal{K} -pair.

Goal

Prove that the join of every maximal \mathcal{K} -pair is e-equivalent to a total set.

3

Maximal \mathcal{K} -pairs

Definition

We say that $\{A, B\}$ is a maximal \mathcal{K} -pair if there is no \mathcal{K} -pair $\{C, D\}$, such that $A \leq_e C$ and $B \leq_e D$.

Corollary

Every nonzero total set is enumeration equivalent to the join of a maximal \mathcal{K} -pair.

Goal

Prove that the join of every maximal \mathcal{K} -pair is e-equivalent to a total set.

Extending \mathcal{K} -pairs to maximal

Theorem

For every nontrivial $\Delta_2^0 \mathcal{K}$ -pair $\{A, B\}$ there is a \mathcal{K} -pair $\{C, \overline{C}\}$, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Basic tool: A dynamic characterization of \mathcal{K} -pairs

Lemma (Kalimullin)

A pair of non-c.e. Δ_2^0 sets A, B is a \mathcal{K} -pair if and only if there are Δ_2^0 approximations $\{A_s\}_{s<\omega}$ to A and $\{B_s\}_{s<\omega}$ to B, such that:

 $\forall s (A_s \subseteq A \lor B_s \subseteq B).$

< 回 > < 三 > < 三 >

Extending \mathcal{K} -pairs to maximal

Theorem

For every nontrivial $\Delta_2^0 \mathcal{K}$ -pair $\{A, B\}$ there is a \mathcal{K} -pair $\{C, \overline{C}\}$, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Basic tool: A dynamic characterization of $\mathcal{K}\text{-pairs}$

Lemma (Kalimullin)

A pair of non-c.e. Δ_2^0 sets A, B is a \mathcal{K} -pair if and only if there are Δ_2^0 approximations $\{A_s\}_{s<\omega}$ to A and $\{B_s\}_{s<\omega}$ to B, such that:

 $\forall s (A_s \subseteq A \lor B_s \subseteq B).$

A (10) A (10)

Extending \mathcal{K} -pairs to maximal

Theorem

For every nontrivial $\Delta_2^0 \mathcal{K}$ -pair $\{A, B\}$ there is a \mathcal{K} -pair $\{C, \overline{C}\}$, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Basic tool: A dynamic characterization of \mathcal{K} -pairs

Lemma (Kalimullin)

A pair of non-c.e. Δ_2^0 sets A, B is a \mathcal{K} -pair if and only if there are Δ_2^0 approximations $\{A_s\}_{s<\omega}$ to A and $\{B_s\}_{s<\omega}$ to B, such that:

 $\forall s (A_s \subseteq A \lor B_s \subseteq B).$

Local definability of the total degrees

Denote by $\mathcal{MK}(\mathbf{x}, \mathbf{y})$ the first order formula that defines in \mathcal{G}_e the set of degrees of maximal \mathcal{K} -pairs.

Corollary

The class of total degrees is first order definable in \mathcal{G}_e by the formula:

 $\mathcal{TOT}(\mathbf{x}) \rightleftharpoons \mathbf{x} = \mathbf{0}_e \lor \exists \mathbf{c} \exists \mathbf{d} [\mathcal{MK}(\mathbf{c}, \mathbf{d}) \& \mathbf{x} = \mathbf{c} \lor \mathbf{d}.]$

イロト イポト イラト イラ

Local definability of the total degrees

Denote by $\mathcal{MK}(\mathbf{x}, \mathbf{y})$ the first order formula that defines in \mathcal{G}_e the set of degrees of maximal \mathcal{K} -pairs.

Corollary

The class of total degrees is first order definable in \mathcal{G}_e by the formula:

 $\mathcal{TOT}(\mathbf{x}) \rightleftharpoons \mathbf{x} = \mathbf{0}_e \ \lor \ \exists \mathbf{c} \exists \mathbf{d} [\mathcal{MK}(\mathbf{c}, \mathbf{d}) \& \mathbf{x} = \mathbf{c} \lor \mathbf{d}.]$

イロト イポト イラト イラト

The fourth example of a definable class of degrees in the local structure: The total degrees.

э

Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly Σ_2^0 enumeration degree.

Corollary

The class of low total e-degrees is first order definable in \mathcal{G}_e by the formula:

 $\mathcal{TL}(\mathbf{x}) \rightleftharpoons \mathcal{TOT}(\mathbf{x}) \& \forall \mathbf{c} < \mathbf{x}[\neg \mathcal{D}P\Sigma_2^0(\mathbf{c})]$

< ロ > < 同 > < 回 > < 回 >

Theorem (Giorgi, Sorbi, Yang)

Every non-low total degree bounds a downwards properly Σ_2^0 enumeration degree.

Corollary

The class of low total e-degrees is first order definable in \mathcal{G}_e by the formula:

$$\mathcal{TL}(\mathbf{x})
ightarrow \mathcal{TOT}(\mathbf{x}) \ \& \ \forall \mathbf{c} \leq \mathbf{x}[\neg \mathcal{DP}\Sigma_2^0(\mathbf{c})]$$

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Soskov)

For every enumeration degree x there is a total enumeration degree y, such that x < y and x' = y'.

Thus a Σ_2^0 enumeration degree is low if and only if there is a low total Σ_2^0 enumeration degree above it.

Theorem (G, S)

The class of low e-degrees is first order definable in \mathcal{G}_e by the formula:

 $\mathcal{LOW}(\boldsymbol{x}) \rightleftharpoons \exists \boldsymbol{y} [\boldsymbol{x} \leq \boldsymbol{y} \ \& \ \mathcal{TL}(\boldsymbol{y})]$

A (10) A (10) A (10)

Theorem (Soskov)

For every enumeration degree x there is a total enumeration degree y, such that x < y and x' = y'.

Thus a Σ_2^0 enumeration degree is low if and only if there is a low total Σ_2^0 enumeration degree above it.

Theorem (G, S)

The class of low e-degrees is first order definable in \mathcal{G}_e by the formula:

$$\mathcal{LOW}(\mathbf{x}) \rightleftharpoons \exists \mathbf{y} [\mathbf{x} \leq \mathbf{y} \& \mathcal{TL}(\mathbf{y})]$$

The fifth example of a definable class of degrees in the local structure: The low degrees.

э

イロト イヨト イヨト イヨト

Thank you!

æ

イロト イヨト イヨト イヨト