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The cupping property

Let 〈A,≤,∨,1〉 be an upper semi-lattice with least and greatest
element.

Definition
An element a ∈ A is cuppable if there exists an element b ∈ A,
b 6= 1 such that a ∨ b = 1.
The element b is called a cupping partner for a.



Results in the Turing degrees

I Posner, Robinson: Every nonzero degree in DT (≤ 0′) is
cuppable.

I Cooper, Yates: There exists a nonzero c.e. Turing degree
which cannot be cupped by any incomplete c.e. Turing
degree.



Enumeration degrees

Definition
A set A is enumeration reducible (≤e) to a set B if there is a c.e.
set Φ such that:

n ∈ A⇔ ∃u(〈n,u〉 ∈ Φ ∧ Du ⊆ B),

where Du denotes the finite set with code u under the standard
coding of finite sets.

I A ≡e B ⇔ A ≤e B ∧ B ≤e A
I 〈De,0e,≤,∪,′ 〉.
I ι : DT → De.



The local structure of the enumeration degrees
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Transferring results from the Turing degrees
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Cupping results in the enumeration degrees

I Negative Results:
(Cooper, Sorbi, Yi): There exists a nonzero Σ0

2
enumeration degree that is not cuppable.

I Positive Results:
(Cooper, Sorbi and Yi): Every nonzero ∆0

2 e-degree is
cuppable by a total incomplete ∆0

2 e-degree.

(S, Wu): Every nonzero ∆0
2 e-degree is cuppable by a

partial and low ∆0
2 e-degree.



Cupping partners

Question
How much further can we limit the search for cupping partners.
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Reaching the first limit

Theorem
Let {ai}i<ω be a ∆0

2-computably enumerable sequence of
enumeration degrees. There exists a nonzero ∆0

2 enumeration
degree b such that for every i < ω if ai is incomplete then
ai ∨ b 6= 0′

e.

Here a class {ai}i<ω of ∆0
2 enumeration degrees is

∆0
2-computably enumerable if there is a computable sequence

of ∆0
2 approximations {Ai [s]}i,s<ω to representatives Ai of every

degree ai in the class.



The Difference Hierracy

Definition (Ershov)

1. A set A is n-c.e. if there is a computable function f such
that for each x , f (x ,0) = 0,
|{s + 1 | f (x , s) 6= f (x , s + 1)}| ≤ n and A(x) = lims f (x , s).

2. A is ω-c.e. if there are two computable functions
f (x , s),g(x) such that for all x , f (x ,0) = 0,
|{s + 1 | f (x , s) 6= f (x , s + 1)}| ≤ g(x) and
lims f (x , s) = A(x).

3. A degree a is n-c.e.(ω-c.e.) if it contains a n-c.e.(ω-c.e.)
set.



A finer partition of the ∆0
2 enumeration degrees
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Consequences

Corollary
There exists a nonzero ∆0

2 enumeration degree that cannot be
cupped by any incomplete ω-c.e. degree.

Wu, S: For every nonzero ω-c.e. enumeration degree a there
exists an incomplete 3-c.e. enumeration degree b that cups a.



Cupping classes of enumeration degrees
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(Cooper, Seetapun and Li): There exists a single incomplete
∆0

2 Turing degree that cups every nonzero c.e. Turing degree.



The second limitation

For any larger subclass, which contains the nonzero 3-c.e
enumeration degrees this cannot be done as:

Theorem
Let a be an incomplete Σ0

2 enumeration degree. There exists a
nonzero 3-c.e. enumeration degree b such that a ∨ b 6= 0′

e.



Proof(ideas)

Let A be a representative of the given Σ0
2 e-degree. We

construct two 3-c.e. sets X and Y so that:
I For every natural number e:

Ne : We 6= X ∧We 6= Y .

I If for some i the requirement P0
i is not satisfied then for

every i the requirement P1
i is satisfied , where:

P0
i : ΘA,X

i 6= K ;

P1
i : ΨA,Y

i 6= K .



The tree
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