The Limitations of Cupping in the Local Structure of the Enumeration Degrees

Mariya I. Soskova

Department of Pure Mathematics University of Leeds mariya@maths.leeds.ac.uk

17.06.08

The cupping property

Let $\langle \mathcal{A}, \leq, \vee, \mathbf{1} \rangle$ be an upper semi-lattice with least and greatest element.

Definition

An element $\mathbf{a} \in \mathcal{A}$ is *cuppable* if there exists an element $\mathbf{b} \in \mathcal{A}$, $\mathbf{b} \neq \mathbf{1}$ such that $\mathbf{a} \vee \mathbf{b} = \mathbf{1}$.

The element **b** is called a *cupping partner* for **a**.

Results in the Turing degrees

- ▶ Posner, Robinson: Every nonzero degree in $\mathcal{D}_{\mathcal{T}}(\leq 0')$ is cuppable.
- Cooper, Yates: There exists a nonzero c.e. Turing degree which cannot be cupped by any incomplete c.e. Turing degree.

Enumeration degrees

Definition

A set *A* is *enumeration reducible* (\leq_e) to a set *B* if there is a c.e. set Φ such that:

$$n \in A \Leftrightarrow \exists u(\langle n, u \rangle \in \Phi \land D_u \subseteq B),$$

where D_u denotes the finite set with code u under the standard coding of finite sets.

- $A \equiv_e B \Leftrightarrow A \leq_e B \land B \leq_e A$
- $\blacktriangleright \langle \mathcal{D}_e, \mathbf{0}_e, \leq, \cup,' \rangle.$
- $\iota: \mathcal{D}_{T} \to \mathcal{D}_{e}.$

The local structure of the enumeration degrees $\mathcal{D}_e(\leq 0'_e)$

Transferring results from the Turing degrees

Cupping results in the enumeration degrees

- Negative Results:
 (Cooper, Sorbi, Yi): There exists a nonzero Σ₂⁰ enumeration degree that is not cuppable.
- Positive Results:
 (Cooper, Sorbi and Yi): Every nonzero Δ₂⁰ e-degree is cuppable by a total incomplete Δ₂⁰ e-degree.
 - (S, Wu): Every nonzero Δ_2^0 e-degree is cuppable by a partial and low Δ_2^0 e-degree.

Cupping partners

Question

How much further can we limit the search for cupping partners.

 Δ_2^0 e-degrees

Reaching the first limit

Theorem

Let $\{\mathbf{a}_i\}_{i<\omega}$ be a Δ_2^0 -computably enumerable sequence of enumeration degrees. There exists a nonzero Δ_2^0 enumeration degree \mathbf{b} such that for every $i<\omega$ if \mathbf{a}_i is incomplete then $\mathbf{a}_i\vee\mathbf{b}\neq 0_e'$.

Here a class $\{\mathbf{a}_i\}_{i<\omega}$ of Δ^0_2 enumeration degrees is Δ^0_2 -computably enumerable if there is a computable sequence of Δ^0_2 approximations $\{A_i[s]\}_{i,s<\omega}$ to representatives A_i of every degree \mathbf{a}_i in the class.

The Difference Hierracy

Definition (Ershov)

- 1. A set A is n-c.e. if there is a computable function f such that for each x, f(x,0) = 0, $|\{s+1 \mid f(x,s) \neq f(x,s+1)\}| \leq n$ and $A(x) = \lim_s f(x,s)$.
- 2. A is ω -c.e. if there are two computable functions f(x,s), g(x) such that for all x, f(x,0) = 0, $|\{s+1 \mid f(x,s) \neq f(x,s+1)\}| \leq g(x)$ and $\lim_{s} f(x,s) = A(x)$.
- 3. A degree **a** is n-c.e.(ω -c.e.) if it contains a n-c.e.(ω -c.e.) set.

A finer partition of the Δ_2^0 enumeration degrees

Consequences

Corollary

There exists a nonzero Δ_2^0 enumeration degree that cannot be cupped by any incomplete ω -c.e. degree.

Wu, S: For every nonzero ω -c.e. enumeration degree **a** there exists an incomplete 3-c.e. enumeration degree **b** that cups **a**.

Cupping classes of enumeration degrees

(Cooper, Seetapun and Li): There exists a single incomplete Δ_2^0 Turing degree that cups every nonzero c.e. Turing degree.

The second limitation

For any larger subclass, which contains the nonzero 3-c.e enumeration degrees this cannot be done as:

Theorem

Let **a** be an incomplete Σ_2^0 enumeration degree. There exists a nonzero 3-c.e. enumeration degree **b** such that $\mathbf{a} \vee \mathbf{b} \neq \mathbf{0}'_e$.

Proof(ideas)

Let *A* be a representative of the given Σ_2^0 e-degree. We construct two 3-c.e. sets *X* and *Y* so that:

► For every natural number *e*:

$$\mathcal{N}_e: W_e \neq X \wedge W_e \neq Y.$$

▶ If for some i the requirement \mathcal{P}_i^0 is not satisfied then for every i the requirement \mathcal{P}_i^1 is satisfied, where:

$$\mathcal{P}_{i}^{0}:\Theta_{i}^{A,X}\neq\overline{K};$$

$$\mathcal{P}_{i}^{1}: \Psi_{i}^{A,Y} \neq \overline{K}.$$

The tree

Bibliography

- S.B. Cooper: On a theorem of C.E.M. Yates. Handwritten notes (1973)
- A. E. M. Lewis: Finite cupping sets. Arch. Math. Logic 43, 845–858 (2004)
- D. Posner, R. Robinson: Degrees joining to 0'. J. Symbolic Logic 46, 714–722 (1981)

Bibliography

- S. B. Cooper: Enumeration reducibility, nondeterminitsic computations and relative computability of partial functions. In: K. Ambos-Spies, G. H. Muller, G. E. Sacks (eds.) Recursion Theory Week, Proceedings Oberwolfach 1989, pp 57–110. LNM 1432 (1990)
- S. B. Cooper, A. Sorbi, X. Yi: Cupping and noncupping in the enumeration degrees of Σ_2^0 sets. Ann. Pure Appl. Logic 82, 317–342 (1996)
- A. H. Lachlan, R. A. Shore: The n-rea enumeration degrees are dense. Arch. Math. Logic 31, 277–285 (1992)
- M. I. Soskova, G. Wu: Cupping Δ_2^0 enumeration degrees to 0'. In: S. Cooper, B. Löwe, A. Sorbi (eds.) Computation and Logic in the Real World, pp 727–738. LNCS 4497 (2007)