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Automorphism bases

Definition
Let A be a structure with domain A. A set B ⊆ A is an automorphism
base for A if whenever f and g are automorphisms of A, such that
(∀x ∈ B)(f (x) = g(x)), then f = g.

Equivalently if f is an automorphism of A and (∀x ∈ B)(f (x) = x) then
f is the identity.

Theorem (Slaman and Woodin)

There is an element g ≤ 0(5) such that {g} is an automorphism base
for the structure of the Turing degrees DT .

Aut(DT ) is countable and every member has an arithmetically
definable presentation.
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Part I: The local structure of the Turing degrees

Definition
A set of degrees Z contained in DT (≤ 0′) is uniformly low if it is
bounded by a low degree and there is a sequence {Zi}i<ω,
representing the degrees in Z, and a computable function f such that
{f (i)}∅′ is the Turing jump of

⊕
j<i Zj .

Example: If
⊕

i<ω Ai is low then A = {dT (Ai) | i < ω} is uniformly low.

Theorem (Slaman and Woodin)
If Z is a uniformly low subset of DT (≤ 0′) then Z is definable from
parameters in DT (≤ 0′).
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Applications of the coding theorem

1 Using parameters we can code a model of arithmetic
M = (NM,0M,+M,×M,≤M).

2 If Z ⊆ DT (≤ 0′) is uniformly low and represented by the sequence
{Zi}i<ω then there are ∆0

2 parameters that code a model of
arithmeticM and a function ϕ : NM → DT (≤ 0′) such that
ϕ(iM) = dT (Zi).

We call such a function an indexing of Z.
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Applications of the coding theorem

3 Using parameters we can define the set of c.e. degrees:
Consider the set K =

⊕
e<ω We. By Sacks’ Splitting theorem there

are low disjoint c.e. sets A and B such that K = A ∪ B.

Represent A and B as
⊕

e<ω Ae and
⊕

e<ω Be. Note that We is the
disjoint union of Ae and Be.

The set A = {dT (Ae) | e < ω} and B = {dT (Be) | e < ω} are
uniformly low and hence definable with parameters.

A degree x is c.e. if it is the join of an element from A and an
element from B.
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The goal

Theorem (Slaman and Woodin)

There are finitely many ∆0
2 parameters which code a model of

arithmeticM and an indexing of the c.e. degrees: a function
ψ : NM → DT (≤ 0′) such that ψ(eM) = dT (We).

Note that if we have an automorphism π of DT (≤ 0′) which fixes these
parameters then π fixes every c.e degree.

The Goal
Extend this result to find finitely many ∆0

2 parameters that code a
model of arithmeticM and an indexing ϕ of the ∆0

2 Turing degrees.

We will call e an index for a ∆0
2 set X if {e}∅′ is the characteristic

function of X .
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Step 1: Reducing to low sets

Lemma
If x ≤T 0′ then there are low degrees g1, g2, g3, g4, such that
x = (g1 ∨ g2) ∧ (g3 ∨ g4).

Suppose that we know how to map an index eM of a low ∆0
2 set G

to the degree ϕ(eM) = dT (G).
If inM “e is an index of a non-low ∆0

2 set X ” then we search inM
for indices e1,e2,e3,e4 of low ∆0

2 sets which define the degree of
X .
We map eM to (ϕ(eM1 ) ∨ ϕ(eM2 )) ∧ (ϕ(eM3 ) ∨ ϕ(eM4 )).
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Step 2: Distinguishing between low ∆0
2 sets

Theorem
There exists a uniformly low set of Turing degrees Z, such that every
low Turing degree x is uniquely positioned with respect to the c.e.
degrees and the elements of Z.

If x,y ≤ 0′, x′ = 0′ and y � x then there are gi ≤ 0′, c.e. degrees ai
and ∆0

2 degrees ci ,bi for i = 1,2 such that:
1 bi and ci are elements of Z.
2 gi is the least element below ai which joins bi above ci .

3 x ≤ g1 ∨ g2.
4 y � g1 ∨ g2.
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Applications

Theorem (Biinterpretability with parameters)

There are finitely many ∆0
2 parameters that code a model of arithmetic

M and an indexing of the ∆0
2 degrees.

1 The automorphism group of DT (≤ 0′) is countable.
2 Every automorphism π of DT (≤ 0′) has an arithmetic

presentation.
3 Every relation R ⊆ DT (≤ 0′) induced by an arithmetically

definable degree invariant relation is definable with finitely many
∆0

2 parameters. If R is invariant under automorphisms then it is
definable.

4 DT (≤ 0′) is rigid if and only if DT (≤ 0′) is biinterpretable with first
order arithmetic.
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Part II: The structure of the enumeration degrees

Definition
A ≤e B if there is a c.e. set W , such that

A = W (B) = {x | ∃D(〈x ,D〉 ∈W & D ⊆ B)} .

A ≡e B if A ≤e B and B ≤e A.
The enumeration degree of a set A is de(A) = {B | A ≡e B}.
de(A) ≤ de(B) iff A ≤e B.

The least element: 0e = de(∅), the set of all c.e. sets.

The least upper bound: de(A) ∨ de(B) = de(A⊕ B).
The enumeration jump: de(A)′ = de(KA ⊕ KA), where
KA = {〈e, x〉 | x ∈We(A)}.
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What connects DT and De

Proposition

A ≤T B ⇔ A⊕ A ≤e B ⊕ B.

A set A is total if A ≡e A⊕ A. An enumeration degree is total if it
contains a total set. The set of total degrees is denoted by T OT .

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order, the least upper bound and the jump operation.

(DT ,≤T ,∨,′ ,0T ) ∼= (T OT ,≤e,∨,′ ,0e) ⊆ (De,≤e,∨,′ ,0e)

If x ∈ DT then we will call ι(x) the image of x.
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Definability in the enumeration degrees

Theorem (Kalimullin)
The enumeration jump is first order definable in De.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The set of total enumeration degrees is first order definable in the
enumeration degrees.

Definition
A Turing degree a is c.e. in a Turing degree x if some A ∈ a is c.e. in
some X ∈ x.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The image of the relation “ c.e. in ” in the enumeration degrees is first
order definable in De.
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The total degrees as an automorphism base

Theorem (Selman)
A is enumeration reducible to B if and only if
{x ∈ T OT | de(A) ≤ x} ⊇ {x ∈ T OT | de(B) ≤ x}.

Corollary
The total enumeration degrees form a definable automorphism basis
of the enumeration degrees.

If DT is rigid then De is rigid.
The automorphism analysis for the enumeration degrees follows.

The total degrees below 0(5)
e are an automorphism base of De.
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Towards a better automorphism base of De

Theorem
There are total ∆0

2 parameters that code a model of arithmeticM and
an indexing of the total ∆0

2 enumeration degrees.

1 The parameters ~p code an indexing of the image of the c.e. Turing
degrees.

2 The parameters ~p code an indexing of the image of a uniformly
low set Z.

3 Every low total ∆0
2 enumeration degree is uniquely positioned with

respect to the image of the c.e. degrees and the image of Z.
4 Every total ∆0

2 enumeration degree is uniquely positioned with
respect to the low total ∆0

2 enumeration degrees.
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An improvement

Theorem

1 Every low ∆0
2 enumeration degree is uniquely positioned with

respect to the image of the c.e. Turing degrees and the low 3-c.e.
enumeration degrees.

2 Every low 3-c.e. enumeration degree is uniquely positioned with
respect to the image of the c.e. Turing degrees.

If ~p defines a model of arithmeticM and an indexing of the images of
the c.e. Turing degrees then ~p defines an indexing of the total ∆0

2
enumeration degrees.
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Stepping outside the local structure

New Goal
Using parameters ~p that index the image of the c.e. degrees define an
indexing of the images of all Turing degrees that are c.e. in and above
some ∆0

2 Turing degree.

ψ(eM0 ,eM1 ) = ι(dT (Y )), where Y = W X
e0

and X = {e1}∅
′
.

If we succeed then relativizing the previous step to any total ∆0
2

enumeration degree we can extend this to an indexing of the
image of

⋃
x≤T 0′ [x,x′].

We will use that the image of the relation ‘c.e. in’ and the
enumeration jump are definable.
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C.e. in and above a ∆0
2 degree

Suppose that x is ∆0
2 and y is c.e. in and above x.

1 If y ≥ 0′ then we use Shoenfield’s jump inversion theorem to find a
∆0

2 degree z such that z′ = y.
2 Otherwise using Sacks’ splitting theorem we can represent y as

a1 ∨ a2, where a1 and a2 are low and c.e.a. relative to x which
avoid the cone above 0′.

3 Define an indexing of all low and c.e.a. relative to x such avoid the
cone above 0′.

We can define the set of images of low relative to x degrees that
are c.e. in and above x and avoid the cone above 0′.
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C.e. in and above a ∆0
2 degree: complicated case

Theorem
If Y and W are c.e. sets and A is a low c.e. set such that W �T A and
Y �T A then there are sets U and V computable from W such that:

1 V ≤T Y ⊕ U
2 V �T A⊕ U

Relative to X and with W = ∅′ we get:

Within the class of low and c.e.a degrees relative to x which do not
compute ∅′, y is uniquely positioned with respect to the ∆0

2 Turing
degrees.
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The rest of the total enumeration degrees

Theorem
Let ~p are parameters that index the image of the c.e. Turing degrees
then ~p index

⋃
x≤T 0′ [x,x′].

Next Goal
Extend to an indexing of the image of all ∆0

3 Turing degrees.

Theorem
There are high ∆0

2 degrees h1 and h2 such that every 2-generic ∆0
3

Turing degree g satisfies (h1 ∨ g) ∧ (h2 ∨ g) = g.

Note that hi ∨ g ∈ [hi ,h′i ] thus we have a way to identify this degree
and hence we have a way to identify g.
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And now we iterate!

Theorem
Let n be a natural number and ~p be parameters that index the image of
the c.e. Turing degrees. There is a definable from ~p indexing of the
total ∆0

n+1 sets.
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Consequences

1 There is a finite automorphism base for the enumeration degrees
consisting of total ∆0

2 enumeration degrees:
2 The image of the c.e. Turing degrees is an automorphism base for
De.

3 If the structure of the c.e. Turing degrees is rigid then so is the
structure of the enumeration degrees.

Question
1 Can every automorphism of the Turing degrees be extended to an

automorphism of the enumeration degrees?
2 Can we extend automorphisms of the c.e. degrees to

automorphisms of DT or of De?
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