Finite automorphism bases for degree structures

Mariya I. Soskova¹

Sofia University

joint work with Theodore Slaman

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471), Sofia University Science Fund Project 97/2014 and BNSF Grant No. DMU 03/07/12.12.2011

Mariya I. Soskova (Sofia University)

Automorphism bases

Definition

Let \mathcal{A} be a structure with domain A. A set $B \subseteq A$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} , such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if *f* is an automorphism of A and $(\forall x \in B)(f(x) = x)$ then *f* is the identity.

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees \mathcal{D}_T .

 $Aut(\mathcal{D}_T)$ is countable and every member has an arithmetically definable presentation.

Part I: The local structure of the Turing degrees

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T (\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i < \omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{j < i} Z_j$.

Example: If $\bigoplus_{i < \omega} A_i$ is low then $\mathcal{A} = \{ d_T(A_i) \mid i < \omega \}$ is uniformly low.

Theorem (Slaman and Woodin)

If \mathcal{Z} is a uniformly low subset of $\mathcal{D}_T(\leq \mathbf{0}')$ then \mathcal{Z} is definable from parameters in $\mathcal{D}_T(\leq \mathbf{0}')$.

Applications of the coding theorem

- Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, \mathbf{0}^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$
- If Z ⊆ D_T(≤ 0') is uniformly low and represented by the sequence {Z_i}_{i<ω} then there are Δ⁰₂ parameters that code a model of arithmetic M and a function φ : N^M → D_T(≤ 0') such that φ(i^M) = d_T(Z_i).

We call such a function an indexing of \mathcal{Z} .

Applications of the coding theorem

Using parameters we can define the set of c.e. degrees: Consider the set K = ⊕_{e<ω} W_e. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that K = A ∪ B.

Represent *A* and *B* as $\bigoplus_{e < \omega} A_e$ and $\bigoplus_{e < \omega} B_e$. Note that W_e is the disjoint union of A_e and B_e .

The set $\mathcal{A} = \{ d_T(A_e) \mid e < \omega \}$ and $\mathcal{B} = \{ d_T(B_e) \mid e < \omega \}$ are uniformly low and hence definable with parameters.

A degree **x** is c.e. if it is the join of an element from \mathcal{A} and an element from \mathcal{B} .

The goal

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T (\leq \mathbf{0}')$ such that $\psi(\mathbf{e}^{\mathcal{M}}) = d_T(W_e)$.

Note that if we have an automorphism π of $\mathcal{D}_T (\leq \mathbf{0}')$ which fixes these parameters then π fixes every c.e degree.

The Goal

Extend this result to find finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a $\Delta_2^0 \text{ set } X$ if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

Step 1: Reducing to low sets

Lemma

If $\mathbf{x} \leq_T 0'$ then there are low degrees \mathbf{g}_1 , \mathbf{g}_2 , \mathbf{g}_3 , \mathbf{g}_4 , such that $\mathbf{x} = (\mathbf{g}_1 \lor \mathbf{g}_2) \land (\mathbf{g}_3 \lor \mathbf{g}_4)$.

- Suppose that we know how to map an index e^M of a low Δ₂⁰ set G to the degree φ(e^M) = d_T(G).
- If in *M* "*e* is an index of a non-low Δ₂⁰ set *X*" then we search in *M* for indices *e*₁, *e*₂, *e*₃, *e*₄ of low Δ₂⁰ sets which define the degree of *X*.
- We map $e^{\mathcal{M}}$ to $(\varphi(e_1^{\mathcal{M}}) \lor \varphi(e_2^{\mathcal{M}})) \land (\varphi(e_3^{\mathcal{M}}) \lor \varphi(e_4^{\mathcal{M}})).$

Step 2: Distinguishing between low Δ_2^0 sets

Theorem

There exists a uniformly low set of Turing degrees \mathcal{Z} , such that every low Turing degree **x** is uniquely positioned with respect to the c.e. degrees and the elements of \mathcal{Z} .

If $\mathbf{x}, \mathbf{y} \leq \mathbf{0}', \mathbf{x}' = \mathbf{0}'$ and $\mathbf{y} \leq \mathbf{x}$ then there are $\mathbf{g}_i \leq \mathbf{0}'$, c.e. degrees \mathbf{a}_i and Δ_2^0 degrees $\mathbf{c}_i, \mathbf{b}_i$ for i = 1, 2 such that:

- **()** \mathbf{b}_i and \mathbf{c}_i are elements of \mathcal{Z} .
- **2 g**_{*i*} is the least element below **a**_{*i*} which joins **b**_{*i*} above **c**_{*i*}.

Applications

Theorem (Biinterpretability with parameters)

There are finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

- **()** The automorphism group of $\mathcal{D}_T (\leq \mathbf{0}')$ is countable.
- 2 Every automorphism π of $\mathcal{D}_T (\leq \mathbf{0}')$ has an arithmetic presentation.
- Severy relation R ⊆ D_T(≤ 0') induced by an arithmetically definable degree invariant relation is definable with finitely many Δ⁰₂ parameters. If R is invariant under automorphisms then it is definable.
- 3 $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid if and only if $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable with first order arithmetic.

Part II: The structure of the enumeration degrees

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_{e}(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.
- The enumeration jump: $d_e(A)' = d_e(K_A \oplus \overline{K_A})$, where $K_A = \{ \langle e, x \rangle \mid x \in W_e(A) \}.$

What connects $\mathcal{D}_{\mathcal{T}}$ and \mathcal{D}_{e}

Proposition

$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

A set *A* is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by TOT.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

$$(\mathcal{D}_{\mathcal{T}},\leq_{\mathcal{T}},\vee,',\boldsymbol{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq_{\boldsymbol{e}},\vee,',\boldsymbol{0}_{\boldsymbol{e}})\subseteq(\mathcal{D}_{\boldsymbol{e}},\leq_{\boldsymbol{e}},\vee,',\boldsymbol{0}_{\boldsymbol{e}})$$

If $\mathbf{x} \in \mathcal{D}_T$ then we will call $\iota(\mathbf{x})$ the image of \mathbf{x} .

Definability in the enumeration degrees

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set of total enumeration degrees is first order definable in the enumeration degrees.

Definition

A Turing degree **a** is *c.e.* in a Turing degree **x** if some $A \in \mathbf{a}$ is c.e. in some $X \in \mathbf{x}$.

Theorem (Cai, Ganchev, Lempp, Miller, S)

The image of the relation "c.e. in " in the enumeration degrees is first order definable in \mathcal{D}_e .

The total degrees as an automorphism base

Theorem (Selman)

A is enumeration reducible to B if and only if $\{\mathbf{x} \in TOT \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in TOT \mid d_e(B) \leq \mathbf{x}\}.$

Corollary

The total enumeration degrees form a definable automorphism basis of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The automorphism analysis for the enumeration degrees follows.
- The total degrees below $\mathbf{0}_{e}^{(5)}$ are an automorphism base of \mathcal{D}_{e} .

Towards a better automorphism base of \mathcal{D}_e

Theorem

There are total Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the total Δ_2^0 enumeration degrees.

- 2 The parameters \vec{p} code an indexing of the image of a uniformly low set \mathcal{Z} .
- Solution Every low total Δ_2^0 enumeration degree is uniquely positioned with respect to the image of the c.e. degrees and the image of \mathcal{Z} .
- Solution Every total Δ_2^0 enumeration degree is uniquely positioned with respect to the low total Δ_2^0 enumeration degrees.

An improvement

Theorem

- Every low Δ₂⁰ enumeration degree is uniquely positioned with respect to the image of the c.e. Turing degrees and the low 3-c.e. enumeration degrees.
- Every low 3-c.e. enumeration degree is uniquely positioned with respect to the image of the c.e. Turing degrees.

If \vec{p} defines a model of arithmetic \mathcal{M} and an indexing of the images of the c.e. Turing degrees then \vec{p} defines an indexing of the total Δ_2^0 enumeration degrees.

Stepping outside the local structure

New Goal

Using parameters \vec{p} that index the image of the c.e. degrees define an indexing of the images of all Turing degrees that are c.e. in and above some Δ_2^0 Turing degree.

$$\psi(e_0^{\mathcal{M}},e_1^{\mathcal{M}}) = \iota(d_{\mathcal{T}}(Y)),$$
 where $Y = W_{e_0}^X$ and $X = \{e_1\}^{\emptyset'}.$

- If we succeed then relativizing the previous step to any total Δ⁰₂ enumeration degree we can extend this to an indexing of the image of ⋃_{x≤₇0'}[x, x'].
- We will use that the image of the relation 'c.e. in' and the enumeration jump are definable.

C.e. in and above a Δ_2^0 degree

Suppose that **x** is Δ_2^0 and **y** is c.e. in and above **x**.

- If $\mathbf{y} \ge \mathbf{0}'$ then we use Shoenfield's jump inversion theorem to find a Δ_2^0 degree \mathbf{z} such that $\mathbf{z}' = \mathbf{y}$.
- Otherwise using Sacks' splitting theorem we can represent y as a₁ ∨ a₂, where a₁ and a₂ are low and c.e.a. relative to x which avoid the cone above 0'.
- Obtained by Define an indexing of all low and c.e.a. relative to x such avoid the cone above 0'.
 - We can define the set of images of low relative to **x** degrees that are c.e. in and above **x** and avoid the cone above **0**'.

C.e. in and above a Δ_2^0 degree: complicated case

Theorem

If Y and W are c.e. sets and A is a low c.e. set such that $W \not\leq_T A$ and $Y \not\leq_T A$ then there are sets U and V computable from W such that: • $V \leq_T Y \oplus U$ • $V \not\leq_T A \oplus U$

Relative to *X* and with $W = \emptyset'$ we get:

Within the class of low and c.e.a degrees relative to **x** which do not compute \emptyset' , **y** is uniquely positioned with respect to the Δ_2^0 Turing degrees.

The rest of the total enumeration degrees

Theorem

Let \vec{p} are parameters that index the image of the c.e. Turing degrees then \vec{p} index $\bigcup_{\mathbf{x} \leq \tau \mathbf{0}'} [\mathbf{x}, \mathbf{x}']$.

Next Goal

Extend to an indexing of the image of all Δ_3^0 Turing degrees.

Theorem

There are high Δ_2^0 degrees \mathbf{h}_1 and \mathbf{h}_2 such that every 2-generic Δ_3^0 Turing degree \mathbf{g} satisfies $(\mathbf{h}_1 \lor \mathbf{g}) \land (\mathbf{h}_2 \lor \mathbf{g}) = \mathbf{g}$.

Note that $\mathbf{h}_i \lor \mathbf{g} \in [\mathbf{h}_i, \mathbf{h}'_i]$ thus we have a way to identify this degree and hence we have a way to identify \mathbf{g} .

And now we iterate!

Theorem

Let *n* be a natural number and \vec{p} be parameters that index the image of the c.e. Turing degrees. There is a definable from \vec{p} indexing of the total Δ_{n+1}^0 sets.

Consequences

- There is a finite automorphism base for the enumeration degrees consisting of total Δ⁰₂ enumeration degrees:
- 2 The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_{e} .
- If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Question

Can every automorphism of the Turing degrees be extended to an automorphism of the enumeration degrees?

Can we extend automorphisms of the c.e. degrees to automorphisms of D_T or of D_e?