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The structure of the enumeration degrees

Definition
A ≤e B if there is a c.e. set W , such that

A = W (B) = {x | ∃D(〈x,D〉 ∈W & D ⊆ B)} .

The least upper bound: de(A) ∨ de(B) = de(A⊕B).

The enumeration jump: de(A)′ = de(KA ⊕KA), where
KA = {〈e, x〉 | x ∈We(A)}.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕A), preserves
the order, the least upper bound and the jump operation.

(DT ,≤T ,∨,′ ,0T ) ∼= (T OT ,≤e,∨,′ ,0e) ⊆ (De,≤e,∨,′ ,0e)
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The importance of definability
Let D ∈ {DT ,De}.

Theorem (Slaman, Woodin)
The following are equivalent:

1 D is rigid, i.e. has no nontrivial automorphisms.
2 The definable relations in D are the ones induced by degree-invariant

definable relations on sets in second order arithmetic.
3 D is biinterpretable with second order arithmetic.

Theorem (Slaman, Woodin)
There is an arithmetical parameter g, such that:

1 The only automorphism of D that fixes g is the identity.
2 Every relation on D, induced by a degree invariant relation on sets in

second order arithmetic is definable with parameter g.
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Definability in the Turing degrees
Theorem (Jockusch and Shore)
A Turing degree is arithmetical if and only if it is bounded by a degree that is
not a minimal cover relative to any other Turing degree.

Theorem (Shore and Slaman)
The Turing jump is first order definable.

Theorem (Ambos-Spies, Jockusch, Shore and Soare)
The promptly simple c.e. degrees are exactly the non-cappable c.e. degrees.

Theorem (Downey, Greenberg and Weber)
The totally ω-c.e. degrees are the ones that do not bound a critical triple.

Theorem (Nies, Shore and Slaman; Shore)
All jump classes apart from low1 are first order definable inR and in
DT (≤ 0′).
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K-pairs

Definition
A pair of non-c.e. sets A and B are a K-pair if there is a c.e. set W , such that
A×B ⊆W and A×B ⊆W .

For example if LA = {σ ∈ 2<ω | σ ≤lex A} and RA = LA then LA and RA

are a K-pair via W = {〈σ, τ〉 | σ ≤lex τ}.

Theorem (Kalimullin)
A and B are a K-pair if and only if de(A) = a and de(B) = b satisfy:

∀x(x = (a ∨ x) ∧ (b ∨ x)).
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Definability of the enumeration jump

Theorem (Kalimullin)
0′e is the largest enumeration degree that can be represented as a ∨ b ∨ c,
where {a,b}, {b, c} and {a, c} are K-pairs.

Relativizing the notion of a K-pair Kallimulin showed that the enumeration
jump is first order definable.
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Defining totality
Definition
A K-pair {a,b} is maximal if and only if no degree above a forms a K-pair
with b and no degree above b forma a K-pair with a.

Theorem (Cai, Ganchev, Lempp, Miller, S)
A nonzero enumeration degree is total if and only if it is the join of a maximal
K-pair.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The image of the relation ‘c.e. in’ on Turing degrees is first order definable in
De.

Corollary (Cai)
The image of array noncomputable Turing degrees is first order definable in
De.
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Local and global structural interaction

Theorem (Slaman, S)
De is rigid if any of the following structures are:

1 R, the c.e. Turing degrees.
2 DT (≤ 0′), the ∆0

2 Turing degrees.
3 De(≤ 0′e), the Σ0

2 enumeration degrees.

Start with a coded copy of the standard model of arithmeticM and a function
ψ : NM → De(≤ 0′e), such that ψ(iM) = de(W i).

Extend to index all total ∆0
2 enumeration degrees.

Extend to index all total degrees in [x,x′] where x ≤ 0′e is total.

Extend to index all total enumeration degrees below 0′′e .
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Definability in De(≤ 0′e)

Theorem (Ganchev, S)
K-pairs are first order definable in De(≤ 0′e) . . .

Theorem (Cai, Lempp, Miller, S)
. . . by the same first order formula as in De.

Theorem (Ganchev, S)
The following are first order definable in De(≤ 0′e):

1 The upwards properly Σ0
2 e-degrees: not bounded by the join of K-pair.

2 The downwards properly Σ0
2 e-degrees: do not bound a K-pair.

3 The total e-degrees: joins of maximal K-pairs.
4 The Low1 e-degrees: every nonzero degree bounded by them bounds a
K-pair.

5 The Lown+1 and Highn e-degrees.
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Continuous degrees

Definition (Miller)
Let {αi}i be a sequence of real numbers. The enumeration degree of the set:⊕

i({q ∈ Q | q < αi} ⊕ {q ∈ Q | q > αi})
is called a continuous degree.

Theorem (Miller)
1 Every total enumeration degree is continuous.
2 There are non-total continuous enumeration degrees.
3 For a,b-total, “b is PA above a” if and only if there is a non total

continuous degree x such that a ≤ x ≤ b.

Definition (Cai, Lempp, Miller, S)
A degree x is almost total if for every total enumeration degree a � x, we
have that x ∨ a is total.
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Cototal enumeration degrees

Definition
A set A is cototal if A ≤e A. A degree is cototal if it contains a cototal set.

The following degrees are co-total:
1 Total degrees.
2 Continuous degrees.
3 The n-c.e.a degrees.
4 Joins of K-pairs.
5 The degree of the language of a minimal subshift.
6 The degree of the nonzero words in a finitely generated simple group.
7 The complements of maximal independent subsets for graphs on ω.
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The skip operator

The enumeration jump of a set A is KA ⊕KA, where KA =
⊕

e<ωWe(A).

Definition
The skip of a set A is A� = KA.

Theorem (Andrews, Ganchev, Kuyper, Lempp, Miller, Soskova, S)
A ≤e B if and only if A� ≤1 B

�.

Every degree above 0′e is the skip of some enumeration degree.

a is cototal if and only if a ≤ a� if and only if a� = a′.

The double skip has a fixed point: there are degrees {a,b}, such that
a = b� and b = a�.

The skip operator restricted to K-pairs is first order definable: if {a,b} is a
K-pair then a� = b ∨ 0′e.
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The end

Thank you!
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