Definability and automorphisms in the enumeration degrees

Mariya I. Soskova¹

Sofia University

CCR 2016, University of Hawai'i

¹Supported by Sofia University Science Fund and by the program 'For women in science'.

The structure of the enumeration degrees

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- The least upper bound: $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.
- The enumeration jump: $d_e(A)' = d_e(K_A \oplus \overline{K_A})$, where $K_A = \{ \langle e, x \rangle \mid x \in W_e(A) \}.$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

$$(\mathcal{D}_T, \leq_T, \lor, ', \mathbf{0}_T) \cong (\mathcal{TOT}, \leq_e, \lor, ', \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \lor, ', \mathbf{0}_e)$$

The importance of definability

Let $\mathcal{D} \in {\mathcal{D}_T, \mathcal{D}_e}$.

Theorem (Slaman, Woodin)

The following are equivalent:

- $\textcircled{0} \mathcal{D} \text{ is rigid, i.e. has no nontrivial automorphisms.}$
- The definable relations in D are the ones induced by degree-invariant definable relations on sets in second order arithmetic.
- O is biinterpretable with second order arithmetic.

Theorem (Slaman, Woodin)

There is an arithmetical parameter g, such that:

- **(**) The only automorphism of \mathcal{D} that fixes **g** is the identity.
- Every relation on D, induced by a degree invariant relation on sets in second order arithmetic is definable with parameter g.

Definability in the Turing degrees

Theorem (Jockusch and Shore)

A Turing degree is arithmetical if and only if it is bounded by a degree that is not a minimal cover relative to any other Turing degree.

Theorem (Shore and Slaman)

The Turing jump is first order definable.

Theorem (Ambos-Spies, Jockusch, Shore and Soare)

The promptly simple c.e. degrees are exactly the non-cappable c.e. degrees.

Theorem (Downey, Greenberg and Weber)

The totally ω -c.e. degrees are the ones that do not bound a critical triple.

Theorem (Nies, Shore and Slaman; Shore)

All jump classes apart from low₁ are first order definable in \mathcal{R} and in $\mathcal{D}_T (\leq \mathbf{0}')$.

 \mathcal{K} -pairs

Definition

A pair of non-c.e. sets A and B are a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

For example if $L_A = \{ \sigma \in 2^{<\omega} \mid \sigma \leq_{lex} A \}$ and $R_A = \overline{L_A}$ then L_A and R_A are a \mathcal{K} -pair via $W = \{ \langle \sigma, \tau \rangle \mid \sigma \leq_{lex} \tau \}.$

Theorem (Kalimullin)

A and B are a K-pair if and only if $d_e(A) = \mathbf{a}$ and $d_e(B) = \mathbf{b}$ satisfy:

 $\forall \mathbf{x}(\mathbf{x} = (\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x})).$

Definability of the enumeration jump

Theorem (Kalimullin)

 $\mathbf{0}'_e$ is the largest enumeration degree that can be represented as $\mathbf{a} \lor \mathbf{b} \lor \mathbf{c}$, where $\{\mathbf{a}, \mathbf{b}\}, \{\mathbf{b}, \mathbf{c}\}$ and $\{\mathbf{a}, \mathbf{c}\}$ are \mathcal{K} -pairs.

Relativizing the notion of a \mathcal{K} -pair Kallimulin showed that the enumeration jump is first order definable.

Defining totality

Definition

A \mathcal{K} -pair $\{\mathbf{a}, \mathbf{b}\}$ is maximal if and only if no degree above \mathbf{a} forms a \mathcal{K} -pair with \mathbf{b} and no degree above \mathbf{b} forma a \mathcal{K} -pair with \mathbf{a} .

Theorem (Cai, Ganchev, Lempp, Miller, S)

A nonzero enumeration degree is total if and only if it is the join of a maximal \mathcal{K} -pair.

Theorem (Cai, Ganchev, Lempp, Miller, S)

The image of the relation 'c.e. in' on Turing degrees is first order definable in \mathcal{D}_e .

Corollary (Cai)

The image of array noncomputable Turing degrees is first order definable in \mathcal{D}_e .

Local and global structural interaction

Theorem (Slaman, S)

 \mathcal{D}_e is rigid if any of the following structures are:

- **2** $\mathcal{D}_T(\leq \mathbf{0}')$, the Δ_2^0 Turing degrees.
- $\ \, {\mathfrak O}_e(\leq {\mathbf 0}'_e), \, {\rm the} \, \Sigma^0_2 \, {\rm enumeration} \, {\rm degrees}.$

Start with a coded copy of the standard model of arithmetic \mathcal{M} and a function $\psi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_e(\leq \mathbf{0}'_e)$, such that $\psi(i^{\mathcal{M}}) = d_e(\overline{W}_i)$.

- Extend to index all total Δ_2^0 enumeration degrees.
- Extend to index all total degrees in $[\mathbf{x}, \mathbf{x}']$ where $\mathbf{x} \leq \mathbf{0}'_e$ is total.
- Extend to index all total enumeration degrees below $\mathbf{0}''_e$.

Definability in $\mathcal{D}_e(\leq \mathbf{0}'_e)$

Theorem (Ganchev, S)

 \mathcal{K} -pairs are first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e) \dots$

Theorem (Cai, Lempp, Miller, S)

... by the same first order formula as in \mathcal{D}_e .

Theorem (Ganchev, S)

The following are first order definable in $\mathcal{D}_e (\leq \mathbf{0}'_e)$:

- **()** The upwards properly Σ_2^0 e-degrees: not bounded by the join of \mathcal{K} -pair.
- **②** The downwards properly Σ_2^0 e-degrees: do not bound a \mathcal{K} -pair.
- \bullet The total e-degrees: joins of maximal \mathcal{K} -pairs.
- The Low₁ e-degrees: every nonzero degree bounded by them bounds a *K*-pair.
- The Low_{n+1} and $High_n$ e-degrees.

Continuous degrees

Definition (Miller)

Let $\{\alpha_i\}_i$ be a sequence of real numbers. The enumeration degree of the set: $\bigoplus_i (\{q \in \mathbb{Q} \mid q < \alpha_i\} \oplus \{q \in \mathbb{Q} \mid q > \alpha_i\})$ is called a continuous degree.

Theorem (Miller)

- Every total enumeration degree is continuous.
- 2 There are non-total continuous enumeration degrees.
- So For a, b-total, "b is PA above a" if and only if there is a non total continuous degree x such that a ≤ x ≤ b.

Definition (Cai, Lempp, Miller, S)

A degree **x** is *almost total* if for every total enumeration degree $\mathbf{a} \nleq \mathbf{x}$, we have that $\mathbf{x} \lor \mathbf{a}$ is total.

Cototal enumeration degrees

Definition

A set A is *cototal* if $A \leq_e \overline{A}$. A degree is cototal if it contains a cototal set.

The following degrees are co-total:

- Total degrees.
- Ontinuous degrees.
- The n-c.e.a degrees.
- Joins of *K*-pairs.
- Solution The degree of the language of a minimal subshift.
- The degree of the nonzero words in a finitely generated simple group.
- **(2)** The complements of maximal independent subsets for graphs on ω .

The skip operator

The enumeration jump of a set A is $K_A \oplus \overline{K_A}$, where $K_A = \bigoplus_{e < \omega} W_e(A)$.

Definition

The *skip* of a set A is $A^{\diamond} = \overline{K_A}$.

Theorem (Andrews, Ganchev, Kuyper, Lempp, Miller, Soskova, S)

- $A \leq_e B$ if and only if $A^\diamond \leq_1 B^\diamond$.
- Every degree above $\mathbf{0}'_e$ is the skip of some enumeration degree.
- **a** is cototal if and only if $\mathbf{a} \leq \mathbf{a}^{\diamond}$ if and only if $\mathbf{a}^{\diamond} = \mathbf{a}'$.
- The double skip has a fixed point: there are degrees {a, b}, such that a = b^{\(\phi\)} and b = a^{\(\phi\)}.

The skip operator restricted to \mathcal{K} -pairs is first order definable: if $\{\mathbf{a}, \mathbf{b}\}$ is a \mathcal{K} -pair then $\mathbf{a}^{\diamond} = \mathbf{b} \vee \mathbf{0}'_{e}$.

Thank you!