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The total enumeration degrees

The structure of the enumeration degrees is an upper semi lattice with
jump operation which extends the structure of the Turing degrees. It
arises naturally from enumeration reducibility, a notion introduced by
Friedberg and Rogers in 1959.

The total enumeration degrees are the image of the Turing degrees
under their natural, structure preserving embedding into the
enumeration degrees.

Question (Rogers)
Is the set of total enumeration degrees first order definable in the
structure of the enumeration degrees?
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Enumeration reducibility
Reducibility Oracle set B Reduced set A

A ≤T B Complete information Complete information

A c.e. in B Complete information Positive information

A ≤e B Positive information Positive information

Definition
A ≤e B if there is a c.e. set W , such that

A = W (B) = {x | ∃D(〈x ,D〉 ∈W & D ⊆ B)} .

Example: A ≤e A via W = {〈n, {n}〉 | n ∈ ω}.
if A is c.e. then A ≤e B via W = {〈x , ∅〉 | x ∈ A}.
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The structure of the enumeration degrees

A ≡e B if A ≤e B and B ≤e A.

The enumeration degree of a set A is de(A) = {B | A ≡e B}.
de(A) ≤ de(B) iff A ≤e B.

The least element: 0e = de(∅), the set of all c.e. sets.

The least upper bound: de(A) ∨ de(B) = de(A⊕ B).
The enumeration jump: de(A)′ = de(KA ⊕ KA), where
KA = {〈e, x〉 | x ∈We(A)}.
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What connects DT and De

Proposition

A ≤T B ⇔ A⊕ A is c.e. in B ⇔ A⊕ A ≤e B ⊕ B.

A set A is total if A ≡e A⊕ A. An enumeration degree is total if it
contains a total set. The set of total degrees is denoted by T OT .

Example: If f is a total function then Gf is a total set.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order, the least upper bound and the jump operation.

(DT ,≤T ,∨,′ ,0T ) ∼= (T OT ,≤e,∨,′ ,0e) ⊆ (De,≤e,∨,′ ,0e)
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Semi-computable sets
Definition (Jockusch)
A is semi-computable if there is a total computable function sA, such
that sA(x , y) ∈ {x , y} and if {x , y} ∩ A 6= ∅ then sA(x , y) ∈ A.

Example:
A left cut in a computable linear ordering is a semi-computable set.
In particular for any set A consider LA = {σ ∈ 2<ω | σ ≤ A}.
Every nonzero Turing degree contains a semi-computable set that
is not c.e. or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)
If A is a semi-computable set then for every X:

(de(X ) ∨ de(A)) ∧ (de(X ) ∨ de(A)) = de(X ).

If X is not computable then there is a semi-computable set A with
de(X ⊕ X ) = de(A) ∨ de(A).
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Kalimullin pairs

Definition (Kalimullin)
A pair of sets A,B are called a K-pair if there is a c.e. set W , such that
A× B ⊆W and A× B ⊆W .

Example:
1 A trivial example is {A,U}, where U is c.e: W = N× U.
2 If A is a semi-computable set, then {A,A} is a K-pair:

W = {(m,n) | sA(m,n) = m}.

Theorem (Kalimullin)
A pair of sets A,B is a K-pair if and only if their enumeration degrees a
and b satisfy:

K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).
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Definability of the enumeration jump

Theorem (Kalimullin)
0′

e is the largest degree which can be represented as the least upper
bound of a triple a,b,c, such that K(a,b), K(b,c) and K(c,a).

Corollary (Kalimullin)
1 The enumeration jump is first order definable in De.
2 The set of total enumeration degrees above 0′

e is first order
definable in De.
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Definability in the local structure of the enumeration
degrees

Theorem (Ganchev, S)
The class of K-pairs below 0′

e is first order definable in De(≤ 0′
e). . .

Theorem (Cai, Lempp, Miller, S)
. . . by the same formula as in De.

Theorem (Ganchev, S)
The classes of the:

1 Downwards properly Σ0
2 enumeration degrees;

2 Upwards properly Σ0
2 enumeration degrees;

3 Low enumeration degrees;
are first order definable in De(≤ 0′

e).
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Maximal K-pairs

Definition
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and
b ≤ d, we have that a = c and b = d.

Example: A semi-computable set and its complement form a maximal
K-pair. Total enumeration degrees are joins of maximal K-pairs.

Theorem (Ganchev, S)
If {A,B} is a nontrivial K-pair in De(≤ 0′

e) then there is a
semi-computable set C, such that A ≤e C and B ≤e C.

Corollary
In De(≤ 0′

e) a nonzero degree is total if and only if it is the least upper
bound of a maximal K-pair.
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Defining total enumeration degrees in De

Theorem (Cai, Ganchev, Lempp, Miller, S)
If {A,B} is a nontrivial K-pair in De then there is a semi-computable
set C, such that A ≤e C and B ≤e C.

Proof flavor: Let W be a c.e. set witnessing that a pair of sets {A,B}
forms a nontrivial K-pair.

1 The countable component: we use W to construct an effective
labeling of the computable linear ordering Q.

2 The uncountable component: C will be a left cut in this ordering.

We label elements of Q with the elements of N ∪ N.
The goal: A = {m | ∃q ∈ C(q is labeled by m)} and
B =

{
k | ∃q ∈ C(q is labeled by k)

}
.

While (m, k) /∈W : Q : k m

m /∈ A
k ∈ B
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The relation c.e. in

Definition
A Turing degree a is c.e. in a Turing degree x if some A ∈ a is c.e. in
some X ∈ x.

Recall that ι is the standard embedding of DT into De.

Corollary (Ganchev, S)
Let a and x be Turing degrees such that a is not c.e. Then a is c.e. in x
if and only if there is a maximal K-pair {c,d} such that c ≤e ι(x) and
ι(a) = c ∨ d.
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The images of c.e. degrees

If a ∈ DT is c.e. then for every b we have that a ∨ b is c.e. in b.

Lemma (Cai and Shore)
If a ∈ DT is not c.e and b is 2-generic in a then a ∨ b is not c.e. in b.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The set CE = {ι(a) | a ∈ DT is c.e.} is first order definable in De.

Proof: a is c.e. iff for every b � 0′ we have that a ∨ b is c.e. in b.

Corollary
The image of the relation “ c.e. in ” in the enumeration degrees is first
order definable in De.
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Continuous degrees
Does every continuous function f ∈ C[0,1] have a representation λ of
least Turing degree?

Definition (Miller)
Let {αi}i be a sequence of reals. The e-degree of the set:⊕

i({q ∈ Q | q < αi}⊕ {q ∈ Q | q > αi}) is called a continuous degree.

Theorem (Miller)
1 Every total enumeration degree is continuous.
2 Not every continuous enumeration degrees is total and not every

enumeration degree is continuous.
3 For a,b-total, “b is PA above a” if and only if there is a non total

continuous degree x such that a ≤ x ≤ b.

Question
Are the continuous degrees definable in De?
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Definable functions in the enumeration degrees
The only known definable functions in DT are on a cone: constant
functions and various forms of the jump operator: f (x) = x;
f (x) = x′; f (x) = x(n);f (x) = xω, etc.

The are definable sets of enumeration degrees that are neither
contained in, nor disjoint from a cone: the total enumeration
degrees.

f (x) =

{
x, if x is total;
x′, otherwise.

f (x) =

{
y, if y is the greatest total degree < x;
0e, if there is no such degree.

Question
Is there a neat characterization of the definable functions in the
enumeration degrees in the spirit of Martin’s conjecture?
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The automorphism analysis of the Turing degrees

Theorem (Slaman and Woodin (95))
1 Aut(DT ) is countable, every member has an arithmetically

definable presentation.
2 There is an element g ≤ 0(5) such that {g} is an automorphism

base for DT .
3 Every relation on DT induced by a degree invariant relation

definable in Second order arithmetic is definable in DT from
parameters.

4 Every relation on DT induced by a degree invariant relation
definable in Second order arithmetic and invariant under
automorphisms is definable in DT .

5 Every member of Aut(DT ) is the identity on the cone above 0′′.
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The total degrees as an automorphism base

Theorem (Selman)
A is enumeration reducible to B if and only if
{x ∈ T OT | de(A) ≤ x} ⊇ {x ∈ T OT | de(B) ≤ x}.

Corollary
The total enumeration degrees form a definable automorphism basis
of the enumeration degrees.

If DT is rigid then De is rigid.
The automorphism analysis for the enumeration degrees follows.

The total degrees below 0(5)
e are an automorphism base of De.

Question
Can every automorphism of DT be extended to an automorphism of
De?
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A better automorphism base of De

Work in Progress (Slaman, S)
The set CE is an automorphism base for De.

1 Using parameters we can define a model of arithmeticM and a
function f , such that f (eM) = ι(dT (We)).

2 Every total enumeration degree below 0′
e is uniquely positioned

relative to CE .
3 Using parameters we can define a model of arithmeticM and a

function g, such that g(eM) = ι(dT ({e}0′
)).

4 Using that “c.e. in” is definable we extend f to cover images of
degrees c.e. in and above some total degree below 0′

e, then
extend g to cover all total degrees in the interval [x,x′] for x total
and below 0′

e.
5 Using 2-generic degrees and a few more constructions we extend

g, so that g(eM) = ι(dT ({e}0′′
)).

6 We iterate until we reach the automorphism base below 0(5)
e .
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The end

Thank you!
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