Generic Muchnik reducibility and expansions of the reals

Mariya I. Soskova¹

Sofia University

joint work with U. Andrews, J. Knight, R. Kuyper and J. Miller

¹Supported by Bulgaria National Science Fund.

Capturing the effective content of uncountable structures

If \mathcal{A} and \mathcal{B} are countable structures, then \mathcal{A} is Muchnik reducible to \mathcal{B} (written $\mathcal{A} \leq_w \mathcal{B}$) if every ω -copy of \mathcal{B} computes an ω -copy of \mathcal{A} .

Definition (Schweber)

If \mathcal{A} and \mathcal{B} are (possibly uncountable) structures, then \mathcal{A} is generically Muchnik reducible to \mathcal{B} (written $\mathcal{A} \leq_w^* \mathcal{B}$) if $\mathcal{A} \leq_w \mathcal{B}$ in some forcing extension of the universe in which \mathcal{A} and \mathcal{B} are countable.

It follows from Shoenfield absoluteness that generic Muchnik reducibility is robust: If $\mathcal{A} \leq_w^* \mathcal{B}$, then $\mathcal{A} \leq_w \mathcal{B}$ in *every* forcing extension that makes \mathcal{A} and \mathcal{B} countable.

In particular, for countable structures, $A \leq_w^* B \iff A \leq_w B$.

Main examples

Definition

- Cantor space is the structure C with domain 2^{ω} and predicates $P_n(X)$ that hold if and only if X(n) = 1.
- **2** The ordered field of the reals is the structure $\mathbb{R} = (\mathbb{R}; 0, 1, +, *, <)$.
- **Solution** Baire space is the structure \mathcal{B} with domain ω^{ω} and predicates $P_{n,m}(X)$ that hold if and only if X(n)=m.

Knight, Montalbán and Schweber proved that all these examples have higher complexity than any countable structure.

Further, $\mathcal{C} \leq_w^* \mathbb{R}$. Let \mathcal{I} be the countable Turing ideal of sets from the ground model. Any copy of \mathbb{R} computes a listing of \mathcal{I} . Any listing of \mathcal{I} computes a copy of \mathcal{C} .

$$\mathcal{C} \leq_w^* \mathbb{R}$$

Main examples

Definition

- Cantor space is the structure C with domain 2^{ω} and predicates $P_n(X)$ that hold if and only if X(n) = 1.
- **②** The ordered field of the reals is the structure $\mathbb{R} = (\mathbb{R}; 0, 1, +, *, <)$.
- **Solution** Baire space is the structure \mathcal{B} with domain ω^{ω} and predicates $P_{n,m}(X)$ that hold if and only if X(n) = m.

Igusa, Knight and Downey, Greenberg, J. Miller independently showed that $C <_w^* \mathbb{R}$.

Downey, Greenberg, and J. Miller showed that $\mathbb{R} \equiv_w^* \mathcal{B}$. Computing a copy of \mathcal{B} is equivalent to computing a listing of the functions in \mathcal{I} .

 $\mathcal I$ is a countable Scott ideal. There is a listing of the sets in $\mathcal I$ that does not compute a listing of the functions in $\mathcal I$.

$$\mathcal{C} <_w^* \mathcal{B} \equiv_w^* \mathbb{R}$$

Expansions of \mathbb{R}

Definition

Let f be any function on the reals. \mathbb{R}_f is the ordered field of the reals \mathbb{R} augmented by the function f.

Igusa, Knight, and Schweber investigated the Muchnik degree of expansions of the reals. The proved that $\mathbb{R}_{e^x} \equiv_w^* \mathbb{R}$. The main tool that they use is o-minimality. Building on that, they show that for every analytical f we have that $\mathbb{R}_f \equiv_w^* \mathbb{R}$.

Is there a continuous expansion of $\mathbb R$ that has strictly higher generic Muchnick degree than $\mathbb R$?

Theorem (AKKMS)

Any expansion of $\mathbb R$ by countably many continuous functions f is generically Muchnik equivalent to $\mathbb R$.

The running jump

Definition

Let $\{X_n\}_{n\in\omega}$ be a sequence of sets. The corresponding running jump is the sequence $\left\{\left(\bigoplus_{i\leq n}X_i\right)'\right\}_{n\in\omega}$.

Note that computing the running jump is equivalent to uniformly being able to compute the jump of any join of members of the list.

Suppose we can compute a listing of $\mathcal{I}(\text{the ground model elements of }2^\omega)$ along with running jump.

For $X \in 2^{\omega}$, let 0.X denote the real number in [0,1] with binary expansion X. For $z \in \mathbb{Z}$, let z.X denote z + 0.X. Using $(X_0 \oplus X_1)'$, we can check if $z_0.X_0 = z_1.X_1$.

A continuous function f (from the ground model) can be coded by a parameter $P \in \mathcal{I}$. Using $(P \oplus X_0 \oplus X_1)'$, we can check if $f(z_0.X_0) = z_1.X_1$.

We can compute a copy of \mathbb{R}_f

Listing of \mathcal{I} with the running jump

Lemma (AKKMS)

Let \mathcal{I} be a countable jump ideal. Every listing of the functions in \mathcal{I} computes a listing of the sets in \mathcal{I} along with the running jump.

To compute the next set in the running jump, we guess a function in \mathcal{I} that majorizes the corresponding settling-time function. If we are wrong, there is an injury (and a new guess).

When an injury occurs, we use the low basis theorem to "patch up" the listing consistently and keep control of the jumps.

Note:

- ullet We need to start with a listing of the functions in $\mathcal I$ so that we can search for settling-time functions.
- We can only hope to compute the running jump for a listing of the sets in
 \(\mathcal{I}\). (We can't use the low basis theorem in Baire space.)

Continuous expansions of C

Theorem (AKKMS)

Any expansion of C by countably many continuous functions is generically Muchnik reducible to B.

But even in some simple cases, they are equivalent.

Let $\sigma: \omega^{\omega} \to \omega^{\omega}$ denote the shift: i.e., $\sigma(n_0 n_1 n_2 n_3 \cdots) = n_1 n_2 n_3 \cdots$. Let $\oplus: \omega^{\omega} \times \omega^{\omega} \to \omega^{\omega}$ denote the join. Both are continuous and both restrict

to functions on 2^{ω} .

Proposition (AKKMS)

$$(\mathcal{C}, \sigma) \equiv_w^* (\mathcal{C}, \oplus) \equiv_w^* \mathcal{B}.$$

Theorem (Andrews, J. Miller, Schweber, S)

Every continuous expansion of \mathcal{C} is either generically Muchnick equivalent to \mathcal{C} or to \mathcal{B} .

Continuous expansions of \mathcal{B}

 $Z = \{(f \oplus g) \oplus h \colon h \text{ is the settling-time function witnessing that } g = f'\}$ is a closed subset of ω^{ω} .

Let F be a continuous function on ω^{ω} such that $Z = F^{-1}(0^{\omega})$.

Theorem (AKKMS)

$$(\mathcal{B}, \oplus, F) \equiv_w^* (\mathcal{B}, \oplus,') \equiv_w^* (\mathcal{C}, \oplus,').$$

Let \mathcal{I} be the countable jump ideal of ground model sets after collapse. The following are equivalent for a degree \mathbf{d} :

- **1** d computes a copy of $(\mathcal{C}, \oplus, ')$,
- $oldsymbol{0}$ d computes a listing of the sets in \mathcal{I} along with join and jump as functions on indices,
- \odot d computes a listing of the functions in \mathcal{I} along with the running jump.

Hyper-Scott ideals

Definition

An ideal \mathcal{I} is a hyper-Scott ideal if whenever a tree $T \subseteq \omega^{<\omega}$ in \mathcal{I} has an infinite path, it has an infinite path in \mathcal{I} .

If \mathcal{I} is the Turing ideal of sets from the ground model, then it is a hyper-Scott ideal.

Theorem (AKKMS)

If $\mathcal I$ is a countable hyper-Scott ideal then there is a listing of the functions in $\mathcal I$ that does not compute a listing of the functions in $\mathcal I$ along with join and jump as functions on indices.

$$\mathcal{C} <_w^* \quad \mathbb{R} \equiv_w^* \mathbb{R}_f \equiv_w^* \mathcal{B} <_w^* \quad (\mathcal{C}, \oplus, ').$$

The Borel degree

Definition

Let (D, E, f_1, f_2, \dots) be a structure, such that $D \subseteq \omega^{\omega}$ is Borel, E is a Borel equivalence relation on D, and f_1, f_2, \dots are Borel functions on D that are compatible with E. The induced structure with domain D/E is called a Borel structure.

Examples: the Turing degrees with join and jump, the automorphism group of any countable structure.

Theorem (AKKMS)

Every Borel structure is $\leq_w^* (\mathcal{C}, \oplus, ')$. We call the degree of $(\mathcal{C}, \oplus, ')$ the Borel degree.

Theorem (Andrews, J. Miller, Schweber, S)

Every continuous expansion of \mathcal{B} is either generically Muchnick equivalent to \mathcal{B} or its degree is the Borel degree.

The end

Thank you!