
Generic Muchnik reducibility
and expansions of the reals

Mariya I. Soskova1

Sofia University

joint work with U. Andrews, J. Knight, R. Kuyper and J. Miller

1Supported by Bulgaria National Science Fund.
1 / 12



Capturing the effective content of uncountable structures

If A and B are countable structures, then A is Muchnik reducible to B
(written A ≤w B) if every ω-copy of B computes an ω-copy of A.

Definition (Schweber)
If A and B are (possibly uncountable) structures, then A is generically
Muchnik reducible to B (written A ≤∗w B) if A ≤w B in some forcing
extension of the universe in which A and B are countable.

It follows from Shoenfield absoluteness that generic Muchnik reducibility is
robust: If A ≤∗w B, then A ≤w B in every forcing extension that makes A
and B countable.

In particular, for countable structures, A ≤∗w B ⇐⇒ A ≤w B.
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Main examples

Definition
1 Cantor space is the structure C with domain 2ω and predicates Pn(X)

that hold if and only if X(n) = 1.
2 The ordered field of the reals is the structure R = (R; 0, 1,+, ∗, <).
3 Baire space is the structure B with domain ωω and predicates Pn,m(X)

that hold if and only if X(n) = m.

Knight, Montalbán and Schweber proved that all these examples have higher
complexity than any countable structure.

Further, C ≤∗w R. Let I be the countable Turing ideal of sets from the ground
model. Any copy of R computes a listing of I. Any listing of I computes a
copy of C.

C ≤∗w R
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Main examples
Definition

1 Cantor space is the structure C with domain 2ω and predicates Pn(X)
that hold if and only if X(n) = 1.

2 The ordered field of the reals is the structure R = (R; 0, 1,+, ∗, <).
3 Baire space is the structure B with domain ωω and predicates Pn,m(X)

that hold if and only if X(n) = m.

Igusa, Knight and Downey, Greenberg, J. Miller independently showed that
C <∗w R.
Downey, Greenberg, and J. Miller showed that R ≡∗w B. Computing a copy of
B is equivalent to computing a listing of the functions in I.
I is a countable Scott ideal.There is a listing of the sets in I that does not
compute a listing of the functions in I.

C <∗w B ≡∗w R
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Expansions of R

Definition
Let f be any function on the reals. Rf is the ordered field of the reals R
augmented by the function f .

Igusa, Knight, and Schweber investigated the Muchnik degree of expansions
of the reals. The proved that Rex ≡∗w R. The main tool that they use is
o-minimality. Building on that, they show that for every analytical f we have
that Rf ≡∗w R.

Is there a continuous expansion of R that has strictly higher generic Muchnick
degree than R?

Theorem (AKKMS)
Any expansion of R by countably many continuous functions f is generically
Muchnik equivalent to R.
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The running jump
Definition
Let {Xn}n∈ω be a sequence of sets. The corresponding running jump is the

sequence
{
(
⊕

i≤nXi

)′}
n∈ω

.

Note that computing the running jump is equivalent to uniformly being able to
compute the jump of any join of members of the list.

Suppose we can compute a listing of I(the ground model elements of 2ω)
along with running jump.
For X ∈ 2ω, let 0.X denote the real number in [0, 1] with binary expansion
X . For z ∈ Z, let z.X denote z + 0.X . Using (X0 ⊕X1)

′, we can check if
z0.X0 = z1.X1.
A continuous function f (from the ground model) can be coded by a
parameter P ∈ I. Using (P ⊕X0⊕X1)

′, we can check if f(z0.X0) = z1.X1.
We can compute a copy of Rf
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Listing of I with the running jump

Lemma (AKKMS)
Let I be a countable jump ideal. Every listing of the functions in I computes
a listing of the sets in I along with the running jump.

To compute the next set in the running jump, we guess a function in I that
majorizes the corresponding settling-time function. If we are wrong, there is
an injury (and a new guess).

When an injury occurs, we use the low basis theorem to “patch up” the listing
consistently and keep control of the jumps.
Note:

We need to start with a listing of the functions in I so that we can search
for settling-time functions.

We can only hope to compute the running jump for a listing of the sets in
I. (We can’t use the low basis theorem in Baire space.)
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Continuous expansions of C
Theorem (AKKMS)
Any expansion of C by countably many continuous functions is generically
Muchnik reducible to B.

But even in some simple cases, they are equivalent.

Let σ : ωω → ωω denote the shift: i.e., σ(n0n1n2n3 · · · ) = n1n2n3 · · · .
Let ⊕ : ωω × ωω → ωω denote the join. Both are continuous and both restrict
to functions on 2ω.

Proposition (AKKMS)
(C, σ) ≡∗w (C,⊕) ≡∗w B.

Theorem (Andrews, J. Miller, Schweber, S)
Every continuous expansion of C is either generically Muchnick equivalent to
C or to B.

8 / 12



Continuous expansions of B

Z = {(f ⊕ g)⊕ h : h is the settling-time function witnessing that g = f ′}
is a closed subset of ωω.

Let F be a continuous function on ωω such that Z = F−1(0ω).

Theorem (AKKMS)
(B,⊕, F ) ≡∗w (B,⊕,′ ) ≡∗w (C,⊕,′ ).
Let I be the countable jump ideal of ground model sets after collapse. The
following are equivalent for a degree d:

1 d computes a copy of (C,⊕, ′),
2 d computes a listing of the sets in I along with join and jump as

functions on indices,
3 d computes a listing of the functions in I along with the running jump.
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Hyper-Scott ideals

Definition
An ideal I is a hyper-Scott ideal if whenever a tree T ⊆ ω<ω in I has an
infinite path, it has an infinite path in I.

If I is the Turing ideal of sets from the ground model, then it is a hyper-Scott
ideal.

Theorem (AKKMS)
If I is a countable hyper-Scott ideal then there is a listing of the functions in I
that does not compute a listing of the functions in I along with join and jump
as functions on indices.

C <∗w R ≡∗w Rf ≡∗w B <∗w (C,⊕,′ ).
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The Borel degree
Definition
Let (D,E, f1, f2, . . . ) be a structure, such that D ⊆ ωω is Borel, E is a Borel
equivalence relation on D, and f1, f2, . . . are Borel functions on D that are
compatible with E. The induced structure with domain D/E is called a Borel
structure.

Examples: the Turing degrees with join and jump, the automorphism group of
any countable structure.

Theorem (AKKMS)
Every Borel structure is ≤∗w (C,⊕, ′). We call the degree of (C,⊕, ′) the
Borel degree.

Theorem (Andrews, J. Miller, Schweber, S)
Every continuous expansion of B is either generically Muchnick equivalent to
B or its degree is the Borel degree.
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The end

Thank you!
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