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Preliminaries: Enumeration reducibility

Definition
A ≤e B if and only if there is a c.e. set W , such that x ∈ A if and only if
∃u(〈x ,u〉 ∈W ∧ Du ⊆ B).

De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation and
least element.
Note that A ≤T B if and only if A⊕ A ≤e B ⊕ B.

Proposition

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as T OT = ι(DT ).
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Three examples

1 Computable model theory: degree spectra of torsion free abelian
groups of rank 1.

2 Definability of the jump operation.
I Slaman and Shore: definability in DT .
I Kalimullin: definability in De.

3 Local definability.
I Shore: Biinterpretability up to double jump in the ∆0

2 Turing degree
degrees. The jump classes Hn and Ln+1 are definable.

I Ganchev and S: The total degrees and L1 are definable in the local
structure of the Σ0

2 enumeration degrees.
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DT : Coles, Downey and Slaman: “Every set has a
least jump enumeration”

Given a set A let C(A) = {X | A is c.e. in X}.

Theorem (Richter)
There is a set A, such that C(A) does not have a member of least
degree.

Theorem (Coles, Downey, Slaman)
For every sets A the set: C(A)′ = {X ′ | A is c.e. in X} has a member of
least degree: c′µ(A).

A set of the degree c′µ(A) is obtained using forcing with finite
conditions.
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Motivation: torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 G is (isomorphic to) a subgroup
of (Q,+,=).

Definition
Let p be a prime number and a ∈ G.

hp(a) =

{
the largest k , such that pk |a in G;
∞, if ∀k(pk |a in G) .

Here pk |a in G if there exists b ∈ G such that pk .b = a.

If a,b 6= 0 then for all but finitely many p, hp(a) = hp(b).
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The type of G

Definition
The characteristic of an element a ∈ G is the sequence:

χ(a) = (hp0(a),hp1(a), . . .hpn (a), . . . )

So if a,b 6= 0 then χ(a) =∗ χ(b).
The type of G, denoted χ(G) is the equivalence class of χ(a) for any
a 6= 0 in G.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)
Two torsion-free abelian groups of rank 1 are isomorphic if and only if
they have the same type.
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The standard type of G

Definition
Let S(G) = {〈i , j〉 | j ≤ the i-th element of χ(G)}.

Note that every S can be coded as (is m-equivalent to)
{〈i , j〉 | j = 0 ∨ i ∈ S & j = 1}.

Theorem (Downey, Jockusch)
The degree spectrum of G: {dT (H) | H ∼= G} is precisely
{degT (Y ) | S(G) is c.e. in Y}.
c′µ(A) exists for all A if and only if for every torsion-free abelian group G
the jump spectrum of G, the set {dT (H)′ | H ∼= G} has a least element.

Corollary (Coles, Downey, Slaman)
Every every torsion-free abelian group of rank 1 G has a jump degree.
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More connections between DT and De

B is c.e. in A if and only if B ≤e A⊕ A.
Selman’s Theorem: A ≤e B if and only if

{X | B is c.e. in X} ⊆ {X | A is c.e. in X} .{
de(X ⊕ X ) | B ≤e X ⊕ X

}
⊆
{

de(X ⊕ X ) | A ≤e X ⊕ X
}

Recall that de(A)′ = de(KA ⊕ KA) is by definition total.

Theorem (Soskov’s JIT)
For every degree x exists a total degree a ≥ x and a′ = x′.

Theorem (McEvoy’s JIT)
For every total q ≥ 0′e, there is a non-total degree a such that a′ = q.
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De: Soskov “Degree spectra and co-spectra of
structures”

Consider a structure A = (N,R1 . . .Rk ).

Definition
An enumeration is any bijective mapping f : N→ N.

If R is an n-ary relation then
f−1(R) = {〈x1, . . . , xn〉 | (f (x1), . . . f (xn)) ∈ R}.
The pullback of A is the set f−1(A) = f−1(R1)⊕ f−1(R2) · · · ⊕ f−1(Rk ).

Consider the structure A+ = (N,R1,R1 . . .Rk ,Rk ).
Then f−1(A+) is total set and corresponds to an isomorphic
presentation of A with isomorphism induced by f and atomic
diagram e-equivalent f−1(A+).
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Enumeration degree spectrum

Fix A = (N,R1 . . .Rk ).

Definition
The e-degree spectrum of A is
DSe(A) =

{
de(f−1(A)) | f in an enumeration

}
.

If DSe(A) has a least member, it is the (enumeration) degree of A.

In fact DSe(A+) = {ι(a) | a ∈ DST (A)}.
A has T-degree a if and only if A+ has e-degree ι(a).
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Co-spectrum

Definition
The co-spectrum of A is the set CSe(A) = {b | ∀a ∈ DSe(A)(b ≤ a)}.
If CSe(A) has a largest element, then it is called the co-degree of A.

If A has degree a then it has co-degree a.
There are examples of structures which have a co-degree but do
not have a degree.

Theorem (Soskov)
Every countable ideal of enumeration degrees can be represented as
the co-spectrum of a structure.
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The case of principal ideals

Let (G,+,=) be a torsion-free abelian group of rank 1.

Note that for every enumeration f , f−1(G) ≡e f−1(G+).

Recall that the degree spectrum of G: {dT (H) | H ∼= G} is precisely
{degT (Y ) | S(G) is c.e. in Y}.

So the enumeration degree spectrum of G is
DSe(G) = {a | a ∈ T OT & de(S(G)) ≤e a}.

Denote de(S(G)) by sG-the type degree of G.
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TFA groups in the e-degrees

DSe(G) = {a | a ∈ T OT & sG ≤ a}

The co-spectrum of G is CS(G) = {b | b ≤ sG}. Hence G always
has co-degree: sG. (by Selman’s Theorem.)
Every principal ideal of e-degrees can be represented as the
co-spectrum of a torsion-free abelian group of rank 1. (as every
set can be coded as S(G).)
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TFA groups in the e-degrees

DSe(G) = {a | a ∈ T OT & sG ≤ a}

G has an e-degree (and hence a T-degree) if and only if sG is total.
This e-degree is precisely sG.
G always has first jump degree (both e- and T-) and it is s′G.

Follows from the monotonicity of the jump and Soskov’s JIT: There
is a total degree a ≥ sG such that a′ = s′G.
Every total degree a ≥ 0′e is a proper jump degree for some
TFAG1 G.

By McEvoy’s JIT: Let s be a non-total degree with s′ = a and G be
a group with sG = s
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The end

Thank you!
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