Extensions of the Turing model for relative definability

Mariya I. Soskova¹

Faculty of Mathematics and Informatics Sofia University

March 17, 2012

¹Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework Programme

Mariya I. Soskova (FMI)

Extensions of the Turing model

March 17, 2012 1 / 15

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $x \in A$ if and only if $\exists u(\langle x, u \rangle \in W \land D_u \subseteq B)$.

 $\mathcal{D}_e = \langle D_e, \leq, \lor, ', \mathbf{0}_e \rangle$ is an upper semi-lattice with jump operation and least element. Note that $A \leq_{\mathcal{T}} B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $\mathcal{TOT} = \iota(D_T)$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $x \in A$ if and only if $\exists u(\langle x, u \rangle \in W \land D_u \subseteq B)$.

$\mathcal{D}_e = \langle D_e, \leq, \lor, ', \mathbf{0}_e \rangle$ is an upper semi-lattice with jump operation and least element.

Note that $A \leq_T B$ if and only if $A \oplus A \leq_e B \oplus B$.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $x \in A$ if and only if $\exists u(\langle x, u \rangle \in W \land D_u \subseteq B)$.

 $\mathcal{D}_e = \langle D_e, \leq, \lor, ', \mathbf{0}_e \rangle$ is an upper semi-lattice with jump operation and least element. Note that $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $x \in A$ if and only if $\exists u(\langle x, u \rangle \in W \land D_u \subseteq B)$.

 $\mathcal{D}_e = \langle D_e, \leq, \lor, ', \mathbf{0}_e \rangle$ is an upper semi-lattice with jump operation and least element. Note that $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

Computable model theory: degree spectra of torsion free abelian groups of rank 1.

- Oefinability of the jump operation.
 - Slaman and Shore: definability in \mathcal{D}_T .
 - Kalimullin: definability in \mathcal{D}_e .
- Local definability.
 - Shore: Biinterpretability up to double jump in the Δ_2^0 Turing degree degrees. The jump classes H_n and L_{n+1} are definable.
 - Ganchev and S: The total degrees and L₁ are definable in the local structure of the Σ₂⁰ enumeration degrees.

A (10) A (10)

Computable model theory: degree spectra of torsion free abelian groups of rank 1.

2 Definability of the jump operation.

- Slaman and Shore: definability in \mathcal{D}_T .
- Kalimullin: definability in \mathcal{D}_e .
- Local definability.
 - Shore: Biinterpretability up to double jump in the Δ_2^0 Turing degree degrees. The jump classes H_n and L_{n+1} are definable.
 - Ganchev and S: The total degrees and L₁ are definable in the local structure of the Σ⁰₂ enumeration degrees.

A (10) A (10)

- Computable model theory: degree spectra of torsion free abelian groups of rank 1.
- 2 Definability of the jump operation.
 - Slaman and Shore: definability in $\mathcal{D}_{\mathcal{T}}$.
 - Kalimullin: definability in D_e

Local definability.

- Shore: Biinterpretability up to double jump in the Δ_2^0 Turing degree degrees. The jump classes H_n and L_{n+1} are definable.
- Ganchev and S: The total degrees and L₁ are definable in the local structure of the Σ⁰₂ enumeration degrees.

(人間) トイヨト イヨト

- Computable model theory: degree spectra of torsion free abelian groups of rank 1.
- 2 Definability of the jump operation.
 - Slaman and Shore: definability in $\mathcal{D}_{\mathcal{T}}$.
 - Kalimullin: definability in \mathcal{D}_e .

Local definability.

- ▶ Shore: Biinterpretability up to double jump in the Δ_2^0 Turing degree degrees. The jump classes H_n and L_{n+1} are definable.
- Ganchev and S: The total degrees and L₁ are definable in the local structure of the Σ⁰₂ enumeration degrees.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Computable model theory: degree spectra of torsion free abelian groups of rank 1.
- 2 Definability of the jump operation.
 - Slaman and Shore: definability in $\mathcal{D}_{\mathcal{T}}$.
 - Kalimullin: definability in \mathcal{D}_e .
- Local definability.
 - Shore: Biinterpretability up to double jump in the Δ⁰₂ Turing degree degrees. The jump classes H_n and L_{n+1} are definable.
 - Ganchev and S: The total degrees and L₁ are definable in the local structure of the Σ⁰₂ enumeration degrees.

A (10) A (10)

- Computable model theory: degree spectra of torsion free abelian groups of rank 1.
- 2 Definability of the jump operation.
 - Slaman and Shore: definability in $\mathcal{D}_{\mathcal{T}}$.
 - Kalimullin: definability in \mathcal{D}_e .
- Local definability.
 - Shore: Biinterpretability up to double jump in the Δ⁰₂ Turing degree degrees. The jump classes H_n and L_{n+1} are definable.
 - Ganchev and S: The *total* degrees and L₁ are definable in the local structure of the Σ⁰₂ enumeration degrees.

A (10) A (10)

$\mathcal{D}_{\mathcal{T}}$: Coles, Downey and Slaman: "Every set has a least jump enumeration"

Given a set A let $C(A) = \{X \mid A \text{ is c.e. in } X\}.$

Theorem (Richter)

There is a set A, such that C(A) does not have a member of least degree.

Theorem (Coles, Downey, Slaman)

For every sets A the set: $C(A)' = \{X' \mid A \text{ is c.e. in } X\}$ has a member of least degree: $c'_{\mu}(A)$.

A set of the degree $c'_{\mu}(A)$ is obtained using forcing with finite conditions.

< ロ > < 同 > < 回 > < 回 >

$\mathcal{D}_{\mathcal{T}}$: Coles, Downey and Slaman: "Every set has a least jump enumeration"

Given a set A let $C(A) = \{X \mid A \text{ is c.e. in } X\}.$

Theorem (Richter)

There is a set A, such that C(A) does not have a member of least degree.

Theorem (Coles, Downey, Slaman)

For every sets A the set: $C(A)' = \{X' \mid A \text{ is c.e. in } X\}$ has a member of least degree: $c'_{\mu}(A)$.

A set of the degree $c'_{\mu}(A)$ is obtained using forcing with finite conditions.

イロト イヨト イヨト イヨト

$\mathcal{D}_{\mathcal{T}}$: Coles, Downey and Slaman: "Every set has a least jump enumeration"

Given a set A let $C(A) = \{X \mid A \text{ is c.e. in } X\}.$

Theorem (Richter)

There is a set A, such that C(A) does not have a member of least degree.

Theorem (Coles, Downey, Slaman)

For every sets A the set: $C(A)' = \{X' \mid A \text{ is c.e. in } X\}$ has a member of least degree: $c'_{\mu}(A)$.

A set of the degree $c'_{\mu}(A)$ is obtained using forcing with finite conditions.

Motivation: torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let *p* be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} \text{ the largest } k, & \text{ such that } p^k | a \text{ in } G; \\ \infty, & \text{ if } \forall k(p^k | a \text{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

If $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

A (B) > A (B) > A (B)

Motivation: torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let p be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} \text{ the largest } k, & \text{ such that } p^k | a \text{ in } G; \\ \infty, & \text{ if } orall k(p^k | a \text{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

If $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation: torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let p be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} ext{ the largest } k, & ext{ such that } p^k | a ext{ in } G; \\ \infty, & ext{ if } orall k(p^k | a ext{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

If $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

A (10) A (10) A (10) A

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{\rho_0}(a), h_{\rho_1}(a), \dots h_{\rho_n}(a), \dots)$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of G, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in G.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{p_0}(a), h_{p_1}(a), \dots h_{p_n}(a), \dots)$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$.

The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{p_0}(a), h_{p_1}(a), \dots h_{p_n}(a), \dots)$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{p_0}(a), h_{p_1}(a), \dots h_{p_n}(a), \dots)$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{p_0}(a), h_{p_1}(a), \dots h_{p_n}(a), \dots)$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Definition Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Note that every *S* can be coded as (is *m*-equivalent to) $\{\langle i, j \rangle \mid j = 0 \lor i \in S \& j = 1\}.$

Theorem (Downey, Jockusch)

The degree spectrum of G: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

 $c'_{\mu}(A)$ exists for all A if and only if for every torsion-free abelian group G the jump spectrum of G, the set $\{d_T(H)' \mid H \cong G\}$ has a least element.

Corollary (Coles, Downey, Slaman)

Every every torsion-free abelian group of rank 1 G has a jump degree.

< ロ > < 同 > < 回 > < 回 >

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Note that every *S* can be coded as (is *m*-equivalent to) $\{\langle i, j \rangle \mid j = 0 \lor i \in S \& j = 1\}.$

Theorem (Downey, Jockusch)

The degree spectrum of G: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

 $c'_{\mu}(A)$ exists for all A if and only if for every torsion-free abelian group G the jump spectrum of G, the set $\{d_T(H)' \mid H \cong G\}$ has a least element.

Corollary (Coles, Downey, Slaman)

Every every torsion-free abelian group of rank 1 G has a jump degree.

イロト イポト イヨト イヨト

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Note that every *S* can be coded as (is *m*-equivalent to) $\{\langle i, j \rangle \mid j = 0 \lor i \in S \& j = 1\}.$

Theorem (Downey, Jockusch)

The degree spectrum of G: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

 $c'_{\mu}(A)$ exists for all A if and only if for every torsion-free abelian group G the jump spectrum of G, the set $\{d_T(H)' \mid H \cong G\}$ has a least element.

Corollary (Coles, Downey, Slaman)

Every every torsion-free abelian group of rank 1 G has a jump degree.

イロト イポト イヨト イヨト

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Note that every *S* can be coded as (is *m*-equivalent to) $\{\langle i, j \rangle \mid j = 0 \lor i \in S \& j = 1\}.$

Theorem (Downey, Jockusch)

The degree spectrum of G: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

 $c'_{\mu}(A)$ exists for all A if and only if for every torsion-free abelian group G the jump spectrum of G, the set $\{d_T(H)' \mid H \cong G\}$ has a least element.

Corollary (Coles, Downey, Slaman)

Every every torsion-free abelian group of rank 1 G has a jump degree.

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Note that every *S* can be coded as (is *m*-equivalent to) $\{\langle i, j \rangle \mid j = 0 \lor i \in S \& j = 1\}.$

Theorem (Downey, Jockusch)

The degree spectrum of G: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

 $c'_{\mu}(A)$ exists for all A if and only if for every torsion-free abelian group G the jump spectrum of G, the set $\{d_T(H)' \mid H \cong G\}$ has a least element.

Corollary (Coles, Downey, Slaman)

Every every torsion-free abelian group of rank 1 G has a jump degree.

• *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.

• Selman's Theorem: $A \leq_e B$ if and only if

 $\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$

 $\left\{ d_e(X \oplus \overline{X}) \mid B \leq_e X \oplus \overline{X} \right\} \subseteq \left\{ d_e(X \oplus \overline{X}) \mid A \leq_e X \oplus \overline{X} \right\}$

Recall that $d_e(A)' = d_e(K_A \oplus \overline{K_A})$ is by definition total.

Theorem (Soskov's JIT)

For every degree **x** exists a total degree $\mathbf{a} \ge \mathbf{x}$ and $\mathbf{a}' = \mathbf{x}'$.

Theorem (McEvoy's JIT)

For every total $\mathbf{q} \geq \mathbf{0}'_{e}$, there is a non-total degree **a** such that $\mathbf{a}' = \mathbf{q}$.

< ロ > < 同 > < 回 > < 回 >

- *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.
- Selman's Theorem: $A \leq_e B$ if and only if

$$\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$$
$$\left\{d_e(X \oplus \overline{X}) \mid B \leq_e X \oplus \overline{X}\right\} \subseteq \left\{d_e(X \oplus \overline{X}) \mid A \leq_e X \oplus \overline{X}\right\}$$

Recall that $d_e(A)' = d_e(K_A \oplus \overline{K_A})$ is by definition total.

Theorem (Soskov's JIT)

For every degree **x** exists a total degree $\mathbf{a} \ge \mathbf{x}$ and $\mathbf{a}' = \mathbf{x}'$.

Theorem (McEvoy's JIT)

For every total $\mathbf{q} \geq \mathbf{0}'_{e}$, there is a non-total degree **a** such that $\mathbf{a}' = \mathbf{q}$.

4 D N 4 B N 4 B N 4 B N

- *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.
- Selman's Theorem: $A \leq_e B$ if and only if

$$\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$$
$$\left[d_e(X \oplus \overline{X}) \mid B \leq_e X \oplus \overline{X}\right] \subseteq \left\{d_e(X \oplus \overline{X}) \mid A \leq_e X \oplus \overline{X}\right\}$$

Recall that $d_e(A)' = d_e(K_A \oplus \overline{K_A})$ is by definition total.

Theorem (Soskov's JIT)

For every degree **x** exists a total degree $\mathbf{a} \ge \mathbf{x}$ and $\mathbf{a}' = \mathbf{x}'$.

Theorem (McEvoy's JIT)

For every total $\mathbf{q} \geq \mathbf{0}'_{e}$, there is a non-total degree **a** such that $\mathbf{a}' = \mathbf{q}$.

4 D N 4 B N 4 B N 4 B N

- *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.
- Selman's Theorem: $A \leq_e B$ if and only if

$$\{X \mid B ext{ is c.e. in } X\} \subseteq \{X \mid A ext{ is c.e. in } X\}.$$

 $d_e(X \oplus \overline{X}) \mid B \leq_e X \oplus \overline{X} \Big\} \subseteq \Big\{ d_e(X \oplus \overline{X}) \mid A \leq_e X \oplus \overline{X} \Big\}$

Recall that $d_e(A)' = d_e(K_A \oplus \overline{K_A})$ is by definition total.

Theorem (Soskov's JIT)

For every degree **x** exists a total degree $\mathbf{a} \ge \mathbf{x}$ and $\mathbf{a}' = \mathbf{x}'$.

Theorem (McEvoy's JIT)

For every total ${f q}\geq {f 0}_e'$, there is a non-total degree ${f a}$ such that ${f a}'={f q}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.
- Selman's Theorem: $A \leq_e B$ if and only if

$$\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$$
$$\left\{d_e(X \oplus \overline{X}) \mid B \leq_e X \oplus \overline{X}\right\} \subseteq \left\{d_e(X \oplus \overline{X}) \mid A \leq_e X \oplus \overline{X}\right\}$$

Recall that $d_e(A)' = d_e(K_A \oplus \overline{K_A})$ is by definition total.

Theorem (Soskov's JIT)

For every degree **x** exists a total degree $\mathbf{a} \ge \mathbf{x}$ and $\mathbf{a}' = \mathbf{x}'$.

Theorem (McEvoy's JIT)

For every total $\mathbf{q} \geq \mathbf{0}'_e$, there is a non-total degree **a** such that $\mathbf{a}' = \mathbf{q}$.

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of \mathcal{A} is the set $f^{-1}(\mathcal{A}) = f^{-1}(R_1) \oplus f^{-1}(R_2) \cdots \oplus f^{-1}(R_k)$.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

• Then $f^{-1}(\mathcal{A}^+)$ is total set and corresponds to an isomorphic presentation of \mathcal{A} with isomorphism induced by f and atomic diagram *e*-equivalent $f^{-1}(\mathcal{A}^+)$.

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of $\mathcal A$ is the set $f^{-1}(\mathcal A) = f^{-1}(R_1) \oplus f^{-1}(R_2) \cdots \oplus f^{-1}(R_k)$.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

• Then $f^{-1}(\mathcal{A}^+)$ is total set and corresponds to an isomorphic presentation of \mathcal{A} with isomorphism induced by f and atomic diagram *e*-equivalent $f^{-1}(\mathcal{A}^+)$.

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of \mathcal{A} is the set $f^{-1}(\mathcal{A}) = f^{-1}(R_1) \oplus f^{-1}(R_2) \cdots \oplus f^{-1}(R_k)$.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

• Then $f^{-1}(\mathcal{A}^+)$ is total set and corresponds to an isomorphic presentation of \mathcal{A} with isomorphism induced by f and atomic diagram *e*-equivalent $f^{-1}(\mathcal{A}^+)$.

イロト 不得 トイヨト イヨト

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of \mathcal{A} is the set $f^{-1}(\mathcal{A}) = f^{-1}(\mathcal{R}_1) \oplus f^{-1}(\mathcal{R}_2) \cdots \oplus f^{-1}(\mathcal{R}_k)$.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

• Then $f^{-1}(\mathcal{A}^+)$ is total set and corresponds to an isomorphic presentation of \mathcal{A} with isomorphism induced by f and atomic diagram *e*-equivalent $f^{-1}(\mathcal{A}^+)$.

イロト 不得 トイヨト イヨト 二日

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of \mathcal{A} is the set $f^{-1}(\mathcal{A}) = f^{-1}(\mathcal{R}_1) \oplus f^{-1}(\mathcal{R}_2) \cdots \oplus f^{-1}(\mathcal{R}_k)$.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

 Then f⁻¹(A⁺) is total set and corresponds to an isomorphic presentation of A with isomorphism induced by f and atomic diagram e-equivalent f⁻¹(A⁺).

イロト 不得 トイヨト イヨト 二日

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of \mathcal{A} is the set $f^{-1}(\mathcal{A}) = f^{-1}(\mathcal{R}_1) \oplus f^{-1}(\mathcal{R}_2) \cdots \oplus f^{-1}(\mathcal{R}_k)$.

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then f⁻¹(A⁺) is total set and corresponds to an isomorphic presentation of A with isomorphism induced by f and atomic diagram *e*-equivalent f⁻¹(A⁺).

イロト 不得 トイヨト イヨト 二日

Enumeration degree spectrum

Fix
$$\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$$
.

Definition

The e-degree spectrum of \mathcal{A} is $DS_e(\mathcal{A}) = \{ d_e(f^{-1}(\mathcal{A})) \mid f \text{ in an enumeration} \}.$

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

• In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$

• \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

E N 4 E N

Enumeration degree spectrum

Fix
$$\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$$
.

Definition

The e-degree spectrum of \mathcal{A} is $DS_e(\mathcal{A}) = \{ d_e(f^{-1}(\mathcal{A})) \mid f \text{ in an enumeration} \}.$

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

• In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$

• \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

Enumeration degree spectrum

Fix
$$\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$$
.

Definition

The e-degree spectrum of \mathcal{A} is $DS_e(\mathcal{A}) = \{ d_e(f^{-1}(\mathcal{A})) \mid f \text{ in an enumeration} \}.$

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$
- \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

Co-spectrum

Definition

The co-spectrum of \mathcal{A} is the set $CS_e(\mathcal{A}) = \{\mathbf{b} \mid \forall \mathbf{a} \in DS_e(\mathcal{A}) (\mathbf{b} \leq \mathbf{a})\}.$

If $CS_e(\mathcal{A})$ has a largest element, then it is called the co-degree of \mathcal{A} .

- If \mathcal{A} has degree **a** then it has co-degree **a**.
- There are examples of structures which have a co-degree but do not have a degree.

Theorem (Soskov)

Every countable ideal of enumeration degrees can be represented as the co-spectrum of a structure.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Co-spectrum

Definition

The co-spectrum of \mathcal{A} is the set $CS_e(\mathcal{A}) = \{\mathbf{b} \mid \forall \mathbf{a} \in DS_e(\mathcal{A}) (\mathbf{b} \leq \mathbf{a})\}.$

If $CS_e(A)$ has a largest element, then it is called the co-degree of A.

- If A has degree **a** then it has co-degree **a**.
- There are examples of structures which have a co-degree but do not have a degree.

Theorem (Soskov)

Every countable ideal of enumeration degrees can be represented as the co-spectrum of a structure.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Co-spectrum

Definition

The co-spectrum of \mathcal{A} is the set $CS_e(\mathcal{A}) = \{\mathbf{b} \mid \forall \mathbf{a} \in DS_e(\mathcal{A}) (\mathbf{b} \leq \mathbf{a})\}.$

If $CS_e(A)$ has a largest element, then it is called the co-degree of A.

- If A has degree **a** then it has co-degree **a**.
- There are examples of structures which have a co-degree but do not have a degree.

Theorem (Soskov)

Every countable ideal of enumeration degrees can be represented as the co-spectrum of a structure.

3

A (10) A (10)

Let (G, +, =) be a torsion-free abelian group of rank 1.

Note that for every enumeration f, $f^{-1}(G) \equiv_e f^{-1}(G^+)$.

Recall that the degree spectrum of G: { $d_T(H) | H \cong G$ } is precisely { $deg_T(Y) | S(G)$ is c.e. in Y}.

So the enumeration degree spectrum of *G* is $DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in TOT \& d_e(S(G)) \leq_e \mathbf{a} \}.$

Denote $d_e(S(G))$ by \mathbf{s}_G -the type degree of G.

3

Let (G, +, =) be a torsion-free abelian group of rank 1.

Note that for every enumeration f, $f^{-1}(G) \equiv_e f^{-1}(G^+)$.

Recall that the degree spectrum of G: { $d_T(H) | H \cong G$ } is precisely { $deg_T(Y) | S(G)$ is c.e. in *Y*}.

So the enumeration degree spectrum of *G* is $DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in TOT \& d_e(S(G)) \leq_e \mathbf{a} \}.$

Denote $d_e(S(G))$ by \mathbf{s}_G -the type degree of G.

Let (G, +, =) be a torsion-free abelian group of rank 1.

Note that for every enumeration f, $f^{-1}(G) \equiv_e f^{-1}(G^+)$.

Recall that the degree spectrum of G: { $d_T(H) \mid H \cong G$ } is precisely { $deg_T(Y) \mid S(G)$ is c.e. in *Y*}.

So the enumeration degree spectrum of G is $DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in TOT \& d_e(S(G)) \leq_e \mathbf{a} \}.$

Denote $d_e(S(G))$ by \mathbf{s}_G -the type degree of G.

Let (G, +, =) be a torsion-free abelian group of rank 1.

Note that for every enumeration f, $f^{-1}(G) \equiv_e f^{-1}(G^+)$.

Recall that the degree spectrum of G: { $d_T(H) \mid H \cong G$ } is precisely { $deg_T(Y) \mid S(G)$ is c.e. in *Y*}.

So the enumeration degree spectrum of G is $DS_e(G) = \{ \mathbf{a} \mid \mathbf{a} \in TOT \& d_e(S(G)) \leq_e \mathbf{a} \}.$

Denote $d_e(S(G))$ by \mathbf{s}_G -the type degree of G.

$\mathit{DS}_{e}(\mathit{G}) = \{ a \mid a \in \mathcal{TOT} \& s_{\mathit{G}} \leq a \}$

- The co-spectrum of G is CS(G) = {b | b ≤ s_G}. Hence G always has co-degree: s_G. (by Selman's Theorem.)
- Every principal ideal of e-degrees can be represented as the co-spectrum of a torsion-free abelian group of rank 1. (as every set can be coded as *S*(*G*).)

イロト イポト イラト イラト

$$\mathit{DS}_{e}(\mathit{G}) = \{ a \mid a \in \mathcal{TOT} \& s_{\mathit{G}} \leq a \}$$

- The co-spectrum of G is CS(G) = {b | b ≤ s_G}. Hence G always has co-degree: s_G. (by Selman's Theorem.)
- Every principal ideal of e-degrees can be represented as the co-spectrum of a torsion-free abelian group of rank 1. (as every set can be coded as *S*(*G*).)

BA 4 BA

$$DS_e(G) = \{ a \mid a \in TOT \& s_G \leq a \}$$

- *G* has an e-degree (and hence a T-degree) if and only if s_G is total. This e-degree is precisely s_G.
- G always has first jump degree (both e- and T-) and it is s'_G.
 Follows from the monotonicity of the jump and Soskov's JIT: There is a total degree a ≥ s_G such that a' = s'_G.
- Every total degree $\mathbf{a} \ge \mathbf{0}'_e$ is a proper jump degree for some TFAG1 *G*.

By McEvoy's JIT: Let **s** be a non-total degree with $\mathbf{s}' = \mathbf{a}$ and *G* be a group with $\mathbf{s}_G = \mathbf{s}$

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$DS_e(G) = \{ a \mid a \in TOT \& s_G \leq a \}$$

- *G* has an e-degree (and hence a T-degree) if and only if s_G is total. This e-degree is precisely s_G.
- G always has first jump degree (both e- and T-) and it is s'_G.

Follows from the monotonicity of the jump and Soskov's JIT: There is a total degree $\mathbf{a} \ge \mathbf{s}_G$ such that $\mathbf{a}' = \mathbf{s}'_G$.

• Every total degree $\mathbf{a} \ge \mathbf{0}'_e$ is a proper jump degree for some TFAG1 *G*.

By McEvoy's JIT: Let **s** be a non-total degree with $\mathbf{s}' = \mathbf{a}$ and *G* be a group with $\mathbf{s}_G = \mathbf{s}$

3

く 同 ト く ヨ ト く ヨ ト

$$DS_e(G) = \{ a \mid a \in TOT \& s_G \leq a \}$$

- *G* has an e-degree (and hence a T-degree) if and only if s_G is total. This e-degree is precisely s_G.
- G always has first jump degree (both e- and T-) and it is s'_G.
 Follows from the monotonicity of the jump and Soskov's JIT: There is a total degree a ≥ s_G such that a' = s'_G.
- Every total degree $\mathbf{a} \ge \mathbf{0}'_e$ is a proper jump degree for some TFAG1 *G*.

By McEvoy's JIT: Let **s** be a non-total degree with $\mathbf{s}' = \mathbf{a}$ and *G* be a group with $\mathbf{s}_G = \mathbf{s}$

$$DS_e(G) = \{ a \mid a \in TOT \& s_G \leq a \}$$

- *G* has an e-degree (and hence a T-degree) if and only if s_G is total. This e-degree is precisely s_G.
- G always has first jump degree (both e- and T-) and it is s'_G.
 Follows from the monotonicity of the jump and Soskov's JIT: There is a total degree a ≥ s_G such that a' = s'_G.
- Every total degree a ≥ 0[']_e is a proper jump degree for some TFAG1 G.

By McEvoy's JIT: Let **s** be a non-total degree with $\mathbf{s}' = \mathbf{a}$ and *G* be a group with $\mathbf{s}_G = \mathbf{s}$

$$DS_e(G) = \{ a \mid a \in TOT \& s_G \leq a \}$$

- *G* has an e-degree (and hence a T-degree) if and only if s_G is total. This e-degree is precisely s_G.
- G always has first jump degree (both e- and T-) and it is s'_G.
 Follows from the monotonicity of the jump and Soskov's JIT: There is a total degree a ≥ s_G such that a' = s'_G.
- Every total degree a ≥ 0[']_e is a proper jump degree for some TFAG1 G.

By McEvoy's JIT: Let **s** be a non-total degree with $\mathbf{s}' = \mathbf{a}$ and *G* be a group with $\mathbf{s}_G = \mathbf{s}$

Thank you!

2

イロト イヨト イヨト イヨト