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Abstract. We study the notion of K-pairs in the local structure of the ω-
enumeration degrees. We introduce the notion of super almost zero sequences

and investigate their structural properties.

The study of degree structures has been one of the central themes in computabil-
ity theory. Although the main focus has been on the structure of the Turing degrees
and its local substructure, of the degrees below the first jump of the least degree,
significant work has been done to examine the properties of an extension of the
Turing degrees, the structure of the enumeration degrees.

Enumeration reducibility introduced by Friedberg and Rogers [3] arises as a way
to compare the computational strength of the positive information contained in
sets of natural numbers. A set A is enumeration reducible to a set B if given any
enumeration of the set B, one can effectively compute an enumeration of the set
A. The induced structure of the enumeration degrees De is an upper semilattice
with least element and jump operation. As we mention above, this structure can be
viewed as an extension of the structure of the Turing degrees, due to an embedding
ι : DT → De which preserves the order, the least upper bound and the jump
operation. The local structure of the enumeration degrees, consisting of all degrees
below the first enumeration jump of the least enumeration degree, Ge, can therefore
in turn be seen as an extension of the local structure of the Turing degrees.

The two structures, DT and De, as well as their local substructures, are closely
related in algebraic properties, definability strength and in the techniques and meth-
ods used to study them. Results proved in one of the structures reveal properties
of the other, methods used to study one of the structures suggest similar methods
for the other and vice versa.

A proof technique which arises from the study of the structure of the enumeration
degrees is the use of the following notion.

0.1. Definition.[Kalimullin] A pair of sets of natural numbers A and B is a K-pair
over a set U if there is a set W ≤e U such that:

A×B ⊆W & A×B ⊆W.

The notion of a K-pair over U , originally known as a U -e-ideal, was introduced
and used by Kalimullin to prove the definability of the jump operation in the global
structure De. In [7] Kalimullin proves that the property of being a K-pair over U
is degree theoretic and first order definable in the global structure De. A pair of
sets A and B form a K-pair over a set U if and only if their degrees a = de(A) and
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b = de(B) and u = de(U) satisfy the property:

K(a,b,u) 
 ∀x[(a ∨ x ∨ u) ∧ (b ∨ x ∨ u) = x ∨ u].

We will therefore call a pair of enumeration degrees a K-pair over a degree u if they
contain representatives which form a K-pair over a representative of u in the sense
of Definition 0.1.
K-pairs over 0e have been proven useful for coding structures in the local struc-

ture of the enumeration degrees, Ge. It has been shown [6] for instance, that using
countable K-systems, systems of nonzero e-degrees such that every pair of distinct
degrees forms a K-pair, that every countable distributive semi-lattice can be em-
bedded below every nonzero ∆0

2 enumeration degree. In [5], Ganchev and Soskova
show that the theory of Ge is computably isomorphic to first order arithmetic, by
using K-systems to code standard models of arithmetic.

In the last few years Soskov [10] has initiated the study of a further extension
of the enumeration degrees: the ω-enumeration degrees, Dω. This structure is an
upper semi-lattice with jump operation, where the building blocks of the degrees
are of a higher type - sequences of sets of natural numbers. The structure of the
enumeration degrees has a definable copy in the ω-enumeration degrees, hence a
similar relationship can be seen between De and Dω , as the one described between
DT and De. Here as well we can define a local structure, Gω, consisting of the de-
grees bounded by the first ω-enumeration jump of the least degree. The structure
of the ω-enumeration is based on ω-enumeration reducibility, a reducibility which
combines two notions: enumeration reducibility and uniformity. A unique phe-
nomenon to ω-enumeration reducibility is the existence of the so called almost zero
sequences, sequences whose every member when considered in isolation is equivalent
to the corresponding member of the least ω-sequence, ∅ω, but whose ω-enumeration
degrees (called the almost zero or a.z. degrees) are nonzero. The class of a.z. de-
grees can be viewed as representing purely the notion of nonuniformity on the one
hand, and as a class representing a new type of “lowness” property, which is not
as usually defined by domination or the strength of their image under the jump
operator.

In this article we study the notion of K-pairs of ω-enumeration degrees in Gω,
inspired by Kallumilin’s K-pairs of enumeration degrees. K-pairs of ω-enumeration
degrees are defined by Ganchev and Soskova in [4] in terms of their structural
properties rather than their set-theoretic properties. There they show that one
can distinguish between two types of K-pairs, ones that can be constructed by
extending a K-pair over ∅n with respect to enumeration reducibility to a sequence,
and a second type which consists of almost zero sequence. The first type is then used
in [4] to prove that the classes of high-low jump hierarchy are first order definable
in Gω, to prove that there is a first order definable copy of Ge in Gω and that the
first order theory of true arithmetic is interpretable in Gω. Here we concentrate on
the second type of K-pairs, the ones that consist of almost zero sequences. Our
investigations lead us to the discovery of a sub-class of the a.z. degrees, called the
super a.z. degrees. This class turns out to be a nontrivial proper sub-ideal of the
a.z. degrees. For the class of K-pairs of super a.z. degrees we give a set theoretic
characterization, in the spirit of the original definition given by Kalimullin. Our
first application of this characterization is that there exists an independent family
of super almost zero sequences of sets Ai such that if i 6= j then dω(Ai) and dω(Aj)
are a K-pair. As a corollary we obtain that every countable distributive lattice is
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embeddable in the a.z. degrees. Our second application is the proof of the fact
that every nonzero super a.z. degree bounds a K-pair of nonzero degrees. An easy
modification of this proof shows that independent families of super almost zero
sequences of sets exist in every nonempty interval of super almost zero sequences,
revealing the high structural complexity of this class.

1. Preliminaries

1.1. The structure of the enumeration degrees. We assume that the reader
is familiar with the notion of enumeration reducibility, and refer to Cooper [2] for
a survey of basic results on the structure of the enumeration degrees and to Sorbi
[8] for a survey of basic results on the local structure Ge. For completeness we
will nevertheless outline here basic definitions and properties of the enumeration
degrees used in this article.

1.1. Definition. A set A is enumeration reducible (≤e) to a set B if there is a c.e.
set Φ such that:

A = Φ(B) = {n | ∃u(〈n, u〉 ∈ Φ & Du ⊆ B)} ,

where Du denotes the finite set with code u under the standard coding of finite
sets. We will refer to the c.e. set Φ as an enumeration operator and its elements
will be called axioms.

A set A is enumeration equivalent (≡e) to a set B if A ≤e B and B ≤e A. The
equivalence class of A under the relation ≡e is the enumeration degree de(A) of A.
The structure of the enumeration degrees 〈De,≤〉 is the class of all enumeration
degrees with relation ≤ defined by de(A) ≤ de(B) if and only if A ≤e B. It has
a least element 0e = de(∅), the set of all c.e. sets. We can define a least upper
bound operation, by setting de(A) ∨ de(B) = de(A ⊕ B) and a jump operator
de(A)′ = de(Je(A)). The enumeration jump of a set A, denoted by Je(A) is defined
by Cooper [1] as LA ⊕ LA, where LA = { n| n ∈ Φn(A)}.

Before we move on to the ω-enumeration degrees, we introduce one more piece
of notation:

1.2. Definition. Let A be a set of natural numbers and i be a natural number:

(1) A[i] = {〈i, x〉 | 〈i, x〉 ∈ A};
(2) For R ∈ {≤, <,≥, >} we set A[Ri] = {〈j, x〉 | 〈j, x〉 ∈ A ∧ (jRi)}.
(3) A[i] = {x | 〈i, x〉 ∈ A}.

The definition of the join operation can be extended to the following:

1.3. Definition. Let C be a computable set and {Ai}i∈C be a class of sets of
natural numbers. Then

⊕
i∈C Ai = {〈i, x〉 | i ∈ C ∧ x ∈ Ai}.

1.2. The ω-enumeration degrees. Soskov [10] introduces a reducibility, ≤ω, be-
tween sequences of sets of natural numbers. The original definition involves the
so called jump set of a sequence and can be found in [10]. We use an equivalent
definition in terms of operators which is more approachable, as it resembles the def-
inition of e-reducibility. Before we define ω-reducibility we will need to introduce
two more bits of notations. Let S denote the class of all sequences of sets of natural
numbers of length ω. With every member A ∈ S we associated a jump sequence
P (A).
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1.4. Definition. Let A = {An}n<ω ∈ S. The jump sequence of the sequence A,
denoted by P (A) is the sequence {Pn(A)}n<ω defined inductively as follows:

• P0(A) = A0.
• Pn+1(A) = P ′n(A)⊕An+1, where P ′n(A) denotes the enumeration jump of

the set Pn(A).

The jump sequence P (A) transforms a sequence A into a monotone sequence of
sets of natural numbers with respect to ≤e. Every member of the jump sequence
contains full information on previous members.

Next we extend the notion of an e-operator so that it can be applied to members
of S.

1.5. Definition. Let A = {An}n<ω be a sequence of sets natural numbers and
V be an e-operator. The result of applying the enumeration operator V to the
sequence A, denoted by V (A), is the sequence {V [n](An)}n<ω. We say that V (A)
is enumeration reducible (≤e) to the sequence A.

The motivation behind the definition of ω-reducibility is an attempt to capture
the information content of a set of natural numbers together with all of its enu-
meration jumps. It turns out that e-reducibility between sequences of sets is too
strong for this purpose.

1.6. Definition. Let A,B ∈ S. We shall say that B is ω-enumeration reducible to
A, denoted by B ≤ω A, if B ≤e P (A).

This definition, and the induced equivalence relation ≡ω, where A ≡ω B if and
only if A ≤ω B and B ≤ω A, allows us to immediately state the following two
properties:

(1) For every sequence A, A ≡ω P (A). Furthermore for every sequence A,
P (A) ≡e P (P (A)). Thus every ω-enumeration degree contains a member
X , such that X ≡e P (X ).

(2) For every pair of sequences A and B, B ≤ω A if and only if P (B) ≤e P (A).

Thus ω-reducibility can be thought of as e-reducibility between sequences of the
form P (A).

Clearly “≤ω” is a reflexive and transitive relation and defines a preorder on S.
It induces in the usual way a degree structure, the structure of the ω-enumeration
degrees, Dω = 〈{dω(A) | A ∈ S} ,≤ω〉. This is a partial ordering with least element
0ω the degree of the sequence ∅ω, where all members of the sequence ∅ω are equal
to ∅ or equivalently the degree of the sequence {∅n}n<ω.

Given two sequencesA = {An}n<ω and B = {Bn}n<ω letA⊕B = {An⊕Bn}n<ω.
Is it easy to see that dω(A ⊕ B) is the least upper bound of dω(A) and dω(B)
and hence Dω is an upper semi-lattice. The operation ⊕ can be extended to any
computable class of sequences of sets as follows.

1.7. Definition.
Let C be a computable set and {Ai}i∈C be a class of sequences of sets, where

for every i ∈ C, Ai = {Ai,n}n<ω. Then⊕
i∈C
Ai = {

⊕
i∈C

Ai,n}n<ω.
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We define a jump operation: for every sequence A, let dω(A)′ = dω(A′), where
A′ = {Pn+1(A)}n<ω. We can iterate this definition to obtain the n-th jump of a for
every natural number n. Namely we set a0 = a and for every n ≥ 0, a(n+1) = (an)′.
Note that in contrast to other degree structures, here we can easily calculate a
representative of the degree dω(A)n, namely the sequence {Pn+k(A)}k<ω.

The structure of the ω-enumeration degrees as an upper semilattice with jump
operation, 〈Dω,≤ω,∨,′ 〉, can be seen as an extension of the structure of the enu-
meration degrees 〈De,≤e,∨,′ 〉. Let A be any set of natural numbers and let
A = {An}n<ω be the sequence defined by A0 = A and An+1 = ∅. Then define

κ(de(A)) = A.
The embedding κ preserves the order, the least upper bound and the jump oper-
ation. Thus as noted in the introduction, the images of the enumeration degrees
under the embedding κ forms a substructure of the ω-enumeration degrees, which
is furthermore first order definable in Dω, see [11].

The jump operation gives rise to the local structure of the ω-enumeration degrees
Gω, consisting of all ω-enumeration degrees below the first jump of the least degree.
This substructure is of high complexity. In [9] it is shown that every countable
partial ordering can be embedded in any nonempty interval in Gω. We will call
these degrees Σ0

2 ω-enumeration degrees. It is not difficult to check that every
degree a ≤ 0′ω contains a member A = {An}n<ω, such that for every n the set An
is Σ∅

n

2 .
We extend this analogy further. For every sequence A = {An}n<ω, we define the

sequence Ā = {Ān}n<ω. Then a sequence A will be called ∆0
2 if both A ≤ω ∅′ω and

Ā ≤ω ∅′ω. A sequence A will be called Σ0
1 if A ≤ω ∅ω. An alternative definition of ω-

reducibility, which will be used in this article, is given by the following proposition,
a proof of which can be found in [10]:

1.8. Proposition.
Let A,B ∈ S. Then A ≤ω B if and only if there is a Σ0

1 sequence U , such that
for every n:

An = Un(Pn(B)) = {x | ∃D[〈x,D〉 ∈ Un & D ⊆ Pn(B)]} .
1.3. Approximations and Σ0

2 sequences. The first step in defining nice approx-
imations to sequences in Gω is to relativize the usual notions of a Σ0

2, ∆0
2 and Σ0

1

approximation to a set with respect to ∅n for every n. We can define a Σ0
2(∅n)

approximation to a set A to be a uniformly computable from ∅n sequence of finite
sets {A{s}}s<ω such that n ∈ A if and only if (∃s)(∀t > s)(n ∈ A{s}). A Σ0

1(∅n)
approximation to a set A is a Σ0

2(∅n) approximation {A{s}}s<ω with the additional
property that for every s the A{s} ⊆ A{s+1}. A ∆0

2(∅n) approximation to a set A
is a Σ0

2(∅n) approximation {A{s}}s<ω with the additional property that for every n
the limit lim sA

{s}(n) exists. These are natural definitions motivated by the fact
that a set A is Σ0

2(∅n) (Σ0
1(∅n) or ∆0

2(∅n)) if and only if it has a Σ0
2(∅n) (Σ0

1(∅n) or
∆0

2(∅n)) approximation.

1.9. Definition. Let A ∈ S and {A{s}n }s,n<ω be a sequence of finite sets such that

for every n, the sequence {A{s}n }s<ω is uniformly computable from ∅n.

(1) If for every n the sequence {A{s}n }s<ω is a Σ0
2 approximation to An, then

{A{s}n }s,n<ω is a Σ0
2 approximation to the sequence A.
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(2) If for every n the sequence {A{s}n }s<ω is a Σ0
1 approximation to An, then

{A{s}n }s,n<ω is a Σ0
1 approximation to the sequence A.

(3) If for every n the sequence {A{s}n }s<ω is a ∆0
2 approximation to An, then

{A{s}n }s,n<ω is a ∆0
2 approximation to the sequence A.

Now it is not difficult to see that a sequence A is Σ0
2 (Σ0

1 or ∆0
2) if and only if it

has a Σ0
2 (Σ0

1 or ∆0
2) approximation.

Recall that the length of agreement function between two sets of natural num-
bers, measured at stage s is defined as:

l(A,B, s) = max {k ≤ s | A � k = B � k} .

1.10. Definition. Let {A{s}n }s,n<ω and {B{s}n }s,n<ω be two sequences of sequences
of sets.

(1) A stage s is n-expansionary if:

l(A{s}n , B{s}n , s) > max
t<s

l(A{t}n , B{t}n , t).

(2) A stage s is strongly n-expansionary if s > n, s is n-expansionary and

∀k < n∃t[n < t ≤ s & t is k-expansionary].

The definition of strongly n-expansionary stages is designed so that if there
are finitely many n-expansionary stages for some n, then there are finitely many
strongly m-expansionary stages for every m > n.

1.11. Proposition. Let {A{s}n }s,n<ω and {B{s}n }s,n<ω be ∆0
2 approximations to

sequences A and B. Then the following assertions hold:

(1) If A = B then for every n there are infinitely many strongly n-expansionary
stages.

(2) If A 6= B then there exists an index n0, such that for all k > n0 there are
no strongly k-expansionary stages.

Proof. (1) Suppose that A = B. First we note that for every n {A{s}n }s<∅
and {B{s}n }s<∅ are ∆0

2(∅n) approximations to the equal sets An and Bn.
From the properties of a ∆0

2(∅n) approximation it follows that there are
infinitely many n-expansionary stages and in particular there are infinitely
many n-expansionary stages s > n.

Now fix n and for every k < n let sk be a k-expansionary stage, such that
sk > n. Then every n-expansionary stage s > maxk<n sk will be strongly
n-expansionary.

(2) Suppose that A 6= B. Let n be such that An 6= Bn. Then by the prop-
erties of a ∆0

2(∅n) approximation it follows that there are finitely many
n-expansionary stages. Let n0 = maxs(s is n-expansionary). Then for all
k > n0 there are no n-expansionary stages t > k and hence no strongly
k-expansionary stages.

�

1.4. A.z. degrees and K-pairs in the Σ0
2 ω-enumeration degrees. As noted

above a new type of “lowness” property, given by the class of the almost zero
ω-enumeration degrees, was defined and studied by Soskov and Ganchev in [11].
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1.12. Definition. We shall say that the sequence A = {An} is almost zero (a.z.)
if for every n we have that An ≤e 0n, or equivalently that Pn(A) ≡e 0n. A degree
is almost zero, if it contains an almost zero member.

Even though this new lowness property is not defined as usual in terms of dom-
ination, or the strength of the jump operator applied to members which possess it,
there are some unexpected connections. The class of a.z. degrees has an important
role in the definability of the jump classes in Gω, the low, the intermediate and the
high degrees.

1.13. Definition. Let a ≤ω 0′ω. Then:

(1) a ∈ Ln ⇐⇒ a(n) = 0
(n)
ω .

(2) a ∈ Hn ⇐⇒ a(n) = 0
(n+1)
ω .

(3) H =
⋃
Hn;L =

⋃
Ln.

(4) a ∈ I ⇐⇒ a 6∈ H ∪ L.

The first connection is given by Ganchev and Soskov in [11].

1.14. Theorem. Let a ≤ω 0′ω. Then

(1) a ∈ H ⇐⇒ (∀a.z.x)(x ≤ω a).
(2) a ∈ L ⇐⇒ (∀a.z.x)(x ≤ω a⇒ x = 0ω).

Later on in [4] a further definability result is shown:

1.15. Theorem. For every natural number n the classes Hn and Ln are first order
definable in the local theory of the ω-enumeration degrees.

A special tool in the proof of this result is the use of the notion of a K-pair of
ω-enumeration degrees.

Recall that by Definition 0.1 a pair of sets A and B is a K-pair over a set U , if
there is a set of natural numbers W ≤e U , such that A×B ⊆W and Ā× B̄ ⊆ W̄ .
Call this the K-set property. Kalimullin has proved that this property is degree
theoretic and first order definable in De:

1.16. Theorem.[Kalimullin] A pair of sets A, and B form a K-pair over U if and
only if their degrees a = de(A), b = de(B) and u = de(U) satisfy the formula:

K(a,b,u) 
 ∀x[(a ∨ x ∨ u) ∧ (b ∨ x ∨ u) = x ∨ u].

Furthermore, if A, and B form a K-pair over U and U <e A,B ≤e U ′ then
A′ ≡e B′ ≡e U ′.

We can consider elements satisfying this property in any upper semi-lattice. The
following proposition exhibits a structural property of K-pairs, which makes them
useful for coding structures.

1.17. Proposition. Let D = (D,≤,∨,0) be any upper semilattice with least ele-
ment 0. Let a and u be elements in D. The set of all b such that D |= K(a,b,u)
is an ideal. Furthermore, if b ∈ D is such that D |= K(a,b,u) then a∨u and b∨u
form a minimal pair over u.

Proof. Let a, b and u be such that D |= K(a,b,u). First suppose that c ≤ b.
Then for every x ∈ D we have:

x ≤ (a ∨ x ∨ u) ∧ (c ∨ x ∨ u) ≤ (a ∨ x ∨ u) ∧ (b ∨ x ∨ u) = x.
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Hence D |= K(a, c,u).
On the other hand if c is such that D |= K(a, c,u), then to prove that D |=

K(a,b ∨ c,u), fix x ∈ D and let y ∈ D be such that:

y ≤ (a ∨ x ∨ u); y ≤ (b ∨ c ∨ x ∨ u).

Then from D |= K(a,b,u) it follows that:

y ≤ (a ∨ c ∨ x ∨ u) ∧ (b ∨ c ∨ x ∨ u) = c ∨ x ∨ u.

Now applying D |= K(a, c,u) we get that:

y ≤ (a ∨ x ∨ u) ∧ (c ∨ x ∨ u) = x ∨ u.

Finally a ∨ u and b ∨ u form a minimal pair over u as:

(a ∨ u) ∧ (b ∨ u) = (a ∨ 0 ∨ u) ∧ (b ∨ 0 ∨ u) = 0 ∨ u = u.

�
A completely different question is of course whether or not there are pairs of

elements satisfying the K-pair formula in a given upper semi-lattice. In the enu-
meration degrees such pairs exist. In fact consider the following notion:

1.18. Definition. A sequence {Ai} of sets of natural numbers is called independent
K-family if the following two conditions are satisfied:

(1) For each i, Ai 6≤e
⊕

j 6=iAj .

(2) If R1 and R2 are disjoint recursive sets then
⊕

i∈R1
Ai and

⊕
j∈R2

Aj is a

K-pair over ∅.

A detailed proof of the following result can be found in [6].

1.19. Theorem. Every nonzero ∆0
2 set uniformly bounds an independent K-family.

We will examine the analog of K-pairs in the structure of the ω-enumeration
degrees. Between the set theoretic and degree theoretic definition of K-pairs, the
latter is more useful. We shall therefore define K-pairs of sequences, so that they
satisfy the K-pair degree theoretic property. For simplicity we shall restrict our-
selves to K-pairs over over the least degree 0ω.

Given A ∈ S, let
(A) = {B : B ∈ S & B ≤ω A}.

1.20. Definition. Two sequences A and B of sets of natural numbers form a
K-pair if for every sequence X , (A⊕X ) ∩ (B ⊕ X ) = (X ).

The first step in characterizing the K-pairs in the ω-enumeration degrees is the
following result.

1.21. Theorem. Let A 6≡ω ∅ω and B 6≡ω ∅ω be two Σ0
2 sequences, which form and

a K-pair. Then both A and B are a.z. or for some n there exists a K-pair A,B
over ∅n such that ∅n <e A,B ≤ ∅n+1 and

A ≡ω {∅, . . . , ∅︸ ︷︷ ︸
n

, A, ∅, . . . , ∅, . . . } and

B ≡ω {∅, . . . , ∅︸ ︷︷ ︸
n

, B, ∅, . . . , ∅, . . . }.
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Results on K-pairs in the enumeration degrees give an abundance of instances
of K-pairs of the second type. Here we shall investigate K-pairs of a.z. degrees.

2. Super a.z. sequences

The search for natural examples of K-pairs in the Σ0
2 ω-enumeration degree,

leads us to a new class of ω-enumeration degrees, the super a.z. degrees. In this
section we define this class, show that it is a proper sub-ideal of the a.z. degrees
and describe some of its special properties in relation to the notion of K-pair.

2.1. Definition. A sequence A is called super a.z. if there exists a sequence
I = {In}n<ω, such that I ≤ω ∅′ω and

(1) (∀n)(In 6= ∅).
(2) (∀n)(∀a ∈ In)(An = Wa(∅n)).

I is called an index sequence for A.

The second part of the definition above ensures that every super a.z. sequence
is a.z. We show furthermore that every such sequence and its complement is ω
enumeration reducible to 0′ω and hence is ∆0

2.

2.2. Proposition. If A is super a.z. then A ≤ω ∅′ω and Ā ≤ω ∅′ω.

Proof. Let A be a super a.z. sequence and let I = {In}n<ω ≤ω 0′ω be an index
sequence for A. There is an enumeration operator Γ such that In = Γ[n](∅n+1).
Then x ∈ An if and only if there is an index a ∈ In = Γ[n](∅n+1), such that
x ∈ Wa(∅n). Now, Wa(∅n) is uniformly in a enumeration reducible to ∅n+1, i.e.
there is a computable function r such that Wa(∅n) = Wr(a)(∅n+1). Define the
enumeration operator ∆ by setting:

∆[n] =
{
〈x,D〉 | ∃a∃D1∃D2(D = D1 ∪D2 & 〈a,D1〉 ∈ Γ[n] & 〈x,D2〉 ∈Wr(a)

}
Then obviously An = ∆[n](∅n+1) and hence A ≤ ∅′ω.

On the other hand x /∈ An if and only if there is an index a ∈ In = Γ[n](∅n+1),
such that x ∈ W̄a(∅n). Now, W̄a(∅n) is uniformly in a enumeration reducible to
∅n+1, i.e. there is a computable function r̄ such that W̄a(∅n) = Wr̄(a)(∅n+1).

Define the enumeration operator Λ by setting:

Λ[n] =
{
〈x,D〉 | ∃a∃D1∃D2(D = D1 ∪D2 & 〈a,D1〉 ∈ Γ[n] & 〈x,D2〉 ∈Wr̄(a)

}
Then Ān = Λ[n](∅n+1) and hence Ā ≤ ∅′ω as well. �

The next property shows that the notion of a super a.z. sequence is degree
theoretic. We can therefore define a super a.z. degree to be an ω-enumeration
degree which consists of super a.z. sequences. We shall see that these form an
ideal.

2.3. Proposition.

(1) If A is super a.z. and B ≤ω A, then B is super a.z.
(2) The ω-enumeration degrees containing super a.z. sequences form an ideal.

Proof. (1) First we note that if A is super a.z. the P (A) is also super a.z. This
follows from the fact that the monotonicity of the enumeration jump and
the join operation are uniform. There are computable function g and j,
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such that if An = Wa(∅n) then A′n = Wg(a)(∅n+1) and if An+1 = We(∅n+1)

then Pn+1(A) = Wj(g(a),e)(∅n+1). So if Is is the index sequence for A then
PI is an index sequence for P (A), where PI0 = I0 and for all n:

PIn+1 = {j(g(a), e) | a ∈ PIn & e ∈ PIn+1} .
Obviously if I ≤ω ∅′ω then PI ≤ω ∅′ω.
Let A = {An} be super a.z. with index sequence I = {In}n<ω. Without

loss of generality we may assume thatA ≡e P (A). Let B = {Bn}n<ω ≤ω A.
To show that B is super a.z., we need to construct a Σ0

2 index sequence J
for B. Let Γ be the enumeration operator which reduces B to A. Fix n.
Then x ∈ Bn if and only if x ∈ Γ[n](An), if and only if there is an index
a ∈ In such that x ∈ Γ[n](W ∅

n

a ). The set Γ[n](Wa∅n) is obviously a c.e.
in ∅n set, for which we can obtain an index uniformly in n and a, by a
computable function say m. Now we can define Jn = {m(n, a) | a ∈ In}.
Then J = {Jn}n<ω is a Σ0

2 index sequence for B.
(2) By the Part 1. of the proof of this proposition, it follows that the super a.z.

sequences are downwards closed. To show that the ω-enumeration degrees
containing super a.z. sequences form an ideal, it remains to be proved that
the least upper bound of two super a.z. degrees is super a.z. So let A
and B be super a.z. sequences with index sequences I and J respectively.
Using the computable function j as in (1) we get W ∅

n

a ⊕W ∅
n

b = W ∅
n

j(a,b),

so an index sequence IJ for A ⊕ B can be obtained by setting IJn =
{j(a, b) | a ∈ In & b ∈ Jn}.

�
The existence of nonzero super a.z. sequences will follow from Theorem 4.1

below. Here we shall first prove that the class of super a.z. degrees does not
exhaust all a.z. degrees below 0′ω and is hence a proper sub-ideal of the Σ0

2 a.z.
degrees.

2.4. Proposition. Not all a.z. A ≤ω ∅′ω are super a.z.

Proof. The proof of this fact is done by a diagonalization construction. Let {We}
be some effective listing of all enumeration operators. We shall construct an a.z.
sequence A whose n-th member An for every n will be either ∅ or {1}, selected to
ensure that Wn(∅′ω) is not an index sequence for A.

Fix n > 0. There are three possibilities for Wn[n](∅n+1):

(1) Wn[n](∅n+1) is empty. In this case Wn(∅′ω) is not an index sequence at all.
We set An = ∅.

(2) Wn[n](∅n+1) contains an index a, such that W ∅
n

a contains an odd element.
In this case again we set An = ∅. Then Pn(A) = (Pn−1(A))′⊕An contains
no odd elements and hence again Wn(∅′ω) is not an index sequence for A.

(3) Finally if Wn[n](∅n+1) contains an index a, such that W ∅
n

a does not contain
any odd element, then we set An = {1}, ensuring that Pn(A) contains at
least one odd element and hence again we have diagonalized against Wn(∅′ω.

In the case n = 0 the argument above will work again, even though P0(A) = A0

does not have the form X ⊕Y . To avoid dealing with this special case, however we
can simply note that by the padding lemma W0 will appear infinitely many times
in the effective listing of all c.e. sets and hence we can simply set A0 = ∅.

The constructed sequence is obviously a.z. as all of its members are finite sets.
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We give the formal definition of an enumeration operator V , so thatA = V (∅′ω) is
constructed following the intuitive description above. Let r be again the computable
function satisfying W ∅

n

a = Wr(a)(∅n+1) for every a. Now note that the set En
consisting of the indices a of sets W ∅

n

a which do not contain any odd elements is
Π0

1(∅n) and hence enumeration reducible to ∅n+1 uniformly in n, i.e. there is an
enumeration operator Γ such that En = Γ[n](∅n+1).

Set V [0] = ∅ and for every n > 0, set:

V [n] = {〈1, D〉 | ∃a∃D1∃D2[〈a,D2〉 ∈Wn[n] & 〈a,D2〉 ∈ Γ[n] & D = D1 ∪D2]}
We prove that A = V (∅′ω) is an a.z. sequence which is not super a.z. Towards a

contradiction assume that A is super a.z. and Wn(∅′ω) is an index sequence for A.
By the padding lemma we may assume that n > 0. Then Wn[n](∅n) is nonempty
and consists of indices for Pn(A). Now x ∈ An = V [n](∅n+1) if and only if x = 1
and Wn[n](∅n+1) contains an index a of a c.e in ∅n set which has no odd elements.
In other words Pn(A) = (Pn−1(A))′ ⊕ An contains an odd element if and only if
Wn[n](∅n+1) contains an index a of a set with no odd elements, which gives the
anticipated contradiction. �

The following propositions describes the main property of the super a.z. se-
quences:

2.5. Proposition. Let A be super a.z. Then for every sequence X ,

P (A⊕X ) ≡e A⊕ P (X ).

Proof. It is easy to see that for every two sequences A and X of sets of natural
numbers,

A⊕ P (X ) ≤e P (A⊕X ).

Let I = {In}n<ω be an index sequence for the super a.z. A = {An}n<ω below
∅′ω. Fix an arbitrary sequence X = {Xn}n<ω.

Let g be a recursive function such that for all e and all X ⊆ N, We(X)′ =
Wg(e)(X

′).
First we shall show that there exists a recursive function ρ(n) such that for all

n,

(An ⊕ Pn(X ))′ = Wρ(n)(Pn(X )′).

Fix x ∈ N and a ∈ In. Then

x ∈ An ⊕ Pn(X ) ⇐⇒ x ∈Wa(∅(n))⊕ Pn(X ).

Clearly there exists a recursive function λ(n, a) such that

Wa(∅(n))⊕ Pn(X ) = Wλ(n,a)(Pn(X )).

Then

x ∈ (An ⊕ Pn(X ))′ ⇐⇒ x ∈Wλ(n,a)(Pn(X ))′ ⇐⇒ x ∈Wg(λ(n,a))(Pn(X )′).

Since In 6= ∅, we get from here that

(An ⊕ Pn(X ))′ = {x : (∃a ∈ In)(x ∈Wg(λ(n,a))(Pn(X )′))}.
Since I ≤e ∅′ω and ∅′ω ≤e {Pn(X )′}, there exists a recursive function ι such that

for all n, In = Wι(n)(Pn(X )′). Then

(Pn(X )⊕An)′ = {x : (∃a ∈Wι(n)(Pn(X )′))(x ∈Wg(λ(n,a))(Pn(X )′))}.
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The last equality implies immediately the existence of the desired recursive func-
tion ρ.

Now we are ready to define a recursive function µ(n) such that for all n,

Pn(A⊕X ) = Wµ(n)(An ⊕ Pn(X )).

Let a0 be an index of the identity enumeration operator. Set µ(0) = a0. Then

P0(A⊕X ) = A0 ⊕X0 = A0 ⊕ P0(X ) = Wµ(0)(A0 ⊕ P0(X )).

Suppose that µ(n) is defined so that Pn(A⊕X ) = Wµ(n)(An ⊕ Pn(X )). Then

Pn(A⊕X )′ = Wµ(n)(An ⊕ Pn(X ))′ = Wg(µ(n))((An ⊕ Pn(X ))′).

Hence, by the properties of the recursive function ρ defined above,

Pn(A⊕X )′ = Wg(µ(n))(Wρ(n)(Pn(X )′)).

From here, since Pn+1(X ) = Pn(X )′ ⊕Xn+1 and Pn+1(A⊕X ) = Pn(A⊕X )′ ⊕
An+1 ⊕Xn+1, one can define effectively µ(n+ 1) so that

Pn+1(A⊕X ) = Wµ(n+1)(An+1 ⊕ Pn+1(X )).

�

3. Characterizing super a.z. K-pairs in Gω
Let A and B be a pair of Σ0

2 sequences of sets. We would like to find a condition
that the sequences must satisfy, in the spirit of the original definition of K-pairs
in the enumeration degrees, in order for their degrees to form a K-pair. The most
natural property to require is the following:

3.1. Definition. We shall say that A and B satisfy the K-sequence property if
there exists a sequence R ≤ω ∅ω, such that for all n, we have that (An × Bn ⊆
Rn & Ān × B̄n ⊆ R̄n).

This property turns out to be however, not a sufficiently strong requirement.
Indeed let A be such that A′ ≡e ∅′ and B be any set. Consider the following two
sequences A = (A, ∅, ∅, ∅, . . . ) and B = (∅, B, ∅, ∅, . . . ). Obviously they satisfy the
K-sequence property with the sequence R = ∅ω. In fact as {Pn+1(A)}n<ω ≤ω ∅′ω,
it follows that P (A) and P (B) satisfy the K-sequence property with (∅, P1(A) ×
N, P2(A) × N, . . . ). By the characterization of Σ0

2 K-pairs given in Theorem 1.21,
however their degrees do not form a K-pair. Thus strengthening the requirement by
asking that P (A) and P (B) satisfy the K-sequence property would still not suffice.

This condition turns out to be necessary, as is proved below.

3.2. Proposition. Let A and B be Σ0
2 sequences of sets, which do not satisfy the

K-sequence property. Then A and B do not form a K-pair.

Proof. Let A and B be Σ0
2 sequences of sets, which do not satisfy the K-sequence

property.
Suppose first that A and B are not a.z. and form a nontrivial K-pair then by

Theorem 1.21 for some n there exists a K-pair A,B over ∅n such that ∅n <e A,B ≤
∅n+1 and

A ≡ω {∅, . . . , ∅︸ ︷︷ ︸
n

, A, ∅, . . . , ∅, . . . } and

B ≡ω {∅, . . . , ∅︸ ︷︷ ︸
n

, B, ∅, . . . , ∅, . . . }.
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It follows by Theorem 1.16 that A′ ≡e B′ ≡e ∅n+1 and hence there are enumer-
ation operators V and U such that

A = V ({∅, . . . , ∅n−1︸ ︷︷ ︸
n

, ∅n ⊕A, ∅n+1, . . . , }) and

B = U({∅, . . . , ∅n−1︸ ︷︷ ︸
n

, ∅n ⊕B, ∅n+1, . . . , }).

Furthermore by the ideal property of K-pairs, it follows that An and Bn form a
K-pair over ∅n as well. So there is a set W ≤e ∅n, such that An × Bn ⊆ W and
Ān× B̄n ⊆ W̄ . Then consider the sequence R defined by Rk = U [k](∅k)×V [k](∅k),
for k 6= n and Rn = W . Then R ≤ω ∅ω, A×B ⊆ R and Ā × B̄ ⊆ R̄, contradicting
the assumptions on A and B.

Now suppose that A and B are a.z. sequences. Without loss of generality we may
assume that all members of these sequences are infinite sets. We shall construct a
pair of sequences X and Y so that Y ≤ω dω(X )∨dω(A)) and Y ≤ω dω(X )∨dω(B)),
but Y �ω X .

Fix a computable enumeration {(Dx, Ex)}x<ω of all pairs of finite sets and a
computable listing {We}e<ω of all enumeration operators.

For every n we shall set Yn = Γ(Xn ⊕An) = Λ(Xn ⊕Bn), where

Γ = {〈〈a, b〉, {〈a, b〉} ⊕ {a}〉 | 〈a, b〉 < ω} ,
Λ = {〈〈a, b〉, {〈a, b〉} ⊕ {b}〉 | 〈a, b〉 < ω} .

This will ensure that Y ≤e X ⊕A and Y ≤e X ⊕B, which is even stronger than
Y ≤ω X ⊕ A and Y ≤ω X ⊕ B. We will construct X as an a.z. sequence, so that
for every e we have that Y 6= We(P (X )). This will ensure that Y �ω X . The
construction will be in stages. At every stage e we will ensure that for some m,
Ym 6= We[m](Xm) and extend the definition of the sequence X up to Xm.

Construction
Stage (e): Suppose that we have constructed finite sets Xk, for all k ≤ n. We

will define a sequence R and a sequence {Pk}k<ω by induction on k:

(1) If k ≤ n then Rk = Ak ×Bk and Pk = Pk(X ). (Note that Pk(X ) uses only
the members of the sequence X , indexed by numbers less than or equal to
k, so at stage e we can compute Pk(X ) even though X is not fully defined.)

(2) If k > n then Rk =
{
〈a, b〉 | 〈a, b〉 ∈We[k](P ′k−1 ⊕ {〈a, b〉}))

}
and Pk =

P ′k−1 ⊕ ∅.
Now as X is constructed as an a.z. sequence, it follows that for all k ≤ n,

Pk ≤e ∅k. The construction of Pk for k > n is uniform hence {Pk}k<ω ≤ω ∅ω. Now
since A and B are a.z. sequences, it follows that the sequence R ≤ω ∅ω as well. By
our assumption on A and B we have that there is an m, such that Am×Bm * Rm
or Ām × B̄m * R̄m. Fix the least such m.

First we extend the definition of X by setting Xk = ∅ for all k, such that n < k <
m. Note that by this we ensure that for all k < m, Pk = Pk(X ). Furthermore we
ensure that for all k in the interval n < k < m, ∅ = Yk = Γ(Xk⊕Ak) = Λk(Xk⊕Bk).

We claim that there is an element 〈a, b〉, such that at least one of the following
two conditions is true:

(1) a ∈ Am and b ∈ Bm and 〈a, b〉 /∈We[m](P ′m−1(X )⊕ {〈a, b〉}).
(2) a /∈ Am and b /∈ Bm and 〈a, b〉 ∈We[m](P ′m−1(X )⊕ {〈a, b〉}).
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Indeed suppose that condition 1 is not true, i.e. for all 〈a, b〉, if a ∈ Am and
b ∈ Bm then 〈a, b〉 ∈ We[m](P ′m−1(X ) ⊕ {〈a, b〉}). Then Am × Bm ⊆ Rm, hence

there is an element 〈a, b〉 ∈ Ām × B̄m \ R̄m. For this element 〈a, b〉 we have that
a /∈ Am, b /∈ Bm and 〈a, b〉 ∈We[m](P ′m−1(X )⊕ {〈a, b〉}), i.e. condition 2 is true.

Now let 〈a, b〉 be the least element which satisfies condition 1 or condition 2
and set Xm = {〈a, b〉}. If condition 1 is true for 〈a, b〉 then {〈a, b〉} = Ym =
Γ[m](Xm ⊕ Am) = Λ[m](Xm ⊕ Bm) and 〈a, b〉 /∈ We[m](Pm(X )). If condition 2 is
true then ∅ = Ym = Γ[m](Xm⊕Am) = Λ[m](Xm⊕Bm) and 〈a, b〉 ∈We[m](Pm(X )).
In both cases Ym 6= We[m](Pm(X )). �

For the class of super a.z. degrees this condition turns out to be also sufficient
as is proved below.

3.3. Theorem. Let A and B be super a.z. sequences. A and B form a K-pair if
and only if they satisfy the K-sequence property.

Proof. Fix A and B to be super a.z. sequences. The left to right direction follows
from Proposition 3.2. For the right to left direction suppose that R ≤ω ∅ω is such
that for all n, (An × Bn ⊆ Rn & Ān × B̄n ⊆ R̄n). Let X be any sequence and let
Y be a sequence, such that Y ≤ω A ⊕ X and Y ≤ω B ⊕ A. We shall prove that
Y ≤ω X .

By Proposition 2.5 it follows that Y ≤ω A⊕X and Y ≤ω B⊕X is equivalent to
the existence of two enumeration operators Γ and Λ such that for every n, we have
Yn = Γ[n](An ⊕ Pn(X )) = Λ[n](Bn ⊕ Pn(X )). We construct a new operator ∆ as
follows. For every n we set:

∆[n] = {〈x,D1 ∪D2〉 | 〈x, F1 ⊕D1〉 ∈ Γ[n] & 〈x, F2 ⊕D2〉 ∈ Λ[n] & F1 × F2 ⊆ Rn}
We claim that Y = ∆(P (X )). Indeed, fix n. Suppose that x ∈ Yn. Then

x ∈ Γ[n](An⊕Pn(X )) and x ∈ Λ[n](Bn⊕Pn(X )). There are axioms 〈x, F1⊕D1〉 ∈
Γ[n] and 〈x, F2 ⊕ D2〉 ∈ Λ[n] such that F1 ⊆ An, D1 ⊆ Pn(X ) and F2 ⊆ Bn ,
D2 ⊆ Pn(X ). It follows that F1 × F2 ⊆ An × Bn ⊆ Rn and D1 ∪D2 ⊆ Pn(X ), so
x ∈ ∆[n](P (X )).

Now suppose that x ∈ ∆[n](Pn(X )). Let 〈x,D1∪D2〉 be the valid axiom for x in
∆[n], i.e. such that D1∪D2 ⊆ Pn(X ). By the definition of ∆[n] it follows that there
are finite sets F1 and F2 and axioms 〈x, F1 ⊕D1〉 ∈ Γ[n] and 〈x, F2 ⊕D2〉 ∈ Λ[n]
such that F1 × F2 ⊆ Rn. If F1 ⊆ An then x ∈ Γ[n](An ⊕ Pn(X )) = Yn. Assume
that F1 * An and let f1 be an element such that f1 ∈ F1 \ An. If F2 ⊆ Bn then
x ∈ Λ[n](Bn ⊕ Pn(X )) = Yn. Assume that F2 * Bn and let f2 be an element such
that f2 ∈ F2 \ Bn. Now we reach a contradiction, since 〈f1, f2〉 ∈ F1 × F2 ⊆ Rn
and at the same time 〈f1, f2〉 ∈ Ān × B̄n ⊆ R̄n. It follows that x ∈ Yn and so
Yn = ∆[n](Pn(X )). We note that it furthermore follows from this proof that an
index of the operator ∆ can be obtained effectively from indices of the operators Γ
and Λ. �

4. Embedding countable distributive lattices in the super a.z.
degrees

Now that we have established a necessary and sufficient condition for two super
a.z. sequences to form a K-pair, we can finally prove the existence of nontrivial
super a.z. K-pairs. First we give a relatively simple construction of an infinite
independent K-system.
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4.1. Theorem. There exists a sequence of super a.z. sequences Ai such that

(1) (∀i)(Ai 6≤ω
⊕

j 6=iAj).

(2) If R1 and R2 are disjoint recursive sets then
⊕

i∈R1
Ai and

⊕
i∈R2

Ai are
a K-pair.

A sequence Ai which satisfies the above conditions is called independent K-system.

Proof. We shall construct inductively a sequence {As}s<ω of sets of natural num-
bers and set Ai,s = {x : 〈i, x〉 ∈ As}. During the construction we shall ensure
that at most one of the sets Ai,s is not empty. Hence if R1 and R2 are disjoint
recursive sets then at least one of the sets Xs =

⊕
i∈R1

Ai,s and Ys =
⊕

i∈R2
Ai,s

is empty. Let Ws = ∅ for all s. Clearly {Ws} ≤ω ∅ω and for all s, Xs × Ys ⊆ Ws

and X̄s × Ȳs ⊆ W̄s. Thus the K-sequence property will hold for
⊕

i∈R1
Ai and⊕

i∈R2
Ai.

To ensure that the sequences
⊕

i∈R1
Ai and

⊕
i∈R2

Ai are super a.z. we shall

define a procedure which will produce uniformly in s using oracle ∅s+1 an index as
such that As = Was(∅).

So, by the theorem above we shall have that the condition (2) is satisfied.
Set A0 = ∅ and let a0 be a Σ1 index of ∅. Suppose that the sets At, t ≤ s, and

the respective indices at, t ≤ s, are defined. Let s = 〈i, e〉. We shall define As+1 so
that Ai,s+1 6= We[s+ 1](Ps+1(

⊕
j 6=iAj)). This part of the construction will ensure

the satisfaction of the condition (1) of the theorem.
For every t ≤ s set A∗t = {〈j, x〉 : j 6= i & 〈j, x〉 ∈ At}. Clearly one can find

effectively in ∅s+1 indices b0, . . . .bs such that for t ≤ s, A∗t = Wbt(∅t). Let P0 = A∗0
and Pt+1 = P ′t ⊕A∗t+1, t < s.

Notice that Ps = Ps(
⊕

j 6=iAj). We shall define As+1 so that
⊕

j 6=iAj,s+1 = ∅
and hence Ps+1(

⊕
j 6=iAj) = P ′s ⊕ ∅.

Our next goal is to define effectively in ∅s+1 a function h such that for all t ≤ s,
Pt = Wh(t)(∅t).

Let us fix recursive functions g and λ such that for all X ⊆ N and a, b ∈ N,
Wa(X)′ = Wg(a)(X

′) and Wλ(a,b)(X) = Wa(X)⊕Wb(X).
Let h(0) = b0. Clearly P0 = Wb0(∅). Suppose that for some s < t, h(t) is defined

and Pt = Wh(t)(∅t). Then

Pt+1 = Wh(t)(∅t)′ ⊕Wbt+1(∅t+1) = Wg(h(t))(∅t+1)⊕Wbt+1(∅t+1).

Set h(t+ 1) = λ(g(h(t)), bt+1). Then Pt+1 = Wh(t+1)(∅t+1).

Set Ps+1 = P ′s ⊕ ∅ = Wh(s)(∅s)′ ⊕ ∅ = Wg(h(s))(∅s+1) ⊕ ∅. Clearly, one can find

effectively in ∅s+1 an index ps+1 such that Ps+1 = Wps+1(∅s+1).
Now, let As+1 = ∅ if 0 ∈We[s+ 1](Ps+1) and let As+1 = {〈i, 0〉}, otherwise.
Since we can decide in ∅s+2 whether 0 ∈We[s+ 1](Wps+1

(∅s+1)) or not, we can
compute in ∅s+2 an index as+1 such that As+1 = Was+1(∅). �

The theorem above establishes among other things that there are nonzero super
a.z. degrees. Another important application of this results is the following:

4.2. Theorem. Every countable distributive lattice is embeddable in the super a.z.
degrees preserving the least element.

Proof. Since every countable distributive lattice is embeddable in the lattice of the
computable sets R preserving least and greatest elements, it is enough to prove
the theorem for R. Fix an independent K-system of super a.z sequences {Ai}i<ω.
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Given a computable set R, let ϕ(R) = dω(
⊕

i∈RAi). Evidently ϕ is injective since
if R1 and R2 are computable sets and i ∈ R1 \ R2 then dω(Ai) ≤ω ϕ(R1) and
dω(Ai) �ω ϕ(R2).

It is easily seen that for every pair R1 and R2 of computable sets,
⊕

i∈R1
Ai ⊕⊕

i∈R2
Ai ≡e

⊕
i∈R1∪R2

Ai. Hence

ϕ(R1 ∪R2) = dω(
⊕

i∈R1∪R2

Ai) = dω(
⊕
i∈R1

Ai ⊕
⊕
i∈R2

Ai) = ϕ(R1) ∨ ϕ(R2).

Let C = R1 ∩ R2, A = R1 \ C and B = R2 \ C. Set a = dω(
⊕

i∈AAi),
b = dω(

⊕
i∈B Ai) and c =

⊕
i∈C Ai. Clearly a and b are a K-pair over 0ω and

hence

ϕ(R1 ∩R2) = c = (c ∨ a) ∧ (c ∨ b) = ϕ(C ∪A) ∧ ϕ(C ∪B) = ϕ(R1) ∧ ϕ(R2).

�

5. Bounding K-pairs of super a.z. degrees

We show that every nonzero super a.z. sequence bounds a nontrivial K-pair of
super a.z. sequences. First we shall need to establish a dynamic characterization
of K-pairs of super a.z. degrees.

5.1. Proposition. Suppose {B{s}n }n,s<ω and {C{s}n }s,n<ω are ∆0
2 approximations

to sequences B and C. Suppose that for every n, s and k the following is true:

(1) : x ∈ B{s}n \B{s+1}
n ∩ ω[k] ⇒ ω[≥k] � s ⊆ Cn

and symmetrically:

(2) : x ∈ C{s}n \ C{s+1}
n ∩ ω[k] ⇒ ω[≥k] � s ⊆ Bn.

Then C and B satisfy the K-sequence property.

Proof. Consider the sequence R, defined by:

Rn =
⋃
s

B{s}n × C{s}n .

Then from the definition of a ∆0
2 approximation to a sequence it follows that

R ≤ω ∅ω.

Suppose 〈b, c〉 ∈ Bn × Cn. Then there is a stage sb such that ∀t > sb b ∈ B{t}n
and there is a stage sc such that ∀t > sc c ∈ C{t}n . Then 〈b, c〉 ∈ B{s}n ×C{s}n , where
s = max(sb, sc), hence Bn × Cn ⊆ Rn.

Now let 〈b̄, c̄〉 ∈ B̄n × C̄n. Assume towards a contradiction that 〈b̄, c̄〉 ∈ Rn.

Then there is a stage s such that b̄ < s, c̄ < s and b̄ ∈ B{s}n and c̄ ∈ C{s}n . Let
b̄ = 〈k, x〉 and c̄ = 〈m,x〉. Suppose k ≤ m and let t be the least stage t ≥ s such

that b̄ /∈ B{t+1}
n . Such a stage exist by the properties of a ∆0

2 approximation and
the fact that b̄ /∈ Bn. Now by property (1) we have that c̄ ∈ Cn, contradicting our
choice of c̄. If m < k we obtain a contradiction with (2) is a similar way. �

5.2. Theorem. Let A be a super a.z. sequence, such that A �ω ∅ω. There exist
sequences B and C such that:

(1) B ≤ω A and C ≤ω A.
(2) B �ω ∅ω and C �ω ∅ω.
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(3) B and C form a K-pair.

Proof. Let A be a super a.z. sequence. Let I ≤ω ∅′ω be an index sequence for A.

Let {I{s}n }s,n<ω be a Σ0
2 approximation to I. We will use the notion of the age

of an element x at level n at stage s in the approximation {I{s}n }s,n<ω, defined as:

age(x, n, s) =

{
µt ≤ s[∀r ∈ [t, s](x ∈ I{r}n )], if x ∈ I{s}n

s+ 1, if x /∈ I{s}n

We approximate A by the sequence of sequences {A{s}n }, defined as follows.

Fix n and s. If I
{s}
n = ∅ then A

{s}
n = ∅. Otherwise let a be the least oldest

element in I
{s}
n , i.e. a ∈ I

{s}
n and for all b ∈ I

{s}
n , age(a, n, s) < age(b, n, s) or

age(a, n, s) = age(b, n, s) and a < b. Set A
{s}
n = Wa(∅n){s}.

Note that for every n the approximation {A{s}n }s<ω is ∆0
2(∅n). This follows

from the fact that that for every n, In is not empty and {I{s}n }s<ω is a Σ0
2(∅n)

approximation. Hence after finitely many wrong guesses there will be a stage s,

such that ∀t > s the least oldest element in I
{t}
n remains the same and hence

{A{t}n }s<t<ω is in fact a Σ0
1(∅n) approximation to An.

We will construct Σ0
1 approximations {U{s}n }s,n<ω and {V {s}n }s,n<ω to two enu-

meration operator U and V , so that B = U(A) and C = V (A) satisfy the state-

ment of the theorem. For every n, s we introduce the following notation: B
{s}
n =

U
{s}
n (A

{s}
n ) and C

{s}
n = V

{s}
n (A

{s}
n ). Note that these are as well ∆0

2 approximations,
in fact for every n if we choose s as in the paragraph above, as the stage from which
on we have correctly guessed the least oldest element in the approximation to In,

then both {B{t}n }s<t<ω and {C{t}n }s<t<ω are Σ0
1(∅n) approximations.

Fix an effective enumeration of all enumeration operators {We}e<ω. The con-
struction will ensure that the following requirements are met:

(1) To ensure that B and C have the K-sequence property by Proposition 5.1
it is enough to as that for every n:

K(B, n) : x ∈ B{s}n \B{s+1}
n ∩ ω[k] ⇒ ω[≥k] � s ⊆ Cn

K(C, n) : x ∈ C{s}n \ C{s+1}
n ∩ ω[k] ⇒ ω[≥k] � s ⊆ Bn.

(2) To ensure that B and C are of nonzero degree, we ask that for every e the
following two requirements are satisfied.

N (B, e) : ∃n(Bn 6= We[n](∅n)).

N (C, e) : ∃n(Cn 6= We[n](∅n)).

The construction will run in stages. The strategy to satisfy requirements of
type K is straightforward. Whenever we see that there is an element x, such that

x ∈ B{s}n \ B{s+1}
n ∩ ω[k] for example, we enumerate permanently all elements in

y ∈ ω[≥k] � s in Cn, by adding the axiom 〈y, ∅〉 to the operator Vn.
To ensure that the N -type requirements are satisfied we will firstly order them

linearly:

R0 = N (B, 0) < R1 = N (C, 0) < · · · < R2i = N (B, i) < R2i+1 = N (C, i) < . . .
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and say that requirements, which appear earlier in this ordering, are of higher
priority. Next to every requirement, we connect for every n and s the n-th length
of agreement measured at stage s:

l(2i, n, s) = l(B{s}n ,W
{s}
i [n](∅n), s);

l(2i+ 1, n, s) = l(C{s}n ,W
{s}
i [n](∅n), s).

A stage will be called strongly n-expansionary forR2i if it is strongly n-expansionary

for the approximations {B{s}n }s,n<ω and {W {s}i [n](∅n)}s,n<ω. A stage will be called
strongly n-expansionary for R2i+1 if it is strongly n-expansionary for the approxi-

mations {C{s}n }s,n<ω and {W {s}i [n](∅n)}s,n<ω.

Construction:

Set U
{s}
n = V

{s}
n = ∅ for every n.

At stage s+1 we construct U
{s+1}
n and V

{s+1}
n for every n < s, by adding axioms

to the sets U
{s}
n and V

{s}
n , constructed at the previous stage s.

Step 1: The K-requirements:

For every n < s we do the following: Let D
{s+1}
n = B

{s}
n \ U{s}n (A

{s+1}
n ) ∪ C{s}n \

V
{s}
n (A

{s+1}
n ). If Dn = ∅ then move on to Step 2 of the construction. Otherwise

let k be the least element such that D
{s+1}
n ∩ ω[k] 6= ∅ and x be the least element

in D
{s+1}
n ∩ ω[k].

If x ∈ B{s}n then enumerate the axiom 〈y, ∅〉 in V
{s+1}
n for every y ∈ ω[≥k] � s.

If x ∈ C{s}n then enumerate the axiom 〈y, ∅〉 in U
{s+1}
n for every y ∈ ω[≥k] � s.

Step 2: The N -requirements:
For every n < s we do the following let Re be the highest priority requirement such
that the stage s is strongly n-expansionary for Re.

If e = 2i then for all y < l(e, n, s), such that y ∈ A
{s}
n enumerate the axiom

〈〈y, e〉, {y}〉 in U
{s+1}
n .

If e = 2i+ 1 then for all y < l(e, n, s), such that y ∈ A{s}n enumerate the axiom

〈〈y, e〉, {y}〉 in V
{s+1}
n .

End of Construction:

Now we will verify that the construction produces the required enumeration
operators.

5.3. Proposition. For every n and every i at every stage s, D{s+1}
n ∩ ω[2i] ⊆

B
{s}
n \ C{s}n and D{s+1}

n ∩ ω[2i+1] ⊆ C{s}n \B{s}n

Proof. Suppose that D{s+1}
n ∩ ω[2i] 6= ∅ and let x ∈ D{s+1}

n ∩ ω[2i]. Then x ∈
B
{s}
n ∪C{s}n so there is an axiom 〈x, F 〉 in U

{s}
n or V

{s}
n . Furthermore this axiom is

not valid at stage s+ 1, i.e. F * A{s+1}, hence F 6= ∅. It follows that this axiom is
enumerated by the requirement R2i, which enumerates axioms only in the operator

Un. Hence x ∈ B{s}n \ C{s}n .

That D{s+1}
n ∩ ω[2i+1] ⊆ C{s}n is proved similarly. �

5.4. Lemma. B = U(A) and C = V (A) form a K-pairs.

Proof. Fix n and consider the approximations {B{s}n }s<ω and {C{s}n }s<ω. These
are ∆0

2 approximations to the the sequences B = U(A) and C = V (A). Since A
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is super a.z., it follows that B and C are super a.z. and hence by Proposition 3.3
it follows that if B and C have the K-sequence property then they form a K-pair.
By Proposition 5.1 it is enough to ensure that their approximations satisfy the
following two statements:

(1) : x ∈ B{s}n \B{s+1}
n ∩ ω[k] ⇒ ω[≥k] � s ⊆ Cn

(2) : x ∈ C{s}n \ C{s+1}
n ∩ ω[k] ⇒ ω[≥k] � s ⊆ Bn.

Suppose that, say, (1) is not true, i.e. suppose that there is an element x ∈
B
{s}
n \ B{s+1}

n ∩ ω[k] but ω[≥k] � s * Cn. Let us consider the construction at

stage s + 1. Since U
{s}
n ⊆ U

{s+1}
n it follows that U

{s}
n (A

{s+1}
n ) ⊆ B

{s+1}
n , hence

x ∈ B{s}n \ U{s}n (A
{s+1}
n ) ⊆ D{s+1}

n . Then D
{s+1}
n is not empty and by Proposition

5.3 k is even. We have two cases:
Case 1: 2l ≤ k is the least m such that D

{s+1}
n ∩ ω[m] 6= ∅. But then by

construction the axiom 〈y, ∅〉 is enumerated in V
{s+1}
n for every y ∈ ω[≥2l] � s ⊆

ω[≥k] � s, hence ω[≥k] � s ⊆ Cn.

Case 2: 2l + 1 < k is the least m such that D
{s+1}
n ∩ ω[m] 6= ∅. But then by

construction the axiom 〈y, ∅〉 is enumerated in U
{s+1}
n for every y ∈ ω[≥m] � s. In

particular the axiom 〈x, ∅〉 is enumerated in U
{s+1}
n , so x ∈ B{s+1}

n , contradicting
our choice of x.

That (2) is true is proved similarly. �

5.5. Proposition. B and C form a nontrivial K-pair, i.e. dω(B) 6= ∅ω and dω(C) 6=
∅ω.

Proof. We prove by induction on e the following two statements:

(1) There is a natural number n such that Re does not add any elements to
Um or Vm for every m ≥ n.

(2) Re is satisfied.

Suppose that the statement is true for all j < e.
Suppose that e = 2i, i.e Re = N (B, i). If there is an n such that there are finitely

many strongly n-expansionary stages for Re then the two statements are true for
Re. Indeed, as we are working with ∆0

2 approximations to to Bn and Wi[n](∅n)
we can apply Proposition 1.11. By Part (1) of Proposition 1.11 B 6= Wi(∅ω),
hence there is an n such that Bn 6= Wi[n](∅n) and Re is satisfied. By Part (2) it
follows that there is an index n0 such that for all m > n0 there are no strongly
m-expansionary stages for Re. Then according to Step 2 of the construction Re
never enumerates any axioms in either Um or Vm for any m > n0.

So assume towards a contradiction that for every n there are infinitely many
strongly n-expansionary stages for Re . Then by Proposition 1.11 it follows that
B = Wi(∅ω). We prove that in this case A ≡e B = Wi(∅nω), contradicting the
assumption that A �ω ∅ω.

Let n0 be a number such that all Rj , j < e, do not enumerate axioms in any
Um or Vm, where m ≥ n0. As Re is the only R-requirement which enumerates
axioms for elements of the form 〈e, y〉 in either operator and Re enumerates such
axioms only in U , it follows that for every m ≥ n0, there are no axioms in Vm for
the elements x ∈ ω[≤e]. Hence for all m ≥ n0 the K-requirements do not enumerate
axioms for elements x ∈ ω[e] in Um.
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Fix m ≥ n0. If 〈y, e〉 ∈ Um(Am) then there is a strongly m-expansionary stage s

for Re at which y ∈ A{s}m and the axiom 〈〈y, e〉, {y}〉 is enumerated in U
{s}
m and this

axiom is valid, hence y ∈ Am. On the other hand if y ∈ Am then let sy be a stage

such that for all t ≥ sy, we have y ∈ A{t}m . Such a stage exists by the properties
of the ∆0

2 approximation to A. Let s′y be the least strongly m-expansionary stage,
such that s′y > max(sy) and l(e,m, s′y) > y. Note that by definition s′y > m.
Then at stage s′y Step 2 of the construction will enumerate 〈〈y, e〉, {y}〉, hence
〈y, e〉 ∈ Bm = Um(Am).

Fix a0, . . . an0 as indices such that Ak = Wak(∅k) for all k < n0. Then define ∆
by ∆[k] =

{
〈x, ∅〉 | x ∈Wak(∅k)

}
for k < n0 and ∆[k] = {〈y, {〈e, y〉}〉 | y ∈ ω}. It

follows that for every n, An = ∆[n](Bn), proving as claimed that A ≡e B. � �
The given proof of Theorem 5.2 can be easily extended in a couple of ways. First

of all we can modify the proof to show that every nontrivial super a.z. sequence
A bounds an independent K-system {Ai}i<ω of super a.z. degrees. Secondly we
can strengthen the R-requirements to ensure that for every i, Ai �ω B, where B is
a super a.z. sequence such that A �ω B. As a result we obtain an even stronger
embedding result:

5.6. Corollary. Every countable distributive lattice is embeddable in every nonempty
interval of super a.z. degrees.
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