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Abstract. We study Kalimullin pairs, a definable class (of pairs) of enumera-
tion degrees that has been used to give first-order definitions of other important

classes and relations, including the enumeration jump and the total enumer-

ation degrees. We show that the global definition of Kalimullin pairs is also
valid in the local structure of the enumeration degrees, giving a simpler local

definition than was previously known. We prove that the typical enumeration

degree is not half of a nontrivial Kalimullin pair, both in the sense of category
and measure. Using genericity, we show that not all members of nontrivial

Kalimullin pairs are half of a maximal Kalimullin pair. Finally, we construct

such a set that has no maximal Kalimullin partner, making it qualitatively
different from half of a maximal Kalimullin pair.

1. Introduction

One focus of classical computability theory is the investigation of degree struc-
tures. These structures arise from reducibilities on the power set P(ω) of the
natural numbers: we say that a set A is “reducible” to a set B if there is a way
to “compute” membership in A from membership information about B. There are
several natural formalizations of this idea, giving different reducibilities. Such a
reducibility is always reflexive and transitive and thus induces a preorder on P(ω).
The equivalence classes of sets reducible to each other are usually called “degrees”,
and the preorder on the sets induces a partial order on the degrees. Almost always,
a degree structure will also be an upper semilattice.

The most commonly studied reducibility is Turing reducibility: a set A is Turing
reducible to a set B if there is an algorithm that, on any input x, determines whether
x ∈ A in finitely many steps and making finitely many membership queries to B.
A natural extension of Turing reducibility is enumeration reducibility: a set A is
enumeration reducible to a set B if there is an algorithm to enumerate all elements
of A from any enumeration of all the elements of B. In a sense, while Turing
reducibility uses and produces both positive and negative information about sets,
enumeration reducibility uses and produces only positive membership information.
Enumeration reducibility, like Turing reducibility, arises naturally in questions from
computable algebra and computable model theory. In this paper, however, we are
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studying the enumeration degrees as an algebraic structure of independent intrinsic
interest.

When investigating the properties of a degree structure, a central question is:
which degree-invariant relations definable in second-order arithmetic remain first-
order definable in the degree structure? For example, consider the structure of the
Turing degrees, DT , induced by Turing reducibility. The jump operator, which re-
lates a set of natural numbers to its halting set, is an example of a degree-invariant
function. It is a theorem of Shore and Slaman [13] that the jump operator is first-
order definable in the Turing degrees. This first-order definition relies on the anal-
ysis of Slaman and Woodin of the automorphism group of the Turing degrees [14]
and goes through an interpretation of a model of second-order arithmetic in the
Turing degrees.

The structure of the enumeration degrees, De, is induced by enumeration re-
ducibility. There is a natural embedding of the Turing degrees into the enumera-
tion degrees. The enumeration degrees in the range of this embedding are called
total. Enumeration reducibility comes with its own notion of a jump operator,
which agrees with the Turing jump operator under the embedding. Kalimullin [10]
gave a first-order definition of the jump in the enumeration degrees. His definition
is more elementary than the definition of the Turing jump given by Slaman and
Woodin; it relies on the existence and definability of a class of pairs of enumeration
degrees, which came to be known as Kalimullin pairs. Kalimullin pairs, or K-pairs,
turn out to play a central role in definability results in the enumeration degrees.
Ganchev and Soskova [6] showed that Kalimullin pairs are also first-order definable
in the local structure of the enumeration degrees, De(≤0′), the substructure of the
enumeration degrees bounded by the first enumeration jump of the least degree.
They applied this fact in [5] to show that various other classes of degrees are first-
order definable in De(≤ 0′), including the low enumeration degrees and the total
enumeration degrees in De(≤ 0′). Building on this work, Cai, Ganchev, Lempp,
Miller and Soskova [2] show that the class of total enumeration degrees is definable
in De.

In this article, we examine properties of K-pairs and settle some questions raised
through the investigations described above. The original local definition of K-
pairs [6] uses Kalimullin’s global definition in combination with a structural prop-
erty of De(≤0′) which relates to cupping and whose proof is inspired by Harring-
ton’s non-splitting theorem [8]. In Section 3, we show that Kalimullin’s first-order
definition is sufficient for the definition of K-pairs in the local structure, thereby
lowering the complexity and simplifying the proof of the local definability of K-pairs.

Semi-computable sets were introduced by Jockusch [9] as initial segments of com-
putable linear orders. Their properties in the context of enumeration reducibility
were first examined by Arslanov, Cooper and Kalimullin [1]. A semi-computable
set and its complement form a K-pair of a particular kind, a maximal K-pair. The
proof of the definability of the total enumeration degrees in De is based on maximal
K-pairs. It is shown that, up to enumeration equivalence, every maximal K-pair is
of the form {A,A} for some semi-computable set A. In Section 4, we produce a non-
trivial K-pair such that neither half is enumeration equivalent to a semi-computable
set, hence neither half is a member of a maximal K-pair. We do this by building a
K-pair consisting of two 1-generic sets and proving that a 1-generic set cannot have
the same degree as a semi-computable set. We further investigate the relationship
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between genericity and K-pairs, showing that if a set is sufficiently generic, it can-
not even be part of a nontrivial K-pair. In other words, the collection of sets that
are half of a nontrivial K-pair is meager. We finish the section by showing that this
collection also has measure zero: no 1-random is half of a nontrivial K-pair.

In Section 5, we distinguish general K-pairs from maximal K-pairs in another
way. If a is one member of a K-pair, the set of enumeration degrees that forms a
K-pair with a is an ideal. For members of a maximal K-pair, this ideal is principal.
It is natural to ask whether this is true for every half of a nontrivial K-pair. We
give a negative answer by directly constructing a counterexample.

2. Preliminaries

Enumeration reducibility. We start with basic definitions and properties of enu-
meration reducibility and of the enumeration degrees.

Definition 2.1. A set A is enumeration reducible to a set B (denoted by A ≤e B)
if there is a c.e. set Φ such that

A = Φ(B) = {n : (∃u) [〈n, u〉 ∈ Φ & Du ⊆ B]},
where Du denotes the finite set with canonical index u under the standard coding
of finite sets.

We will refer to the c.e. set Φ in the definition above as an enumeration operator.
An element 〈n, u〉 ∈ Φ will be called an axiom for n in Φ. We will often identify
finite sets with their canonical indices and write 〈n,Du〉 for 〈n, u〉.

A set A is enumeration equivalent to a set B (denoted by A ≡e B) if A ≤e B
and B ≤e A. The equivalence class of A under the relation ≡e is the enumeration
degree de(A) of A. The structure of the enumeration degrees 〈De,≤〉 is the partial
ordering of enumeration degrees ordered by de(A) ≤ de(B) if and only if A ≤e B.
It has a least element 0e = de(∅), the set of all c.e. sets. We define a least upper
bound operation by setting de(A) ∨ de(B) = de(A⊕B).

The enumeration jump of a set A was defined by Cooper [3].

Definition 2.2. The enumeration jump of a set A is denoted by Je(A) and is
defined as KA ⊕ KA, where KA = {〈e, x〉 : x ∈ Φe(A)}. Here, {Φe}e<ω is the
standard listing of the c.e. sets. The enumeration jump of de(A) is de(A)′ =
de(Je(A)).

Definition 2.3. A set A is called total if A ≡e A ⊕ A. An enumeration degree is
called total if it contains a total set.

It is not difficult to see that a set A is Turing equivalent to a set B if and only
if A⊕A is enumeration equivalent to B ⊕B. Thus, the map ι, defined by

ι(dT (A)) = de(A⊕A),

is an embedding of DT into De that preserves the order, the least element, and the
least upper bound. McEvoy [12] showed that it also preserves the jump operation.

The local structure of the enumeration degrees, denoted by De(≤ 0′), is the
substructure of all enumeration degrees that are below 0′e. The elements of De(≤
0′) are the enumeration degrees that contain Σ0

2-sets, or equivalently, that consist
entirely of Σ0

2-sets. Jockusch [9] showed that to every Σ0
2-set A, we can associate a

uniformly computable sequence of finite sets {A[s]}s<ω, called a good Σ0
2-approxi-

mation to A, such that
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(1) there are infinitely many stages s at which A[s] ⊆ A (we call these good
stages), and

(2) n ∈ A if and only if n ∈ A[s] at all but finitely many stages s.

We refer to Cooper [4] for a survey of basic results on the structure of the enu-
meration degrees and to Sorbi [15] for a survey of basic results on the local struc-
ture De(≤0′).

Kalimullin pairs. The central topic of this paper is Kalimullin pairs; these were
introduced by Kalimullin [10] to give a definition of the jump in the enumeration
degrees.

Definition 2.4 (Kalimullin [10]). We call A,B ⊆ ω a Kalimullin pair (or K-pair)
if there is a c.e. set W ⊆ ω × ω such that A×B ⊆W and A×B ⊆W .

Ganchev and Soskova [6] gave Kalimullin pairs their current name; Kalimullin [10]
originally called them e-ideal pairs because of the following property.

Proposition 2.5. For any set of natural numbers A, the collection of all sets B
that form a K-pair with A is downwards closed under enumeration reducibility and
closed under the join operation, i.e., it is an ideal in the enumeration degrees.

If A is a c.e. set, then the ideal of its K-partners contains every set of natural
numbers. K-pairs with a c.e. member are called trivial and will be of no interest to
us. Nontrivial K-pairs have nontrivial properties, as can be seen below.

Proposition 2.6 (Kalimullin [10, Proposition 2.7]). If A and B form a nontrivial
K-pair, then:

(1) A ≤e B and B ≤e A,
(2) A ≤e B ⊕ Je(∅) and B ≤e A⊕ Je(∅).

Remark 2.7. The reduction in part (1) of Proposition 2.6 can easily be made ex-
plicit. Assume that A and B form a K-pair witnessed by W , and A is not c.e. Then
B = {b : (∃a) 〈a, b〉 ∈W and a ∈ A}. This works even if B is c.e.

It follows from Proposition 2.5 that being a K-pair is a degree-theoretic property:
Let us call a pair of enumeration degrees a and b a K-pair if the members of a form
K-pairs with the members of b. Kalimullin [10] showed that this is a definable
property: K-pairs are minimal pairs relative to every other enumeration degree.

Theorem 2.8 (Kalimullin [10, Theorem 2.6]). A pair of enumeration degree a
and b form a K-pair if and only if for every enumeration degree x,

(a ∨ x) ∧ (b ∨ x) = x.

Semi-computable sets. Semi-computable sets give rise to K-pairs, in fact, to
maximal K-pairs, which are central to the definability of the total enumeration
degrees.

Definition 2.9 (Jockusch [9]). A set A is called semi-computable if there is a
computable function (called a selector function) f : ω × ω → ω such that for any
x, y ∈ ω, f(x, y) ∈ {x, y}, and if {x, y} ∩A 6= ∅ then f(x, y) ∈ A.

Equivalently, A is semi-computable if and only if there is a computable linear
ordering on ω such that A is a cut in this linear ordering. We give a particular
example of this.
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Let σ <L τ denote that σ is to the left of τ . Define σ ≤ τ to mean that σ � τ or
σ <L τ . Note that ≤ is a computable linear ordering on 2<ω. For A ⊆ ω, we write
σ ≤ A to mean that σ ≤ A � |σ|. Let LA = {σ : σ ≤ A}. The set LA is an initial
segment of 〈2<ω,≤〉, hence it is semi-computable. As A ≡T LA, it follows that
every Turing degree contains a semi-computable set. Jockusch [9] extended this
to show that every Turing degree contains a semi-computable set that is neither
c.e. nor co-c.e. In De, sets of the form LA characterize the enumeration degrees of
semi-computable sets:

Proposition 2.10 (Ganchev and Soskova [5]). If A ⊆ ω is semi-computable, then
A ≡e LA.

If A ⊆ ω is semi-computable, then A and A form a K-pair. Thus nontriv-
ial semi-computable sets provide us with examples of nontrivial K-pairs. Taking
Proposition 2.6 into account, we see that a semi-computable set and its complement
have the following maximality property.

Definition 2.11 (Ganchev, Soskova [5]). A K-pair of enumeration degrees {a,b}
is a maximal K-pair if for every K-pair of enumeration degrees {c,d}, such that
a ≤ c and b ≤ d, we have that a = c and b = d.

Cai, Ganchev, Lempp, Miller and Soskova [2] show that every maximal K-pair is
of the form {de(A), de(A)} for some semi-computable set A. Thus the nonzero total
enumeration degrees can be defined as the least upper bounds of maximal K-pairs.

K-pairs in De(≤0′). K-pairs in the local structure of the enumeration degrees have
particularly nice properties. It is immediate from Proposition 2.6 that if {a,b} is
a nontrivial K-pair in De(≤0′), then a and b are ∆0

2-enumeration degrees and, in
fact, even low enumeration degrees, i.e., a′ = b′ = 0′e.

The main tool for constructing K-pairs in De(≤ 0′) is given by the following
dynamic characterization:

Lemma 2.12 (Kalimullin [10, Theorem 4.1]). For Σ0
2-sets A and B, the following

are equivalent:

(1) A and B form a K-pair.
(2) There are Σ0

2-approximations {A[s]}s<ω and {B[s]}s<ω such that

(∀s) [A[s] ⊆ A ∨B[s] ⊆ B].

Since Kalimullin states and proves this only for ∆0
2-sets, we include a full proof

here:

Proof. For the forward direction, we may assume that neither A nor B is c.e., or
else the result is trivial by using a Σ0

1-approximation to A or B, making a fixed
disjunct of (2) above always true. So suppose that A and B form a nontrivial K-

pair via W . Fix a good Σ0
2-approximation {Â[s]⊕ B̂[s]}s<ω to A⊕B. We assume

furthermore that Â[0] = B̂[0] = ∅. Fix a Σ0
1-approximation {W [s]}s<ω to W . From

the given approximations to A and B, we construct the desired Σ0
2-approximations

{A[s]}s<ω and {B[s]}s<ω as follows:

Set A[0] = Â[0] and B[0] = B̂[0]. Suppose that we have defined A[s] = Â[is]

and B[s] = B̂[js]. At stage s + 1, find the greatest pair 〈i, j〉 ≤ s such that either

is = i and js = j, or is < i , js < j and Â[i] × B̂[j] ⊆ W [s]. Set A[s+ 1] = Â[i]

and B[s+ 1] = B̂[j].
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To see that {A[s]}s<ω and {B[s]}s<ω satisfy (2), we argue as follows. For every s,
A[s]×B[s] ⊆W [s] ⊆W . As A×B ⊆W , it follows that A[s] ⊆ A or B[s] ⊆ B.

We next verify that {is}s<ω and {js}s<ω are unbounded; note that by our con-
struction, we only need to show this for the sequence {is}s<ω. So fix n arbitrary,

and fix a good stage i > n for A⊕B. Then Â[i]× B̂[i] ⊆ A×B ⊆W , hence there

is a sufficiently large stage s∗ such that Â[i]× B̂[i] ⊆Ws∗ and so is∗ ≥ i > n.
We conclude from this that {A[s] ⊕ B[s]}s<ω is a Σ0

2-approximation to A ⊕ B
as follows: Suppose, e.g., that x ∈ A[s] r A for cofinitely many s. Then, since
A[s] ⊆ A or B[s] ⊆ B for all s, we have B[s] ⊆ B for cofinitely many s, making B
c.e. contrary to our hypothesis.

For the opposite direction, fix Σ0
2-approximations {A[s]}s<ω to A and {B[s]}s<ω

to B such that

(∀s) [A[s] ⊆ A ∨ B[s] ⊆ B].

Then A and B form a K-pair witnessed by the c.e. set W =
⋃
s<ω A[s]×B[s]. �

Kalimullin [10] showed that 0′e is the largest enumeration degree that can be
represented as the least upper bound of a K-triple. A K-triple is an instance of a
K-system, a set of enumeration degrees such that every pair of distinct elements is a
nontrivial K-pair. Thus K-systems not below 0′e have cardinality at most 2. In con-
trast, Ganchev and Soskova [7] showed that below every nonzero ∆0

2-enumeration
degree one can find an infinite countable K-system. K-systems can then be used
to code relations into the local structure, as in [7], or to characterize various other
classes of enumeration degrees, as in [6]. Of course, all of these results rely essen-
tially on the fact that K-pairs form a definable class in the local structure of the
enumeration degrees.

3. A Local Definition of K-pairs

The first-order definition of K-pairs in the global structure De is given by a
universal formula:

ϕK(a,b)↔ (∀x) (a ∨ x) ∧ (b ∨ x) = x.

This allows for the possibility of the existence of fake K-pairs in the local structure,
i.e., pairs of sets U and V whose degrees u and v satisfy the formula ϕK in the
local structure, but do not satisfy it globally. Ganchev and Soskova [6] circumvent
this problem by using a more restrictive formula ϕLK = ϕK & ψ, where ψ contains
additional structural requirements. The additional formula ψ raises the complexity
of this first-order definition by one quantifier level. We now show that fake K-pairs
do not exist in the local structure, and therefore this additional restriction in the
local definition of K-pairs is not necessary.

Theorem 3.1. A pair of Σ0
2-sets A and B form a K-pair of and only if for every

x ≤ 0′e,

(de(A) ∨ x) ∧ (de(B) ∨ x) = x.

Proof. Immediate from Theorem 2.8 above and Theorem 3.2 below. �

Theorem 3.2. If U and V are Σ0
2-sets that do not form a K-pair, then there are

Σ0
2-sets A and Y such that Y ≤e A⊕ U and Y ≤e A⊕ V , but Y �e A.
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Proof. Let U and V be Σ0
2-sets that do not form a K-pair. We will construct a

Σ0
2-set A and two enumeration operators Γ and Λ so that the following two types

of requirements are satisfied:

(1) The global requirement

R : Γ(U ⊕A) = Λ(V ⊕A)

(2) For every natural number e, we will have a requirement

Ne : Φe(A) 6= Γ(U ⊕A)

The construction will make use of a tree of strategies T . The nodes on the tree
are all strings of symbols in the set O = ω ∪ {w}, called the set of outcomes. A
node α on the tree of length e will be assigned the requirement Ne. The outcomes
are ordered as follows:

0 < 1 < · · · < n < n + 1 < · · · < w

Fix a good Σ0
2-approximation {U [s]⊕ V [s]}s<ω to U ⊕ V . The construction will

run in stages. At every stage s, we construct approximations to the sets A, Γ and Λ
and a finite path δ[s] of length s in the tree of strategies T . Nodes α � δ[s] will be
called activated or visited at stage s, and s will be called an α-true stage. Nodes
along δ[s] will be allowed to perform actions following a specific strategy aimed at
satisfying their assigned requirement. This is why we will often refer to the nodes
in the tree T as strategies. Nodes to the right of δ[s] will be injured at stage s. The
intention is that there will be a leftmost infinite path of nodes visited at infinitely
many stages and injured only finitely many times, called the true path, along which
all strategies succeed in satisfying their requirement.

The set A will be approximated as follows: At the beginning of each stage s,
we set A0[s] = ω. Then, during stage s, every proper initial segment of δ[s] of
length n ≤ s is activated and constructs An+1[s] by extracting numbers from An[s].
A[s] = As[s] will be the resulting set after all strategies have made their extractions.
Ultimately, an element x is in A if and only if x ∈ A[s] at all but finitely many
stages.

Description of the strategies. At the beginning of every stage s, we first ac-
tivate the global R-strategy. The global R-strategy constructs the operators Γ
and Λ. Every element x that enters Γ(U ⊕A) or Λ(V ⊕A) at any stage will be the
responsibility of one particular N -strategy, say α. If the strategy α decides to use
this element, then it will define for it a U -marker u(x), a V -marker v(x), and an
A-marker a(x). Initially, all the markers are positive numbers. The strategy α can
change them once to u(x) = 0, v(x) = 0, and a(x) to a larger number. At stage s,
the R-strategy enumerates axioms for all elements x that have defined markers.
The axioms enumerated into the operators Γ and Λ at stage s for x will be

〈x, (U [s] �u(x))⊕ {a(x)}〉 and 〈x, (V [s] � v(x))⊕ {a(x)}〉.
If a(x) ∈ A then, as we have a good Σ0

2-approximation to U ⊕V , eventually we will
enumerate a valid axiom for x into both operators.

Then we start the construction of δ[s]. This finite path is defined inductively—
we always start by activating the root of the tree ∅. When a strategy α = δ[s] �n is
activated, it performs certain actions as described below and selects an outcome o.
If n = s, then the construction of δ[s] = δ[s] �n is complete and the construction
proceeds to stage s+ 1. Otherwise, δ[s] �n+ 1 = (δ[s] �n)̂ o.
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Every N -strategy α will be equipped with an infinite computable list of witnesses
Xα = {x0 < x1 . . . } so that if α 6= β then Xα ∩Xβ = ∅. These witnesses will be
used by α in its attempts to diagonalize Γ(U ⊕ A) against Φ|α|(A). Every witness
has one of three possible statuses: unused, used and canceled. Consider the first
stage s0 that the strategy α is visited (after being initialized). At this stage, α
will select as its current witness xα the least unused witness x ∈ Xα and declare it
used. It will define its markers u(xα), v(xα) and a(xα) as fresh numbers not seen
in the construction so far. This will mean that from the next stage onward that
the global strategy will be enumerating axioms for xα. Then α will wait until xα
appears in Φ|α|(A), and while this is not true, it will have outcome w. If this
never happens, then the strategy is successful, as xα ∈ Γ(U ⊕ A) \ Φ|α|(A). If at
a stage s an axiom for xα appears in Φ|α|, then the strategy α would like to keep
xα ∈ Φ|α|(A) at all further stages while at the same time extracting it from the set
Γ(U⊕A). Unfortunately, this is not immediately possible, as extracting the marker
a(xα) might injure xα ∈ Φ|α|(A). In order to resolve this conflict, the strategy will
keep a(xα) ∈ A and try to obtain evidence that xα is not in either Γ(U ⊕ A) or
Λ(V ⊕ A) on account of memberships in U and V . The strategy will initiate the
construction of a pair of approximations {Un}n<ω and {Vn}n<ω, setting the first
member of these approximations to U0 =

⋂
0≤t≤s U [t] and V0 =

⋂
0≤t≤s V [t].

If U0 * U and V0 * V , then all axioms enumerated into Γ and Λ until this stage
are invalid. At the current stage, the strategy simply sets u(xα) = v(xα) = 0 and
defines a new fresh value for the marker a(xα) > max Φ|α|. At all further stages,
if it appears that U0 * U and V0 * V , i.e., the strategy has observed two new
stages s1 and s2 at which U0 * U [s1] and V0 * V [s2], then α will extract the
newly defined a(xα) from A, invalidating all axioms for xα and have outcome 0.
Meanwhile, it will initiate a new cycle with a new witness, the next unused element
of Xα.

To keep track of cycles the strategy α will have a parameter Cα, which lists
necessary information about all previous cycles. The n-th entry in Cα will be
Cα[n] = 〈xn, an, Un, Vn, on〉, where xn is the witness from α’s n-th cycle, an is the
value of its first A-marker, Un and Vn are the n-th members of the approximations
to U and V constructed by α and on is the previous stage when α had outcome n.

Ultimately, the strategy α will either perform finitely many cycles until it comes
across a witness x /∈ Φ|α|(A), or else it will complete infinitely many cycles defining

a pair of Σ0
2-approximations {Un}n<ω and {Vn}n<ω to the sets U and V . As U

and V do not form a K-pair, we have by Lemma 2.12 that there must be some
least n such that Un * U and Vn * V . Then the n-th cycle will ultimately be
successful and n will be the true outcome of α.

Conflicts between a pair of N -strategies. Suppose that α and β are two
strategies on the true path and α n̂ � β, where n ∈ ω and that the strategy β
would like to ensure that some finite set D is a subset of A. However, there is the
possibility that the higher-priority strategy α prevents this from happening. If at
infinitely many stages, α has outcome m > n and the witness xm has marker a(m)
which is in the set D, then ultimately D * A and so β is not successful.

In order to prevent this, every time α has outcome n, it will extract all markers
that could possibly be extracted by α. In other words, whenever α has outcome n,
it will extract a(xm) for every m ≥ n. Extracting only the current marker of a pre-
vious witness can lead to an inconsistency between the two constructed operators Γ
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and Λ. For this reason, α will also extract the initial values of the a-markers am
for m > n, recorded in Cα. This will not injure the activity of α itself as if n is not
the true outcome but some m > n is, then α n̂ will be visited only finitely many
times and the extractions involved will not affect membership in A.

Finally, with this modification in mind, we note that α will extract more and
more numbers every time that it has outcome n. We will ensure that every time α
defines a new value for a marker, the value will be larger than the current stage. The
lower-priority strategy β can safely assume that no more elements x < s (where s
is the current stage) will be extracted by α on further visits, except for the ones
currently extracted by α.

Construction. At stage 0, all strategies and all parameters are in initial state: set
parameters are empty, number parameters are undefined.

At stage s > 0, all parameters inherit their value from the previous stage. We
first activate the global R-strategy:

The global R-strategy: For all x < s such that a(x), u(x) and v(x) are defined,
enumerate into the operator Γ the axiom 〈x, (U [s] �u(x))⊕ {a(x)}〉 and into the
operator Λ the axiom 〈x, (V [s] � v(x))⊕ {a(x)}〉.

Then we start the construction of δ[s]. Set δ[s] � 0 = ∅ and A0[s] = ω. Suppose
that we have constructed δ[s] � k and Ak[s]. If k = s, then set δ[s] = δ[s] � k and
A[s] = Ak[s]. We end this stage by canceling all strategies α such that δ[s] < α (i.e.,
initialize all nodes to the right of the current path) and proceed to stage s+1. When
an N -strategy α is canceled, we set Cα, xα and sα to their initial value. For every
element x in Xα which has status used, we set its status to canceled, enumerate the
axiom 〈x, ∅〉 into both operators Γ and Λ and make a(x), u(x) and v(x) undefined.

Otherwise, denote δ[s] � k by α. We activate the strategy α until it produces an
outcome o, in which case we move on to the next substage. Ak+1[s] is defined by α
and δ[s] � k + 1 = α ô.

The N -strategy α: The strategy α first executes the C-module. If this module
does not produce an outcome, then it carries on to the main module.

The C-module: Scan all entries of the list Cα from first to last until an entry
produces an outcome or all entries are scanned.

Scanning Cα[n]: Let Cα[n] = 〈xn, an, Un, Vn, on〉. Search for stages t1 and t2
such that:

• on < t1 ≤ s and Un * U [t1]; and
• on < t2 ≤ s and Vn * V [t2].

If such stages t1 and t2 are found then set on = s. Let Ak+1[s] be the set which
is produced by extracting from Ak[s] the elements a(xm) for every m such that
n ≤ m < |Cα|, the elements am for every m such that n < m < |Cα|, and a(xα),
the marker of the current witness xα. Let the outcome be n.

Otherwise, move on to the next entry of the list Cα.

The main module:

(1) If the witness xα is not defined, then α starts a new cycle. Let xα be
the least unused witness from Xα. Change the status of xα to used. Set
sα = u(xα) = v(xα) and a(xα) to be fresh numbers larger than s and
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unused in the construction so far. Set Ak+1[s] = Ak[s] and let the outcome
be w. Otherwise, go to the next step.

(2) If xα /∈ Φ|α|(Ak[s] � s) then set Ak+1[s] = Ak[s] and let the outcome be w.
Otherwise, go to the next step.

(3) Let Û =
⋂
sα<t≤s U [t] and V̂ =

⋂
sα<t≤s V [t]. Enumerate a new entry in

the list Cα: 〈
xα, a(xα), Û , V̂ , s

〉
.

Set a(xα) to be a fresh number larger than s. Set u(xα) = v(xα) = 0.
Make xα and sα undefined and go to step (1).

Verification. Towards showing that the true path is infinite, we first show the
following property of the construction:

Lemma 3.2.1. Let α be an N -strategy which, for a least stage s, is not initialized
at any stage t > s and which is visited infinitely often. If α has infinitely many
cycles, then there is a least n such that α has outcome n at infinitely many stages.

Proof. Towards a contradiction, suppose that α defines an infinite list Cα and for
every n, α has outcome n at most finitely many times. After stage s, the list Cα is
not canceled. From the third and fourth parameters in the entries recorded in this
list, we obtain two infinite approximating sequences {Un}n<ω and {Vn}n<ω. We
will show that these are Σ0

2-approximations to U and V , satisfying the K-approxi-
mation property: for every n, either Un ⊆ U or Vn ⊆ V . As U and V do not form
a K-pair, by Lemma 2.12 this is a contradiction.

For every n, let sn > s be the stage at which the final values of Un and Vn
are defined. It follows from step 3 of the construction that for every n, Un+1 =⋂
sn<t≤sn+1

U [t] and Vn =
⋂
sn<t≤sn+1

V [t]. For x ∈ U , let tx be a stage such

that at all stages t > tx, x ∈ U [t]. For every n such that sn > tx, we have
that x ∈ Un+1. If x /∈ U , then x /∈ U [t] whenever t is a good stage (i.e., when
U [t] ⊆ U). Then for every n such that there is a good stage t ∈ (sn, sn+1] we have
that x /∈ Un+1. As there are infinitely many good stages and the sequence {sn}n<ω
is strictly increasing, it follows that there are infinitely many n such that x /∈ Un.
That {Vn}n<ω is a Σ0

2-approximation to V is proved similarly.
Let n be a natural number. Let tn be a stage such that the outcomes that α has

at stages t ≥ tn are greater than n. It follows that on, the last parameter in the list
Cα[n] which records the previous stage when α had outcome n, has permanent value
strictly less than tn. If Un * U , then there is a stage t ≥ tn such that Un * U [t].
As α does not have outcome n after stage tn, it follows that for all t ≥ tn we have
Vn ⊆ V [t] and thus Vn ⊆ V . �

Corollary 3.2.2. There is an infinite path f in the tree of strategies T with the
following two properties:

(1) For every k, there are infinitely many stages s such that f � k � δ[s].
(2) For every k, there is a least stage s(k) such that f � k is not canceled at any

stage t > s(k).

Proof. We define the true path inductively. Obviously, f � 0 = ∅ and s(0) = 0
satisfy both properties, as the root of the tree is visited at every stage and never
canceled. Suppose we have defined f � k = α and s(k). If only finitely many values
are enumerated into Cα at stages t > s(k), then α has only finitely many possible
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outcomes at stages t > s(k). Let o be the leftmost one that is visited infinitely
many times. Then f �(k+1) = α ô and s(k+1) ≥ s(k) is the last stage when α has
outcome that is to the left of o. Otherwise, Cα has infinitely many entries, i.e., α
has infinitely many cycles, and by Lemma 3.2.1, there are a leftmost outcome n
and a stage s(k + 1) such that α n̂ is visited at infinitely many stages, and at any
stage t > s(k + 1), the strategy α does not have outcomes m <L n. In this case,
f �(k + 1) = α n̂ satisfies both properties. �

Lemma 3.2.3. Γ(U ⊕A) = Λ(V ⊕A).

Proof. Let x be a natural number. Depending on the status of x as a witness, we
have the following cases:

Case 1: The element x is not a witness or does not become a used witness at
any stage. In this case, the u-, v- or a-markers for x do not receive a value at any
stage and the main strategy does not enumerate any axiom for x. So, in this case,
x /∈ Γ(U ⊕A) ∪ Λ(V ⊕A).

Case 2: The element x becomes a used witness, but at some finite stage is
canceled. Then by the actions on cancelation of a strategy, the axiom 〈x, ∅〉 is
enumerated into both operators Γ and Λ. In this case, x ∈ Γ(U ⊕A) ∩ Λ(V ⊕A).

Case 3: The element x becomes a used witness for an N -strategy α but never
enters the list Cα and is never canceled. Then the values of its u-, v- and a-markers
are defined once at stage s, when α picks x as a current witness, and remain the
same at all further stages. At stages t > s, the axioms enumerated into Γ and Λ
are 〈x, (U [t] �u(x))⊕ {a(x)}〉 and 〈x, (V [t] � v(x))⊕ {a(x)}〉, respectively. Thus, if
a(x) /∈ A, then x /∈ Γ(U ⊕ A) ∪ Λ(V ⊕ A). If a(x) ∈ A, then let t1 > t be a good
stage for the approximation to U ⊕ V , i.e., U [t1] ⊆ U and V [t1] ⊆ V . Then the
axioms 〈x, (U [t1] �u(x))⊕ {a(x)}〉 ∈ Γ[t1] and 〈x, (V [t1] � v(x))⊕ {a(x)}〉 ∈ Λ[t1]
witness the fact that x ∈ Γ(U ⊕A) ∩ Λ(V ⊕A).

Case 4: The element x becomes a used witness for an N -strategy α at stage s1,
enters list Cα at stage s2 as part of the n-th entry and is never canceled. The u-,
v- and a-markers for x have the same values u1, v1, a1 at stages t ∈ (s1, s2], and
values 0, 0, a2 with a1 < a2 at stages t > s2. Cα[n] = 〈x, a1, Un, Vn, on〉, where
Un =

⋂
s1<t≤s2 U [t] and Vn =

⋂
s1<t≤s2 V [t]. The axioms enumerated into Γ are

〈x, (U [t] �u1)⊕ {a1}〉 for every t ∈ (s1, s2] and 〈x, ∅ ⊕ {a2}〉. The axioms enumer-
ated into Λ are 〈x, (V [t] � v1)⊕ {a1}〉 for every t ∈ (s1, s2] and 〈x, ∅ ⊕ {a2}〉. If
a2 ∈ A, then x ∈ Γ(U ⊕A) ∩ Λ(V ⊕A).

So suppose a2 /∈ A. This means that the strategy α is visited infinitely often
and not initialized after stage s1, thus it is on the true path. Furthermore, the true
outcome of α is o ≤ n. If o < n, then every time α has its true outcome o, both a1
and a2 are extracted from A. Thus a1 /∈ A, hence x /∈ Γ(U ⊕ A) ∪ Λ(V ⊕ A).
Finally, if o = n, then let t1 < t2 · · · < tk < . . . be the sequence of stages at
which α has outcome n. By construction, these are the consecutive values defined
for the parameter on, the last parameter in the entry Cα[n]. For every interval of
stages (tk, tk+1], there are stages t′ and t′′ in this interval such that Un * U [t′]
and Vn * V [t′′]. Thus Un * U and Vn * V , hence in this case as well, x /∈
Γ(U ⊕A) ∪ Λ(V ⊕A). �

Lemma 3.2.4. Γ(A⊕ U) �e A.
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Proof. For every e, we will show that Φe(A) 6= Γ(A⊕U). Fix a natural number e and
let α = f � e be the Ne-strategy on the true path. By Corollary 3.2.2, there is a least
stage s(e) such that α is not initialized after stage s(e). Let o be α’s true outcome. If
o = w, then by Lemma 3.2.1, α has finitely many cycles and there is a last witness xα
that never enters the list Cα. Hence, at all α-true stages s, xα /∈ Φe(A[s] � s). By
Case 3 from the proof of Lemma 3.2.3, we have that x ∈ Γ(U ⊕ A) \ Φe(A), and
hence the strategy is successful.

If o = n, then let s > s(e) be the stage at which Cα[n] = 〈xn, an, Un, Vn, on〉 is
defined. By Case 4 from the proof of Lemma 3.2.3, since a(xn) /∈ A, we have that
xn /∈ Γ(U⊕A). At stage s, we have that xn ∈ Φe(A|α|[s] � s). Thus we need to show
that A|α|[s] � s ⊆ A. The strategy α does not cause the extraction of any element
a < s, as after α stops having outcomes to the left of n, it can only extract markers
that are defined after stage s and hence are greater than s. Strategies that are not
on the true path are either visited finitely many times or canceled infinitely often
and hence do not cause the extraction of any elements from the set A. Strategies
extending α n̂ are in initial state at stage s(e) + 1 and are not visited at stages
t ∈ (s(e), s], as Cα[n] is not defined at these stages. If γ is an N -strategy of higher
priority than α that causes an element a < s to be extracted from A, then γ has true
outcome m for some m ∈ N and a is defined before stage s as either an a-marker
(past or current) of a witness xk, where k > m, as the second a-marker a(xm)[s],
or a(xγ)[s]. All such markers are extracted at every γˆm-true stage greater than
or equal to s. In particular, as γˆm � α and s is an α-true stage, it follows that
a /∈ A|α|[s] � s. Thus A|α|[s] � s ⊆ A, and hence xn ∈ Φe(A) \ Γ(A⊕ U). �

This completes the proof of Theorem 3.2. �

4. Genericity, Semi-computability, and K-pairs

We will see that a sufficiently generic set cannot be half of a nontrivial K-pair,
hence cannot be enumeration equivalent to a semi-computable set. However, the
amount of genericity needed for these two properties is not the same. We will show
that a 1-generic set can be half of a nontrivial K-pair, and in fact, both halves
can be 1-generic. On the other hand, no 1-generic set is enumeration equivalent
to a semi-computable set. These two results are shown in Lemma 4.3 and 4.2,
respectively, and yield the following

Theorem 4.1. There is a (nontrivial) K-pair such that neither set in the pair is
enumeration equivalent to a semi-computable set.

Proof. Immediate from Lemmas 4.2 and 4.3, proved below. �

Lemma 4.2. No 1-generic set is enumeration equivalent to a semi-computable set.

Proof. Let X ∈ 2ω be 1-generic. By Proposition 2.10, we must show that X is
not enumeration equivalent to an initial segment of 〈2<ω,≤〉. Let Γ and ∆ be
enumeration operators and assume that X = Γ(∆(X)). We will view ∆(X) as a
subset of 2<ω.
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Assume, for a contradiction, that ∆(X) is an initial segment of 2<ω. Consider
the following c.e. subsets of 2<ω:

T0 = {σ : (∃ρ) ρ10 � σ, |ρ| ∈ Γ(∆(σ)) with Γ-use F ,
(∃τ) ρ01 � τ, |ρ|+ 1 ∈ Γ(∆(τ)) with Γ-use G,
and max(F ) ≥ max(G)},

T1 = {τ : (∃ρ) ρ01 � τ, |ρ|+ 1 ∈ Γ(∆(τ)) with Γ-use G,
(∃σ) ρ10 � σ, |ρ| ∈ Γ(∆(σ)) with Γ-use F ,
and max(G) ≥ max(F )},

T = T0 ∪ T1.

We claim that no prefix of X can be in T . To see this, assume first that σ ≺ X is
in T0 as witnessed by ρ and τ . Then |ρ| ∈ Γ(∆(σ)) with Γ-use F . In particular,
F ⊆ ∆(σ) ⊆ ∆(X). Also, |ρ|+ 1 ∈ Γ(∆(τ)) with Γ-use G. But max(F ) ≥ max(G),
and we are assuming that ∆(X) is an initial segment of 2<ω, so G ⊆ ∆(X). This
means that |ρ|+1 ∈ Γ(∆(X)). But |ρ|+1 /∈ ρ10 � σ ≺ X, which is a contradiction.
Similarly, no prefix of X is in T1.

Since X is 1-generic, it must have a prefix ν ≺ X that has no extension in T .
We will show that this is also impossible. Consider the following c.e. subset of 2<ω:

S = {ρ01: ν � ρ and (∃σ) [ρ10 � σ and |ρ| ∈ Γ(∆(σ))]}.

First, we claim that every prefix of X has an extension in S. Let ν � µ ≺ X. Every
1-generic is infinite and co-infinite, so there is a ρ such that µ � ρ and ρ10 ≺ X.
Since X = Γ(∆(X)), we know that |ρ| ∈ Γ(∆(X)), so for any sufficiently long σ
extending ρ10, we have |ρ| ∈ Γ(∆(σ)). Therefore, we have µ ≺ ρ01 ∈ S.

Since X is 1-generic and no prefix of X avoids S, there must be a ρ01 ∈ S such
that ρ01 ≺ X. In particular, there is a σ � ρ10 such that |ρ| ∈ Γ(∆(σ)), say, with
Γ-use F . We also have |ρ|+ 1 ∈ X = Γ(∆(X)), so there is a τ extending ρ01 such
that |ρ| + 1 ∈ Γ(∆(τ)), say with Γ-use G. If max(F ) ≥ max(G), then σ ∈ T0.
Otherwise, max(G) > max(F ), so τ ∈ T1. Either way, there is an element of T that
extends ρ � ν, contradicting the choice of ν and completing the proof. �

Lemma 4.3. There are 1-generic sets A and B that form a K-pair.

Proof. We construct ∆0
2-approximations {A[s]}s<ω and {B[s]}s<ω to sets A and B.

To ensure that A and B are 1-generic we meet the standard genericity requirements:
For every natural number e, let G2e express that A meets or avoids the e-th c.e.
set of finite binary strings, similarly let G2e+1 express that B meets or avoids the
e-th c.e. set of finite binary strings. As usual, priority is given to requirements with
smaller indices.

To meet the requirement G2e, we have a natural strategy: When activated for
the first time after injury, say at stage s0, it is provided with an initial segment
σ = A[s0] � R2e, restrained by higher-priority strategies. The strategy waits for
τ � σ to enter We. If no such τ is found, then G2e is satisfied as witnessed by σ. If
at a stage s1 ≥ s0, the strategy sees τ � σ enter We[s1], then it requires attention.
If it receives attention at stage s1, then it ensures that τ is an initial segment of A
at stage s1 and onwards by injuring lower-priority requirements and raising the
value of R2i, for i > e, to a number larger than |τ |.

Now we need to incorporate the K-pair requirements. By Lemma 2.12, it is
sufficient to ensure that for every s, either A[s] ⊆ A or B[s] ⊆ B. Making τ an
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initial segment of A[s1] might require the extraction of a number a > R2e from the
current approximation of A. This means that at all stages t such that a ∈ A[t],
we will ultimately have that A[t] * A. Thus we need to ensure that B[t] ⊆ B. To
do this, we limit the possible problematic stages t by ensuring that at the initial
stage s0, no number larger than R2e has ever been enumerated into A. Thus all
problematic stages t are larger than s0. Then at stage s1, we will “dump” into B
all elements that have appeared in B at stages after s0 and preserve B up to the
largest dumped element by raising the restraint R2i+1 for i ≥ e.

This leads us to the following construction. Let A[0] = B[0] = ∅ and Rj [0] = j
and Sj [0] = 0 for all j < ω. Assume we have constructed A[s], B[s] and for every
j < ω, the restraint Rj [s] and the stage Sj [s].

We will say that G2e requires attention at stage s + 1, witnessed by τ , if τ is a
finite string in We[s] that extends A[s] � R2e[s]. Similarly, G2e+1 requires attention
at stage s+1 if there is a finite binary string τ ∈We[s] that extends B[s] � R2e+1[s].
At stage s+1, pick the highest priority strategy that has not yet been satisfied and
that requires attention.

Assume, for concreteness, that it is G2e and let τ be its least witness. We set
A[s+ 1](n) = τ(n) if n < |τ | and A[s+ 1](n) = 0 otherwise. We set B[s+ 1] =⋃
S2e<t≤sB[t]. We initialize all lower-priority requirements. We set Rj [s+ 1] =

max(|τ,B[s+ 1]|) and Sj = s+ 1 for all j > 2e and move on to the next stage.
The verification that this construction works is now a routine induction on the

priority ordering. �

We finish the section by showing, as claimed above, that a sufficiently generic
set cannot be half of a nontrivial K-pair. In fact, weak 2-genericity is sufficient, so
Lemma 4.3 is fairly tight.

We recall the definition of weak n-genericity, a notion that was introduced by
Kurtz [11]. Call a set S ⊆ 2<ω of strings dense if every σ ∈ 2<ω has an extension
in S. A set G ∈ 2ω is weakly n-generic if for every dense Σ0

n-set S ⊆ 2<ω, there is
a τ ∈ S that is a prefix of G. Kurtz [11] showed that

2-generic =⇒ weakly 2-generic =⇒ 1-generic =⇒ weakly 1-generic,

and that all implications are strict.

Proposition 4.4. If A is weakly 1-generic and half of a nontrivial K-pair, then A
is Σ0

2.

Proof. Assume that A forms a nontrivial K-pair with B witnessed by W ⊆ ω × ω.
We claim that

b ∈ B iff (∃∞a) [〈a, b〉 ∈W ].

First, assume that b ∈ B. Since A is weakly 1-generic, there are infinitely many
a ∈ A. For each such a, it is the case that 〈a, b〉 ∈W , so (∃∞a) 〈a, b〉 ∈W . For the
other direction, fix b and assume that (∃∞a) 〈a, b〉 ∈ W . Consider the following
c.e. subset of 2<ω:

T = {σ : (∃a < |σ|) [σ(a) = 0 and 〈a, b〉 ∈W ]}.
By assumption, T is dense and obviously Σ0

1, so A has a prefix σ ∈ T . Therefore,
there is an a /∈ A such that 〈a, b〉 ∈ W , which implies that b ∈ B. This proves
the claim, giving us a Π0

2-definition of B. But recall that since A and B form a
nontrivial K-pair, A ≤e B by Proposition 2.6, so A is Σ0

2. �
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Corollary 4.5. No weakly 2-generic set is half of a nontrivial K-pair.

Proof. By the previous proposition, all that remains is to prove that if A ∈ 2ω is
weakly 2-generic, then it is not Σ0

2. But note that if I ∈ 2ω is an infinite Σ0
2-set,

then
S = {σ : (∃n < |σ|) [σ(n) = 0 and n ∈ I]}

is a dense Σ0
2-subset of 2<ω. Hence A has a prefix in S, implying that I * A. �

Let H be the class consisting of all sets that are half of a nontrivial K-pair. By
the previous result, H is meager. It is natural to ask if H is also small in the sense
of measure. It is, as the following proposition demonstrates. Recall that a Martin-
Löf test is a uniform sequence {Un}n∈ω of Σ0

1-classes such that µ(Un) ≤ 2−n for
all n ∈ ω. (Here µ is the standard Lebesgue measure on Cantor space.) A set
A ∈ 2ω passes the test if A /∈

⋂
n∈ω Un. We say that A is 1-random (or Martin-Löf

random) if it passes all Martin-Löf tests. Note that the class of 1-random sets has
full measure, so the following result shows that µ(H) = 0.

Proposition 4.6. No 1-random set is half of a nontrivial K-pair.

Proof. Assume that A ∈ 2ω is 1-random and that A and B form a K-pair as
witnessed by W . We will show that B must be c.e.

Consider the family of c.e. sets Fb = {a : 〈a, b〉 ∈ W}, defined uniformly in
b ∈ ω. If |Fb| ≥ m, let Fb,m be the first m elements enumerated into Fb and let
Vb,m = {X ∈ 2ω : Fb,m ⊆ X}. If |Fb| < m, let Vb,m = ∅. For each n ∈ ω, let
Un =

⋃
b∈ω Vb,n+b+1. Note that Un is a Σ0

1-class, uniformly in n, and µ(Un) ≤∑
b∈ω µ(Vb,n+b+1) ≤

∑
b∈ω 2−n−b−1 = 2−n, hence {Un}n∈ω is a Martin-Löf test.

Therefore, there is an n such that A /∈ Un.
We claim that b ∈ B if and only if |Fb| ≥ n+b+1. Note that this implies that B

is c.e., completing the proof. First, assume that b ∈ B. In this case, A× {b} ⊆W ,
so A ⊆ Fb. Since A is 1-random, there are infinitely many a ∈ A, and hence Fb is
infinite. Now assume that b /∈ B. Since Fb × {b} ⊆ W , it must be the case that
Fb ⊆ A. This means that if |Fb| ≥ n + b + 1, then A ∈ Vb,n+b+1 ⊆ Un, which
contradicts the choice of n. Therefore, |Fb| < n+ b+ 1. �

5. A Set Without a Maximal K-partner

Consider the K-partners of an e-degree a, i.e., {b : a and b form a K-pair}. By
Proposition 2.5, this set is an ideal in the enumeration degrees. Assume that a is
half of a maximal K-pair, in particular, with K-partner b. Cai et al. [2] proved
that there is a (semi-computable) set A such that a = de(A) and b = de(A).
By Proposition 2.6, every K-partner of A is enumeration reducible to A, so b is
the maximal K-partner for a. In other words, if a is half of a maximal K-pair,
then its ideal of K-partners is principal. By Theorem 4.1, we know that there is a
nontrivial K-pair that contains no semi-computable sets, hence neither half is part
of a maximal K-pair. This still leaves the possibility, however, that every nonzero
degree has a principal ideal of K-partners. In this section, we prove that this is not
necessarily the case.

Theorem 5.1. There is a set A that is half of a nontrivial K-pair such that the
set {de(B) : A and B form a K-pair} is not a principal ideal.

Proof. The rest of this section is devoted to the proof of Theorem 5.1.
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5.1. List of requirements and priority tree. We have the following list of
requirements; as usual, each requirement corresponds to nodes on a priority tree
that are labeled by the requirement. First, we have the usual requirements for
making A non-c.e.:

Pj : A 6= Wj

Each P-node has two outcomes: d (diagonalization) and w (wait).
Our other requirements will ensure that there is no maximal K-partner for A.

Assuming that we meet all Pj-requirements, Remark 2.7 gives us a way to index

all possible K-partners for A. Let Be = {b : (∃a) [〈a, b〉 ∈ We and a ∈ A]}. If A
and B form a K-pair witnessed by We, then B = Be. Therefore, the following
requirements guarantee that A has no maximal K-partner:

Re : K(A,Be) via We → (∃C) [K(A,C) ∧ C �e Be] ,

where K(A,B) means that A and B form a K-pair. Each R-node has two out-
comes: i (infinite) and w (wait). Moreover, below the infinite outcome of an Re-
requirement, we have subrequirements ensuring C �e Be:

Re,i : C 6= Φi(Be)

Such a subrequirement node also has two outcomes: d (diagonalization) and w
(wait). The outcome d involves the most difficult part of the construction.

Note that we do not need a requirement to ensure that A is half of a nontrivial
K-pair. Take any e such that We = ∅. Then Be = ∅ and A and Be form a K-pair
witnessed by We, so Re gives us a C �e ∅ such that A and C form a K-pair.

5.2. Construction. We will construct the set A by a ∆2-approximation, meaning
that for every x ∈ ω, we can change A(x) as many times as we want as long as it
eventually settles down.

The Pj-requirements are handled very naturally: We first pick a fresh number y
to witness the diagonalization, put it into A, and wait for y to enter the correspond-
ing c.e. set Wj . While we wait, the outcome is w. If x never enters Wj , then we
satisfy the requirement; if y eventually does enter Wj , then we take y out of A and
change the outcome to d. In this case, the requirement is also satisfied. So for the
remaining part of the construction, let us focus on the R-requirements and their
subrequirements.

The Re-nodes service requests made by their substrategies. These requests are
explained in detail below. The failure of an Re-node to complete a request would
prove that A and Be do not form a K-pair witnessed by We. When we reach an Re-
node α, we check for an active request. If there is no active request at α, then by
default we go to outcome i. If there is an active request at α that can be completed,
then α completes it and has outcome i; otherwise α has outcome w.

Below outcome i, we construct a set Cα and require that A and Cα form a K-pair.
We use the same strategy as before (see Lemma 2.12 and the proof of Lemma 4.3),
namely, when we remove any element x from Cα, we need to add all elements back
into A that were in A while x was in Cα, and vice versa.

We now consider an Re,i-subrequirement node β below an Re mother node α.
It is working to diagonalize Cα against Φi(Be). Naively, we pick a fresh witness x
at this node β when it is first visited (after it has been initialized). We initially
assume that x /∈ Φi(Be) and so put x into Cα for diagonalization. In this case, the
outcome is w. If we see that x enters Φi(Be), then we want to take x out of Cα
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and go to outcome d. However, this plan has a very serious flaw. Notice that when
we take x out of Cα, we need to add some elements back into A. Denote the set
of such elements by Rx; it will turn out that these were all removed from A by
lower-priority requirements, hence no higher-priority requirement will be injured.
The problem is that Be ≤e A, so adding Rx to A may affect the use of x ∈ Φi(Be)
and prevent the desired diagonalization.

The solution is as follows. At the moment we see x enter Φi(Be) at β, we
remove x from Cα, but we do not immediately add Rx to A. Instead, we rely on
the mother node α to provide permission to add Rx to A, which it acquires by
exploiting the assumption that A and Be form a K-pair witnessed by We. Let F
be the current use of x ∈ Φi(Be). We want to be able to add Rx to A without
removing F from Be. To do this, we issue the following request to α and end the
current stage:

(1) Pick a fresh number m and add it to A.
(2) If {m} × F *We, stay in outcome w of α.
(3) If {m} × F ⊆ We, remove m from A and add Rx back into A (completing

the request and fulfilling the promise implicit in the removal of x from Cα).
Continue to outcome i of α.

Note that the removal of m from A ensures (by the definition of Be) that F ⊆ Be
at the end of step (3). As long as m remains out of A, which is preserved with
priority α, we have F ⊆ Be and thus x ∈ Φi(Be). Also note that at step (3),
no Cα-change is necessary, as we have not changed Cα ever since we issued this
request.

The construction combines the above strategies in a typical infinite-injury pri-
ority argument on a tree of strategies.

5.3. Verification. First, it is easy to see that there is a leftmost path that is visited
infinitely often; call this the true path. We must argue that all strategies along the
true path satisfy their requirements.

Consider a Pj-strategy γ along the true path. Let y be γ’s last witness. If γ
never removes y from A, then it is successful. The strategy is vulnerable to injury
only if it removes y from A. The possible danger comes from an Re,i-strategy β
that has issued a request to enumerate y back in A in order to remove its own
witness x from Cα. We argue that this is not possible as follows. If γ has higher
priority than β, then β will be visited for the first time after initialization only
after y has been removed from A, so there is no stage at which both y ∈ A and
x ∈ Cα. Similarly, if β has higher priority than γ and β ever issues a request, then γ
will be visited for the first time after initialization after this request has been issued
and x is already removed from Cα, thus again there is no stage at which both y ∈ A
and x ∈ Cα.

Let α be an Re-strategy along the true path. If α has true outcome w, then there
is an active request, issued after α’s last initialization, that cannot be completed.
In other words, there are a number m and a finite set F such that {m} × F *We.
The strategy α selected m and enumerated it into A in response to this request.
As only α can ever remove this element from A, it follows that m ∈ A at all future
stages. The set F is a subset of Be when the request is made; a set Rx ⊆ A
ensures this. We argue that Rx remains a subset of A at all future stages. We can
assume that Pj- or Rj,i-strategies of higher priority than α will not act at future



18 CAI, LEMPP, MILLER, AND SOSKOVA

stages, or else α is initialized. An Rj-strategy of higher priority than α can only
complete requests issued after α’s request. It follows that these requests are issued
by strategies of lower priority than α. However, strategies of lower priority than α
that are ever active at future stages are visited for the first time (after initialization)
after Rx ⊆ A, and hence will never cause an element from Rx to be enumerated
back into A. Thus, {m} × F ⊆ A × Be, proving that A and Be are not a K-pair
witnessed by We.

If, on the other hand, α has true outcome i, then all requests that α ever receives
are eventually completed. Consider the set Cα, built below α î. By Lemma 2.12
and the assumption that every request is completed, it follows that A and Cα form
a K-pair. It remains to be shown that Cα �e Be, i.e., that all Re,i-subrequirements
are satisfied.

Let β be an Re,i-node along the true path and x the final diagonalization wit-
ness at β. If β never issues a request, then the requirement is satisfied by direct
diagonalization: x ∈ Cα \Φi(Be). If β issues a request, then it removes x from Cα,
as it has found a finite set F such that x ∈ Φi(F ). By assumption, α completes this
request by removing from A a number m such that {m} × F ⊆ We. An argument
similar to the ones above shows that x /∈ Cα and that m ∈ A (noting also that
strategies extending α î are not visited at any stage at which m ∈ A). Therefore
F ⊆ Be and x ∈ Φi(Be) \ Cα.

This completes the proof of Theorem 5.1. �
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