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Abstract. We prove that every finite distributive lattice can be strongly em-
bedded into the enumeration degrees as an interval, i.e., that there is an interval
[a0,a1] of enumeration degrees isomorphic to the lattice, and any enumeration
degree b ≤ a1 lies in this interval or below a0. As corollaries, we conclude
that the ∃∀∃-theory of De is undecidable, while the extension of embeddings
problem (a subproblem of the ∀∃-theory) is decidable.

1. Introduction

Consider a degree structure D, a partial order induced by an arithmetically
definable reducibility on sets of natural numbers. When studying such a structure,
we start by investigating which first-order facts about the structure are true and
which are false. Ideally, we would like to characterize the theory of the structure
by giving an algorithm which decides whether a given sentence (in the language of
partial orders) is true or not. Unfortunately, most degree structures have first-order
theories that are far from decidable. Once undecidability is established, two natural
questions follow: What is the Turing degree of the theory Th(D) of the structure D
(viewed as a set of codes for sentences), and at what quantifier complexity does
decidability break down?

An interesting phenomenon in degree theory is that when we can provide answers
to the questions above, the answers seem to always follow the same pattern: For the
partial order of the Turing degrees DT , Simpson [22] proved that Th(DT ) is com-
putably isomorphic to the second-order theory of true arithmetic. Shore [20] and
Lerman [15] independently proved that ∀∃-theory of DT is decidable, while Lerman
and Schmerl (see Lerman [15]) proved that the ∃∀∃-theory of DT is undecidable.
For the partial order of the many-one degrees Dm, Nerode and Shore [17] proved
that Th(Dm) is computably isomorphic to the second-order theory of arithmetic;
Dëgtev [5] proved that the ∀∃-theory of Dm is decidable, while Nies [18] proved
that the ∃∀∃-theory of Dm is undecidable. For the local structure of the ∆0

2-Turing
degrees DT (≤ 0′), Shore [21] proved that Th(DT (≤ 0′)) is computably isomor-
phic to the first-order theory of arithmetic. Shore and Lerman [16] proved that
the ∀∃-theory of DT (≤ 0′) is decidable, while the same proof that is used for DT
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by Lerman and Schmerl showed that the ∃∀∃-theory of DT (≤ 0′) is undecidable.
Similar results were shown for the arithmetic and hyperarithmetic degrees.

In this paper, we will focus on the structure of the enumeration degrees, where
less is known. Enumeration reducibility captures a natural relationship between
sets of natural numbers in which positive information about the first set is used
to produce positive information about the second set. Friedberg and Rogers [6]
introduced enumeration reducibility in 1959.

Definition 1.1. A ⊆ ω is enumeration reducible to B ⊆ ω (denoted as A ≤e B) if
there is a c.e. set W such that

A = {n : (∃e) 〈n, e〉 ∈W and De ⊆ B},
where De is the eth finite set in a canonical enumeration.

An equivalent way to define this reducibility is to say that A ≤e B if there is
a uniform way to compute an enumeration of A from every enumeration of B. In
fact, Selman [19] proved that the uniformity condition can be dropped.

The degree structure De induced by ≤e is the partial order of the enumeration
degrees. De is, in fact, an upper semilattice with a least element 0e (the degree of
all c.e. sets) and a jump operator, just like DT . Note, that enumeration reducibility
is a definable relation in second-order arithmetic. Thus it is easy to interpret the
partial order De in second-order arithmetic. Slaman and Woodin [25] proved that
the converse is true as well, and so Th(De) is computably isomorphic to second-
order arithmetic, just like the theory of the Turing degrees. Lagemann [11] proved
that every countable partial order can be embedded in the enumeration degrees
and so the ∃-theory of De is decidable. However, it is not known where decidability
breaks down.

In this paper, we make several advancements towards a solution of this open
question. Our main structural result on which the other results rely is the existence
of a strong interval embedding of every finite distributive lattice—generalizing the
embedding of the two element lattice as a nonzero degree and its strong minimal
cover. This result and an application of the Nies Transfer lemma allow us to
conclude that the ∃∀∃-theory of De is not decidable. On the other hand, we show
that the extension of embeddings problem for De is decidable. The extension of
embeddings problem captures a nontrivial fragment of the ∀∃-theory of a partial
order. We also prove that this is the maximal fragment on which the Turing degrees
and the enumeration degrees are elementarily equivalent.

2. The ∀∃-theory of an upper semilatttice

We start by reviewing the algorithm that decides the ∀∃-theory of the Turing
degrees and the reasons why the same algorithm cannot apply to the structure De.
Our first step is to rephrase the problem of deciding the ∀∃-theory of an upper
semilattice D in a structural way. A decision procedure for the following problem
is easily seen to be equivalent to a decision procedure for ∀∃-Th(D):

Problem 2.1. Given a finite partial order P and finitely many finite extensions
Q1, . . . , Qk of P , does every embedding of P into D extend to an embedding of Qi
for at least one i ≤ k?

The special case when k = 1 is known as the extension of embeddings problem
for D.
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Consider the case when D = DT . Lerman [14] showed that every finite lattice P
can be embedded as an initial segment of the Turing degrees DT . Suppose that P
is a lattice and Q extends P as a partial order. The embedding of P as an initial
segment of DT can be extended to an embedding of Q only if no new element in
Q \ P is bounded by any element of P . In addition, Q must respect least upper
bounds; i.e., if x ∈ Q \ P is above two old elements u, v ∈ P then x must be above
u ∨ v. If P is simply a partial order, we first extend P to a lattice P ∗ by adding
a minimal number of new elements (this can be done in a unique way) and then
ask that new elements in Q \ P either satisfy the previous conditions or can be
mapped to one of the added elements from P ∗ \ P . Shore [20] and Lerman [15]
independently proved that these are the only obstacles, yielding an algorithm for
the solution of an instance of Problem 2.1 in DT : Output “Yes” if one of the Qi
satisfies the conditions above, and “No” otherwise. The algorithm does not even
use the possibility of selecting different possible extensions in different situations,
it is reduced to its simplest case, the extension of embeddings problem.

The algorithm described above cannot work for a dense structure, such as the
partial orders of the c.e. Turing degrees R or that of the Σ0

2-enumeration degrees
De(≤ 0′e). In both of these cases, we know that the extension of embeddings
problem is decidable (by work of Slaman and Soare [23] for R, and by Lempp,
Slaman, and Sorbi [13] for De(≤ 0′)). In both cases, we also know that the ∃∀∃-
theory is undecidable (by work of Lempp, Nies and Slaman [12] for R, and by
Kent [9] for De(≤ 0′)). A decision procedure for the more general Problem 2.1, i.e.,
for the ∀∃-theory, remains out of reach in both cases.

In De, the situation is very interesting for the following reasons. Gutteridge [7]
showed that the enumeration degrees are downward dense. Hence, in this case as
well, there can be no initial segment embeddings of finite lattices. Cooper [4] proved,
however, that the enumeration degrees are not dense and Slaman and Calhoun [3]
extended Coopers’s result by showing that there are empty intervals in the Π0

2-
enumeration degrees. Kent, Lewis-Pye, and Sorbi [10] showed that there are strong
minimal covers in the enumeration degrees:

Definition 2.2. A degree b is a strong minimal cover of a degree a if a < b and
every degree x < b is ≤ a.

Consider the two-element lattice P consisting of two elements u < v. In DT , we
can embed this lattice as an initial segment: u is mapped to 0T , and v is mapped
to some minimal degree. The only way that this embedding can be extended to
an embedding of Q is if every element of Q \ P is incomparable to or above v. In
the enumeration degrees, the situation is slightly different: The embedding of P to
enumeration degrees a < b such that b is a strong minimal cover of a extends to
an embedding of Q only if new elements x ∈ Q \ P that are strictly below v are
also below u. The embedding of P to degrees 0e < b, on the other hand, extends
to an embedding of Q only if all new elements x ∈ Q \ P are above u. Slaman
and Sorbi [24] show that every countable partial order can be embedded below any
nonzero enumeration degree. This, along with a standard forcing argument, allows
us to conclude that these are the only obstacles. Thus, for this particular lattice P ,
we can decide Problem 2.1: Every embedding of P extends to an embedding of
Q1, . . . , Qn, if and only if there is a Qi that places new elements strictly below v
also below u and there is a (possibly different) Qj that places all new elements
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above u. The decision procedure is already slightly more complicated than that for
the same lattice in DT .

A first step towards a possible extension of the algorithm outlined above to the
general case, where P is an arbitrary finite lattice, requires the generalization of
embedding the two-element lattice to a nonzero degree and a strong minimal cover
of it. We introduce the notion of a strong interval embedding:

Definition 2.3. Let P be a finite lattice and D a degree structure. An embedding
f : P → D is a strong interval embedding if the range of the embedding f is an
interval [a,b] ⊆ D and every degree x ≤ b that is not in the range of f is bounded
by a.

The main technical result of this paper is the following.
Theorem 2.4. Every finite distributive lattice has a strong interval embedding
into De.

We postpone the proof of this theorem until Section 7 and focus first on several
applications.

3. The undecidability of the ∃∀∃-theory

Recall that a set of sentences Ω in a language L is hereditarily undecidable if no
subset Φ ⊆ Ω that contains all validities in Ω is decidable. For example, Nies [18]
proved that the ∀∃∀-theory of finite distributive lattices is hereditarily undecidable.
In the same paper, he gave a general recipe for transferring undecidability between
classes of structures. The following definition is adapted from Nies [18] to our
specific setting. (Here, we adopt Nies’s notation of Σ0

k-formulas for ∃k-formulas,
and Π0

k-formulas for ∀k-formulas; so, e.g., Σ0
3, ∃3 and ∃∀∃ all mean the same.)

Definition 3.1. Let C be a class of structures in a finite relational language L =
{R1, . . . , Rn}. We say that C is Σ0

k-elementarily definable with parameters in De
if there are Σ0

k-formulas ϕU , ϕRi , and ϕ¬Ri for i ≤ n such that for every C ∈ C,
there are parameters ~p ∈ De that make the structure with universe U = {x |
De |= ϕU (x, ~p)} and relations Ri defined as {~x | De |= ϕRi(~x, ~p)} = {~x | De |=
¬ϕ¬Ri(~x, ~p)} isomorphic to C.

Theorem 2.4 implies that the class of finite distributive lattices is Σ0
1-elementarily

definable in the partial order De with two parameters: ϕU (x,a,b) is the formula
a ≤ x & x ≤ b, and =, 6=, ≤ and � are interpreted by =, 6=, ≤ and �, respectively.
We next apply the Nies Transfer Lemma to our setting:

Lemma 3.2 (Nies [18]). Let r ≥ 2 and k ≥ 1. If a class of models C is Σ0
k-

elementarily definable in De with parameters and the Π0
r+1-theory of C is hereditarily

undecidable, then the Π0
r+k-theory of De is hereditarily undecidable.

We can now state, using the hereditary undecidability of the Π0
3-theory of finite

distributive lattices mentioned above, the following.

Theorem 3.3. The ∃∀∃-theory of De is (hereditarily) undecidable. �

This uses the fact that a ∀∃∀-sentence ϕ is true in De if and only if the ∃∀∃-
sentence ¬ϕ is false in De, and so the undecidability of the ∀∃∀-theory of De implies
the undecidability of the ∃∀∃-theory of De.
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4. The extension of embeddings problem

In this section, we give an algorithm to decide the extension of embeddings
problem for De: Given finite partial orders P ⊆ Q, we give necessary and sufficient
conditions on P and Q to make the statement “every embedding of P extends to
an embedding of Q” true.

In addition to Theorem 2.4, we will need to use properties of sufficiently generic
sets. Recall, that a set G is n-generic relative to B if and only if for every Σ0

n(B)-
set S of finite binary strings, there is an initial segment G � ` of G such that G � ` is
in S or no extension of G � ` belongs to S. If {Gi}i<ω is a sequence of sets and F is a
set of natural numbers, we use

⊕
i∈F Gi to denote the set {〈i, x〉 | i ∈ F & x ∈ Gi}.

Proposition 4.1. Let G be 2-generic relative to B. Define Gi so that G =⊕
i<ω Gi. For every pair of sets A1, A2 ≤e B, i ∈ ω and finite set F ⊆ ω, we

have that A1 ⊕Gi ≤e A2 ⊕
⊕

j∈F Gj if and only if i ∈ F and A1 ≤e A2.

Proof. Fix A1, A2 ≤e B, i and F and suppose that A1 ⊕ Gi ≤e A2 ⊕
⊕

j∈F Gj .
Let Gi = Γ(A2 ⊕

⊕
j∈F Gj). Given a string τ ∈ 2<ω, we let τj be the shortest

string such that for all 〈j, n〉 < |τ |, we have τ(〈j, n〉) = τj(n). Consider the set
U = {τ ∈ 2<ω | (∃x)[τi(x) = 0 & x ∈ Γ(A2 ⊕

⊕
j∈F τj)]}. This set is Σ0

1(B)
(in fact, it is enumeration reducible to B) and hence, by our assumption, G must
avoid it. Let µ ≺ G be such that no extension of µ is in U . As G is generic, the
set Gi is infinite, and so there is some x > |µ| such that Gi(x) = 1. It follows
that x ∈ Γ(A2 ⊕

⊕
j∈F Gj) and so there is some finite extension τ � µ such that

x ∈ Γ(A2 ⊕
⊕

j∈F τj). If i /∈ F then we can modify the 〈i, x〉-th bit of τ to get a
string τ∗ such that τ∗i (x) = 0 and x ∈ Γ(A2 ⊕

⊕
j∈F τ

∗
j ), i.e., an extension of µ in

the set U . It follows that i must be in F .
Now suppose that A1 = Γ(A2 ⊕

⊕
j∈F Gj). Consider the set V = {τ ∈ 2<ω |

(∃x)[A1(x) = 0 & x ∈ Γ(A2 ⊕
⊕

j∈F τj)]}. The set V is Σ0
2(B) (in fact, it is

enumeration reducible to B′). Once again, we must have some initial segment
µ ≺ G with no extension in V . But then A1 = {x | ∃τ � µ[x ∈ Γ(A2 ⊕

⊕
j∈F τj)]}

and so A1 ≤e A2.
The reverse direction is clearly true. �

Note that a special case of the proposition above gives us that, in particular, the
degrees of B and each Gi form a minimal pair. Furthermore, since Gi and Gj (for
distinct i and j) are mutually 2-generic, their degrees also form a minimal pair.

We are now ready to present an algorithm for deciding the extension of embed-
dings problem.

Theorem 4.2. The extension of embedding problem for De is decidable.

Proof. Fix finite partial orders P ⊆ Q. For any set S ⊆ Q, let

A(S) = {p ∈ P | (∀s ∈ S)[p ≥ s]} and
B(S) = {p ∈ P | (∀s ∈ S)[p ≤ s]}.

We will use A(q) to denote A({q}) and B(q) for B({q}).
We outline several cases in which we can construct an embedding of P that does

not extend to an embedding of Q.
Case 1: There is q ∈ Q \ P such that A(q) = ∅ and B(q) 6= B(A(B(q))).
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Suppose that there is q ∈ Q \ P with A(q) = ∅. We will show that we can
obstruct an extension with such a q if B(q) 6= B(A(B(q))). Note that since we
always have B(q) ⊆ B(A(B(q))), these two conditions imply the existence of some
p ∈ B(A(B(q)))\B(q). (In particular, it follows that B(q) has no greatest element).
We will construct an embedding of P such that any degree that is above all elements
in the image of B(q) is also above the image of p; this embedding will therefore not
be extendable to an embedding of Q.

If B(q) = ∅ then A(B(q)) = P and hence the element p ∈ B(A(B(q))) is the
least element in P . Any embedding of P that maps p to 0e will do the job.

Suppose that B(q) 6= ∅. Let P = {p0, p1, . . . , pn}. We fix a 2-generic set G and
break it up into |P | many mutually generic pieces G0, . . . , Gn. We map pi to the
degree of the set Xpi =

⊕
pj≤pi Gj , which we denote as g(pi). By genericity, we

have that i � j implies Xpi �e Xpj . Next we want to modify this embedding to
achieve the desired result. Take Xp =

⊕
pj≤pGj and break it up into |B(q)| many

pieces Y0, . . . , Yl as follows: break up each Gj into |B(q)| many mutually generic
pieces for pj ≤ p, and let Yi consist of the join of the i-th pieces in the sets Gj for
pj ≤ p. Let B(q) = {r0, . . . , rl}. We modify our embedding g to an embedding f
on the elements s ∈

⋃
r∈B(q) A(r) by setting f(s) = g(s)⊕ dege(

⊕
rj≤s Yj). In this

way, we have that the least upper bound of the elements in B(q) enumerates all the
pieces that make up Xp, preventing an extension of f which maps q not above p.

All we need to do is prove that this modification does not change the order.
If pi ≤ pj then f(pi) ≤ f(pj): To see this, first consider the case when pj /∈⋃
r∈B(q) A(r). Then pi /∈

⋃
r∈B(q) A(r) as well, and so f(pi) = g(pi) ≤ g(pj) =

f(pj). If, on the other hand, pj ∈
⋃
r∈B(q) A(r), then f(pi) is either g(pi) or

g(pi)⊕ dege(
⊕

rk≤pi Yj) and so

f(pi) ≤ g(pi)⊕ dege(
⊕
rk≤pi

Yj) ≤e g(pj)⊕
⊕
rk≤pj

dege(Yk) = f(pj).

Now suppose that pi � pj . Once again, the case when pj /∈
⋃
r∈B(q) A(r) is easy

because f(pj) = g(pj) and f(pi) ≥ g(pi). So suppose that pj ∈
⋃
r∈B(q) A(r). Recall

that Gi is part of the image of pi. If pi � p, then Gi �e f(pj) by the properties of
mutually generic sets. If pi ≤ p, then there is some rk ∈ B(q) such that rk � pj
(since otherwise pj ∈ A(B(q)) and hence pj ≥ p ≥ pi). But then the ith column
of Yk, which was broken off from the set Gi ≤e f(pi), is still mutually generic with
all the other pieces into which we have broken up G, hence it is not below f(pj).

From now on, in all cases that we consider, let us assume that we have that
A(q) 6= ∅. Our next group of cases examines possible obstructions when B(q) = ∅.
We break this into three cases, based on whether B(A(q)) is empty or not, and
whether B(A(q)) ⊆ A(q) or not.

Case 2: There is q ∈ Q \ P such that A(q) 6= ∅, B(q) = ∅, B(A(q)) = ∅, but q
is not the least element of Q.

In this case, we know that A(q) is not principal, i.e., does not have a least
element. We use the columns of a 2-generic to embed P into De. The only degree
that is bounded by all degrees that are images of the elements of A(q) is then 0e.
This embedding of P can only be extended to an embedding of Q if q is mapped
to 0e. So if q is not the least element of Q, then we have exhibited an embedding
of P that does not extend to an embedding of Q.
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Case 3: There is q ∈ Q \ P such that A(q) 6= ∅, B(q) = ∅, B(A(q)) 6= ∅, and
B(A(q)) ⊆ A(q).

If B(A(q)) ⊆ A(q) then A(q) is principal above p0 and p0 is a minimal element
in P . If p0 is the least element in P then we can embed P by sending p0 to 0e
and then use the columns of a 2-generic as before to embed the rest of P . This
embedding of P cannot be extended to an embedding of Q because there is no
possible image for q strictly below 0e.

If p0 is not least, then fix a minimal element p1 ∈ P distinct from p0. Let A0
and A1 form an Ahmad pair, i.e., A0 �e A1 and (∀x)[x < dege(A0) → x <
dege(A1)]. The existence of such pairs was first proved by Ahmad [1], but also
follows from Theorem 2.4. Next pick a set G that is 2-generic relative to A0 ⊕A1.
Split G into |P | − 2 many mutually generic sets. If P = {p0, p1, . . . , pn} then let
f(pi) = dege(

⊕
pj≤pi Xj), where X0 = A0, X1 = A1 and Xi+2 = Gi for i < |P |−2.

Once again, it is clear from the definition of f that if pi ≤ pj then f(pi) ≤ f(pj).
On the other hand, by our choice of generics and of A0 and A1, we have that
Xi ≤e

⊕
pk≤pj Xk if and only if Xi is one of the elements in {Xk | pk ≤ pj} if

and only if pi ≤ pj . So if pi � pj then f(pi) � f(pj). This embedding cannot be
extended to an embedding to Q because any degree that is strictly below the image
of p0 must also be below the image of p1, so q cannot be embedded.

We are left with the case when B(q) = ∅ and B(A(q)) * A(q). We will be able
to obstruct this case as well using a slightly more complicated embedding. In short,
we extend B(A(q)) to a distributive lattice L only adding points if some finite set
of points in B(A(q)) is missing a least upper bound. Since B(q) is empty, we can
argue that no point will be added that will fit the type of q over P in this way. Here
by the type of q over P , we mean the set of atomic facts that describe the position
of q with respect to the elements of P . We then embed L using a strong embedding,
and the rest of P using 2-generics relative to the image of the top element in L.
We argue that any degree strictly below all elements in A(q) must be an image of
an element in L or bounded below the image of the least element in L. No such
degree can be the image of q. We use the same construction in case B(q) 6= ∅ and
either B(A(q)) 6= B(q) or A(B(q)) 6= A(q) (and so it is inconsistent to place q as
the least upper bound of B(q) and the greatest lower bound of A(q) at the same
time). We combine both of these situations in Case 4 below.

Case 4: There is q ∈ Q \ P such that A(q) 6= ∅ and either
(a) B(q) = ∅ and B(A(q)) * A(q); or
(b) B(q) 6= ∅, and either A(B(q)) 6= A(q) or B(A(q)) 6= B(q).
Since we will build an embedding of P which blocks any extension to P ∪ {q},

we may assume in this case that Q = P ∪{q}. As we already hinted in the previous
case, this is the most complicated case and the one where we will make use of the
strong embedding of all finite distributive lattices from Theorem 2.4.

We first enlarge P by adding new elements in a minimal way to make S0 =
B(A(q)) into an upper semilattice with least element: For each nonempty subset
F ⊆ S0 such that F has no greatest element and A(F ) has no least element, add
a new element sA(F ) and specify that B(sA(F )) = B(A(F )) and A(sA(F )) = A(F ).
Note that if F and G are distinct such subsets with A(F ) = A(G), then this will
add only a single point sA(F ) = sA(G). We order new points sA(F ) < sA(G) if and
only if A(G) ⊂ A(F ). If B(A(q)) has no least element then we add one additional
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point sA(∅) bounded below all elements in B(A(q)). Denote by P ′ the union of P
and of all the newly added elements sA(F ), and let S be the union of S0 and of
all the newly added elements sA(F ). We show that S is an upper semilattice. It is
easy to check that any subset F ⊆ S0 either has a least upper bound in P or has
a new least upper bound sA(F ). Indeed, if A(F ) has a least element (which would
be implied by F having a greatest element), then, by definition, this is the least
upper bound of F in P , and since F ⊆ B(A(q)), we have that A(q) ⊆ A(F ) and so
the least element of A(F ) is below all elements in A(q), hence in B(A(q)). Now, if
F ′ ⊆ S has newly added elements, we can transform it into F ⊆ S0 by replacing
each sA(G) ∈ F ′ by G. Thus the least upper bound of F is the same as the least
upper bound of F ′.

For future reference, we also note that every element s ∈ S0 can be written
uniquely as sA(F ) for F = B(s). Fixing such s = sA(F ), note that A(s) = A(F )
and B(s) = B(A(F )) just like for elements in S \ S0. In addition, note that by
construction, for such s ∈ S0, there cannot be a newly added point s′ ∈ S \ S0 of
the form sA(F ) for such a set F since A(F ) has a least element.

We next expand P ′ to make our upper semilattice S into a distributive lattice L
in a minimal way, avoiding adding any new elements which have the same type
over P as q does. Let MS be the set of meet-irreducible elements of S (i.e., all
elements s ∈ S such that for no s0, s1 > s in S, s0 ∧ s1 = s). Let L be the set of
all nonempty upward closed subsets of MS . As S has a greatest element, which is
meet-irreducible by definition, L is closed under union and intersection and thus
forms a lattice, in fact, a distributive lattice. Note further that S naturally embeds
into L by mapping each s ∈ S to the set {m ∈ MS | s ≤ m}. Note that an
upward closed subset M of MS does not correspond to an element s ∈ S under this
embedding only if it contains two incomparable meet-irreducible elements m0,m1
which are minimal in M . We complete the definition of the partial ordering on
L ∪ P ′ by simply taking the transitive closure, i.e., we define l ≤ p for l ∈ L and
p ∈ P \ S iff there is some s ∈ S with l ≤ s and s < p. Denote by P ′′ the union
of P ′ and of L.

Suppose, for the sake of a contradiction, that we add an element l ∈ P ′′\P of the
same type over P as q. First consider the case that l = sA(F ) for some F ⊆ S0. Since
B(q) = B(l) = B(A(F )), we have A(B(q)) = A(B(A(F ))) = A(F ) = A(l) = A(q)
(here we use the fact that whenever F ⊆ P we have that A(B(A(F ))) = A(F ),
which can be easily verified just from the definitions); but by our case assumption,
we must then have B(q) 6= B(A(q)) = B(A(l)) = B(A(F )) = B(l), contradicting
B(q) = B(l).

Next suppose that l ∈ P ′′ \ P ′; then there is an upward closed subset M of MS

containing two incomparable meet-irreducible elements m1,m2 which are minimal
in M such that l < m0,m1. But now B(q) = B(l) ⊆ B(m0) ∩ B(m1), and so, as
explained above, m0 = sA(F0) and m1 = sA(F1) for some F0, F1 ⊆ B(A(q)) (even
if m0 ∈ S0 or m1 ∈ S0), implying that A(m0) = A(F0) ⊇ A(q) and A(m1) =
A(F1) ⊇ A(q). In addition, l < m0,m1 implies A(q) = A(l) ⊇ A(m0), A(m1) and
thus A(q) = A(l) = A(m0) = A(m1). But A(m0) = A(F0) and A(m1) = A(F1),
and so m0 = m1 by construction, a contradiction.

Now we can proceed with our embedding: We embed the distributive lattice L
as a strong interval [a,b] invoking Theorem 2.4. Note that since we started with
the downward closed set B(A(q)), we have that elements in P \ L are all above
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or incomparable with elements in L. Extend our embedding to an embedding of
P ′′ = P ∪ L using the columns of a set G that is 2-generic relative to b. In this
embedding, we have that any point that is below the degrees of the images of all
elements in A(q) (which is nonempty by assumption) is bounded by the image b of
the top element in L. It is therefore bounded by a or else equals one of the degrees
which are images of L. We ruled out the possibility that q takes the place of one
of the elements in L and so q must be mapped to a degree strictly below a. But
then B(A(q)) ⊆ A(q), and since B(A(q)) 6= ∅ by assumption, this can only happen
if B(q) = ∅, contradicting our case assumption.

Suppose that no element in Q satisfies the conditions of the previous four cases.
We have one more possible obstruction related to the relative type of two elements
in Q.

Case 5: There exists q ∈ Q \ P and r ∈ Q, such that A(q) 6= ∅, B(q) ⊆ B(r)
and q � r.

Note that by the fact that none of the Cases 2, 3, or 4 applies to q, we know that
B(q) is nonempty. Since we assume that Case 4 fails, we have that B(A(q)) = B(q)
and A(B(q)) = A(q). (In particular, neither B(q) nor A(q) is principal.) We now
embed B(q) in some arbitrary way and use a 2-generic relative to the least upper
bound of the elements in the image of B(q) to complete our embedding of P . Thus
the greatest lower bound of the degrees in the image of A(q) is the least upper
bound of the degrees that are images of B(q). The only possible degree where q
can be mapped to is the image of

∧
A(q) =

∨
B(q). Since B(q) ⊆ B(r), the image

of r can only be above the image of
∨
B(q), but this conflicts with q � r.

We claim that in all other cases, every embedding of P can be extended to an
embedding of Q. Fix such P ⊆ Q. To summarize, we have that:

(A) For all q ∈ Q \ P , if A(q) = ∅, then B(q) = B(A(B(q))) by the failure of
Case 1.

(B) For all q ∈ Q \ P , if A(q) 6= ∅ and B(q) = ∅, then q is the least element
of Q and B(A(q)) = ∅ by the failure of Cases 2, 3, and 4(a).

(C) For all q ∈ Q \ P , if A(q) 6= ∅ and B(q) 6= ∅, then A(B(q)) = A(q) and
B(A(q)) = B(q) by the failure of Case 4(b).

(D) For all q ∈ Q \ P and r ∈ Q, if A(q) 6= ∅ and B(q) ⊆ B(r), then q ≤ r by
the failure of Case 5.

Let f be an embedding of P in De. Order the elements of Q \ P = {q0, . . . , qn}
so that

• qi ≤ qj implies i ≤ j, and
• A(qi) 6= ∅ and A(qj) = ∅ implies i < j.

We consider qi in turn, and for each, we build f(qi).
(1) If A(qi) 6= ∅ and B(qi) = ∅, then by (B), we have that qi is the least element

of Q, hence we can send qi to f(qi) = 0e.
(2) If A(qi) 6= ∅ and B(qi) 6= ∅, then send qi to the least upper bound of the

image of B(qi), setting f(qi) =
∨
p∈B(qi) f(p).

(3) Finally, we are left with {qk, . . . , qn} with A(qi) = ∅ for all i with k ≤ i ≤ n.
Let G be 2-generic relative to the least upper bound of all degrees in the
range of our embedding so far. We break G up into columns {Gi}i<ω and
map qi to dege(Gi) ∨

∨
q<qi

f(q). (If B(qi) = ∅, then
∨
q<qi

f(q) = 0e.)
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Now we need to prove that this embedding works. Suppose first that q ≤ q′. The
case when q, q′ ∈ P is handled by the assumption that f is an embedding. So
we may assume that at least one of q or q′ is in Q \ P . We consider the different
possibilities:

• If q ∈ P then by our construction we clearly have f(q) ≤ f(q′).
• If q′ ∈ P then A(q) 6= ∅ and so f(q) = 0e or f(q) =

∨
f(B(q)). However,

since f is a valid embedding of P as a partial order into De, we must have
that

∨
f(B(q)) ≤ f(q′).

• Finally, suppose that q and q′ are both in Q \P . Then by construction, we
build the image of q first. Suppose first that A(q′) 6= ∅. First, note that
A(q) ⊇ A(q′), so A(q) 6= ∅ as well. If B(q) is empty, then f(q) = 0e, so
f(q) ≤ f(q′). If B(q) 6= ∅, then B(q′) 6= ∅ as well since B(q′) ⊇ B(q), so

f(q) =
∨

p∈B(q)

≤
∨

p∈B(q′)

= f(q′).

On the other hand, if A(q′) = ∅, then f(q′) ≥ f(q) by construction.
Suppose now that q � q′. Again, we only need to consider cases when at least

one of q or q′ is in Q \ P .
• If q ∈ P and A(q′) = ∅, then by (A), we have that B(q′) = B(A(B(q′))).
Since q /∈ B(q′), it must be that q /∈ B(A(B(q′))) and so f(q) �

∨
f(B(q′)).

Since we use a set that is generic with respect to f(q)∨
∨
f(B(q′)), and f(q′)

is constructed by joining
∨
f(B(q′)) and several columns of that generic set,

we have that f(q) � f(q′).
• If q ∈ P and A(q′) 6= ∅, then there are two possibilities: If B(q′) = ∅ then
by (B), we have that f(q′) = 0e and B(A(q′)) = ∅. In that case, P does
not have a least element (or else that least element would be in B(A(q′))),
and so f(q) 6= 0e.

Otherwise, B(q′) 6= ∅ and so f(q′) =
∨
f(B(q′)). By (C), we have that

B(q′) = B(A(q′)) and so q /∈ B(A(q′)); thus there is some r ∈ A(q′) such
that q � r. But then f(q) � f(r). On the other hand,

∨
f(B(q′)) ≤ f(r)

and thus f(q) � f(q′).
• If q′ ∈ P and A(q) = ∅, then the use of a generic with respect to f(q′)
ensures that f(q) � f(q′).
• If q′ ∈ P and A(q) 6= ∅, then since q cannot be least in Q as q � q′, by (B)
we have that B(q) 6= ∅. This means that f(q) =

∨
f(B(q)). But then∨

f(B(q)) ≤ f(q′) would imply B(q) ⊆ B(q′) which is impossible by (D).
• If q and q′ are both in Q \ P and A(q) 6= ∅, then by (D), we have B(q) *
B(q′), so there is some p ∈ B(q) \ B(q′). Since p � q′, we have already
shown f(p) � f(q′), implying f(q) � f(q′).
• If q and q′ are both in Q \ P and A(q) = ∅, then the use of a generic
guarantees that f(q) � f(q′).

This completes the proof. �

5. The common fragment of the theories of the Turing and the
enumeration degrees

In this section, we characterize the largest “natural” common fragment of the
first-order theories of the Turing degrees and the enumeration degrees. More pre-
cisely, we will show that the ∃∀-theory of the Turing degrees is a supertheory of
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the ∃∀-theory of the enumeration degrees; in fact, it is a proper supertheory since
there is an ∃∀-difference ϕ ∈ Th(DT ) \Th(De), namely, the existence of a minimal
degree:

∃x∀y(x > 0 & (y < x→ y = 0)).
or equivalently, in the language of partial orderings only, without a constant symbol
for 0:

ϕ : ∃x∃z(z < x & ∀y(z ≤ y & ¬(z < y < x))).
Recall (e.g., from Lerman [15, proof of Theorem VII.4.4]) that any ∃∀-sentence is a
disjunction of ∃∀-sentences ψ of the format in Problem 2.1: “For some finite partial
order P and finite extensions Q1, . . . , Qk of P , the sentence ψ states that there is an
embedding of P that cannot be extended to an embedding of any of the Q1, . . . , Qk.”
For example, the above sentence ϕ can be expressed as a statement of this format
with k = 2, setting P = {a < b}, Q1 = {c < a < b} and Q2 = {a < d < b}.

We first give a model-theoretic characterization of the ∃∀-theory of the Turing
degrees.

Definition 5.1. Let U be an upper semilattice with least element. We say that U
exhibits end-extensions if for every pair of a finite lattice P and a finite partial order
Q ⊇ P such that if x ∈ Q \ P then x is not below any element of P and x respects
least upper bounds from P , every embedding of P into U extends to an embedding
of Q into U .

Note that both DT and De are upper semilattices with least element that exhibit
end-extensions. We claim that for the Turing degrees, this property characterizes
its ∃∀-theory:

Theorem 5.2. Let ϕ be an ∃∀-sentence in the language of partial orders. Then
the sentence ϕ is true in DT if and only if there is an upper semilattice U with least
element that exhibits end-extensions such that ϕ is true in U . Thus the ∃∀-theory
of the Turing degrees is a supertheory of the ∃∀-theory of the enumeration degrees.

Proof. Note that this theorem is implicit in the proof of the decidability of the
∃∀-theory of DT by Shore [20] and Lerman [15], rephrased in our language.

Suppose that ϕ is true in some upper semilattice U with least element that
exhibits end-extensions. By the remark above, we can fix a disjunct ψ of ϕ which
has the format “For some finite partial order P and finite extensions Q1, . . . , Qk
of P , there is an embedding of P that cannot be extended to an embedding of any
of the Q1, . . . , Qk” and holds in U . Fix an embedding f of P into U witnessing
this. Let P ∗ be the upper semilattice with least element generated by the range
of f in U , taking least upper bounds as in U and adding a least element into P ∗
if the least element of U is not already in the range of f . Then P ∗ is a finite
lattice, and so by Lerman [14], we can embed P ∗ as an initial segment of DT via
a mapping g. Any finite extension of the embedding g of P ∗ into DT satisfies the
end-extension requirements: No new element is below any member of the range
of g since this range is an initial segment, and new elements respect least upper
bounds of elements in the range since DT is an upper semilattice. As U exhibits
end-extensions, it follows that any extension g into DT can be pulled back to an
isomorphic extension of P ∗ (and hence of P ) into U . It follows that g cannot be
extended to an embedding of any of the partial orders Q1, . . . , Qk into DT . Thus
DT |= ψ and so DT |= ϕ.
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The reverse direction is trivially true since DT is an upper semilattice with least
element that exhibits end-extensions. �

Definition 5.3. We denote by E the set of ∃∀-sentences ψ from the extension of
embeddings problem: “For some finite partial order P and finite extension Q of P ,
the sentence ψ states that there is an embedding of P that cannot be extended to
an embedding of Q.”

We can now state precisely what the “natural” common fragment of the first-
order theories of the Turing degrees and the enumeration degrees is in the following.

Theorem 5.4. For the above set E of ∃∀-sentences,

E ∩ Th(De) = E ∩ Th(DT ).

Recall from the minimal degree example above that even loosening the restriction
in the extension of embeddings problem from k = 1 to k = 2 results in an ∃∀-
difference.

Proof. Suppose first that ϕ ∈ E∩Th(De). The structure De is an upper semilattice
with least element that exhibits end-extensions. Note that ϕ is an ∃∀-sentence and
so, by Theorem 5.2, if ϕ is true in De, then it must be true in DT as well. It follows
that ϕ is true in DT and hence ϕ ∈ E ∩ Th(DT ).

Now suppose that ϕ ∈ E \ Th(De). Suppose that ϕ is the statement that
expresses that some embedding of the finite partial order P does not extend to an
embedding of the partial order Q. If ¬ϕ is true in De (and so every embedding
of P extends to an embedding of Q), then the properties (A), (B), (C), and (D)
from the proof of Theorem 4.2 apply to the pair P,Q. To prove that ϕ also fails
in DT , we essentially use the same construction as in Theorem 4.2:

Fix some embedding f of P into DT . Order the elements of Q\P = {q0, . . . , qn}
so that

• qi ≤ qj implies i ≤ j and
• A(qi) 6= ∅ and A(qj) = ∅ implies i < j.

We consider qi in turn. We define f(qi) using the fact that the four properties (A),
(B), (C), and (D) are true:

(1) If B(qi) = ∅ and A(qi) 6= ∅, then by property (B), we have that qi is the
least element of Q and B(A(qi)) = ∅. It follows that P = A(qi) does not
have a least element, hence we can send qi to f(qi) = 0T .

(2) If B(qi) 6= ∅ and A(qi) 6= ∅, then by (C), we have that B(qi) = B(A(qi)).
By (D), we know that for every j < i, B(qi) = B(qj) implies that qi = qj
(since A(qj) 6= ∅), so we can send qi to the least upper bound of the image
of B(qi): f(qi) =

∨
p∈B(qi) f(p) without violating injectivity of f .

(3) Finally, we are left with {qk, . . . , qn} with A(qi) = ∅ for all i with k ≤ i ≤ n.
Let G be generic relative to the least upper bound of all degrees in the range
of our embedding so far. In the Turing case, even 1-genericity suffices. We
break up G into columns {Gi}i<ω and map qi to degT (Gi) ∨

∨
q<qi

f(q).
Mutually generic sets have similar properties with respect to Turing reducibility
as to enumeration reducibility. If A1, A2 ≤T B and G is 1-generic with respect
to B and

⊕
i<ω Gi = G, then for any i ∈ ω and any finite set F , we have that

A1 ⊕ Gi ≤T A2 ⊕
⊕

j∈F Gj if and only if A1 ≤T A2 and i ∈ F . Thus, the
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same argument as was used in Theorem 4.2 will prove that f is an embedding as
required. �

6. Conjectures and open problems

The most glaring open problem is, of course, the decidability of the ∃∀-theory of
the enumeration degrees. Our work opens up two related problems that we would
like to explicitly state.

The first question asks whether we can extend the work presented in the next sec-
tion by removing the distributivity requirement from our statement. We conjecture
that this is possible:

Conjecture 6.1. Every finite lattice has a strong interval embedding in De.

Confirming the above conjecture will not lead to an algorithm for deciding the
∃∀-theory of De in a straightforward way. What we would like to have is a model-
theoretic characterization of the ∃∀-theory of De along the lines of Theorem 5.2.
One possible attempt at getting such a characterization is to incorporate the the-
orem of Slaman and Sorbi [24], which proves a strong form of downward density.
Consider the statement:

An ∃∀-sentence ϕ is true in De if and only if there is an upper
semilattice U with least element that exhibits end-extensions and
strong downward density such that ϕ is true in U ,

where U exhibits strong downward density if every countable partial order can be
embedded below any nonzero element of U .

Consider the ∃∀-sentence ϕ that states that there is an embedding of the diamond
lattice P = {d < a, b < c} that cannot be extended to an embedding of any of
Q1, . . . , Q4, where Q1 puts a new element below a, b and above d, Q2 puts a new
element below c, above d but incomparable to each of a and b, Q3 puts a new
element below in the interval (a, c) and Q4 puts a new element in the interval (b, c).
We can easily imagine an upper semilattice that makes ϕ true: In it, a and b would
be mapped to a minimal pair {a,b}, d to the least element, and c would be mapped
to the least upper bound of a and b, which has the additional property that every
element of U strictly bounded by a ∨ b is either below a or below b.

Unfortunately, ϕ is not true in De. Jacobsen-Grocott and Soskova (see Jacobsen-
Grocott [8]) prove that strong interval embedding cannot be combined with minimal
pairs:

Theorem 6.2 (Jacobsen-Grocott, Soskova). If a and b are enumeration degrees
such that every degree x < a ∨ b is bounded by a or bounded by b, then {a,b} is
not a minimal pair.

This leaves open the following

Question 6.3. Is there a natural class of upper semilattices U so that an ∃∀-
sentence ϕ is true in De if and only if it is true in some upper semilattice U ∈ U?

7. Strong interval embeddings

We will devote this section to the rather technical proof of the existence of a
strong interval embedding of any finite distributive upper semilattice. Recall that
a strong interval embedding of a lattice L is a bijective map f between L and some
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interval of enumeration degrees [a,b] such that for any degree x ≤ b that is not
in the range of f we have that x < a. We came to this definition by generalizing
the notion of a strong minimal cover, which gives an example of a strong interval
embedding of the two-element lattice. Kent, Lewis-Pye, and Sorbi[10] proved the
existence of degrees with strong minimal covers. We start by giving an alternative
proof of their result.

7.1. A strong minimal cover in the Π0
2-enumeration degrees. The construc-

tion of Kent, Lewis-Pye, and Sorbi [10] yields a ∆0
3-degree b with a Π0

2-strong
minimal cover a. Our plan is to extend this theorem to a strong embedding of
arbitrary finite distributive lattices, so we will need some more uniformity for the
images constructed. We start by giving a slightly different construction of a strong
minimal cover that extends the previous result. We will then extend the ideas in
this subsection to obtain our general theorem.

Theorem 7.1. There are Π0
2-enumeration degrees a and b such that a is a strong

minimal cover of b in the enumeration degrees.

We will build Π0
2-sets A and B so that dege(A ⊕ B) is a strong minimal cover

of dege(B). We need to satisfy the following two groups of requirements:

Me : ∃Γ[Ψe(A⊕B) = Γ(B)] ∨ ∃∆[A⊕B = ∆(Ψe(A⊕B))],

where Γ and ∆ are enumeration operators we construct and {Ψe}e<ω lists all enu-
meration operators, and

Te : Φe(B) 6= A,

where {Φe}e<ω lists all enumeration operators.
We will build A and B as Π0

2-sets as follows: We approximate them stage by
stage via finite sets {As}s<ω, {Bs}s<ω. We use X to denote A or B. Ultimately, X
consists of the elements that are enumerated into Xs at infinitely many stages s.
The construction will take place on a tree of strategies. We use lower-case Greek
letters α, β, etc., to denote nodes on the tree. The nodes are ordered by setting
α ≺ β iff α is a strict predecessor of β on the tree (and α � β iff α = β or
α ≺ β). Each node on the tree works towards satisfying a requirement. We associate
outcomes to each node, which represent different ways in which we may satisfy the
requirement and which determine its immediate successors. The outcomes are
linearly ordered by <L. This ordering extends to a different partial ordering on
the nodes: We say that α <L β (α is to the left of β) if α and β have a common
predecessor γ, say, with outcomes o1 <L o2 such that γ ô1 � α and γ ô2 � β. We
combine the two partial orders on nodes into a total order: We say that α has higher
priority than β (and write α < β) if α <L β or α ≺ β. If we identify nodes on the
tree with strings in the alphabet of outcomes, then this is just the lexicographical
order on such strings. During our construction, we will visit nodes on the tree and
activate their strategy which works to satisfy their associated requirement. (We will
often identify a node with its strategy.) Which node we activate next depends on
the outcome currently representing our best guess as to how the requirement will
be satisfied. Nodes of higher priority may injure the work done by lower-priority
nodes, but lower-priority nodes must respect the work done so far by higher-priority
nodes. The intention is that there will be a true path of nodes visited at infinitely
many stages and injured only finitely many times, which can therefore implement
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their strategies successfully. Before we give a formal construction, we first consider
the two types of strategies in the context of the tree.

A node α working on anM-requirement (anM-strategy α) first tries to build Γα
by associating an axiom location and a promise to every axiom enumerated into Ψα.
(For simplicity, we use the index α to refer to the operators involved in the require-
ment associated with α). If 〈x, F 〉 enters Ψα, the strategy selects a suitable element b
as an axiom location from a stream of numbers SB handed down to α by its prede-
cessor on the tree at each stage at which α is active. This number b is then taken
out of the stream before that stream is handed down. (We will define “suitability”
in a precise way later in the construction.) The strategy α then enumerates the
axiom 〈x, {b}〉 into Γα and makes the promise (b, x, F ) by recording it in a list of
promises Pα. The intent of the promise is that if there is ever evidence that F is
a subset of A ⊕ B, then the axiom location b will be enumerated into B. Lower-
priority strategies are asked to respect the promises that higher-priority strategies
make.

Now let’s consider a node β working on a T -requirement (a T -strategy β). It
starts by selecting a witness z from a stream SA (which is also handed down to
it by its predecessor on the tree at every stage at which the node is visited). At
every stage that this strategy β is visited while z /∈ Φβ(B), it enumerates z into A
and takes its wait outcome w. The strategy must ensure that promises made by
higher-priority nodes are kept, so z entering A might set off a chain reaction of
numbers being enumerated into B. As there are only finitely many promises made
at any given moment, this process is finitary. Furthermore, when evaluating B, the
strategy takes into account what strategies below the outcome w might enumerate
into the sets A and B, along with the chain reaction that higher-priority promises
require. If it ever sees that z can be realized via an axiom 〈z,D〉, then it would like
to keep D ⊆ B and stop enumerating z into A. The elements that are enumerated
into the stream of strategies below outcome w are dumped into dump sets UA
and UB . These sets are enumerated into A and B, respectively, at every future
stage, so they will not cause problems. If there are no higher-priorityM-strategies,
then this leads us to a successful diagonalization denoted by outcome d to the
left of outcome w. An actual problem might arise if there are higher-priority M-
strategies. Suppose that there is just one higher-priority M-strategy α ≺ β for
simplicity. Consider the following situation:

It is possible that α has a promise (b, x, FA ⊕ FB), where z ∈ FA and b ∈ D.
Enumerating z into A might cause b to enter B, but if we stop enumerating z
into A, then b must leave B. Thus our goal of taking z out of A while keeping
D ⊆ B is in conflict with a promise of the higher-priority strategy α. There might
be a way around this conflict in certain situations: If z /∈ A does not cause x to
leave Ψα(A⊕ B), then we can afford to break the promise (b, x, FA ⊕ FB), as this
will not cause an error in Γα, i.e., we will have Γα(B)(x) = Ψα(A⊕B)(x).

If, on the other hand, z leaving A causes x to leave Ψα(A⊕B), we should be more
careful. We use this relationship instead to switch α to a backup strategy: We start
building an enumeration operator ∆α by enumerating its first axiom which relies
on this relationship between z and x. This situation will be marked by a visit to an
outcome ∞ between outcome d and outcome w. We restart the strategy β with a
new witness z′. The stream for A that is passed on to strategies below outcome ∞
is reduced to the realized witnesses z, z′, . . . . That is, if βˆ∞ is on the true path,
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then, using ∆α, we can enumerate A from Ψα(A ⊕ B). All natural numbers that
are in A and that are not in the stream SA below βˆ∞ are dumped into A by
strategies γ � β and form a c.e. set. Recall that to satisfy the requirementM, we
need to ensure that B can also be enumerated by Ψα(A ⊕ B) and so ∆α cannot
quite serve as the operator ∆ required to satisfy α’s requirement. We use every
other element of the stream SA below βˆ∞ to code B into A. We do this through
a list Hβ of attachments (z, u), which is similar to the list of promises: It requires
from lower-priority strategies to ensure that if u enters B, then z is enumerated
into A. So if ∞ is the true outcome, then we will have A = ∆α(Ψα(A ⊕ B)) and
B ≤e A, and so we can produce the required operator ∆ to satisfy α’s requirement.
If the connection between z and x is lost due to more axioms entering Ψα, then we
say that z is cleared by α, and we can revert to our original plan to diagonalize to
satisfy β’s requirement.

The rest of the mechanics of the construction is standard. If β extends more
than one M-strategy above it, say, α0 ≺ α1 ≺ · · · ≺ αk−1 ≺ β, then in order to
diagonalize with a witness z, it must be cleared by all αi. We try to clear it in turn,
starting with αk−1 and ending with α0, with the possibility of switching each αi
to its backup strategy with an outcome ∞i if we cannot clear the witness. The
outcomes of β are:

d <L ∞0 <L ∞1 <L · · · <L ∞k−1 <L w.

The full construction will give the precise details on how this is organized.

The tree of strategies. Our tree of strategies will be a partial function T : {w, d,∞i :
i < ω}<ω → R, where R is the set of all requirements. We will define T (α) along
with the set C(α) of active M-strategies along α. Let T (∅) = M0 and C(∅) = ∅.
Suppose T (α) = Mα, then T (α d̂) is defined and equals the least T -requirement
that has not been assigned to any node β � α; we also set C(α d̂) = C(α) ∪ {α}.
On the other hand, suppose that T (α) = Tα and C(α) = {α0 ≺ α1 ≺ · · · ≺ αk−1}.
We set T (αˆw) and T (α d̂) to be the least M-requirement that has not yet been
assigned to any node β � α, and we set C(αˆw) = C(α d̂) = C(α). For every l < k,
we set T (αˆ∞l) = T (α), and we set C(αˆ∞l) = C(α) \ {αl}.

Approximating X. Recall that X stands for either the set A or the set B. At
stage s of the construction, we build a finite path fs of length s in the (domain
of) the tree of strategies. Strategies to the right of fs are initialized at (the end
of) stage s. The set Xs is constructed in substages Xt

s where t ≤ s, starting with
X−1
s = ∅ and letting Xt

s be the set Xt−1
s along with all elements enumerated into X

by fs � t at stage s. We will omit reference to specific substages when they are
understood from the context. As we said before, we will have that n ∈ X if and
only if n ∈ Xs at infinitely many stages s. At first sight, this means that for a finite
set F , we might have F ⊆ X but F * Xs at any stage s. We will ensure that the
leftmost path f of strategies visited at infinitely many stages is the true path, i.e.,
it correctly approximates the true outcome of every strategy. We will prove that
n ∈ X if and only if n is enumerated into X by a unique strategy σ along the true
path at all but finitely many stages s at which σ is visited. And so for finite sets F ,
we will have as well that F ⊆ A if and only if F ⊆ As for infinitely many stages s.

Let β be a T -strategy with active M-strategies C(β) = {α0, α1, . . . , αk−1} and
suppose that β0, . . . , βm−1 are all predecessors of β so that βlˆ∞u � β for some u.
When we visit β, we must take into account the promises and attachments that
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these strategies have made whenever β enumerates a number into the set A. For
finite sets Y and Z, we define gAβ (Y, Z) formally as

⋃
n Yn and gBβ (Y,Z) as

⋃
Zn,

where Y0 = UA ∪ Y , Z0 = UB ∪ Z and
• Yn+1 = Yn ∪ {a | (∃l < m)[(a, b) is an attachment of βl & b ∈ Zn]};
• Zn+1 = Zn ∪ {b | (∃l < k)[(b, x, F ) is a promise of αl & F ⊆ Yn+1 ⊕ Zn]}.

Suitability. The streams SAα and SBα are defined inductively during the construction.
We list all strategies in order type ω and associate to each a unique number α̂
corresponding to α′s position in this list. We will say that x is suitable for α if x >
|α| and x is the 〈α̂, j〉-th number among all elements that are in the stream SX(α)
and not used in attachments for some j. For every α ≺ f , we will ensure that SXα
is infinite and so there are infinitely many numbers suitable for α.

The construction. At stage 0, all strategies are in initial state: We set UA = UB =
∅; for eachM-strategy α, we set Γα = ∅ and the list of promises Pα = ∅; for each
T -strategy β with C(β) = {α0, . . . , αk−1}, we set ∆β

l = ∅ for all l < k, the list of
attachments Hβ

l = ∅ for l < k, and let the current witness zβ be undefined. During
the construction, initializing a strategy will mean that we restore it to its initial
state.

At stage s > 0, we build fs of length at most s, activating strategies along fs.
We begin by enumerating UX into X.

We then start at the root and let SX∅,s = SX∅,s−1 ∪ {s} = [0, s]. Suppose we have
constructed fs � n, along with SXfs�n,s = SXfs�n,s−1∪{yX} and As and Bs (or rather
Ans and Bns , the approximation to the sets A and B at substage n of stage s). If
n = s, then we end this stage and move on to the next stage. If n < s, then we
activate fs � n and let it pick its outcome o. Then fs � n+ 1 = (fs � n)̂ o unless fs
ends the stage prematurely. At the end of stage s, we initialize all strategies σ such
that fs <L σ.
Case 1. If fs � n = α is an M-strategy and α did not end the previous stage at
which it was visited prematurely, then we scan Ψα for new axioms that have not
yet been assigned axiom locations. If such axioms exist, then we pick the oldest
such, say, 〈x, FA ⊕ FB〉. (Here by oldest we mean the one that was enumerated
into Ψα first.) If b = yB is suitable for α and b > max(FA∪FB), then we assign b to
the axiom and enumerate the promise (b, x, FA ⊕FB) into Pα as well as the axiom
〈x, {b}〉 into Γα. We end this stage prematurely (note we do not initialize strategies
β � α, only strategies β >L α). Otherwise (in particular if α did end the previous
stage at which it was visited prematurely), we enumerate yX into SX(α d̂). In all
cases, we enumerate into X the set gXα (As, Bs), and if we don’t end the stage, we
let d be α’s outcome.
Case 2. If fs � n = β is a T -strategy with C(β) = {α0 ≺ · · · ≺ αk−1}, then we pick
the first case which applies:

(1) The strategy β was successful via a realized witness z and had outcome d
at the previous stage at which β was active: In that case, enumerate Dz

into B and then gXβ (As, Bs) into X, the number yX into SXβ d̂, and let the
outcome be d.

(2) The current witness zβ is not defined: If yA = a is defined and suitable
for β, then let zβ = a be the current witness and end the stage prematurely.
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Otherwise, if a is not suitable, then enumerate yX into SXβˆw and let the
outcome be w. In both cases, we enumerate gXβ (As, Bs) into X.

(3) zβ /∈ Φβ(V ), where V = gBβ (As ∪ SAβˆw,s ∪ {zβ}, Bs ∪ SBβˆw,s): We then
enumerate gXβ (As∪{zβ}, Bs) into X, the number yX into SXβˆw, and let the
outcome be w.

(4) Otherwise: Call the witness zβ is realized. This is the only case in which
we grow the dump sets. We start by enumerating SXβˆw,s into UX . Let Dzβ

be the set of axiom locations in the finite subset of the axiom that puts zβ
into Φβ(B) which are not enumerated into B if z /∈ A:

Dzβ = gBβ (As ∪ {zβ}, Bs) \ gBβ (As, Bs).

For every l < k, let

E
zβ
l = Ψαl(gAβ (As ∪ {zβ}, Bs)⊕ gBβ (As ∪ {zβ}, Bs)) \

Ψαl(gAβ (As, Bs)⊕ gBβ (As, Bs)).

Make the current witness zβ undefined.
Now, for every realized witness z and every l < k, let

GXl,z = gXβ ((As ∪
⋃

l≤j<k

SAβˆ∞j
) \ {z}, Bs ∪

⋃
l≤j<k

SBβˆ∞j
).

We say that z is αl-cleared if Ezl ⊆ Ψαl(GAl,z⊕GBl,z). We search for the least
pair (l, z) (in the lexicographical order) such that z is a realized witness,
z /∈ SAβˆ∞j

for j < l, z /∈ UA, and z is j-cleared for all j > l. (Note that
the pair (k− 1, zβ) satisfies these conditions, so such (l, z) must exist.) We
enumerate (

⋃
l<j<k SAβˆ∞j

) \ {z} into UA,
⋃
l<j<k SBβˆ∞j

into UB , and set
∆j = Hj = ∅ for all j > l.
(a) If l ≥ 0, then enumerate the axiom 〈z, Ezl 〉 into ∆l, the set gXβ (As, Bs)

into X, the number yB into SB(βˆ∞l), and z into SA(βˆ∞l). If z is
the 2n-th number in SA(βˆ∞l), then we enumerate (z, n) into Hl and
end this stage. Otherwise, we let the outcome be ∞l.

(b) Otherwise, we have a witness z that is αl-cleared for all l < k. We say
that z is successful and that the numbers in Dz are associated with z
at β. Enumerate Dz into B, as well as gXβ (As, Bs ∪Dz) into X. Let
the outcome be d.

7.1.1. The verification. As mentioned before, we define the infinite true path f by

f(n) = lim inf
s>n

fs(n).

It is straightforward to see that the strategies σ along f are visited at infinitely
many stages and initialized at only finitely many stages. For σ ≺ f , we say that s
is a true stage if σ is visited at stage s. Let sσ be the least stage after which σ is not
initialized. Let SX(σ) =

⋃
s>sσ

SXσ,s. A simple induction on the length of σ proves
that SX(σ) is infinite. Furthermore, if σ is visited at consecutive stages s > t > sσ,
then A|σ|s ⊇ A|σ|t , as in order for a strategy above σ to stop enumerating an element
into A, it must move its outcome left of σ and hence initialize σ. We now verify
the important claims about enumeration into A and B that we made earlier. Once
again, X denotes either the set A or the set B.
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Lemma 7.2. If a number x is in X, then it is either eventually dumped into X at
almost every stage, or there is a strategy σ ≺ f such that at all but finitely many
stages at which x is enumerated into X, σ is the least strategy that enumerates x
into X, and σ does so at cofinitely many stages at which σ takes its true outcome.

Proof. Suppose x ∈ X. If x is dumped into UX at stage s, then it is enumerated
into X at the beginning of all stages t > s. So suppose that x is not dumped.

Consider first the case when X = B and denote x by b for convenience. Note
that when anM-strategy α picks a number b as an axiom location, that number is
taken out of the stream, and it is never returned to the stream, so no other strategy
can use it. If b is not an axiom location for any strategy, then it is not enumerated
into B at any stage unless it is dumped, so let α be the unique strategy that uses b
as an axiom location for the axiom 〈x, F 〉. If α is ever initialized, then b is dumped
into UB . So, by assumption, α is never initialized after b is chosen.

There are infinitely many stages at which b is enumerated into B. At stage s, this
could be because a T -strategy σ with α ∈ C(σ) causes F ⊆ As⊕Bs, or because b is
associated with a witness z at a successful T -strategy β that is visited at stage s.

First, note that there can be only finitely many strategies at which b is associated
with a witness. This is because if z ∈ A causes b ∈ B and z /∈ A causes b /∈ B, then
there is a sequence of promises and attachments witnessing the recursive relation-
ship between z and b that drives the definition of gβ . The sequence starts with a
promise (b0, x0, F

0
A⊕F 0

B) such that z ∈ F 0
A and ends with a promise (b, xk, F kA⊕F kB).

In every promise (bi, xi, F iA ⊕ F iB), we have that bi > max(F iA ⊕ F iB), and in every
attachment (zi, bi), we have that zi > bi, and so z < b. Furthermore, once b is
associated with a witness z at β, we have that z is out of A at all further stages
unless β is initialized. It keeps z out of A, and so b is an element of Bs only if
we visit β at stage s. In particular, this means that unless β is initialized, b will
not be associated at any other strategy. If β is initialized, then the witness z is
either dumped or moved to a stream to the left of β, and so β will never have z as
its witness again. There are finitely many numbers z < b, and each is suitable for
finitely many T -strategies, namely, the ones of length smaller than z, hence there
can be only finitely many associations, and never more than one at a time.

So, to sum up, b can be associated with z at β only for finitely many pairs (β, z).
If at stage s, the number b is associated with z at β, then β is the only strategy
that b is associated with at stage s, and b ∈ Bs if and only if β � fs and enumerates
it into Bs. So there are two cases: Either some strategy β is associated with b at
all but finitely many stages, in which case it is never initialized and as b ∈ B, it is
visited infinitely often, in which case β ≺ f and satisfies the conditions. Otherwise,
at all but finitely many stages s, we have that b is enumerated into Bs only if
F ⊆ As ⊕ Bs. It follows that F ⊂ A ⊕ B, and since b > maxF , by induction,
for every element in F , some strategy along the true path enumerates it into the
corresponding set. Pick the longest such σ. It follows that F ⊆ As ⊕ Bs only if
σ � fs. So, as b ∈ B, it must be that α ∈ C(σ), and hence σ enumerates b into Bs
when visited, or σ � α and then b ∈ Bs whenever we visit α d̂.

Now consider the case when X = A and denote x by a. We are assuming that
a ∈ A. At every stage s, there is at most one T -strategy βs ôs such that a is an
unrealized witness of βs and os = w, or such that a is a realized witness of βs and βs
uses a as an attachment to code whether some n is in B below outcome os = ∞i

for some i < k. There are only finitely many strategies β that can ever fulfill this
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role, as a must be suitable for β, hence β is of length less than a. If at stage t > s,
such a strategy for a changes, then βt ôt <L βs ôs. On the other hand, this role is
filled by some strategy and outcome visited at infinitely many stages, as those are
the situations in which a is enumerated into A. So fix β such that β ô is least and
hence the same at all but finitely many stages. If o = w, then a enters A only at
stages at which we visit β and β has outcome w. It follows that βˆw ≺ f .

If o = ∞i, then (a, n) ∈ Hβ
i and hence the only way that a can enter As is if

some strategy compatible with βˆ∞i enumerates n into B. As n < a, we have by
induction that there is a least strategy σ ≺ f that causes this. So either σ � β, in
which case βˆ∞i ≺ f and a ∈ A at all but finitely many βˆ∞i-true stages, or else
βˆ∞i � σ and σ enumerates a ∈ A along with n via the function gσ. �

Lemma 7.3. Every T -requirement is satisfied.

Proof. Fix a requirement Te. Let β ≺ f be the longest strategy such that T (β) = Te.
Such a strategy exists because once T Ae is assigned to a node σ with |CA(δ)| = k,
Te can be assigned at most k many more times along any branch through σ. It
follows that β d̂ ≺ f or βˆw ≺ f .

If βˆw ≺ f , then there is an unrealized witness zβ ∈ A such that at every β-true
stage s, zβ /∈ Φβ(Vs), where Vs = gBβ (As∪SAβˆw,s∪{zβ}, Bs∪SBβˆw,s). By Lemma 7.2,
B ⊆

⋃
s Vs since the true path passes through βˆw. So zβ /∈ Φβ(B).

If β d̂ ≺ f , then there is a successful witness z that is αi-cleared for all i < k at
all stages t > sz. As the strategy β enumerates all elements of Dz into B at all true
stages t > sz, we have that z ∈ Φβ(B). On the other hand, z is never enumerated
into At for t > sz by β or any other strategy, so z /∈ A. �

Lemma 7.4. EveryM-requirement is satisfied.

Proof. Fix e. There is a unique strategy α ≺ f associated with Me. Suppose
that α is switched to a backup strategy by some β � α along the true path. Then
βˆ∞i ≺ f , C(β) = {α0, . . . , αk−1}, and α = αi. There are three types of elements
that make up the set A in this case: elements that are eventually dumped (a c.e.
set), elements that belong to the stream SA(βˆ∞i), and elements that are used
by higher-priority T -strategies for coding purposes. We will show that Ψ(A ⊕ B)
can enumerate the elements in A ∩ SA(βˆ∞i). Once we have that, we will show
that Ψ(A⊕B) can enumerate the set B. Knowing B will then let Ψ(A⊕B) figure
out which of the elements of the third kind, the ones used for attachments by
higher-priority strategies, end up in the set A.

For all elements z ∈ SA(βˆ∞i), we have that z ∈ A if and only if z ∈ ∆i(Ψα(A⊕
B)). This is because if we ever see an axiom stop being valid, we would move to
an outcome to the left of ∞i. First of all, we claim that B ≤e ∆i(Ψα(A⊕B)). By
Lemma 7.2, we have that b ∈ B if and only if a least strategy σ ≺ f enumerates b
at all but finitely many stages at which σ takes its true outcome. The strategy β
forms the association (z, b) ∈ Hi for some z ∈ SA(βˆ∞i), and so if b ∈ B, then
at all stages s at which we visit the longer of the strategies σ and βˆ∞i, we have
z ∈ As. On the other hand, z is enumerated into As only if b ∈ Bs, so we have that
B = {b | (z, b) ∈ Hi & z ∈ ∆(Ψα(A⊕B))}.

Next, we claim that

A =
⋃

s:βˆ∞i�fs

gAβˆ∞i
(A|β|s ∪∆i(Ψα(A⊕B)), B)
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and hence is as well enumeration reducible to ∆i(Ψα(A⊕B)). First, suppose that
a ∈ A. By Lemma 7.2, a is either dumped into A, or is enumerated into A by some
least σ ≺ f at all but finitely many stages at which σ takes its true outcome. If
σ � β, then a ∈ A|β|s at all but finitely stages s at which β is active. If βˆ∞i � σ,
then a ∈ SA(βˆ∞i), or else a is the attachment at some δ ≺ β and so a is enumerated
into A at stages at which some fixed number b is enumerated into B. It follows
that b ∈ B and hence a ∈

⋃
s:βˆ∞i�fs g

A
βˆ∞i

(A|β|s ∪∆i(Ψα(A⊕B)), B).
On the other hand, if

a ∈
⋃

s:βˆ∞i�fs

gAβˆ∞i
(A|β|s ∪∆i(Ψα(A⊕B)), B),

then for some βˆ∞i-true stage s, we have that a ∈ gAβˆ∞i
(A|β|s ∪∆i(Ψα(A⊕B)), B).

But then, since whether a enters this set depends only on numbers smaller than a,
and all numbers in A

|β|
s are in A (since A|β|s only grows at βˆ∞i-true stages), it

follows that a ∈ A.
Finally, suppose that α is never switched to a backup strategy. We claim that

Γ(B) = Ψα(A ⊕ B). Suppose that x ∈ Ψα(A ⊕ B); then there is a valid axiom
〈x, FA ⊕ FB〉 in Ψα. This axiom is assigned a marker b, and the axiom 〈x, {b}〉 is
enumerated into Γ. By Lemma 7.2, we have that FA ⊕ FB ⊆ As ⊕Bs at all σ-true
stages for some least α � σ ≺ f . As α is active at σ and σ respects α’s promises
(see the definition of gσ), it follows that b ∈ B, and so x ∈ Γ(B).

On the other hand, suppose that an axiom location b ∈ B is associated with the
axiom 〈x, FA ⊕ FB〉 in Ψα and this axiom is not valid. After a fixed stage in the
construction, b is enumerated into B only at stages at which some strategy β such
that b is associated with a witness z at β is visited. As z is α-cleared, we know that
x ∈ Ψα(As ⊕Bs) (even though z /∈ A results in that the original axiom is invalid).
As we discussed in the proof of Lemma 7.2, b is associated to at most one unique
pair (β, z) at any stage, and there are only finitely many possibilities. It follows
that if b ∈ B, then one of the finitely many axioms that cause x ∈ Ψα(As ⊕ Bs)
must be valid. �

7.2. Building up the intuition for the general case. We would like to gen-
eralize the previous construction to the general case of an arbitrary distributive
lattice. To build up to that, we first consider two special cases: the three-element
lattice and the diamond lattice.

7.2.1. The three-element lattice. Suppose first that we want to construct Π0
2-enu-

meration degrees a > b > c such that a is a strong minimal cover of b and b is a
strong minimal cover of c. We can approach this by building three Π0

2-sets A,B,C
so that c = dege(C), b = dege(B ⊕ C) and dege(A ⊕ B ⊕ C). Now we will have
two groups of requirements: MA and MB mirroring the M-requirements but for
the pairs of sets (A,B) and (B,C), respectively, along with T A and T B , proving
that we have a strictly increasing sequence of degrees. One complication that arises
immediately is that the set B now plays two roles: On the one hand, it serves as
a set that supplies coding locations for the requirements of the formMA, and on
the other hand, it supplies T B-requirements with witnesses. To keep things tidy,
we will treat B = Ba ⊕ Bw as consisting of two parts: Ba will be used by MA-
requirements, and Bw will be used by T B-requirements. With this idea in mind,
we have the following list of requirements:
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MA
e : ∃Γ[Ψe(A⊕B ⊕ C) = Γ(Ba)] ∨ ∃∆[A⊕B ⊕ C = ∆(Ψ(A⊕B ⊕ C))],

MB
e : ∃Γ[Ψe(B ⊕ C) = Γ(C)] ∨ ∃∆[B ⊕ C = ∆(Ψ(B ⊕ C))],

where Γ and ∆ are enumeration operators we construct and {Ψe}e<ω lists all enu-
meration operators, and

T Ae : Φe(B ⊕ C) 6= A,

T Be : Φe(C) 6= Bw,

where {Φe}e<ω lists all enumeration operators.
The T -requirements ensure that C <e B⊕C <e A⊕B⊕C, theMA-requirements

ensure that if X <e A⊕B⊕C then X ≤e Ba ≤e B⊕C, and theMB-requirements
ensure that if X <e B ⊕ C then X ≤e C.

We will have streams associated with each set that we are constructing which
are handed off from strategy to strategy much like in the previous construction:
Every strategy σ has streams SAσ , SB

a

σ , SBwσ , and SCσ .
The actions ofMA- andMB-strategies are very similar to the actions of theM-

strategy from the previous construction. The only difference is thatMA-strategies
pick coding locations out of the stream SBa , andMB-strategies pick coding loca-
tions out of the stream SC .

A T A-strategy β will pick a witness z from SA. This witness is enumerated
into A while z /∈ Φβ(B ⊕ C). When evaluating B ⊕ C, the strategy takes into
account which numbers strategies below the outcome w might enumerate into each
of the sets A, B and C, and the reaction that higher-priority MA-strategies and
MB-strategies might have. If it ever sees that z can be realized via an axiom
〈z,D〉, then it would like to keep D ⊆ B ⊕C and stop enumerating z into A. This
could be in conflict with higher-priority MA-strategies directly because of coding
locations in Ba, but there is no direct conflict with higher-priorityMB-strategies:
We would like to change the approximation to A, which does not directly interfere
with Ψ(B ⊕ C) that an MB-strategy is working on. There could, however, be an
indirect interaction: Suppose that a higher-priorityMA-strategy α has a promise
(b, x, F1) where z ∈ F1, and a higher-priorityMB-strategy γ has a promise (c, y, F2)
where b ∈ F2 and c ∈ D. Now even though α’s axiom location is not directly in the
set D, the chain reaction starting with z /∈ A would still cause a problem as then b
would need to leave Ba, and then c would need to leave C, causing D * B⊕C. If we
are able to clear b via another axiom for x entering Ψα, then enumerating b into B
will have the effect of enumerating c into C, so we can still get the desired result.
The conclusion is that the strategy β can switch higher-priorityMA-strategies to
their backup versions (and need not consider the activeMB-strategies). However,
when clearing a witness z, it needs to take into account all elements b that may
leave B once we remove z, not just the ones in the finite set of a realizing axiom
〈z,D〉.

Another modification to this strategy is needed in case the strategy has one of
its infinite outcomes. In the simpler case, we reserved half of the stream below an
infinite outcome to code the set B. Now we need to ensure that each of Ba, Bw
and C is reducible to ∆(A⊕B ⊕C). We take a similar approach: We split up the
stream generated into four parts: one to code Ba, one for Bw, one to code C, and
the last one is reserved for lower-priority T A-strategies to pick witnesses.
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A T B-strategy δ selects its witness z from the stream SBw and tries to clear it
with respect to all MB-strategies. Once again, not enumerating a witness z into
the set B can cause a chain reaction involving all kinds of axiom locations forMA-
orMB-strategies, and even coding locations for higher-priority T A-strategies that
have an infinite outcome. Nevertheless, the only thing that is important to δ is
to free up the axiom locations from the realizing axiom 〈z,D〉 that stop being
enumerated into C if z is not enumerated into Bw. For this reason, δ takes into
account higher-priorityMB-strategies and tries to get their clearance to diagonalize
or switches them to a backup version. Below an infinite outcome, it codes the
sets Ba and C with a portion of the stream SBw .

7.2.2. The diamond lattice. Suppose next that we want to construct Π0
2-enumer-

ation degrees a > b, c > d such that a = b ∨ c and for all x ≤ a we have
that x 6= a, c,b implies that x ≤ d. We will build three Π0

2-sets B = Ba ⊕ Bw,
C = Ca⊕Cw andD so that a = dege(B⊕C⊕D), b = dege(B⊕D), c = dege(C⊕D),
and d = dege(D). We will need to satisfy the following list of requirements:

MB,C
e : ∃Γ[Ψe(B ⊕ C ⊕D) = Γ(Ba)] ∨ ∃∆[C ⊕D = ∆(Ψe(B ⊕ C ⊕D))],

MC,B
e : ∃Γ[Ψe(B ⊕ C ⊕D) = Γ(Ca)] ∨ ∃∆[B ⊕D = ∆(Ψe(B ⊕ C ⊕D))],

MD,B
e : ∃Γ[Ψe(B ⊕D) = Γ(D)] ∨ ∃∆[B ⊕D = ∆(Ψe(B ⊕D))],

MD,C
e : ∃Γ[Ψe(C ⊕D) = Γ(D)] ∨ ∃∆[C ⊕D = ∆(Ψe(C ⊕D))],

where Γ and ∆ are enumeration operators we construct and {Ψe}e<ω lists all enu-
meration operators, and

T Ce : Φe(B ⊕D) 6= Cw,

T Be : Φe(C ⊕D) 6= Bw,

where again {Φe}e<ω lists all enumeration operators.
The T -requirements ensure that B ⊕D and C ⊕D are incomparable and hence

D <e B ⊕D,C ⊕D <e B ⊕ C ⊕D. TheMD,B-requirements ensure that if X <e
B ⊕D then X ≤e D, similarly theMD,C-requirements ensure that if X <e C ⊕D
then X ≤e D. The new idea comes from the combined use of theMC,B andMD,B

requirement: Fix X ≤e B⊕C⊕D. If X �e B⊕D then by theMB,C requirements
we have that C ⊕D ≤e X. On the other hand if X �e C ⊕D then C ⊕D ≤e X
and so X ≡e B ⊕ C ⊕D.

As usual, we attach a stream SX to every set X ∈ {Ba, Bw, Ca, Cw, D}. The
M-strategies function in a similar way as before. The only difference is that they
pick coding locations from different streams.

A T C-strategy selects its witnesses from SCw and tries to clear them with respect
to two kinds of higher-priorityM-strategies: MB,C- andMD,C-strategies. It can
also switch these strategies to a backup version. To see why this is reasonable, note
that the goal of this strategy, once it has a realized witness z, is to keep a finite
set in B ⊕D. Extracting z from Cw can cause axiom locations to leave Ba via an
MB,C-strategy and D via anMD,C-strategy directly. The change in Ba can then
cause axiom locations to leave the set D also via an MD,B-strategy. However, if
we are able to re-enumerate all such axiom locations into Ba, then that will erase
the indirect change in D. Thus when we ask for clearance, we consider all axiom
locations that leave Ba if z leaves Cw, not just the ones involved in the realizing
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axiom. Below an infinite outcome, we code the sets Ca and D using a portion of
the stream SCw .

Similarly, a T B-strategy works primarily with the stream SBw and with respect
to higher-priorityMC,B- andMD,B-strategies. Below its infinite outcome, it codes
the sets Ba and D.

7.3. Embedding finite distributive lattices. In this section, we generalize the
ideas from the previous two subsections to prove our main technical result:

Theorem 2.4. Every finite distributive lattice has a strong interval embedding into
the enumeration degrees. (In fact, the range of the embedding will be inside the Π0

2-
enumeration degrees.)

Fix a finite distributive lattice L. Suppose that a0 is the least element and
a1, . . . , an are the nonzero join-irreducible elements, i.e., the nonzero elements which
cannot be represented as the join of strictly smaller elements. Then every element of
the lattice has a unique representation as aF =

∨∨
i∈F ai, where F ⊆ {0, 1, . . . , n}

has the property that if ai ≤L aj and j ∈ F then i ∈ F . (We will call such F
downward closed.) This is easily seen as follows: If F,G ⊆ {0, 1, 2, . . . , n} are
downward closed sets, then aF ≤L aG if and only if F ⊆ G. One direction is
obvious: If F ⊆ G, then, of course, aF ≤L aG. On the other hand, if aF ≤L aG
then fix i ∈ F . We have that ai ≤L aF ≤L aG and so ai = ai∧aG. By distributivity,
ai =

∨∨
j∈G(ai ∧ aj). Since ai is join-irreducible, we have ai ∧ aj = ai for some

j ∈ G, and so ai ≤L aj . Since G is downward closed, this implies i ∈ G as desired.
It is worth pointing out that this property is characteristic of distributive lat-

tices. Consider the latticeM3 consisting of incomparable elements a, b, c, their least
upper bound 1, and their meet 0. The top element has three different downward
closed representations: 0 ∨ a ∨ b, 0 ∨ a ∨ c, and 0 ∨ b ∨ c. Consider the lattice N5
consisting of elements 0 <N5 a <N5 b <N5 1 and 0 <N5 c <N5 1, where c is in-
comparable with both a and b. Here the top element has two different downward
closed representations: 0∨ a∨ c and 0∨ a∨ b∨ c. It is well-known (see Birkhoff [2,
Theorems I.12 and II.13]) that every non-distributive lattice embeds at least one of
M3 and N5.

Requirements. We will build sets X0, X1, . . . , Xn, and let the enumeration degree of
AF =

⊕
i∈F Xi be the image of the element aF in the lattice L under the embedding

into the enumeration degrees. This automatically ensures that aF ≤L aG implies
(F ⊆ G and hence) AF ≤e AG. (We will sometimes abuse notation and write AF
for the set AF∗ , where F ∗ is the downward closure of F with respect to L.)

To ensure that we have strict inequality, i.e., that if aF �L aG then AF �e AG,
we will have T -requirements. The T -requirements will be assigned to pairs (i, Fi)
where i ∈ {1, . . . , n} and Fi = {j | ai �L aj}. We claim that aFi is the greatest
element in L that is not above ai: Note that Fi is downward closed by definition.
By the argument above, since i /∈ Fi, we have ai �L aFi . And aFi is greatest not
above ai since, if aG �L aFi , then G \ F 6= ∅, but then G contains the index of
some aj ≥L ai and hence i.

For every i ≤ n, the set Xi will consist of two parts, Xa
i ⊕Xw

i . For each such
pair (i, Fi), we have the requirements

Ti,e : Xw
i 6= Φe(AFi).
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Let’s check that this ensures what we want. Suppose that aF �L aG. Then
F * G, so fix i ∈ F \ G. Since i /∈ G and G is downward closed, we have that
G ⊆ Fi and so from Xi �e AFi , Xi ≤e AF , and AG ≤e AFi we conclude AF �e AG.

Next, we need to ensure that a set U that is enumeration reducible to the top
element A{0,1,2,...,n} is either enumeration equivalent to AF for some downward
closed set F or else is enumeration reducible to the set X0. For this reason, we need
a requirement MF,G for every pair of elements (aF , aG) such that aG is minimal
above aF . It follows that G = F ∪ {i} for some i. Indeed if i, j ∈ G \ F and
i 6= j, then the downward closure of F ∪ {i} and the downward closure of F ∪ {j}
represent two different elements in the interval (aF , aG], contradicting minimality.
The requirement will say that a set U ≤e AG is either below AF or else is above
the set A{j|aj≤Lai} = AG\F (Recall that, by our convention, G \ F denotes the
downward closure of the set {i}.) Note that aG\F is the least element below aG
that is not below aF . Indeed, if aH is below aG and not below aF , then H * F
and H ⊆ G, hence i ∈ H and, by downward closure, G \ F ⊆ H.

To see that this set of requirements ensures what we want, fix U ≤e AG. We
will have one requirement for every possible F ⊂ G representing an element aF
such that aG is minimal above aF . If all requirements turn out with outcome
AG\F ≤e U , then we claim that U ≡e AG. Fix a maximal join-irreducible element
aj ≤L aG. Then F = G \ {j} is downward closed and aG is minimal above aF ,
hence U ≥e AG\F = A{i|ai≤Laj}. As aG is the join of all maximal join-irreducible
elements aj ≤L aG, it follows that U ≥e AG.

On the other hand, for this G, consider a specific pair (F,G) and let G = {j}∪F .
Furthermore, recall that, for every i, the set Xi will consist of two parts, Xa

i ⊕Xw
i .

Denote by AaF the set
⊕

i∈F X
a
i . Suppose that AG\F �e U ; then we will want

U ≤e AaF ≤e AF so that we can continue with “pushing” the degree of U down.
Collectively, we thus end up, for all such pairs (F,G), with the requirements

MF,G
e : (∃Γ)[Ψe(AG) = Γ(AaF )] ∨ (∃∆)[AG\F = ∆(Ψe(AG))],

which will ensure that U either has the same degree as some AF or else is reducible
to X0, as desired.

Conflicts. A Ti-strategy β wants to changeXi and restrain AFi . It will be in conflict
with an MF,G-strategy α ≺ β only if G = F ∪ {i} (and hence F ⊆ Fi). Indeed,
if i /∈ G, then enumerating and then extracting a witness from Xw

i does not affect
Ψ(AG). On the other hand, if F * Fi, then the enumeration of a witness w into Xw

i

may make an axiom in Ψ for some number x valid and so cause theM-strategy to
enumerate markers mj into Aj for j ∈ F to make an axiom for x in Γ valid; now
later, the extraction of the witness w may mean that x leaves Ψ(AG); however,
we can still restrain in Aj the markers mj for all j ∈ Fi ∩ F because there is a
marker mj for some j ∈ F \ Fi that can be used to extract x from Γ(AaF ). This
means that allMF,G-strategies that are in conflict with Ti have G = F ∪ {i} and
hence the same set AG\F = A{j|aj≤Lai}.

Streams, approximations, and parameters. For every i ≤ n and for every Xi, we
have two streams Siaδ and Siwδ at every strategy δ. The streams at the root strategy ∅
at stage s consist of the interval [0, s]. For the other strategies, we will define
them recursively during the construction. When an M-strategy α chooses axiom
locations for Xi, it picks them out of the stream Siaα . When a Ti-strategy β picks
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witnesses, it picks them out of the stream Siwβ . An element from a stream is suitable
for a strategy δ if it is the 〈δ̂, x〉-th element that is not used in an attachment for
some x ∈ ω, where δ 7→ δ̂ is a computable injective function that maps a strategy δ
to a natural number.

We will also have dump sets Uai and Uwi for all i ≤ n.
Next, anMF,G-strategy α has as parameters the enumeration operator Γα that

it builds, and a list of promises Pα. A promise is of the form ({mj}j∈F , x,D), where
〈x,D〉 is an axiom in Ψα and mj is an axiom location picked from the stream Sj

a

α

and targeted for Xa
j .

A Ti-strategy β has a parameter Cβ = {α0, . . . , αk−1} in which we list in order
of priority all M-strategies of higher priority that are in conflict with β and still
active along β (i.e., no T -strategy of higher priority has switched them to a backup
strategy). The infinite outcomes of β are determined by the number k. Below each
infinite outcome ∞u, say, the strategy β will build an operator ∆β

u that enumer-
ates Xw

i from Ψαu(AGαu ), and we will code into Xw
i all sets Xa

j where aj ≤L ai as
well as all sets Xw

j where aj <L ai. For each such X, we will have an attachment
set at outcome ∞u denoted by HX

u,β . The entries in this set are of the form (z, y),
where z is a witness of β enumerated into the stream Siwβˆ∞u

. The strategy β will
also have a current witness zβ as well as other minor parameters that we will define
during the construction.

The M-strategies make promises; the T -strategies make attachments. When-
ever a new number is enumerated into a set by a strategy α, this sets off a chain
reaction in which higher-priority strategies respond by possibly enumerating more
elements. At any moment, the set of their promises or attachments are all finite,
so this process is finitary. We define functions gα to explain formally how this
process works. The function gα has 2(n+ 1) arguments ~Da = Da

0 , D
a
1 , . . . , D

a
n and

~Dw = Dw
0 , D

w
1 , . . . , D

w
n , where Da

i and Dw
i are finite sets targeted for Xa

i and Xw
i ,

respectively. The function gα outputs a vector of 2(n+ 1) sets in turn:

gα( ~Da, ~Dw) = (
⋃
l

Da
0,l, . . . ,

⋃
l

Da
n,l,

⋃
l

Dw
0,l, . . . ,

⋃
l

Dw
n,l),

where Da
i,0 = Da

i ∪ Uai and Dw
i,0 = Dw

i ∪ Uwi , and where
Dw
i,l+1 = Dw

i,l ∪ {z | (∃σ, u, j)(∃y)[σ assigned to Ti, σˆ∞u � α, and

[[(z, y) ∈ HXaj
u,σ and y ∈ Da

j,l] or [(z, y) ∈ HXwj
u,σ and y ∈ Dw

j,l]]]}
and
Da
i,l+1 = Da

i,l ∪ {mi| (∃F,G, e, σ)(∃x,D)[i ∈ F , σ � α is active at α,

σ is assigned toMF,G
e , ({mj}j∈F , x,D) ∈ Pσ, and D ⊆

⊕
j∈G

(Da
j,l ⊕Dw

j,l)]}.

Tree of strategies. The set of outcomes is, as before, {w, d,∞l : l < ω}, ordered by:
d <L ∞0 <L ∞1 <L · · · <L w.

The tree of strategies will be a partial computable function
T : {w, d,∞l : l < ω}<ω → R,

where R is an effective listing of allM- and T -requirements. We will define T (α)
and Cα by induction: Set T (∅) = M0. If T (α) = Mα, then T (α d̂) is defined
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and equals the least T -requirement that has not been assigned to any node β � α,
and we set Cα d̂ = Cα ∪ {α}. If T (α) = Tα and Cα = {α0 ≺ α1 ≺ · · · ≺ αk−1},
then we set T (αˆw) and T (α d̂) to be the least M-requirement that has not yet
been associated to any node β � α. For every l < k, we set T (αˆ∞l) = T (α).
Note that in that case C(αˆ∞l) = C(α) \ {αl}, hence a specific T -requirement can
only be assigned finitely often along each branch. It follows that every requirement
is assigned along each branch, and furthermore, that it is assigned only a finite
number of times.

Construction. At stage 0, the global dump sets Uai and Uwi are empty, and all
strategies are in initial state: For an M-strategy α, we have that Γα = ∅ and
Pα = ∅; for a Ti-strategy β with |Cβ | = k, we have that ∆β

l = HX
l,β = ∅ for all l < k

and all X ∈ {Xa
j | aj ≤L ai} ∪ {Xw

j | aj <L ai}, and that the current witness zβ is
undefined.

At stage s > 0, we build fs of length at most s, activating strategies along fs.
We begin by enumerating Uai and Uwi into Xa

i and Xw
i for all i ≤ n, respectively.

We then start at the root and let Six∅,s = Six∅,s−1 ∪ {s}, for x ∈ {a,w} and i ≤ n.
Suppose we have constructed fs � t, along with Sixfs�t,s = Sixfs�t,s−1 ∪ {yxi } and Xa

i,s,
Xw
i,s (or rather, the approximations to these sets at substage t of stage s). If t = s,

then we end this stage and move on to the next. We initialize all strategies on the
tree that are to the right of fs by returning them to their initial state as defined
at stage 0. If t < s, then we activate fs � t and let it pick its outcome o. Then
fs � (t+ 1) = (fs � t)̂ o:

Case 1: Suppose fs � t = α is anMF,G-strategy. If α did not end the previous
stage at which it was visited prematurely, and there is an axiom in Ψα which has
not yet been assigned all axiom locations mj for j ∈ F , then pick the oldest such
axiom 〈x,D〉, i.e., the one that was first enumerated into Ψα. For every j ∈ F such
that mj is not yet defined, check whether yaj is suitable and larger than max(D). If
so, we take yaj out of the stream, setmj = yaj , and end this stage of the construction
prematurely. If we now have a suitable mj for all j ∈ F , then we enumerate the
promise ({mj}j∈F , x,D) into Pα and the axiom 〈x,

⊕
j∈F {mj}〉 into Γα. Other-

wise (if α ended the previous stage at which it was visited prematurely, if no yaj
is suitable, or if all axioms in Ψα have been assigned axiom locations), then we
enumerate each yxj into the stream Sj

x

α d̂ and let d be α’s outcome. In either case,
we enumerate gα( ~Xa

j,s,
~Xw
j,s) for j ≤ n into the sets ( ~Xa

j ,
~Xw
j ).

Case 2: If fs � t = β is a T i-strategy and Cβ = {α0 ≺ · · · ≺ αk−1} is the list of
activeM-strategies of higher priority in conflict with β, then we pick the first case
which applies:

(1) The strategy β was successful via a realized witness z and had outcome d
at the previous stage at which it was active. In that case, for all j ∈
Fi, enumerate Dj

z into Xa
j . (Here, Dj

z consists of axiom locations that
belong to higher-priority MF,G-strategies still active at β such that i ∈
G, and these Dj

z were defined when the witness became realized.) For
all j ≤ n, enumerate yxj into Sj

x

β d̂. We enumerate gβ( ~Xa
j,s,

~Xw
j,s) into the

corresponding sets ( ~Xa
j ,
~Xw
j ) for j ≤ n, and let the outcome be d.

(2) The current witness zβ is not defined. If ywi is suitable for β, and larger
than |β| and larger than the last stage when β was initialized, then let the
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current witness be zβ = ywi and end this stage. Otherwise, enumerate yxj
into Sj

x

βˆw for all j ≤ n. We enumerate gβ( ~Xa
j,s,

~Xw
j,s) into the corresponding

sets ( ~Xa
j ,
~Xw
j ) and let the outcome be w.

(3) The witness zβ is not realized, i.e., zβ /∈ Φβ(
⊕

j∈Fi(V
a
j ⊕ V wj )), where

(~V aj , ~V wj ) =

gβ(
−−−−−−−−−−→
(Xa

j,s ∪ S
ja

βˆw,s)j≤n,
−−−−−−−−−−→
(Xw

j,s ∪ S
jw

βˆw,s)j<i,

Xw
i ∪ {zβ} ∪ Si

w

βˆw,
−−−−−−−−−−→
(Xw

j,s ∪ S
jw

βˆw,s)i<j≤n).

We then enumerate

gβ(( ~Xa
j,s)j≤n, ( ~Xw

j,s)j<i, Xw
i,s ∪ {zβ}, ( ~Xw

j,s)j>i)

into (( ~Xa
j,s)j≤n, ( ~Xw

j )j≤n), the numbers yxj into the corresponding stream
Sj

x

βˆw, and let the outcome be w.
(4) The witness zβ is realized. Enumerate the numbers from the stream Sj

x

βˆw,s
into Uxj . For every j ∈ Fi, let Dj

zβ
be the set of axiom locations m

of higher-priority active MF,G-strategies with i ∈ G and targeted for Xa
j

such that if zβ is in Xw
i , then those axiom locations are enumerated into Xa

j

via the function gβ , but if zβ /∈ Xw
i , then they are not enumerated. (We

will argue that axiom locations that have the same behavior but belong
to other types of MF,G-strategies, i.e., with i /∈ G but Fi ∩ F 6= ∅, are
automatically enumerated into their respective set once all Dj

zβ
are.) For

every u < k, let Ezβu be the set of numbers that enter Ψαu(AGαu ) when zβ
is enumerated into Xw

i but leave Ψαu(Gαu) when zβ is taken out. Make
the current witness zβ undefined.

Now, for every realized witness z, x ∈ {a,w}, j ≤ n, and every u < k,
let

M
Xwi
u,z =Xw

i,s ∪
⋃

u≤v≤k

Si
w

βˆ∞v
\ {z}, and

M
Xxj
u,z =Xx

j,s ∪
⋃

u≤v≤k

Sj
x

βˆ∞v
for (x, j) 6= (w, i).

Let
(~LX

a
j

u,z , ~L
Xwj
u,z ) = gβ( ~MXaj

u,z , ~M
Xwj
u,z ).

We say that z is αu-cleared if Ezu ⊆ Ψαu(
⊕

j∈Gαu
L
Xaj
u,z ⊕ L

Xwj
u,z ). We

search for the (lexicographically) least pair (u, z) such that z is a realized
witness, z /∈ SX

w
i

βˆ∞v
for v < u, z /∈ Uwi and z is αv-cleared for all v > u.

Note that the pair (k − 1, zβ) satisfies these conditions.
For all j ≤ n, we enumerate

⋃
u<v<kM

Xaj
v,z into Uaj , and

⋃
u<v<kM

Xwj
v,z

into Uwj . We set ∆v = HY
v = ∅ for v > u and all Y ∈ {Xa

j | aj ≤L
ai} ∪ {Xw

j | aj <L ai}.
(a) If u ≥ 0, then we enumerate the axiom 〈z, Ezu〉 into ∆u, the sets

gβ( ~Xa
j,s,

~Xw
j,s) into the corresponding sets ( ~Xa

j ,
~Xw
j ), the number z into

the stream Siw(βˆ∞u), the numbers yxj (for (x, j) 6= (w, i)) into the
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corresponding streams Sj
x

βˆ∞u
, and let the outcome be ∞u. List the

set {Xa
j | aj ≤L ai} ∪ {Xw

j | aj <L ai} as {Y0, Y1, . . . , Ym−1}. If z is
the (m · q + v − 1)-st number enumerated into Siw(βˆ∞i) for v < m,
then we enumerate the attachment (z, q) ∈ HYv

β,u and end this stage.
If z is the (m · q+m− 1)-st number enumerated into the stream, then
we do not end the stage and let the next strategy act.

(b) Otherwise, we have a witness z that is αv-cleared for all v < k. We say
that z is successful. We enumerate Dj

z into Xa
j and then gβ( ~Xa

j,s,
~Xw
j,s)

into ( ~Xa
j ,
~Xw
j ). We let the outcome be d.

Verification. We define the infinite path f by f(t) = lim infs>t fs(t). It is straight-
forward to see that strategies σ along f are visited at infinitely many stages and
initialized at only finitely many stages. Let sσ be the least stage after which σ is
not initialized. Let X ∈ {ia, iw}i≤n. Let SXσ =

⋃
s>sσ

SXσ,s. A simple induction on
the length of σ proves that SXσ is infinite. Furthermore, if a strategy σ is visited at
two consecutive σ-stages s > t > sσ, then Xa

i,s ⊇ Xa
i,t and Xw

i,s ⊇ Xw
i,t (as seen at

substage |σ|), as in order for a strategy above σ to stop enumerating an element, it
must move its outcome left of σ and hence initialize σ. Our next lemma holds the
key to the way numbers may enter the sets Xa

i and Xw
i for i ≤ n.

Lemma 7.5. If a number m ∈ Xa
i or z ∈ Xw

i where i ≤ n, then either m or z is
dumped into Xa

i or Xw
i , respectively, starting at some stage, or there is a strategy

σ ≺ f such that at all but finitely many stages, σ is the least strategy that enumer-
ates m or z into its corresponding set, and it does so at cofinitely many stages at
which σ takes its true outcome.

Proof. First note that if a number ever enters a dump set Uxi for x ∈ {a,w} and
i ≤ n at stage s, say, then it is enumerated into Xx

i at the beginning of every stage
t > s.

So suppose that m ∈ Xa
i , but is never dumped into Uai . Note that when an

MF,G-strategy picks a number as an axiom location, then that number is taken
out of the stream. It is never returned to any stream, so no other strategy can use
it. If m is not the axiom location to any strategy then it is not enumerated into Xa

i

at any stage unless it is dumped, so let α be the uniqueMF,G-strategy that uses m
as an axiom location, say for the axiom 〈y,D〉. It follows that i ∈ F . If α is ever
initialized, then m is dumped. Indeed, if α is initialized, then a higher-priority T -
strategy σ with σ ô � α moves to an outcome o′ that is to the left of o. Every time
a T -strategy moves its outcome to the left, it dumps all elements into the streams
associated with outcomes to the right unless the element is a specific witness (but
then this element is in a different stream). In particular, it dumps Siaα ⊆ Si

a

σ ô. So,
by assumption, α is never initialized.

There are infinitely many stages at which m is enumerated into Xa
i . At stage s,

this could be because a strategy σ � α such that α is active at σ causes D ⊆ AG or
because a successful Tj-strategy β has m ∈ Di

z for some realized cleared witness z
and is visited at stage s. We first claim that there are only finitely many possible
strategies β that can have m ∈ Di

z for a realized witness z. This is because if z
entering Xw

j causes D ⊆ AG, and z not entering Xw
j does not cause D ⊆ AG,

there is a sequence of promises and attachments that realize this. This sequence
is triggered by z and ends in D ⊆ AG. It follows that z ≤ max(D) < m. This
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is because every time we pick axiom locations for an axiom, we require that they
are larger than all elements in the finite set associated with the axiom, and every
time we make an attachment (z, n), we have that n < z. There are finitely many
T -strategies that can have a witness z < m, because the witness for β is always
selected to be larger than |β|. Once a strategy β succeeds with a witness z with
m ∈ Di

z, it will keep z /∈ Xw
j at all further stages unless it is initialized. This means

that while β is not initialized, no other strategy will have a reason to enumerate m
into Xa

i , as in order for m to enter Xa
i (and that needs to happen in order for m to

possibly enter another Di
z′ for the realized witness of a different strategy), we must

have that z ∈ Xw
j . This means that unless β is initialized, m will be enumerated

into Xa
i only at stages at which β is visited. If β is initialized, then it will have

witnesses of size greater than the stage at which it is initialized. It follows that
there are only finitely many pairs (β, z) such that m ∈ Di

z and z is a successful
witness for β. If there is such a strategy β that is never initialized, then we have
argued that β must be visited infinitely often (as m ∈ Xa

i ), and so β is on the true
path. It enumerates m along with Di

z every time it is visited after z’s success.
If no such strategy remains uninitialized, then after some stage s0, the axiom

locationm can only be enumerated intoXa
i via the promise at α and the function gσ

for some σ extending α. It follows that at infinitely many stages s, D ⊆ AG,s, and
thus D ⊆ AG. Now, since max(D) < m, we can use the induction hypothesis:
For every element u ∈ D, there is a strategy σu ≺ f that enumerates u into its
respective set at all stages at which it is visited after some fixed stage su. Pick the
longest such σu. Then at all stages t > max{su | u ∈ D} at which σu is visited, it
will enumerate m into Xa

i via the function gσu .
Now suppose z ∈ Xw

i and is never dumped. At every stage s, there is at most
one strategy γs = β ô visited at stage s such that z is an unrealized witness of β
and o = w, or such that z is a realized witness of β and β uses z in an attachment
below outcome o = ∞u for some u < k. There are only finitely many strategies β
that can ever fulfill this role, as z must be suitable for β and β has length no more
than z. If between stages s < t, such a strategy for z changes, then γt <L γs. So
let β be such that β ô is least among all such γt, and hence equal to γt at all but
finitely many stages t. If o = w, then z enters Xw

i only at stages at which we visit β
and β has outcome w. It follows that βˆw ≺ f .

If o =∞u, then (z, y) ∈ HY
β,u and hence the only way that z can enter Xw

i is if
some strategy compatible with βˆ∞u enumerates y into Y . As y < z, we have by
induction that there is a unique strategy σ ≺ f that causes this. So either σ � β,
in which case βˆ∞u ≺ f and z ∈ Xw

i at all but finitely many βˆ∞u-true stages, or
else βˆ∞u � σ and σ enumerates z ∈ Xw

i along with y via the function gσ. �

Lemma 7.6. Every T -requirement is satisfied.

Proof. Fix a requirement Ti,e. Let β ≺ f be the longest strategy that is assigned to
requirement Ti,e. Such a strategy exists because once Ti,e is assigned to a node σ
with |Cσ| = k, Ti,e can be assigned at most k many more times along any path
through σ. It follows that β d̂ ≺ f or βˆw ≺ f .
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If βˆw ≺ f , then there is an unrealized witness z such that at every β-true
stage s, z /∈ Φe(

⊕
j∈Fi(V

a
j ⊕ V wj )), where

(~V aj , ~V wj ) =

gβ(
−−−−−−−−−−→
(Xa

j,s ∪ S
ja

βˆw,s)j≤n,
−−−−−−−−−−→
(Xw

j,s ∪ S
jw

βˆw,s)j<i,

Xw
i ∪ {z} ∪ Si

w

βˆw,
−−−−−−−−−−→
(Xw

j,s ∪ S
jw

βˆw,s)i<j≤n).

By Lemma 7.5, we have that Xa
j ⊆

⋃
s V

a
j,s and Xw

j ⊆
⋃
s V

w
j,s, where s ranges

over all βˆw-true stages. This is because the true path passes through βˆw and so
any element enumerated into any set Y is either enumerated by a strategy of higher
priority than β and hence in the set Ys by the time we reach β, enumerated by β
and hence it is a member of the corresponding set in the sequence (~V aj , ~V wj ), or else
it is enumerated by a strategy extending βˆw and hence belongs to the stream SYβˆw
at some β-true stage s. It follows that z /∈ Φe(

⊕
j∈Fi Xj). On the other hand, z is

enumerated into Xw
i at every sufficiently large β-true stage, so z ∈ Xw

i .
If β d̂ ≺ f , then there is a successful witness z that is αu-cleared for all u <

k. This means that z was realized, and so at some earlier stage, we saw z ∈
Φe(

⊕
j∈Fi(V

a
j ⊕ V wj )). The strategy β then proceeded to dump into the respective

stream all elements that contribute to the definition of the sets V aj and V wj apart
from the witness z. This leaves out numbers that enter AFi when z is enumerated
into Xw

i , but are not enumerated into AFi when z is left out of Xw
i via the func-

tion gβ . From those numbers, the axiom locations that are used by higher-priority
activeMF,G-strategies with i ∈ G enter the set Dj

z (where j ∈ Fi) and are enumer-
ated into their corresponding set when β is visited. This leaves axiom locations for
MF,G-strategies where i /∈ G, and attachments.

We reason by induction. We will show that any axiom location targeted for Xa
j

or attachment targeted for Xw
j , where aj �L ai, that is enumerated when z is

enumerated, and is not enumerated if z is not enumerated at the stage when z
became realized is enumerated into its targeted set when we visit β. Fix an axiom
location m targeted for Xa

j by α � β where j ∈ Fi. The strategy α is an MF,G-
strategy. If i ∈ G, then m ∈ Dj

z, so suppose that i /∈ G. This means that m is
part of a promise ({mi}i∈F , x,D) at α and D is enumerated into the set that it is
targeted for if z enters Xw

i . Since i /∈ G, we have that the set D consists of axiom
locations and attachments targeted for Xw

k , where k 6= j. Since G is downward
closed, we even have that ak �L ai. As m > max(D), we can apply the induction
hypothesis, namely, that D is enumerated into its targeted set at every stage at
which we visit β, and so we enumerate m via the function gβ as well.

Now consider an attachment y targeted for Xw
j , where aj �L ai. Then it belongs

to a Tj-strategy β′ � β. The Tj-strategy codes all Y xk , where ak <L aj , as well
as Y aj , so y is a part of an attachment (y, q) where q < y is targeted for one of
these Y xk or Y aj . Since ak ≤L aj and aj �L ai, it follows that ak �L ai. Once
again, the induction hypothesis applies, and so q ∈ Y xk at all sufficiently large β-true
stages. The definition of the function gβ then ensures that y ∈ Xw

j at all sufficiently
large β-true stages. �

Lemma 7.7. EveryM-requirement is satisfied.



32 LEMPP, SLAMAN, AND SOSKOVA

Proof. Fix e and let F ⊂ G ⊆ {0, 1, . . . , n} be downward closed sets in L such that F
represents aF , G represents aG, and aG is minimal above aF . Then there is a unique
strategy α ≺ f assigned to the requirementMF,G

e . Suppose first that α is switched
to a backup strategy by some Ti-strategy β � α along the true path. We know that
G = F ∪ {i} and hence we have that F ⊆ Fi and G \ F = {aj | aj ≤L ai} under
our convention. We have that βˆ∞u ≺ f , C(β) = {α0, . . . , αk−1} and α = αu.
It follows that for all elements z ∈ SXwi (βˆ∞u), we have that z ∈ Xw

i if and
only if z ∈ ∆u(Ψα(AG)). This is because if we ever see an axiom stop being
valid, we would move to an outcome to the left of ∞u. First of all, we claim
that

⊕
aj<Lai

(Xa
j ⊕ Xw

j ) ⊕ Xa
i ≤e ∆u(Ψα(AG)). By Lemma 7.5, we have that

y ∈ Y (where Y ∈ {Xa
i } ∪ {Xa

j , X
w
j | aj <L ai}) if and only if a there is a

strategy σ ≺ f that enumerates y at all but finitely many σ-true stages. The
strategy β has an attachment (z, y) ∈ HY

u for some z ∈ Sxwi (βˆ∞u), and so if
y ∈ Y then at all max(σ, βˆ∞u)-true stages, z would be enumerated into Xw

i . On
the other hand, z is enumerated into Xw

i at stage s only if y ∈ Ys, so we have that
Y = {y | (z, y) ∈ HY

u & z ∈ ∆u(Ψα(AG))}.
Next, we note that Xw

i consists of three types of elements: the elements that
are enumerated into Xw

i by strategies of higher priority than β at β-true stages s
(which is a c.e. set); the elements in Xw

i ∩ (
⋃
s Si

w

βˆ∞u
) = ∆u(Ψα(AG)); and the set

of all numbers z such that (z, y) is an attachment at some Ti-strategy σ � β coding
some Y ∈ {Xa

i } ∪ {Xa
j , X

w
j | aj <L ai} and y ∈ Y . We have already argued that

Y ≤e ∆u(Ψα(AG)), and so the last part of Xw
i is also reducible to ∆u(Ψα(AG)).

Altogether, we obtain that AG\F ≤e Ψα(AG)), and so the requirement MF,G
e is

satisfied.
On the other hand, suppose that α is never switched to a backup strategy. We

claim that Γα(AaF ) = Ψα(AG). If x ∈ Ψα(AG), then there is a valid axiom 〈x,D〉
in Ψα. This axiom is assigned a set of axiom locations {mj}j∈F , and the axiom
〈x,

⊕
j∈F {mj}〉 is enumerated into Γα. By Lemma 7.5, we have that D ⊆ AG,s at

cofinitely many σ-true stages s for some sufficiently long σ ≺ f . As α is active at
all of its successor nodes along the true path, it follows that gmax(σ,α) enumerates⊕

j∈F {mj} into AaF , and so x ∈ Γα(AaF ).
Now suppose that x ∈ Γα(AaF ) via an axiom 〈x,

⊕
j∈F {mj}〉, associated with

an axiom 〈x,D〉 ∈ Ψα. If the axiom 〈x,D〉 ∈ Ψα is not valid, then after finitely
many stages, the axiom locations can only be enumerated into AaF if they enter
sets Dj

z for some witness z and are enumerated by a T -strategy. By Lemma 7.5,
we have that if any axiom location m is in AaF , then there is a least strategy σ ≺ f
that enumerates it at cofinitely many σ-true stages. Fix such an axiom location m
and the corresponding σ. If σ is a Ti-strategy, where F ∪ {i} = G, then z is a
realized witness that is cleared by α, meaning that σ has found evidence that all x
associated with axiom locations that are enumerated if z is enumerated, and not
enumerated if z is not enumerated, and that belong to strategies in conflict with α,
are in Ψα(AG) even when z is not in Xw

i . The number x associated with m is one
of these numbers. The strategy σ ensures that x ∈ Ψα(AG) remains true at further
true stages by dumping relevant elements, and so in this case, x ∈ Ψα(AG).

If σ is a Tk-strategy such that k /∈ G, then m cannot end up in Dj
z. So suppose

that k ∈ G and F * Fk. Let m′ be an axiom location from the same promise as m
but which is targeted for some Xa

l with l ∈ F \Fk. If the axiom associated with m
and m′ is invalid, then m′ is not enumerated into Xa

l via the function gρ by any
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strategy ρ along the true path. We need to show that m′ cannot enter Dl
z′ via a

different strategy τ ≺ f . Assuming that m is the axiom location associated with x
that enters its corresponding set first, it follows that τ � σ. Strategies extending
σ d̂ are visited for the first time after m′ is already defined, so their witnesses are
larger than m′ and cannot influence whether m′ is enumerated or not, so m′ can
never enter the set Dl

z′ for a witness z′. It follows that m′ remains out of Xa
l ,

contradicting the assumptions.
Thus x ∈ Γα(AaF ) must imply that x ∈ Ψα(AG), and so MF,G is once again

satisfied. �
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