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Abstract. We prove that the cototal enumeration degrees are exactly the
enumeration degrees of sets with good approximations, as introduced by Lach-
lan and Shore [17]. Good approximations have been used as a tool to prove
density results in the enumerations degrees, and indeed, we prove that the
cototal enumerations degrees are dense.

1. Introduction

Enumeration reducibility captures a natural relationship between sets of natural
numbers in which positive information about the first set is used to produce positive
information about the second set. It has a complicated history, being intimately
connected to the idea of computing with partial oracles. Equivalent forms of this
reducibility have been introduced several times over the years, by Kleene [16], My-
hill [21], and Selman [22], however Friedberg and Rogers [7] provided us with the
most convenient way of thinking about it. A set A is enumeration reducible to a
set B if there is a uniform way to enumerate A given any enumeration of B.

Definition 1.1. A ≤e B if and only if there is a c.e. set W such that
x ∈ A⇔ (∃v)[〈x, v〉 ∈W & Dv ⊆ B].

Here Dv denotes the finite set with code v in the standard coding of finite sets.
The set W is called an enumeration operator and the pair 〈x, v〉 is called an axiom
for x in W .

Enumeration reducibility induces a partial order, De, called the enumeration
degrees. This partial order attracts interest for, among other reasons, the fact that
it contains a substructure that is isomorphic to the structure of the the Turing
degrees: the total enumeration degrees.

Definition 1.2. A set A is total if A ≤e A. An enumeration degree is total if it
contains a total set.

The structure of the Turing degrees, DT , properly embeds into De, i.e., there are
enumeration degrees that are not total. Once this was established, the questions
that drove the study of the enumeration degrees were mostly aimed at understand-
ing to what extent the two degree structures are alike and in which respects they
differ. One question, in particular, that attracted a lot of interest was whether
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De has minimal degrees: a degree is minimal if it is not the least degree, 0e, but
the only degree strictly below it is 0e. In 1971, Gutteridge [12] proved that the
enumeration degrees are downwards dense, and hence there are no minimal degrees
in De. On the other hand, Cooper [6] showed that there are empty intervals of enu-
meration degrees. In 1984, Cooper [5] showed that the Σ0

2 enumeration degrees are
a dense substructure of De. In view of this result, he posed a challenge: identify the
least level of the arithmetical hierarchy containing a set whose enumeration degree
is the top of an empty interval, i.e., a minimal cover. To give a further incentive for
his challenge, he added a conjecture: he believed that the Π0

2 enumeration degrees
are dense. Lachlan and Shore [17] extended Cooper’s density result and at the
same time significantly limited the possibilities for the existence of minimal cov-
ers: they introduced the notion of a good approximation and proved that degrees
of sets with good approximations, good enumeration degrees for short, cannot be
or have minimal covers. They gave two examples of classes of good enumeration
degrees: the total enumeration degrees and the enumeration degrees of the n-c.e.a.
sets for every natural number n. On the other hand, they proved that there is a Π0

2
set that does not have a good approximation, suggesting that Cooper’s conjecture
could turn out to be false. Finally, Calhoun and Slaman [3] resolved the question
by constructing a Π0

2 set whose enumeration degree is a minimal cover.
As a byproduct of this line of research, we obtained an important technical tool,

the notion of a good approximation, and a big mystery—what is a natural charac-
terization of the class of good enumeration degrees? The two known examples of
classes of good degrees, the total enumeration degrees and the n-c.e.a. enumeration
degrees, can be combined to show that the enumeration degrees of sets that are
n-c.e.a. relative to any total oracle are good enumeration degrees. But does this
exhaust the class of good enumeration degrees? On the other hand, good approxi-
mations were introduced as a way to extend Cooper’s density result. Lachlan and
Shore [17] do in fact obtain a density result using their tool: they show the density
of the enumeration degrees of n-c.e.a. sets for every fixed n. A natural questions is,
therefore, whether good approximations capture a class of enumeration degrees that
is itself dense. Yet, without the right characterization of the good degrees, these
questions did not seem approachable. It is not even immediately obvious that the
good enumeration degrees are closed under join, i.e., that they form a substructure
of De. Nevertheless, structural properties of good enumeration degrees have been
investigated. Cooper [5] introduced an enumeration jump operator that maps an
enumeration degree a to a strictly larger total enumeration degree a′. Griffiths [11]
showed a jump inversion theorem involving the good enumeration degrees: if w is
a good enumeration degree and x is an enumeration degree such that x < w ≤ x′,
then there is a degree a such that x ≤ a < w and a′ = w′. This result was further
refined by Harris [13].

We will give several useful characterizations of the good enumeration degrees by
showing that they coincide with the cototal degrees, a class that has recently been
shown to have many natural properties.
Definition 1.3. A set A is cototal if A ≤e A. An enumeration degree is cototal if
it contains a cototal set.

The cototal enumeration degrees form a proper substructure of De closed under
join and the enumeration jump operator, although the latter is just because the
jump of an enumeration degree is always total. Gutteridge [12] proved that the
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cototal enumeration degrees properly extend the substructure of the total enumer-
ation degrees. Answering a question raised by Case [4], he proved that there is a
quasiminimal cototal enumeration degree. Recall that a quasiminimal enumeration
degree is a nonzero enumeration degree that bounds no total enumeration degree
apart from 0e. Andrews et al. [1] were the first to make an in-depth study of the
cototal enumeration degrees. The authors introduced a new monotone operator
on De, the skip operator. The skip of an enumeration degree a, denoted by a♦,
is never below a, but unlike the jump, it is not always above the degree a. In
fact, we have that a′ = a ∨ a♦. The skip inversion theorem proved in [1] shows
that the range of the skip operator is the upper cone with base 0′e. As there are
non-total enumeration degrees in this cone, it follows that for many enumeration
degrees a � a♦. The cototal enumeration degrees are characterized as the degrees
for which a ≤ a♦.

The cototal degrees have many other characterizations. Andrews et al. [1] proved
that they are the enumeration degrees of complements of maximal independent sets
for infinite computable graphs. McCarthy [18] gave several characterizations: they
are the enumeration degrees of complements of maximal antichains in ω<ω, the
enumeration degrees of (uniformly) enumeration pointed trees, and the enumeration
degrees of languages of minimal subshifts. Yet another characterization comes
from computable analysis. Miller [19] introduced a reducibility between points
in computable metric spaces. This reducibility gave rise to the structure of the
continuous degrees, which Miller showed properly embeds into De and forms a
proper extension of the Turing degrees. Andrews et al. [1] showed that the image
of the continuous degrees is contained in the cototal enumeration degrees. Kihara
and Pauli [15] extended Miller’s reducibility to capture points in any represented
topological space. In terms of this extension, Kihara1 characterized the cototal
enumeration degrees as the enumeration degrees of points in sufficiently effective
second countable Gδ spaces (i.e., spaces in which every closed set is Gδ).

In this article, we prove that an enumeration degree is cototal if an only if it
is good. Combining the power of good approximations with our understanding of
cototality, we are able to prove the density of the cototal enumeration degrees.

2. Cototal enumeration degrees

We describe in more detail three characterizations of the cototal enumeration
degrees that we will use.

The first characterization is related to a notion in graph theory.
Definition 2.1. An independent set for a graph G = (V,E) is a set of vertices
S ⊆ V such that no pair of distinct vertices in S is connected by an edge. An
independent set is maximal if it has no proper independent superset.

In other words, an independent set S is maximal if and only if every vertex
v ∈ V is either in S or is connected by an edge to an element of S. In the graph
theory literature, maximal independent sets are also sometimes called independent
dominating sets. Maximal independent sets for finite graphs have a long history
in graph theory. They were introduced in relation to a chessboard problem, posed
in 1842 by Carl von Jaenisch, a top chess player and theorist. He wanted to find
the minimum number of mutually non-attacking queens that can be placed on a

1Private communication.
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chessboard so that each square of the chessboard is attacked by at least one of the
queens. For a survey of results on independence and domination for finite graphs
we refer the reader to Goddard and Henning [10]. We are interested in maximal
independent sets for infinite graphs, specifically for the graph ω<ω. We will say
that two strings σ and τ in ω<ω are connected if one is the immediate predecessor
of the other. It is easy to see that if A is the complement of a maximal independent
set for ω<ω, then A ≤e A in a uniform way. The enumeration operator witnessing
this reduction simply enumerates every node connected to any σ ∈ A. In fact, every
cototal enumeration degree contains such a set.

Theorem 2.2 (Andrews et al. [1]). An enumeration degree is cototal if and only
if it contains the complement of a maximal independent set for the graph ω<ω.

The second characterization that we will use is related to a special type of tree.
Recall that a set T ⊆ 2<ω is a tree if it is closed under initial segments. A path
in T is an infinite binary string p ∈ 2ω such that every initial segment of p is a
member of T . We can represent a path p by the linearly ordered set P ⊆ 2<ω of
all initial segments of p. Note, that if P represents a path in a tree T ⊆ 2<ω, then
P is a total set: a finite binary string σ is in P if and only if there is a different
string τ ∈ P of length |σ|. We will intentionally conflate a path p ∈ 2ω with its
representation P ⊆ 2<ω. A tree T ⊆ 2<ω has no dead ends if every string σ ∈ T is
an initial segment of a path p in T .

Definition 2.3. A tree T ⊆ 2<ω is enumeration pointed (e-pointed) if it has no
dead ends and it is enumeration reducible to each of its infinite paths. If there is a
single enumeration operator witnessing these reductions, we say that T is uniformly
e-pointed.

McCarthy [18] proved that (uniformly) e-pointed trees are universal for the co-
total enumeration degrees.

Theorem 2.4 (McCarthy [18]). An enumeration degree is cototal
• if and only if it contains an e-pointed tree;
• if and only if it contains a uniformly e-pointed tree.

Finally, we introduce the jump operator and the skip operator, and give a char-
acterization of the cototal enumeration degrees in terms of them. Fix a set A. If
one were asked to give the natural analog of the halting set relative to A in the
context of enumeration reducibility, one might define KA = {〈e, x〉 | x ∈ Γe(A)},
where {Γe}e<ω is a standard listing of all enumeration operators. Since enumera-
tion reducibility translates positive information into positive information, we have
that KA ≡e A. The complement of this set is the one that actually diagonalizes
against enumeration reductions to A.

Definition 2.5. Let A be a set of natural numbers.
(1) The skip ofA isA♦ = KA. The skip of the degree de(A) is de(A)♦ = de(A♦).
(2) The enumeration jump of A is A′ = KA ⊕ KA. The jump of the degree

de(A) is de(A)′ = de(A′).

Theorem 2.6 (Andrews et al. [1]). An enumeration degree a is cototal if and only
if a ≤ a♦, or equivalently if a′ = a♦.
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3. Good approximations

In this section, we define good approximations and outline the properties that
are useful for density results.

Definition 3.1 (Lachlan and Shore [17]). A good approximation to a set A is a
computable sequence of finite sets {As}s<ω with the following two properties:

G1. For every n there is a stage s such that A � n ⊆ As ⊆ A;
G2. For every n there is a stage s such that for every t ≥ s, if At ⊆ A then

A � n ⊆ At.
Stages s such that As ⊆ A are called good stages. Let GA denote the set of good
stages.

Equivalently, a good approximation to a set A is a uniformly computable se-
quence of finite sets {As}s<ω such that there are infinitely many stages s such that
As ⊆ A (i.e., GA is infinite), and for every n we have that A(n) = lim s∈GA

As(n).
If A has a good approximation A = {As}s<ω and B = Θ(A), then it is not

necessarily true that B also has a good approximation. As mentioned earlier, there
is a Π0

2 set B with no good approximation, even though the set B ⊕ B does have
one, and clearly B ≤e B ⊕ B. Let {Θs}s<ω be the standard c.e. approximation
to the set Θ. The sequence {Bs}s<ω, where Bs = Θs(As), does have infinitely
many good stages: if As ⊆ A, then by the monotonicity of enumeration operators,
we will have that Bs ⊆ B. The problem is that this sequence might have too
many good stages—so many, in fact, that they violate the second property of a
good approximation. Nevertheless, these approximations are useful. Soskov [24],
who worked on ω-enumeration reducibility, a uniform extension of enumeration
reducibility for sequences of sets, called them correct approximations.

Definition 3.2. Fix a good approximation A = {As}s<ω to a set A. We say that
B = {Bs}s<ω is a correct approximation to a set B with respect to A if

C1. For every s, if As ⊆ A then Bs ⊆ B;
C2. For every n there exists a stage s such that for every t ≥ s, if At ⊆ A then

B � n ⊆ Bt.

So if B = Θ(A), then {Θs(As)}s<ω is a correct approximation to B with respect
to A. Correct approximations allow us to detect equality between two sets by
looking at the length of agreement between their approximations at good stages.
Recall that the length of agreement l(A,B, s) is defined as the maximal n ≤ s such
that As � n = Bs � n.

Lemma 3.3 (Lachlan and Shore [17]). Let A = {As}s<ω be a good approximation
to a set A. Let {Bs}s<ω and {Cs}s<ω be correct approximations with respect to A
to sets B and C. The following two statements are equivalent:

(1) The sequence {l(Bs, Cs, s)}s∈GA
is unbounded, and

(2) B = C.

4. Goodness and cototality

We show that the good enumeration degrees and the cototal enumeration degrees
coincide. Harris [13] proved the following property of sets with good approxima-
tions.
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Proposition 4.1 (Harris [13, Proposition 4.1]). If A has a good approximation,
then KA ≤e KA.

As A ≡e KA, it follows that every good enumeration degree is cototal. We show
that the reverse is also true.
Theorem 4.2. An enumeration degree is cototal if and only if it contains a set
with a good approximation.
Proof. We show that every cototal enumeration degree contains a set with a good
approximation. Let a be a cototal enumeration degree. By Theorem 2.4, we can fix
a uniformly enumeration pointed tree T ∈ a. Let Γ be the enumeration operator
such that T = Γ(P ) for every infinite path P on T . Fix a computable listing
{Ds}s<ω of all finite nonempty downwards closed subsets of 2<ω, ordered so that
if n < m, then subsets of 2<n appear before subsets of 2<m. Let {Ts}s<ω be the
uniformly computable sequence defined by Ts = Ds ∪

⋃
σ∈Ds

Γs({τ | τ ⊆ σ}). We
claim that {Ts}s<ω is a good approximation to T .

First, note that if Ds ⊆ T then Ts ⊆ T . Here we use the fact that T has no
dead ends, so if σ ∈ T , then {τ | τ � σ} ⊆ P for some infinite path P on T and so
Γs({τ | τ � σ}) ⊆ Γ(P ) = T . This ensures that G1 is satisfied: For a fixed natural
number n, let s be such that Ds = T � n. It follows, that T � n ⊆ Ts ⊆ T .

To prove that the approximation satisfies G2, we use compactness. If σ ∈ T ,
then there is a maximal length lσ such that σ ∈ Γ({τ ∈ P | |τ | < lσ}) for every
path P on T . So fix n and let l = max{lσ | σ ∈ T � n}. There is a stage sl such
that if t > sl, then Dt contains a binary string of length greater than or equal to l.
Furthermore, as T has no dead ends and all Dt are nonempty, if Dt ⊆ T then Dt

contains an initial segment of length at least l of an infinite path through T . So
by our choice of l, we have T � n ⊆ Tt. It follows that T � n ⊆ Tt ⊆ T at all good
stages t > sl. �

This characterization sheds light on the class of good enumeration degrees that
was previously not accessible to us. For example, we now know that the good enu-
meration degrees form a substructure of the enumeration degrees, closed under the
operations join, jump, and skip. Furthermore, we can show that this class captures
more than the enumeration degrees of n-c.e.a. sets relative to total oracles. Recall,
that a set A is 1-c.e.a. relative to a total oracle F if A ≡e F . If A is n-c.e.a. relative
to F and B is c.e. in A, then A⊕ B is (n+ 1)-c.e.a. relative to F . It follows that
every n-c.e.a. set relative to a total oracle oracle F is enumeration above F and
arithmetic in F . We mentioned already the result from [1] showing that every con-
tinuous enumeration degree is cototal and hence good. Miller [19] proved that every
countable Scott set, i.e., a set of total enumeration degrees closed under join and
the relation “PA in”, can be realized as the set of total enumeration degrees below
some nontotal continuous enumeration degree. Let x be a nontotal continuous enu-
meration degree such that the total enumeration degrees below x are exactly the
arithmetical enumeration degrees. It follows that x is a good enumeration degree,
but no member of x can be n-c.e.a. relative to any total oracle.

5. Density of the cototal enumeration degrees

The characterization proved in the previous section gives us new information
about the structure of the cototal enumeration degrees. In the following theorem,
we are finally able to utilize the full power of good approximations.
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Theorem 5.1. The cototal enumeration degrees are dense.

Proof. Let U be a set of cototal enumeration degree. By Theorem 4.2, we may
assume that U has a good approximation {Us}s<ω. Let GU denote the set of good
stages in this approximation. Let V be a set of cototal enumeration degree such that
V <e U . Fix an approximation {Vs}s<ω that is correct with respect to {Us}s<ω.
We will build an enumeration operator Θ such that V <e Θ(U)⊕V <e U . The set
Θ will be built so that it satisfies the following list of requirements:

(1) To ensure that V <e Θ(U)⊕ V , we fix a computable listing of all enumer-
ation operators {Φi}i<ω and satisfy

Pi : Θ(U) 6= Φi(V );
(2) To ensure that Θ(U)⊕ V <e U , we fix a computable listing of all enumer-

ation operators {Ψi}i<ω and satisfy
Qi : U 6= Ψi(Θ(U)⊕ V ).

We order all requirements linearly: let R2n = Pn and let R2n+1 = Qn.
To ensure that Θ(U) ⊕ V is of cototal enumeration degree, by Theorem 2.2 it

suffices to build Θ so that Θ(U) is the complement of a maximal independent set
for the graph ω<ω. We will construct Θ following these basic rules: No axiom for
the empty string ∅ will be enumerated into Θ at any stage. This forces us to put
every length-one string e into Θ(U). So we will enumerate into Θ axioms 〈e, ∅〉 for
all strings e. The requirements Ri where i ≤ e will be the only ones allowed to
enumerate axioms into Θ for nodes extending e. If an axiom for σ is enumerated
at stage s, then the axiom is always 〈σ, Us〉. Thus we can concentrate only on the
good stages in the approximation to U , as these are the only stages at which we
modify the set Θ(U). It will follow from the construction that each requirement
acts only at finitely many good stages and contributes a finite set to Θ(U).

Let e(ω<ω) denote the subgraph of ω<ω consisting of all strings extending some
fixed element e. To ensure that Θ(U) is the complement of a maximal independent
set, we will have a computable procedure M that tells us how to extend the finite
set of strings in e(ω<ω) that is enumerated into Θ(U) by the R-strategies to a set
that is the complement of a maximal independent set for e(ω<ω). Given a finite
subset F of e(ω<ω), the procedure defines an infinite computable set M(F ) which
serves this purpose. We inductively define the set Mn(F ) of strings of length n in
M(F ). M0(F ) = ∅, M1(F ) = {e}. Suppose that we have defined Mn(F ). We add
to Mn+1(F ) all strings σ of length n+ 1 extending e such that:

(1) σ ∈ F or
(2) σ− /∈Mn(F ), where σ− is the immediate predecessor of σ.

We summarize some properties of this procedure in the following lemma.

Lemma 5.2. Let F be a finite subset of e(ω<ω).
(1) M(F ) is a maximal independent set for e(ω<ω).
(2) M2(F ) ⊆ F .
(3) If G is a finite subset of e(ω<ω) such that F ⊆ G ⊆ M(F ), then M(F ) =

M(G).

Proof. To see that M(F ) is independent, let τ and σ be two connected strings.
We may assume that τ has length n and σ has length n + 1. From the second
point of the construction, it follows that if τ /∈ Mn(F ) then σ ∈ Mn+1(F ). To see
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that M(F ) is maximal, fix any string τ ∈ Mn(F ). There are only finitely many
strings in F , hence there are, in fact, infinitely many strings σ extending τ such
that σ /∈Mn+1(F ).

To see that M2(F ) ⊆ F , we note that if |σ| = 2, then σ− = e and hence
σ− ∈ M1(F ). It follows that only the first clause of the inductive definition will
apply to strings of length 2 in e(ω<ω).

Finally, let F ⊆ G ⊆M(F ). We show that Mn(F ) = Mn(G) by induction on n.
The statement is clear for n = 0 and n = 1. Suppose that Mn(F ) = Mn(G) and fix
σ ∈ e(ω<ω) of length n+ 1. Note that σ− /∈Mn(F ) if and only if σ− /∈Mn(G), so
if σ is in either set for the second reason in the construction, it would automatically
be in the other as well. If σ ∈ F , then as F ⊆ G we have that σ ∈ G. On the
other hand if σ ∈ G, as G ⊆ M(F ), it follows that σ ∈ Mn+1(F ). Therefore,
Mn+1(F ) = Mn+1(G). �

We are ready to describe the construction of Θ.
Construction. At stage 0, we set Θ0 = ∅. Suppose that we have constructed Θs.
For every e, we will denote by Fe,s the set of all strings in Θs(Us) ∩ e(ω<ω). At
stage s+1, we add the axiom 〈s, ∅〉 to Θs+1 and consider all requirements Re where
e < s in turn. We have two cases:

(1) If Re = Pi, then we activate the strategy for Pi: We will denote by le,s
the length of agreement l(Θs(Us),Φi,s(Vs), s). For every n < le,s such that
n ∈ Us, we add the axiom 〈en, Us〉 to Θs+1. Intuitively, we are threatening
to code U into Θ(U).

(2) If Re = Qi, then we activate the strategy for Qi: We will denote by le,s the
length of agreement l(Us,Ψi(Θs(Us)⊕ Vs), s). For every n < le,s, we check
if there is an axiom 〈n,E ⊕D〉 ∈ Ψi,s, such that D ⊆ Vs, ∅ /∈ E, and such
that if kσ ∈ E and k < e then kσ ∈ M(Fk,s). If there is such an axiom,
then we pick 〈n,E ⊕D〉 ∈ Ψi,s with least code (in some fixed computable
coding of all possible axioms) and enumerate the axioms 〈y, Us〉 into Θs+1
for all y ∈ E that start with numbers greater than or equal to e. Intuitively,
we are threatening to make Θ(U) computable.

In both cases, we end by activating the procedureM for Fe,s: for every σ ∈M(Fe,s)
such that σ has code less than s, enumerate the axiom 〈σ, Us〉 into Θs+1. a

Let Θ =
⋃
s<ω Θs. We prove that Θ satisfies all requirements. The essence of

the proof is contained in the following lemma.

Lemma 5.3. For every e there is a good stage se such that at all stages t ∈ GU
such that t > se:

(1) The length of agreement le,t is bounded above by le,se .
(2) The strategy for Re does not enumerate axioms for elements that are not

already in Θse
(Use

).
(3) M(Fe,t) = M(Fe,se

).

Proof. We prove the lemma by simultaneous induction on e. Suppose the lemma
is true for i < e. Let s > max(si : i < e) be a good stage in the approximation to
U . Once again we have two cases depending on Re.

Suppose that Re = Pi. There are only finitely many strings of the form en
that are enumerated into Θ(U) by strategies different from Re. By construction,
strategies with lower priority than Re do not enumerate axioms for such strings at
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any stage. Strategies of higher priority can only enumerate such elements if they
add axioms to Θ at good stages. By our choice of s, all axioms for these elements
have already been enumerated by stage s. Let n be the largest such that en is
added to Θ(U) by a higher priority strategy. Suppose towards a contradiction that
the length of agreement le,t is unbounded on good stages t ∈ GU . It follows by
Lemma 3.3 that Θ(U) = Φi(V ). On the other hand, we have that for all m > n,

m ∈ U ⇔ em ∈ Θ(U).

Indeed, if em ∈ Θ(U) and m > n, then a valid axiom 〈m,Ut〉 was enumerated into
Θ by Re. By Lemma 5.2, the procedure M(Fe,s) does not add axioms for elements
of length 2, so the axiom must have been added in our attempt to code U . As the
axiom is valid, it follows that Ut ⊆ U and by construction m ∈ Ut. On the other
hand, if m ∈ U then by the second property of a good approximation, m ∈ Ut at all
sufficiently large good stages t ∈ GU . As by assumption {le,t}t∈GU

is unbounded,
there will be a good stage t at which Re adds an axiom for m to Θt. Thus, we have
that

U ≤e Θ(U) ≤e V,
contradicting the fact that V <e U . It follows that the length of agreement mea-
sured at good stages is bounded, say by a number l. Let se > s be a good stage in
the approximation to U such that at all good stages t ≥ se we have that U � l ⊆ Ut
and le,t ≤ le,se . The stage se satisfies the first two statements, as the strategy Re
will not have a reason to enumerate axioms for any element that it had not already
enumerated an axiom for at stage se. The third statement also follows: after stage
se, the only way in which we add elements to e(ω<ω) ∩ Θ(U) is through the pro-
cedure M , performed at good stages t. By a routine induction on the good stages
t > se, we can show that Fe,se

⊆ Fe,t ⊆ M(Fe, se), and hence by Lemma 5.2 we
have that M(Fe,t) = M(Fe,se).

The second case we need to consider is Re = Qi. Towards a contradiction,
suppose that the length of agreement le,t is unbounded on good stages t ∈ GU .
It follows by Lemma 3.3 that U = Ψi(Θ(U) ⊕ V ). By induction, we have that at
good stages t > s, the set

⋃
k<eM(Fk,t) =

⋃
k<eM(Fk,s) = Me remains constant.

Furthermore, by construction and the actions of the procedure M , it follows that
Me =

⋃
k<e k(ω<ω) ∩ Θ(U). On the other hand, by construction we have that

n ∈ Ψi(Θ(U) ⊕ V ) if and only if n ∈ Ψi

((
Me ∪

⋃
k≥e k(ω<ω)

)
⊕ V

)
. Indeed, one

direction of this equivalence follows from the fact that Θ(U) ⊆Me ∪
⋃
k≥e k(ω<ω).

The other direction is ensured by the actions of the strategy for Qi. But now, as
Me ∪

⋃
k≥e k(ω<ω) is a computable set, we have that

U = Ψi

((
Me ∪

⋃
k≥e

k(ω<ω)
)
⊕ V

)
≤e V,

contradicting that V <e U once again. Hence, in this case as well, the length of
agreement measured at good stages is bounded, say by a number l. Let m be such
that for every n < l the least valid axiom 〈n,E ⊕ D〉 ∈ Ψ that puts n in the set
Ψi

((
Me∪

⋃
k≥e k(ω<ω)

)
⊕V

)
� l has the property thatD ⊆ V � m. Fix a good stage

se > s such that at all good stages t ≥ se we have that V � m ⊆ Vt (we can pick such
a stage by the second property of correct approximations) and such that le,t ≤ le,se

.
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Note that by the end of stage se, all elements in Ψi

((
Me ∪

⋃
k≥e k(ω<ω)

)
⊕ V

)
� l

that will ever be added to Ψi(Θ(U)⊕V ) already have valid axioms. It follows that
the strategy Qi will not have any reason to enumerate valid axioms for elements
different than the ones for which it enumerated axioms by stage se. In particular,
once again we will have that after stage se, the only way in which we add elements
to e(ω<ω) ∩ Θ(U) is through the procedure M performed at good stages t, and
hence M(Fe,t) = M(Fe,se

). Thus se satisfies all three statements. �

An immediate corollary of Lemma 3.3 and part (1) of the previous lemma is
that every requirement Re is satisfied. Parts (2) and (3) of the lemma, along with
the procedures M performed at every good stage, ensure that Θ(U) =

⋃
eM(Fe,se

)
and hence Θ(U) =

⋃
eM(Fe,se

). By Lemma 5.2, each set M(Fe,se
) is a maximal

independent set for e(ω<ω), so Θ(U) is a maximal independent set for ω<ω. �

6. Further properties of the cototal enumeration degrees

6.1. Embedding countable partial orders in intervals of cototal enumera-
tion degrees. A variation of Cooper’s density theorem was used by Bianchini [2]
to show that nontrivial intervals of Σ0

2 degrees contain copies of all countable par-
tial orders. Recently, Slaman and Sorbi [23] proved that the same is true for any
nontrivial initial segment of the enumeration degrees. We describe how to modify
the construction in Theorem 5.1 to prove the following.

Theorem 6.1. If v < u are cototal enumeration degrees, then one can embed every
countable partial order in the cototal degrees in the interval (v,u).

Proof. Let V <e U be cototal sets in v and u respectively, and suppose that U has a
good approximation {Us}s<ω. We follow the same method for embedding countable
partial orders as is always used (see for instance [23]). We build a sequence {Ai}i<ω
of sets with the following properties:

(1) Ai is cototal, uniformly in i;
(2)

⊕
i<ω Ai ≤e U ;

(3) For every i we have Ai �e V ⊕ (
⊕

j 6=iAj), i.e., the sequence {V ⊕ Ai}i<ω
is computably independent.

Here
⊕

i∈X Ai is the set
⋃
i∈X{i} ×Ai.

If L = (ω,≤L) is a computable partial ordering, then we can embed it in the
interval (v,u) by mapping an element of the partial ordering i to the enumeration
degree v ∨ de(

⊕
j≤Li

Aj). That this map preserves the order follows from the
following straightforward claim:

Claim 6.2. If X and Y are computable, then
⊕

i∈X Ai ≤e V ⊕
⊕

j∈Y Aj ⇔ X ⊆ Y.

To prove that this embedding has range consisting only of cototal enumeration
degrees we must show:

Claim 6.3. If X is a computable set, then
⊕

i∈X Ai is cototal.

The second claim also has a simple proof. Because X is computable and the Ai
are cototal uniformly in i, we have

⊕
i∈X Ai ≤e

⊕
i∈X Ai ≡e

⊕
i∈X Ai∪

⊕
i/∈X N =⊕

i∈X Ai. Finally, we note that Mostowski [20] proved that there is a computable
partial order in which one can embed any other countable partial order.
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To construct the sequence {Ai}i<ω, we build an enumeration operator Θ such
that Θ(U) is the complement of a maximal independent set for ω<ω, just like in
Theorem 5.1. We let Ai = Θ(U) ∩ N[i](ω<ω); in other words, Ai will contain all
strings that extends 〈i, k〉 for some natural number k and that are in Θ(U). In
this way, we have that no two different elements of the sequence intersect, and so⊕

i<ω Ai ≡e
⋃
i<ω Ai = Θ(U). To shorten notation, let Bi =

⋃
j 6=iAj . We will

ensure that the following requirements are satisfied:

Pi,k : Ai 6= Ψk(Bi ⊕ V ).

We order the requirements in a list R0,R1 . . . . To satisfy one requirement we will
combine the actions that we had for the two types of requirements P and Q in the
proof of Theorem 5.1 as follows.
Construction. At stage 0 we set Θ0 = ∅. Suppose that we have constructed Θs.
For every e, we will denote by Fe,s the set of all strings in Θs(Us) ∩ e(ω<ω). We
further set Ai,s =

⋃
j∈ω F〈i,j〉,s and Bi,s =

⋃
j 6=iAj,s. At stage s + 1, we add the

axiom 〈s, ∅〉 to Θs+1 and consider all requirements Re where e < s in turn.
Suppose that e = 〈i, k〉, i.e., Re = Pi,k. Let le,s = l(Ai,s,Ψk(Bi,s ⊕ Vs), s). For

every n < le,s such that n ∈ Us, we add the axiom 〈〈i, k〉n,Us〉 to Θs+1. At the
same time, for every n < le,s we check if there is an axiom 〈n,E ⊕D〉 ∈ Ψk,s such
that D ⊆ Vs, if jσ ∈ E then j /∈ N[i], and if j ≤ e then jσ ∈ M(Fj,s). If there
is such an axiom, then we pick 〈n,E ⊕ D〉 ∈ Ψi,s with least code (in some fixed
computable coding of all possible axioms) and enumerate the axiom 〈y, Us〉 into
Θs+1 for all members y of E that start with numbers greater than e.

We end by activating the procedure M for Fe,s: for every σ ∈M(Fe,s) such that
σ has code less than s, enumerate the axiom 〈σ, Us〉 into Θs+1. a

Once again the essence of the proof is contained in the following lemma:

Lemma 6.4. For every e there is a good stage se such that at all stages t ∈ GU
such that t > se:

(1) The length of agreement le,t is bounded above by le,se
.

(2) The strategy for Re does not enumerate axioms for elements that are not
already in Θse

(Use
).

(3) M(Fe,t) = M(Fe,se).

The proof of this lemma is essentially the same as the proof of Lemma 5.3,
except for the following modification: If we assume that the sequence {le,t}t∈Gu

is
unbounded, where e = 〈i, k〉, then we have:

• Modulo a finite set, n ∈ U if and only if the length 2 string 〈i, k〉n is in Ai,
and so U ≤e Ai;

• Ai = Ψk(Bi,s ⊕ Vs);
• Ψk(Bi,s ⊕ Vs) = Ψk

((
Me ∪

⋃
j≥e j(ω<ω)

)
⊕ V

)
, which is enumeration re-

ducible to V because the set Me =
⋃
j<e Fj,s is computable.

Once again this would contradict the assumption that V <e U .
This proves that every requirement Re is satisfied and Θ(U) is the complement

of a maximal independent set for ω<ω. To finish the proof of this theorem, we note
that for every i the set Ai is cototal: σ ∈ Ai if and only if σ starts with a number
of the form 〈i, j〉 and σ is connected to a member of Ai. �
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6.2. Jumps of cototal enumeration degrees. We end with some notes on the
jumps of cototal enumeration degrees.

Proposition 6.5. If x is cototal, then the interval (x,x′) consists entirely of cototal
enumeration degrees.

Proof. If x is cototal, then x♦ = x′. If w ∈ (x,x′), then x♦ ≤ w♦ and hence
w ≤ w♦, proving that w is cototal. �

This proposition allows us to restate Griffiths’ theorem for jumps of good enu-
meration degrees in the context of cototal enumeration degrees.

Theorem 6.6 (Griffiths [11]). If x is cototal and w is such that x < w ≤ x′, then
there is a (cototal) degree a such that x < a < w and a′ = w′.

Ganchev and Sorbi [8] proved that for every enumeration degree w there is an
initial interval of enumeration degrees such that every nonzero element in that
interval has the same jump as w. Their proof is based on the following notion
introduced by Kalimullin [14].

Definition 6.7 (Kalimullin [14]). A pair of sets of natural numbers {A,B} forms
a K-pair relative to 〈X〉 if there is a set W ≤e X such that A × B ⊆ W and
A×B ⊆W . The pair {A,B} is a nontrivial K-pair relative to 〈X〉 if, in addition,
A �e X and B �e X.

Here we write 〈X〉 to indicate that X is being treated as an enumeration oracle.
Andrews et al. [1] investigated the skips of K-pairs relative to an oracle. They
proved the following:

Proposition 6.8 (Andrews et al. [1]). If {A,B} is a nontrivial K-pair relative
to 〈X〉 and X is of cototal enumeration degree, then

(A⊕X)♦ ≡e B ⊕X♦ and (B ⊕X)♦ ≡e A⊕X♦.

Even though relativization in the enumeration degrees does not always work, in
this case we are able to prove that Ganchev and Sorbi’s theorem relativizes above
any cototal enumeration degree. We also extend Griffiths’ theorem.

Theorem 6.9. If x is cototal and w is such that x < w ≤ x′, then there is an
enumeration degree a such that x < a ≤ w and every degree in the interval (x,a]
has the same jump as w.

Proof. Fix W ∈ w. Let LKW
be the set of all finite binary strings σ such that σ is

lexicographically smaller than KW � |σ|. Let RKW
be the complement of LKW

. It
is easy to check that LKW

≤e KW , {LKW
, RKW

} is a K-pair (relative to 〈∅〉), and
LKW

⊕RKW
≡e W ′; proofs are given by Ganchev and Soskova [9].

If LKW
≤e X or RKW

≤e X, then LKW
⊕ RKW

≤e X ′ and so W ′ ≡e X ′. In
this case, every element in [x,w] has the same jump as w. So we may assume that
{LKW

⊕X,RKW
⊕X} is a nontrivial K-pair relative to 〈X〉. By Proposition 6.8,

(LKW
⊕ X)♦ ≡e RKW

⊕ X♦. As LKW
⊕ X is of cototal enumeration degree by

Proposition 6.5, it follows that (LKW
⊕X)♦ ≥e LKW

. Therefore,

W ′ ≥e (LKW
⊕X)′ ≥e (LKW

⊕X)♦ ≥e LKW
⊕RKW

≡e W ′,

and so (LKW
⊕X)♦ ≡e W ′.
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We claim that a = de(LKW
⊕ X) satisfies the theorem. Take C with de(C)

in the interval (x,a]. Every degree in this interval is cototal, hence C ′ ≡e C♦.
Kalimulin [14] showed that if {A,B} is a K-pair relative to 〈X〉 and Y ≤e A, then
{Y,B} is also a K-pair relative to 〈X〉. Therefore, {C,RKW

⊕ X} is a nontrivial
K-pair relative to 〈X〉. By Proposition 6.8, we have

C ′ ≡e C♦ ≡e RKW
⊕X♦ ≡e (LKW

⊕X)♦ ≡e W ′. �
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