
THE ∆0
2 TURING DEGREES: AUTOMORPHISMS AND

DEFINABILITY

THEODORE A. SLAMAN AND MARIYA I. SOSKOVA

Abstract. We prove that the ∆0
2 Turing degrees have a finite automorphism

base. We apply this result to show that the automorphism group of DT (≤ 0′)
is countable and that all its members have arithmetic presentations. We prove
that every relation on DT (≤ 0′) induced by an arithmetically definable degree

invariant relation is definable with finitely many ∆0
2 parameters and show

that rigidity for DT (≤ 0′) is equivalent to its biinterpretability with first order
arithmetic.

1. Introduction

We wish to understand the notion of relative definability between sets of natural
numbers and in particular its natural presentation as a degree structure. There are
many ways in which one might approach this task. Here we consider the following
three questions as guiding: What is the expressive power of the theory of the
degree structure? What are the definable relations in the structure? How can we
describe its automorphism group? For the structure of the Turing degrees DT we
have a complete answer to the first question and an appealing conjecture for the
other two. Simpson [6] proved that the first order theory of the Turing degrees is
computably isomorphic to the theory of second order arithmetic. In [7], Slaman
and Woodin conjecture that the relationship between the structure of the Turing
degrees and second order arithmetic is much stronger. If true their biinterpretability
conjecture gives complete answers to the second and third questions: the definable
relations in DT are exactly the ones induced by degree invariant relations definable
in second order arithmetic and the only automorphism of DT is the identity. In
other words the biinterpretability conjecture is that the structure of the Turing
degrees is logically equivalent to second order arithmetic. Slaman and Woodin
come to this conjecture through their work on the definability and automorphisms
of the Turing degrees described in [7]. They establish that the structure of the
Turing degrees has a finite automorphism base and as a consequence obtain that the
biinterpretability conjecture is true if we allow the use of finitely many parameters,
that the automorphism group of the Turing degrees is countable and that every
member has an arithmetically definable presentation. Furthermore they show that
every relation in DT induced by degree invariant relations definable in second order
arithmetic is first order definable with parameters in DT . Finally they establish
that the rigidity of DT , the statement that DT has no nontrivial automorphisms,
is equivalent to its biinterpretability with second order arithmetic.

The first author was partially supported by National Science Foundation grant number DMS-
1301659. The second author was partially supported by an FP7-MC-IOF grant STRIDE (298471),
the L’Oréal-UNESCO program “For women in science” and by the Sofia University Science Fund.

1

2 SLAMAN AND SOSKOVA

In parallel to the study of the global structure of the Turing degrees, two sub-
structures are investigated: the structure of the Turing degrees bounded by the
degree of the halting problem 0′ and the substructure of the computably enumer-
able degrees, denoted respectively by DT (≤ 0′) and R. The same three guiding
questions can be addressed to understand these local structures. In this case as
well we have complete answers to the first one. Both structures have theories
that are computably isomorphic to first order arithmetic. Shore [4] proves this for
DT (≤ 0′) and Slaman and Harrington (see [2]) prove it for R. The second question
is understood only to a certain extent. Nies, Shore and Slaman [2] prove that any
relation in R that is induced by a definable relation in first order arithmetic, in-
variant not only under Turing reducibility, but also under double jump, is definable
in R. Later Shore [5] proves that this holds also for DT (≤ 0′). Even less is known
regarding the third question.

In this article we focus on the structure DT (≤ 0′). We establish a relationship
between the local structure DT (≤ 0′) and first order arithmetic, similar to the one
proved by Slaman and Woodin for the global structure DT and second order arith-
metic. Our main result is that DT (≤ 0′) has a finite automorphism base and it
is biinterpretable with first order arithmetic using the elements of this base as pa-
rameters. We further show that Aut(DT (≤ 0′)) is countable and its members have
arithmetic presentations and that the structure DT (≤ 0′) is atomic. We answer
Question 4.8 from [9]: every relation in DT (≤ 0′) induced by an arithmetically de-
finable degree invariant relation is definable with finitely many parameters. Finally,
we show that rigidity for DT (≤ 0′) is equivalent to its biinterpretability with first
order arithmetic.

In a sequel to this paper, [8], we use similar methods to investigate the structure
of the enumeration degrees. There we reveal a strong connection between the local
and global structures: the natural presentation of the structure of the computably
enumerable degrees is an automorphism base for the structure of the enumeration
degrees.

2. The local coding theorem and its applications

One of the main tools in Slaman and Woodin’s analysis of the automorphisms
of DT is their coding theorem, the statement that every countable relation in the
Turing degrees is uniformly definable from parameters. For the local structure
DT (≤ 0′) Slaman and Woodin give a more restricted version of the coding theorem.
In order to state it we need the following definitions related to lowness. We use
the notation {i}A to denote the i-th partial computable functional with oracle A
in some standard effective listing of all partial computable functionals.

Definition 1. (1) A set A is low if its jump A′ is computable from the halting
set. A Turing degree is low if it contains a low set.

(2) A sequence of sets {Zi}i<ω is uniformly computable from a set A if there
is a computable function f , such that Zi = {f(i)}A.

(3) A sequence of sets {Zi}i<ω is uniformly low if there is a computable function

g, such that (
⊕

j<i Zi)
′ = {g(i)}∅′ .

(4) A set of degrees Z ⊆ DT (≤ 0′) is uniformly low if there is a uniformly low
sequence {Zi}i<ω, such that Z = {dT (Zi) | i < ω}. We call the sequence
{Zi}i<ω a presentation of Z.

THE ∆0
2 TURING DEGREES 3

We give an example of a uniformly low set of degrees. Let {Gi}i<ω be a sequence
of sets such that G =

⊕
i<ω Gi is low. Then the set G = {dT (Gi) | i < ω} is

uniformly low. In particular if G is any ∆0
2 1-generic set then G is a uniformly low

anti-chain. We refer to [7] for a review of properties of 1-generic sets, some of which
will be used in this article.

The local coding theorem of Slaman and Woodin [9] is that every uniformly
low set of degrees that is bounded by a low degree is uniformly definable from
parameters in DT (≤ 0′). Among many other applications, it gives a method for
coding a model of arithmetic in DT (≤ 0′). We can represent a model of arithmetic
as a partial ordering as described in [2]. We start with a countable anti-chain of
minimal elements {pn}n<ω which will represent the natural numbers. Then, for
each n,m ∈ ω we add an element cn,m which represents the pair (pn, pm). Next we
add ascending chains of lengths 2 and 3, respectively, from pn to cn,m and from pm
to cn,m. Finally, to code addition, we add a chain of length 4 from pn+m to cn,m
and for multiplication, a chain of length 5 from pnm to cn,m.

Now we fix a 1-generic set G and let G =
⊕

i<ω Gi. Recall that {Gi}i<ω has the
following property: if F and E are finite sets then

⊕
i∈F Gi ≤T

⊕
i∈E Gi if and only

if F ⊆ E. We use this fact to build six anti-chains that together form the partial
order described above. The minimal elements form one anti chain, the maximal
elements another and we have four intermediate anti-chains L1, L2, L3 and L4. We
partition N into six computable infinite pieces Di, i = 1 . . . 6. To make notation
easier we assume that D1 = 2N. We use G2n to represent pn. This will be the first
anti-chain. To every pair of natural numbers (n,m) we computably assign four
elements with indices in D2, three elements with indices in D3, two with indices in
D4 and one element with an index in each of D5 and D6. To construct the second
anti-chain L1 for every pair of natural numbers (n,m) we join G2n with the first

4 SLAMAN AND SOSKOVA

assigned element from D2, G2m with the second, G2(n+m) and G2n∗m with the third
and fourth. Similarly L2 is constructed by joining each of the elements above G2m,
G2(n+m) and G2n∗m from L1 with the assigned elements from D3, L3 by joining the
elements from D4 to the L2 elements above G2(n+m) and G2n∗m, L4 by joining the
element from D5 to the L3 element above G2n∗m. To get the final sixth anti-chain
and the representatives for cn,m we join up all of the constructed element with the
one assigned to the pair (n,m) from D6. Each of the six anti-chains is a uniformly
low sequence bounded by G. We have a presentation of a partial order P which by
the Coding Theorem is uniformly definable from parameters ~p in DT (≤ 0′).

We will denote by M(~p) = (NM(~p), 0M(~p), 1M(~p),+M(~p), ∗M(~p)) the standard
model of arithmetic coded in this way: NM(~p) is the set of minimal elements in P,
0M(~p) and 1M(~p) are the elements representing p0 and p1 respectively, M(~p) |=
n+m = k and M(~p) |= n ∗m = l if and only if there is maximal element in P at
distance 1 from nM(~p), 2 from mM(~p), 3 from kM(~p) and 4 from lM(~p).

We extend these ideas a little further. Suppose that {Zi}i<ω is uniformly com-
putable from a low set Z and represents a uniformly low set of degrees Z. Let G
be 1-generic relative to Z and computable from Z ′. Let M(~p) be the standard
model of arithmetic coded below G. Consider the sequence {Zi ⊕G2i}i<ω. This is
an anti-chain, bounded by G ⊕ Z. As (G ⊕ Z)′ = G ⊕ Z ′ ≤T Z ′, it follows that
{Zi⊕G2i}i<ω is a uniformly low anti-chain, bounded by a low degree and hence as
well definable with parameters. It follows that the function mapping iM to dT (Zi)
is also definable.

Definition 2. Let Z be a set of degrees, represented by a sequence {Zi}i<ω. We say
that ~p define an indexing of Z via the sequence {Zi}i<ω if they define a standard
model of arithmetic M and a function ϕ : NM → D such that ϕ(iM) = dT (Zi).

The discussion above allows us to phrase the local coding theorem in a slightly
stronger form.

Theorem 2.1 (Slaman and Woodin [9]). For every uniformly low set of degrees Z
and uniformly low sequence {Zi}i<ω representing Z there are finitely many param-
eters ~p ∈ DT (≤ 0′) that define an indexing of Z via {Zi}i<ω.

Slaman and Woodin [9] prove that the set of computably enumerable degrees
R is definable with finitely many parameters from DT (≤ 0′). The proof uses an
idea from Welch [10]. Let {We}e<ω be the standard listing of all c.e. sets and let
K = {〈e, x〉 | x ∈ We}. By the Sacks Splitting Theorem [3] there are two low
sets A and B such that A ∪ B = K. Let A =

⊕
e<ω Ae and B =

⊕
e<ω Be.

Then A = {dT (Ae) | e < ω} and B = {dT (Be) | e < ω} are uniformly low sets
of degrees and for every e we have that dT (We) = dT (Ae) ∨ dT (Be). If ~p and ~q
are parameters that code standard models of arithmeticM(~p) andM(~q) then the
mapping nM(~p) → nM(~q) is definable from ~p and ~q. Thus by extending the number
of parameters we use, we can assume that any finite number of indexings use the
same coded model of arithmetic. Thus we can find a finite list of parameters ~p
which code a model M, an indexing of the sequence {Ae}e<ω and an indexing of
the sequence {Be}e<ω. We combine these to obtain an indexing of the c.e. degrees
via the sequence {We}e<ω. We will call this an indexing of the c.e. degrees. In line
with Theorem 2.1 we restate the definability of the c.e. degrees from parameters as
follows.

THE ∆0
2 TURING DEGREES 5

Theorem 2.2 (Slaman and Woodin [9]). There are finitely many parameters in
DT (≤ 0′) that define an indexing of the c.e. degrees.

This statement is stronger than the definability with parameters of the c.e.
degrees. Let A be a set of natural numbers with the following closure prop-
erty: if e ∈ A and We ≡T Wj then j ∈ A. A induces a set of c.e. degrees
A = {dT (We) | e ∈ A}. It follows from Theorem 2.2 that if A is arithmetical then
A is definable in DT (≤ 0′) with parameters. To see this, let ~p be parameters that
define a model of arithmetic M and an indexing ϕ of the c.e. degrees. We use the
arithmetic definition of A, effectively translated in the language of degree theory,
to define the set AM of the degrees eM such that e ∈ A and then observe that
A = ϕ(AM) is definable from ~p.

3. Biinterpretability with parameters

Consider the sequence {Xe}e<ω, where

• If {e}∅′ is a total {0, 1}-valued function thenXe is the set with characteristic

function {e}∅′ .
• Xe = ∅ otherwise.

Then X = {dT (Xe) | e < ω} is the set of all ∆0
2 degrees. An indexing of the

∆0
2 degrees via the sequence {Xe}e<ω will be called simply an indexing of the ∆0

2

degrees.
We will say that DT (≤ 0′) is biinterpretable with first order arithmetic if there is

a definable indexing of the ∆0
2 degrees. We use ideas similar to the ones described

in the previous section to show that there are finitely many parameters in DT (≤ 0′)
that define such an indexing, i.e. that DT (≤ 0′) is biinterpretable with first order
arithmetic modulo the use of finitely many parameters.

We will state two technical theorems and leave their proofs for the last two
sections of this paper. The first one will allow us to reduce our task to finding an
indexing of the low ∆0

2 degrees.

Theorem 3.1. Let y ≤ 0′. There are low degrees x1,x2,x3 and x4 such that

y = (x1 ∨ x2) ∧ (x3 ∨ x4).

The second technical result shows that there is a uniformly low set of degrees Z,
bounded by a low degree, such that every low Turing degree has a unique position
with respect to the elements of Z and the c.e. degrees.

Theorem 3.2. There exists a uniformly low set of Turing degrees Z, bounded by
a low degree z < 0′, such that if x,y < 0′, x′ = 0′ and y � x then there are c.e.
degrees ai and ∆0

2 Turing degrees ci,bi, gi for i = 1, 2 such that:

(1) bi and ci are elements of Z.
(2) gi is the least element below ai which joins bi above ci.
(3) x ≤ g1 ∨ g2.
(4) y � g1 ∨ g2.

We state and prove our main result.

Theorem 3.3. There are parameters ~p in DT (≤ 0′) which define an indexing of
the ∆0

2 degrees.

6 SLAMAN AND SOSKOVA

Proof. Let {Zi}i<ω be the uniformly low sequence of sets, representing the uni-
formly low set of degrees Z obtained in Theorem 3.2. By Theorem 2.1 and Theorem
2.2 we can fix finitely many ∆0

2 parameters ~p which code a model M, an indexing
ϕZ of Z via {Zi}i<ω and an indexing ϕR of the c.e. degrees:

ϕZ(iM) = dT (Zi) and ϕR(iM) = dT (Wi).

We will show that the function ϕ : NM → DT (≤ 0′), given by ϕ(iM) = dT (Xi)
is definable in DT (≤ 0′) from the parameters ~p.

Fix a ∆0
2 degree i. The property i ∈ NM is definable from the parameters ~p, so

we can assume that i = iM for a fixed natural number i. We have different cases
depending on the nature of the number i. We have an effective way to translate an

arithmetic statement about i, say ψ(i), into a degree theoretic statement ψ̂(i, ~p) so
that:

N |= ψ(i) if and only if DT (≤ 0′) |= ψ̂(i, ~p).

We will say that ψ(i) is true in M to mean that ψ(i, ~p) is true in DT (≤ 0′).

Case 1 : Suppose that in M the following statement is true:

“{i}∅′ is not a {0, 1}-valued total function”.

In this case ϕ(i) = 0.

Case 2 : Suppose that in M the following statement is true:

“{i}∅′ is the characteristic function of a low set.”

In this case we use Theorem 3.2. Note that as {Zi}i<ω is a sequence uniformly
computable from 0′, we can fix a total computable function g, such that Ze =
{g(e)}∅′ for every e. We can define ϕ(i) as the largest degree x with the following
property: For every list of degrees a1,a2, b1,b2, c1, c2 g1 and g2 if:

• g1 is the least element below a1 which joins b1 above c1;
• g2 is the least element below a2 which joins b2 above c2;
• There are elements ea1

, eb1 and ec1 such that ϕR(eMa1
) = a1, ϕZ(eMb1) = b1

and ϕZ(eMc1) = c1;

• There are elements ea2
, eb2 and ec2 such that ϕR(eMa2

) = a2, ϕZ(eMb2) = b2

and ϕZ(eMc2) = c2;
• In M the following statement is true:

“dT ({i}∅′) is bounded by the join of the least Turing degree below

dT (Wea1
) which joins dT ({g(eb1)}∅′) above dT ({g(ec1)}∅′) and the

least Turing degree below dT (Wea2
) which joins dT ({g(eb2)}∅′)

above dT ({g(ec2)}∅′)”.

then x ≤ g1 ∨ g2.

Case 3 : Suppose that in M the following statement is true:

“{i}∅′ is the characteristic function of a non low set.”

In this case we apply Theorem 3.1 and the previous case. Let e1, e2, e3, e4 be
natural numbers such that in M the following statement is true:

“For each j = 1, 2, 3, 4 the function {ej}∅
′

is the characteristic

function of a low set and dT ({i}∅′) = (dT ({e1}∅
′
) ∨ dT ({e2}∅

′
)) ∧

(dT ({e3}∅
′
) ∨ dT ({e4}∅

′
)).”

THE ∆0
2 TURING DEGREES 7

Under the previous case we have already shown that ϕ(eMj) is definable with pa-

rameters ~p. We define ϕ(i) as (ϕ(eM1) ∨ ϕ(eM2)) ∧ (ϕ(eM3) ∨ ϕ(eM4)).
�

4. Applications

Biinterpretability with parameters has many consequences for DT (≤ 0′) and its
automorphism group. In this section we state and prove them.

Definition 3. An automorphism base of a structure A with domain A is a set
B ⊆ A, such that for every pair of automorphisms π1 and π2 of A if π1 and π2

agree on all elements in B then π1 = π2.

The relationship between an indexing of the ∆0
2 degrees and automorphism bases

is given by the following.

Theorem 4.1. If ~p are parameters that define an indexing of the ∆0
2 degrees then

~p is an automorphism base for DT (≤ 0′).

Proof. Consider an automorphism π of DT (≤ 0′). Let ~p be the ∆0
2 parameters

which code a standard model of arithmeticM and an indexing ϕ of the ∆0
2 degrees.

Then π(~p) are ∆0
2 degrees which also code a model of arithmeticMπ and a function:

ϕπ : NMπ → DT (≤ 0′) which is onto. As every element in the domain of the model
of arithmetic is definable from the parameters that code it, it follows that for every
natural number e we have that π(eM) = eMπ . This allows us to conclude that
the image of ~p determines the image of every other ∆0

2 degree, as for every natural

number e we have that π(dT ({e}∅′)) = π(ϕ(eM)) = ϕπ(π(eM)) = ϕπ(eMπ). In
particular if two automorphism agree on the elements of ~p then they are identical.

�

Definition 4. Let π be a function on the ∆0
2 degrees. A presentation of π is a

function Π on natural numbers, such that for every e we have that dT (Π({e}∅′)) =

π(dT ({e}∅′)).

Corollary 4.2. DT (≤ 0′) has a finite automorphism base. The automorphism
group of DT (≤ 0′) is countable and every automorphism of DT (≤ 0′) has an arith-
metically definable presentation.

Proof. By Theorem 3.3 there are finitely many parameters ~p which define an in-
dexing of the ∆0

2 degrees. By Theorem 4.1 they are an automorphism base for
DT (≤ 0′). There are only countably many choices for the image of ~p and hence
only countably many possible automorphisms.

Given any automorphism π of DT (≤ 0′), the image π(~p) is a finite sequence of ∆0
2

degrees. Fix ∆0
2 sets that represent the degrees in ~p and in π(~p) and corresponding

arithmetic definitions for these sets. The least index of a fixed fixed ∆0
2 set is

an arithmetically definable singleton. The functions ϕ and ϕπ described above
corresponds to an arithmetically definable function on indices, because the relation
“{e1}∅

′ ≤T {e2}∅
′

is arithmetically definable. The procedure, described in the

proof of Theorem 4.1, for determining π(dT ({e}∅′)) from the image of ~p is therefore
arithmetically definable and gives an arithmetic presentation of π. �

Definition 5. We say that a structure is atomic if the complete type of every tuple
is axiomatized by a single formula.

8 SLAMAN AND SOSKOVA

Theorem 4.3. DT (≤ 0′) is atomic.

Proof. We show that for every tuple x there is a formula χ~x which determines the
type of ~x in DT (≤ 0′). Let ~p be parameters that code a model of arithmetic M
and an indexing ϕ of the ∆0

2 degrees. The indexing ϕ is far from injective, but we
can use it to define an injection θ : NM → DT (≤ 0′). In arithmetic we can define
a function f : N→ N where f(n) is the least index of a ∆0

2 set which is not Turing
equivalent to any of the sets with indices f(m) for m < n. Let θ(eM) = ϕ(f(e)M).
Now ~x = (x1, . . .xk) is the tuple (θ(eM1), . . . θ(eMk)) for a unique tuple (e1, . . . ek).

We define the formula χ~x to express exactly this relationship: there are parame-
ters ~p which code a standard model of arithmeticM, such that the relation θ coded
by ~p using the definition that can be derived by combining the proof of Theorem
3.3 and the description of the function f above is a bijection θ : NM → ∆0

2, such
that:

• For every i and j the model M satisfies the translation of the arithmetic
formula {f(i)}∅′ ≤T {f(j)}∅′ if and only if θ(iM) ≤ θ(jM).
• For every j ≤ k, θ(eMj) = xj .

To guarantee that M is a standard model of arithmetic we ask that in addition
for any other set of parameters ~q which also code a model of arithmetic N and a
bijection ψ : NN → ∆0

2 with the same property, we have that the following is true.
Let λ : NM → NN be the bijection defined by λ(eM) = ψ−1(θ(eM)). We require
that the image of the interval [0M, nM] into N under λ is bounded in N . In other
words we ask that for every element nM ∈ NM there is an element b ∈ NN such
that for every m ≤ n, the element λ(mM) <N b.

Now if ~x and ~y satisfy the same formula χ~x then ~x and ~y are automorphic.
Indeed, let Mx, θx be the model of arithmetic and bijection witnessing χ~x(~x) and
My, θy be the model of arithmetic and bijection witnessing χ~x(~y). The automor-
phism π works as follows: on a degree z, it finds the natural number in the first
model eMx such that θx(eMx) = z and then maps z to θy(eMy). As θx and θy are
bijections, it follows that π is a bijection and π(~x) = ~y. Furthermore, for all pairs
of degrees z1 = θ−1

x (eM1) and z2 = θ−1
x (eM2) we have that z1 ≤ z2 if and only if

{f(e1)}∅′ ≤T {f(e2)}∅′ if and only if π(z1) ≤ π(z2), so π is an automorphism. �

We next consider consequences of biinterpretability with parameters to first order
definability in DT (≤ 0′).

Definition 6. Let R ⊆ Nk.

(1) R is degree invariant if whenever (e1, . . . ek) ∈ R and {e1}∅
′ ≡T {i1}∅

′
,

. . . {ek}∅
′ ≡T {ik}∅

′
then (i1, . . . ik) ∈ R.

(2) If R is degree invariant then R induces a relation R on DT (≤ 0′) defined

by (x1, . . .xk) ∈ R if and only if x1 = dT ({e1}∅
′
), . . . xk = dT ({ek}∅

′
) and

(e1, . . . ek) ∈ R.

Theorem 4.4. (1) Every relation on DT (≤ 0′) that is induced by an arith-
metically definable degree invariant relation is definable in DT (≤ 0′) with
finitely many ∆0

2 parameters.
(2) Every relation on DT (≤ 0′) that is induced by an arithmetically definable

degree invariant relation and which is in addition invariant under automor-
phisms is definable in DT (≤ 0′) without parameters.

THE ∆0
2 TURING DEGREES 9

Proof. Let R ⊆ Nk be an arithmetically definable degree invariant relation and R
be the induced relation on DT (≤ 0′). Let ~p be the parameters which code a model
of arithmetic M and an indexing of the ∆0

2 degrees ϕ as in Theorem 3.3. Let
χ(X1, . . . Xk) be the formula in arithmetic which defines R. Then R is definable
in DT (≤ 0′) with parameters ~p by the following formula: (x1, . . .xk) ∈ R if and
only if there are elements eM1 , . . . eMk in the domain of the model M such that
xi = ϕ(eMi) for i ≤ k and such that χ(e1, . . . ek) is true in M.

If R is in addition invariant under automorphisms then we use the method from
the proof of Theorem 4.3. Recall that f is a function with the property that f(n)
is the least index of a ∆0

2 set which is not Turing equivalent to any of the sets
with indices f(m) for m < n. We define (x1, . . .xk) ∈ R if and only if there
are parameters ~p which code a standard model of arithmetic M and a bijection
θ : NM → ∆0

2, such that:

• For every i and j the model M satisfies the translation of the arithmetic
formula {f(i)}∅′ ≤T {f(j)}∅′ if and only if θ(iM) ≤ θ(jM).
• There are elements eM1 , . . . eMk in the domain of the model M such that

xi = θ(eMi) for i ≤ k and such that χ(f(e1), . . . f(ek)) is true in M.

Let ~p be the parameters that code a model of arithmetic and a bijective index-
ing of the ∆0

2 degrees θ. If (x1, . . .xk) ∈ R then the parameters ~p witness that
(x1, . . .xk) satisfy this formula. If on the other hand (x1, . . .xk) satisfy the formula
above as witnessed by parameters ~q then there is a tuple (y1 . . .yk) that satisfies
the formula as witnessed by ~p. As ~p defines an indexing of the ∆0

2 degrees, we have
that (y1 . . .yk) ∈ R. Furthermore (y1 . . .yk) is automorphic to (x1, . . .xk). As R
is invariant under automorphisms, it follows that (x1, . . .xk) ∈ R. �

Corollary 4.5. DT (≤ 0′) is rigid if and only if it is biinterpretable with first order
arithmetic.

Proof. IfDT (≤ 0′) has no nontrivial automorphisms then every relation onDT (≤ 0′)
is invariant under automorphisms. So by Theorem 4.4 every relation R, induced
by a degree invariant relation R definable in first order arithmetic, is definable in
DT (≤ 0′). In particular, consider the parameters ~p = (p1 . . .pk) which define an

indexing ϕ of the ∆0
2 degrees. The relation R = {(e1, . . . ek) | (∀i ≤ k){ei}∅

′ ∈ pi}
is arithmetically definable. Here we use once again that pi is a ∆0

2 degree, hence we
can give an arithmetic definition for some index of a member of this degree. The
relation R induces R = {~p}. It follows that the indexing ϕ is definable without
parameters.

If there is a definable indexing ϕ of the ∆0
2 degrees then by Theorem 4.1 the

empty set is an automorphism base of DT (≤ 0′). In other words there can be only
one automorphism, the identity. It follows that DT (≤ 0′) is rigid. �

The applications listed in this section give a clearer path towards understanding
the structure of the ∆0

2 Turing degrees, revealing deep connections between defin-
ability, rigidity and biinterpretability. By analyzing the complexity of the formula
χ for tuples of length 1 in Theorem 4.3 we obtain a number b such that:

(1) There is a sequence of formulas with one free variable and of fixed quantifier
complexity b: ϕ1(x), ϕ2(x), . . . such that:
• Every ∆0

2 degree d satisfies at least one such formula.

10 SLAMAN AND SOSKOVA

• If any one of these formulas is satisfied by two different ∆0
2 degrees

then DT (≤ 0′) has a nontrivial automorphism.
(2) If d is a fixed point of an automorphism of the structure DT (≤ 0′) then d

is first order definable in DT (≤ 0′) by a formula with complexity b.
(3) The following two statements are equivalent:

• No intermediate degree is definable in DT (≤ 0′).
• No intermediate degree is definable in DT (≤ 0′) by a formula with

quantifier complexity b.

The equivalent statements listed in (3) above imply rigidity for DT (≤ 0′) in a
very strong way. They allow us, on the other hand, to formulate a clear technical
route to settling the automorphism problem for the structure DT (≤ 0′):

Question 1. Let b > 0 be a natural number. Given a formula ϕ(x) of quanti-
fier complexity b and an intermediate Turing degree d, such that ϕ(d) is true in
DT (≤ 0′), does there exist an intermediate degree d∗ 6= d such that ϕ(d∗) is also
true of DT (≤ 0′).

This question has an easy answer when b = 1. Any existential formula true of an
intermediate ∆0

2 degree d can be realized by a ∆0
2 degree g that is 1-generic relative

to d. A negative answer to this question at any level b would provide us with a
definable intermediate degree. The most interesting b is the one from the discussion
above: a positive answer for all formulas at that level of complexity would show
that every intermediate point has a nontrivial orbit; in the other extreme, there
are finitely many formulas of that level, such that a negative answer for all of them
would imply rigidity for DT (≤ 0′) and, by Slaman and Soskova [8], rigidity for the
global structure of the enumeration degrees.

5. Low degrees determine all ∆0
2 degrees

This section is devoted to the proof of Theorem 3.1. We will prove that every ∆0
2

degree y can be represented as (x1∨x2)∧(x3∨x4), where x1, . . .x4 are low degrees.
If y = 0′ then this theorem is an easy consequence of Sacks Splitting Theorem [3]:
there are low degrees a and b such that a∨ b = 0′, so we can set x1 = x3 = a and
x2 = x4 = b. For incomplete degrees y we reason as follows.

We start with a definition of a functional C which maps a pair of sets Y and G
to a set C(Y,G) as follows. Let G = Geven ⊕Godd:

C(Y,G)(n) =

{
Geven(n−m) if Godd(n) = 0 and Godd � n has m elements;

Y (m) if Godd(n) = 1 and n is the m-th element of Godd.

Note that as long as Godd is infinite, G⊕Y ≡T Godd⊕C(Y,G). We furthermore
show the following property:

Lemma 5.1. If G is 1-generic relative to Y then so is C(Y,G).

Proof. Suppose that W is c.e. in Y and W is dense in C(Y,G), i.e every initial
segment of C(Y,G) has an extension in W . We need to show that C(Y,G) meets
W . We extend the definition of C so that it can have a finite binary string as a
second parameter.

C(Y, τ)(n) =


τeven(n−m) if τodd(n) = 0 and τodd � n has m elements;

Y (m) if τodd(n) = 1 and n is the m-th element of τodd;

↑ if τodd(n) ↑ .

THE ∆0
2 TURING DEGREES 11

Consider the c.e. in Y set W ∗ = {σ ⊕ τ | C(Y, σ ⊕ τ) ∈ W}. This set is dense in
G. Indeed, fix σ⊕ τ � G. Then C(Y, σ⊕ τ) is an initial segment of C(Y,G), hence
there is an extension of C(Y, σ ⊕ τ), say C(Y, σ ⊕ τ)̂ γ in W . We can represent
C(Y, σ⊕ τ)̂ γ as C(Y, (σ γ̂)⊕ (τ 0̂0 . . . 0)), where the number of zeros added at the
end of τ is the length of γ. Thus (σ γ̂)⊕ (τ 0̂0 . . . 0) is an extension of σ⊕ τ in W ∗.
As G is 1-generic relative to Y , it follows that some initial segment σ⊕ τ of G is in
W ∗, but then C(Y, σ ⊕ τ) is an initial segment of C(Y,G) in W . �

Let y < 0′ be given and fix a set Y ∈ y. We will use the well known fact that
every non-computable c.e. set computes a 1-generic set, hence relativizing if Z is a
set that is c.e. in Y and Y <T Z then Z computes a 1-generic relative to Y . See
Downey and Hirschfeldt [1] for a proof of this fact. As ∅′ is c.e. relative to Y and
Y <T ∅′ there is a set G ≤T ∅′ which is 1-generic relative to Y . We split G into
odd and even bits: G = G0 ⊕ G1. Then G0 and G1 are mutually generic relative
to Y and so G0 ⊕ Y and G1 ⊕ Y form a minimal pair above Y . We set X1 to be
the odd bits in G0 and X2 = C(Y,G0). Similarly X3 is the odd bits in G1 and
X4 = C(Y,G1). The sets Xi, i = 1 . . . 4 are 1-generic and hence low. Now we have
the required property:

y = (dT (X1) ∨ dT (X2)) ∧ (dT (X3) ∨ dT (X4)).

6. A uniformly low set of Turing degrees

This section is devoted to the proof of Theorem 3.2. We wish to prove that there
is a uniformly low set Z of Turing degrees, bounded by a low z < 0′, such that if
x,y are ∆0

2 degrees, x is low and y � x, then there are gi < 0′, c.e. degrees ai and
∆0

2 Turing degrees ci,bi for i = 1, 2 such that:

(1) bi and ci are elements of Z.
(2) gi is the least element below ai which joins bi above ci.
(3) x ≤ g1 ∨ g2.
(4) y � g1 ∨ g2.

Note, that if we leave out the requirement that bi and ci are elements of a
uniformly low set Z, we could solve the problem trivially by setting ai = 0′, bi = 0
and ci = x. The design of our construction is therefore very much influenced by
the necessity to realize the first requirement.

The first step in our proof is to design a construction which takes as parameters
approximations to sets X and Y and produces approximations to sets Gi, Ai, Bi, Ci.
If X is low, as witnessed by the given approximation, and Y is ∆0

2 and not com-
putable from X then the sets Gi, Ai, Bi, Ci will have the necessary structural prop-
erties. Once we have such a construction we will run it simultaneously relative to
all possible parameters and interweave that with lowness requirements to obtain
the uniformly low set Z.

We start with the description of the construction. Let {X[s]}s<ω and {Y [s]}s<ω
be uniformly computable sequences of finite sets.

Definition 7. A ∆0
2 approximation {X[s]}s<ω to a set X is called a low approxi-

mation, if it has the following property: for every Turing functional Ξ and natural
number x if there are infinitely many stages s such that ΞX(x)[s] ↓ then ΞX(x) ↓.

We construct c.e sets Ai, ∆0
2 sets Bi and Ci and uniformly computable sequences

{Gi[s]}s<ω so that if {X[s]}s<ω is a low ∆0
2 approximation to a set X and {Y [s]}s<ω

12 SLAMAN AND SOSKOVA

is a ∆0
2 approximation to a set Y �T X then {Gi[s]}s<ω are ∆0

2 approximations to
sets Gi, where i = 1, 2, such that the following requirements are satisfied:

(1) Λi: There is a Turing functional Λi such that Gi = ΛAii .

(2) Γi: There is a Turing functional Γi such that Ci = ΓBi,Gii .
(3) Ω: There is a Turing functional Ω such that X = ΩG1,G2 .
(4) Let (Θe,Φe)e<ω be a listing of all pairs of Turing functionals. For every e

we have the requirement:

Rie: If ΘΦ
Ai
e ,Bi

e = Ci then there is a functional ∆e such that Gi = ∆Φ
Ai
e

e .
(5) Let (Ψe)e<ω be a listing of all Turing functionals. For every e we have the

requirement:
Qe : ΨG1,G2

e 6= Y .

6.1. Description of strategies. Suppose that {X[s]}s<ω is a low ∆0
2 approxi-

mation to a set X and {Y [s]}s<ω is a ∆0
2 approximation to a set Y �T X. The

construction is in stages. We start stage s by visiting the global strategies: Λ0,Λ1,
Γ0, Γ1 and Ω.

The Λ-strategies. The Λi-strategy is a simple marker strategy. During the con-
struction we dynamically assign markers λi(n) to every natural number n. At the

beginning of a stage we check Λi for errors. If ΛAii (n) ↑ then we define it to be
equal to Gi(n) with use Ai � λi(n), where λi(n) is a new fresh number. A fresh
number is defined as follows: let N be the largest number mentioned so far in the
construction; a fresh number is larger than 2N. This way we not only use a new
number every time, but also leave enough space between any two numbers that are
used. Here we mean A � x to be the initial segment of A of length x + 1. During
the construction, whenever we change the value of Gi(n), we will automatically

also enumerate the marker λi(n) in Ai, so that whenever ΛAii (n) is defined, it is
consistent with Gi(n). This will be the only reason that Ai changes. So, as long as
Gi(m) changes only finitely many times for every m ≤ n we will have that ΛAi(n)
is eventually defined.

The Γ-strategies. The strategy for the construction of Γi is slightly more com-
plicated for the following reason. The ∆0

2 sets Bi and Gi can change many times,
not necessarily only in response to changes in the set Ci. We cannot raise the
value of the use of an element up every time this happens, or else we risk to make
Γi partial. Instead to every element c we will attach two markers gi(c) and γi(c).
The marker gi(c) will serve as the Gi-use of c. It is usually set to 0, however an
Rie-strategy can preemptively define its value to be a larger number once during
the construction, before any Γi computations have been defined for c. The marker
γi(c) is the Bi-use of c and it is raised only if we observe a change in Gi � gi(c) or a
change in Ci � c. The Γi-strategy only defines new computations, it never changes

the approximation to any set. At stage s it ensures that ΓBi,Gii (c) is defined for all
c < s. The strategies for Ri requirements will ensure that Γi is always correct.

The Ω-strategy. The strategy to define Ω will once again be able to move the use
up every time we see that some computation is undefined. It will follow from the
construction that G1 and G2 almost always change only in response to X changes.
We will maintain that any Ω computation ever defined will use an initial segment
of the oracle ending in 0. Thus enumerating the last bit of the use in the oracle
set will invalidate the computation. At stage s we ensure that ΩG1,G2 is correctly
defined for every x < s, by changing the approximation to G1 or G2 if necessary to

THE ∆0
2 TURING DEGREES 13

invalidate wrong computations. Which set we change will depend on the desire to
preserve the work of the highest possible number of R-strategies. If ΩG1,G2(n) ↑ we
define a new computation for n with a fresh Ω-use (also referred to as an Ω-marker)
ω(n).

Now we turn to the two more difficult requirements Rie and Qe. We will handle
them using a tree of strategies. We will denote Rie strategies by α (or αi), and Qe
strategies by β. We order the requirements by priority linearly as follows:

R1
0 < · · · < R1

e < R2
e < Qe < R1

e+1 . . .

Strategies of level n in the tree are assigned the n-th requirement in the priority
ordering. The branching in the tree is determined by the outcomes of the strategies.
The lexicographical ordering of nodes in the tree induces a priority ordering of the
strategies.

The R-strategies. Suppose that α is working towards satisfying the requirement
R1
e. We will drop the subscript e in the discussion below. The strategy α tries to

establish and preserve a difference between ΘΦA1 ,B1 and C1. At the same time it

builds an operator ∆, so that if no diagonalization is possible then ∆ΦA1
= G1.

The strategy will have three possible outcomes: f <L i <L w. The outcome

f will signify that the strategy was successful in diagonalizing ΘΦA1 ,B1 against
C1. In order to preserve this diagonalization at further stages, the strategy will
need to preserve some initial segment of A1 and B1. The preservation of B1 can
be achieved through initialization of lower priority strategies and the general rule
that every time a strategy restarts its work, it deals with fresh numbers. The
preservation of an initial segment of A1 is more difficult, as changes in X, that
are out of our control, result in changes in G1 (done by the Ω-strategy or by the
Q-strategies), and therefore changes in A1. In order to preserve A1, the strategy
will have to set things up as follows.

When α is first visited after initialization it only records the stage in a parameter
s0 and set a request to the Ω-strategy to preserve G1 � rα, where rα = ω(s0). Every
time this restraint is violated, the strategy α will be initialized and will start its work
from the beginning. Assuming that X is ∆0

2, and that higher priority R-strategies
are not initialized infinitely often and stop raising their restraints, eventually Ω
will start respecting α’s restraints and α will not be initialized for this reason any
longer.

This setup allows α to assume that the use in the Ω-computation of s0, denoted
by ω(s0), is fixed and Gi � ω(s0), and hence A1 � ω(s0), do not change at further
stages. The strategy α will be designed so that it does not change the sets B1 or
C1 on numbers less than s0. This will be important to ensure the uniform lowness
of all parameters Bi and Ci. The strategy also selects a threshold dα as the least
number which is greater than ω(s0) and not in G2: ω(s0) + 1. Note that by the
way that we select fresh numbers, dα is not an ω-marker and is smaller than the
ω-marker of s0 + 1. Now α can preserve an initial segment of G1 and of A1 by
enumerating the threshold dα in G2. This threshold will be essential in the proof
of the correctness of the Γ1-strategy.

Next α inspects the greatest common initial segment of ΘΦA1 ,B1 and C1. Its
length is called the length of agreement. It compares this length with the greatest
one observed at a previous true stage, i.e. stage at which the strategy is visited and

activated. If the length of agreement is bounded then ΘΦA1 ,B1 6= C1. So, while the

14 SLAMAN AND SOSKOVA

current length of agreement is smaller than any of the previous ones the strategy
has outcome w.

If the length of agreement has grown, we say that the stage is expansionary. At
expansionary stages the strategy first searches for a possibility for diagonalization,
and if none is found progresses on the construction of ∆. As these actions will be
related we start by explaining the method by which α constructs the operator ∆.
The strategy is equipped with an infinite computable set C of natural numbers,
called the list of chits1. The chits for different strategies are disjoint. The chits
are used to define computations in ∆. Whenever we want to define a new value

for ∆ΦA1
(n) we first assign a new chit c(n) /∈ C1 to the number n, wait until we

see that ΘΦA1 ,B1(c(n)) is defined and then use the same initial segment of ΦA1

to define ∆ΦA1
(n). So for every computation in ∆, we have that if ∆τΦ(n) ↓ then

there is some chit c(n) and some finite binary string τB such that ΘτΦ,τB (c(n)) ↓= 0.
We will say that the computation of ∆(n) is defined via the triple (c(n), τΦ, τB). If

∆ΦA1
(n) is defined and is not equal to G1(n), then we can diagonalize by preserving

G1 and A1, ensuring τB ⊆ B1 and enumerating c(n) into C1.
In order to use this plan for diagonalization, we need to ensure that it is not

in conflict with the strategy Γ1, the strategy that is trying to prove that C1 is
computable from G1⊕B1 via Γ1. For this reason the construction will be designed
so that every computation for c(n) in Γ1 which has B1-use smaller than |τB | assumes
the same value of G1(n), namely ∆τΦ(n). This is where the marker g1(c(n)) will be
used. When a new chit is assigned to n, it is selected to be a number that Γ1 has
not yet been defined on and its marker g1(c(n)) is set to be larger than n. If G1(n)
changes before this chit is used to define a computation in ∆, we will cancel it and
pick a new chit for n. Thus when we diagonalize via a chit c(n), the computations
in Γ1, defined before c(n) is used to define ∆, are invalid on account of G1. Any
remaining valid computations in Γ1 for c(n) can be invalidated with a change in
B1 above the initial segment that needs to be preserved. This second change will
be at a number that we denote as bc(n).

A final point to take into consideration is the impact of higher priority strategies.
If a higher priorityR1 strategy α′ acts to diagonalize and changes the approximation
to B1, this might not take into account the fact that a lower priority strategy α
is counting on some bc ∈ B1 for a chit c that it used to diagonalize. To remedy
this we will maintain that B1(bc) = C1(c), i.e. α′ will be responsible to change the
value at C1(c) if necessary to keep the Γ-computations correct.

The actions of α at an expansionary stage are therefore as follows: First it

examines the definition of ∆α, searching for a number n with ∆ΦA1
(n) 6= G1(n). If

it finds such a number then it uses the chit c(n) to diagonalize and sends a request
to the Ω-strategy rα, asking that G1 � rα is preserved at further stages. The
strategy has outcome f , until (if ever) it is injured by a higher priority strategy. If
no such number is found, the strategy considers all numbers less than the current
stage, defines chits for them and if possible new values for the ∆. In this case it
has outcome i.

The Q-strategies. Let β be a Q-strategy working on the requirement Qe. We
drop the index e in the discussion below. The strategy β will have one outcome f .

1The word “chit” is borrowed from [2]. Another commonly used term for similar concepts is
“agitator”.

THE ∆0
2 TURING DEGREES 15

The strategy will cancel all lower priority strategies if it acts. In order to diagonalize
the strategy will try to build a Turing functional Ξ such that ΞX = Y . As Y �T X
we know that this attempt will fail.

Just like the R-strategies, β records the first stage it is visited after initialization
in a parameter s0. It then waits until a stage s1, such that Ω has correctly defined
its functional on numbers x < s0. This will allow the Ω-strategy sufficient room
to ensure its functional is total. At stage s1 the strategy starts its real work. It
monitors the length of agreement between ΨG1,G2 and Y . At expansionary stages
it translates the computation of ΨG1,G2(n) into a computation ΞX(n) by using an
initial segment of X that is long enough, as to ensure that if X does not change
on this initial segment, then neither will G1 or G2. The idea is to argue that if
the length of agreement between ΨG1,G2 and Y is unbounded then, so is the length
of agreement between ΞX and Y . But since X is low as witnessed by the given
approximation, this would mean that ΞX = Y , contradicting Y �T X. Thus the
length of agreement will eventually remain bounded and the impact of this strategy
on the whole construction would be finitary.

As X is ∆0
2 we are faced with the following difficulty: a computation ΞX(n) can

be invalidated via a change in X. This results in a change in G1⊕G2 and possibly
a new computation in ΨG1,G2(n). Later on X can revert to its old state, breaking
the connection between computations in Ψ and Ξ. To restore this connection, we
must change G1 and G2 back to their old state as well.

The strategy keeps a list P of promises. A promise has the form 〈τX , τG〉 and
means that we promise: if τX � X then τG � G1 ⊕ G2. During any visit (after
stage s1) the first action of the strategy is to ensure that all promises are kept
by changing the approximation to G1 ⊕ G2 according to the promise list and the
current approximation to the set X.

Next β examines the length of agreement between ΨG1,G2 and Y . If the stage is
not expansionary, it does nothing further. If the stage is expansionary, the strategy
defines Ξ on all elements x below the length of agreement, adding new entries to
the list of promises.

If X and Y are not as expected. We take a moment to consider happens with the
construction if {X[s]}s<ω is not a low ∆0

2 approximation to a set X, or if {Y [s]}s<ω
is not a ∆0

2 approximation to a set Y �T X. The danger that this situation poses
to our construction is that some Q-strategy may act infinitely often, or that the
approximation to {X[s]}s<ω changes infinitely often at a particular number n.
The effect of this will be that all but finitely many R-strategies are initialized
infinitely often. This means that their parameter s0 will grow unboundedly and
such strategies will only be allowed modify the sets Bi and Ci on larger and larger
numbers. This scenario will not interfere with the requirement that the degrees of
Bi and Ci belong to a uniformly low set.

6.2. Construction. We combine the ideas described above in a formal construc-
tion. We have global strategies : Λ0,Λ1, Γ0, Γ1 and Ω and a tree T � {f, i, w}<ω
of R and Q strategies. Every strategy α in the tree T is given higher priority than
all its successors and all nodes to the right of it in T .

To every strategy we attach parameters as follows:

(1) Λi and Ω have one parameter each: the functional that they are building.
They also assign markers λi(n) and ω(n) for all natural numbers n.

16 SLAMAN AND SOSKOVA

(2) Γi, in addition to its functional, assigns two types of markers to all numbers
n: gi(n) tells us how much of Gi to use in a computation for n and γi(n)
tells us how much of Bi to use in a computation for n.

(3) An Rie-strategy α has the following parameters: s0(α), the stage when α
started work after being initialized; rα the restraint that it requests of the
Ω-strategy; a threshold dα, used to ensure that Gi and Ai can be restrained;
a functional ∆α; numbers l−α and lα recording the development of length of

agreement between Θ
ΦA1
e ,B1

e and Ci; a list of chits Cα; and a request to the
Ω-strategy rα, asking for no more changes in G1 on numbers y < rα. In
addition the strategy will dynamically assign chits c(n) to natural numbers
n and record the stage at which this happened in sc(n). If c(n) is ever
enumerated in Ci, we attach to it one of its Γi-markers bc(n). When α is
initialized all parameters become undefined.

(4) A Qe strategy β has the following parameters: s0(β), the stage when β
started work after being initialized; s1(β) the stage after the last time β
is restarted; a list of promises Pβ ; a functional Ξβ ; numbers l−β and lβ ,

recording the development of the length of agreement between ΨG1,G2
e and

Y . When β is initialized all parameters become undefined. When β is
restarted all parameters except s0(β) become undefined.

Construction:
At stage 0 we initialize all strategies and set Ai = Bi = Ci = Gi = ∅. At stage

s ≥ 0 all parameters inherit their values from the previous stage unless they are
explicitly modified during stage s. We start stage s by visiting the global strategies:

Step I: Ω: Scan all x < s.

(1) If ΩG1,G2(x) ↑ then let ω(x) be a fresh number and set ΩG1,G2(x) = X(x)
with use (G1 � ω(x))⊕ (G2 � ω(x)) and move to x+ 1. Otherwise go to 2.

(2) If ΩG1,G2(x) ↓6= X(x) then α be the highest priority strategy such that
rα > ω(x). If α is an Rie strategy then enumerate ω(x) in G1−i and
enumerate λ1−i(ω(x)) in A1−i. Initialize all α-strategies whose requests
are not kept. Go to step 1.

Step II: Λi: Scan all elements n < s. If ΛAii (n) ↑ then let λi(n) be a fresh number

and define ΛAii (n) = Gi(n) with use Ai � λi(n).

Step III: Γi: Scan all c < s. If ΓBi,Gii (c) ↑ then first check if any of the following
is true: γi(c) ↑; there is a number d ≤ c such C1(d)[s − 1] 6= C1(d)[s]; there is a
number n < gi(c), such that Gi(n)[s] 6= Gi(n)[s]. If so, then let γi(c) be a fresh

number. Otherwise do not change the value of γi(c). Set ΓBi,Gii (c) = Ci(c) with
use (Bi � γi(c), Gi � gi(c)). If gi(s) ↑, set gi(s) = 0.

Step IV: Construction of δ: We construct a finite path δ[s] in T . The path δ[s] is
defined inductively. We set δ[s] � 0 = ∅. Once we have constructed δ[s] � k, we check
if k = s or if the strategy δ[s] � k ends the current stage. If so, then δ[s] = δ[s] � k.
Otherwise the strategy produces an outcome o, and δ[s] � k + 1 = (δ[s] � k)̂ o. We
have two cases depending on the type of the strategy δ[s] � k:

Case Rie: Suppose that δ[s] � k is an R1
e-strategy α. Let s− be the previous stage

at which α was visited and o− be the outcome that α had at stage s−. (If α has

THE ∆0
2 TURING DEGREES 17

never been visited, or if α was just initialized then s− = 0 and o− = w). Pick the
first case which applies to α:

(1) If s0(α) is not defined then set s0(α) = s. End this stage.
(2) If rα is not defined then set rα = ω(s0(α)) and dα = ω(s0(α)) + 1. Set
Cα = {〈α̂, n〉 | n > s} where α̂ is the code of α in some fixed computable
coding of all nodes on the tree of strategies. End this stage.

(3) If o− = f then let the outcome be f .
(4) Let l−α be the greatest element of the set {0} ∪ {lα[t] | s1(α) ≤ t <

s and t is an α true stage} and lα be the maximal common initial segment

of Θ
ΦA1
e ,B1

e [s] and C1[s]. We assume that if ΘΦA1 ,B1(n)[s] ↓ then n < s,

θ(n) < s and for all m < n ΘΦA1 ,B1(m)[s] ↓. If l−α ≥ lα then let the
outcome be w.

(5) If there is an element n, such that ∆
ΦA1
e

α (n) ↓6= G1(n) then pick the least

such n. Let ∆
ΦA1
e

α (n) ↓ via the triple (c, τΦ, τB). Enumerate c in C1 and
make τB � B1, by changing the approximation to B1. Let bc be the least
marker γ1(c) that is larger than |τB |. Enumerate bc in B1. Note, that
in addition to bc we will only change B1 on numbers that lower priority
strategies have used for their own chits. For every number n such that
s0(α) < n < |τB | if n = bc′ for some chit c′ > s0(α) (belonging to a
different strategy), then set C1(c′) = B1(bc′). (This will ensure that ΓG1,B1

and C1 agree on c′). Enumerate dα in G2 and λ2(dα) in A2. Initialize all
lower priority strategies and let the outcome be f .

(6) Scan all n ≤ s and perform the following actions for each n:

If c(n) ↑ or if G1(n)[s] 6= G1(n)[t] at some stage t ≥ sc(n) then let c(n)
be a fresh number in Cα (one which Γ1 has not yet interacted with) and
set g1(c(n)) = n + 1 and sc(n) = s. If ∆Φe

α (n) ↑ and c(n) < lα then let

τΦ = ΦA1
e � θ(c(n)) and τB = B1 � θ(c(n)). Define ∆Φe

α (n) = G1(n) with
use τΦ and say that this computation is defined via the triple (c(n), τΦ, τB).

Once all elements are scanned α ends with outcome i.

If δ[s] � k is anR2
e-strategy, the instructions are the same as above withG1, A1, B1, C1

swapped with G2, A2, B2, C2.

Case Qe: Suppose that δ[s] � k is a Qe-strategy β. Pick the first case which applies
to β:

(1) If s0(β) is not defined then set s0(β) = s. End this stage.
(2) If s1(β) is not defined then set s1(β) = s. End this stage.
(3) If X � s0(β) changed at a stage t such that s0(β) < t ≤ s then restart β.

End this stage.
(4) If there is a promise 〈τX , τG〉 ∈ Pβ which is not currently kept: τX � X and

τG � (G1⊕G2), then change the value of (G1⊕G2) to make τG � G1⊕G2

(enumerate the corresponding Λ-uses in A1 or A2). End this stage.
(5) Let l−β be max({0} ∪ {lβ [t] | s1(β) ≤ t < s and t is β-true}) and lβ be the

maximal common initial segment of ΨG1,G2

β [s] and Y [s]. Here we similarly

assume that if ΨG1,G2

β (x)[s] ↓ then x < s, ψ(x) < s and for all y < x

ΨG1,G2

β (y)[s] ↓. If lβ > l−β then scan all elements x < lβ and perform the
following actions for each:

18 SLAMAN AND SOSKOVA

If ΞX(x) ↑ then we define it as Y (x) with use X � ξ(x), where ξ(x) > ψ(x) is
a fresh number. Enumerate in Pβ the promise 〈X � ξ(x), (G1⊕G2) � ψ(x)〉.
End this stage.

(6) If none of the above cases hold, β has outcome f .

We end a stage s by canceling all strategies of lower priority than δ[s] and proceed
to stage s+ 1.

End of construction

6.3. Uniformly low parameters. We have described the construction given a
particular pair of approximations {X[s]}s<ω and {Y [s]}s<ω. Note that the con-
struction can be viewed as a function K which takes as input the stage s and
outputs Ai[s + 1], Bi[s + 1], Ci[s + 1], Gi[s + 1] and the stage-s + 1-values of all
parameters for all strategies. Even if the given sequences of sets {X[s]}s<ω and
{Y [s]}s<ω do not have the expected properties, the function K is well defined. We
combine all of these constructions together with the additional requirement that the
obtained sequence consisting of all possible constructed sets Bi and Ci is uniformly
low.

For every j = 〈jx, jy〉 let {Xj [s]} = {jx}∅
′
[s] and {Yj [s]} = {jy}∅

′
[s]. We will

denote the construction relative to {Xj [s]} = {jx}∅
′
[s] and {Yj [s]} = {jy}∅

′
[s] as

Kj . We would like to ensure that in addition Z =
⊕

j<ω Bj,1 ⊕ Bj,2 ⊕ Cj,1 ⊕ Cj,2
is low.

Let {Υi} be a listing of all Turing functionals. For every e = 〈i, x〉 we will have
the requirement Le: if there are infinitely many stages s such that ΥZ

i (x)[s] ↓ then
ΥZ
i (x) ↓.
The requirement Le is in conflict with R-strategies from the construction Kj , as

these strategies modify the sets that the requirement wishes to preserve. Le will be
given higher priority than any strategy α in Kj where j ≥ e. Whenever Le injures
these strategies, it will initialize them. In addition at stage s, it will have higher
priority than R-strategies α in Kj with j < e, such that the parameter s0(α) is
currently larger than e. Whenever Le injures these strategies, it will only restart
them. This means that they will keep the value of the parameter s0, and hence
their priority with respect to other L-requirements, but restart their work from the
beginning and so preserve whatever computation Le would like them to.

If Xj and Yj are not as expected then R-strategies in Kj can be initialized
infinitely often, giving more and more L-strategies higher priority. If Xj and Yj are
as expected then there will be an infinite branch in the tree Tj , the true path, such
that R-strategies along it can be initialized only finitely many times and restarted
only finitely many times. We will show that they will ultimately succeed.

Construction:

We will say that Le requires attention at stage s if Le is not satisfied at stage s
and ΥZ

i [s](x) ↓. Initially all requirements Le are not satisfied.
At stage s check if there is a requirement Le with e < s which requires attention

at stage s and if there is, pick the least one. For all j < e restart all R-strategies
α in the tree Tj which currently have s0(α) ≥ e. When a strategy α is restarted all
parameters except s0(α) become undefined. For all j ≥ e initialize all strategies in
Tj . Announce that Le is satisfied.

THE ∆0
2 TURING DEGREES 19

Run the constructions Kj for all j < s. Let Z[s+ 1] =
⊕

j Bj,1 ⊕ Bj,2 ⊕ Cj,1 ⊕
Cj,2[s + 1]. If Le is a strategy that was satisfied, e = 〈i, x〉 and ΥZ

i (x) ↑ or the
computation ΥZ

i (x) has changed since the previous stage then announce that Le is
not satisfied.

End of Construction

6.4. Verification.

Lemma 6.1. If an R-strategy α modifies the approximation to Bi or Ci it is on a
number larger than the stage at which α was last restarted.

Proof. After a strategy is restarted and before it starts its work, it goes through
Case (2) in the construction, redefining its list of chits to all be larger than the
current stage and initializing all lower priority strategies. When in Case (5) it
modifies the construction of Bi it is to make some binary string τB that was an
initial segment of Bi after the restart, once again an initial segment of Bi. Higher
priority strategies cannot have caused τB to not be an initial segment of B, as
that would initialize this strategy. So a difference can only be caused by be lower
priority strategies, that are enumerating markers b′c for their own chits c′. These
are defined after the stage of the restart and hence are larger than the stage of the
restart. �

Lemma 6.2. For every e, Le is satisfied and requires attention finitely often.

Proof. Fix e = 〈i, x〉. Assume that the statement is true for e′ < e. For every j < e
there are finitely many pairs of (s0(αj), αj) such that αj is an R-strategy in Kj
with s0(αj)[s] < e at some stage s. For each such pair the strategy αj can change
the approximation to Bj,i and Cj,i only once on numbers greater than s0(α) when
it performs an attack under Case (6). In order for it to perform a new attack it
must be restarted by a higher priority L-strategy or initialized. By the induction
hypothesis there will be a stage after which these strategies are not restarted as
strategies Le′ of higher priority do not require attention. If a strategy α is initialized
then it will have a different larger value of the parameter s0(α) and so this too can
happen only finitely often before this value becomes larger than e. Suppose that
s is a stage after all of these finitely many strategies have stopped changing the
approximation to Bj,i and Cj,i and after all Le′ where e′ < e have stopped requiring
attention. If at all t ≥ s we have ΥZ

i [t] ↑ then Le is satisfied and does not require
attention after stage s.

If at stage t ≥ s we see that ΥZ
i [t] ↓ then we restart all strategies with s0(α) ≥ e

in Tj , where j < e and all strategies in Tj for j ≥ e. These strategies are activated
again after stage t and by Lemma 6.1 can only change the approximation to Z on
numbers larger than t. Thus the computation ΥZ

i (x)[t] is preserved at all further
stages and Le does not require attention at any further stage. �

Let K be the construction relative to a low ∆0
2 approximation to a set X and

a ∆0
2 approximation to a set Y �T X. We prove that the construction K satisfies

all requirements in a series of lemmas. We start with a technical lemma that deals
with Q-strategies and their promises. Once we have established this lemma, we
can show that the requirements Λi are satisfied and assuming that there is a true
path that Qe requirements are satisfied. Next we establish a technical fact about

20 SLAMAN AND SOSKOVA

R-strategies, which in turn will allow us to prove that R-strategies on the true path
satisfy their requirements. We combine these statements to establish the true path
and to show that Ω is successful. Finally we show that the Γi strategies succeed as
well.

Lemma 6.3. Suppose that β is a Qe-strategy, visited at stage s.

(1) The promises that β makes are consistent: i.e. if 〈τX , τG〉, 〈τ ′X , τ ′G〉 ∈ Pβ [s]
and τX � τ ′X then τG and τ ′G are compatible.

(2) For every promise 〈τX , τG〉 ∈ Pβ [s] we have that X[s] � s0(β) � τX and
(G1 ⊕G2)[s] � ω(s0(β)) is compatible with τG.

(3) If β at stage s changes the value of G1 ⊕ G2 on a number o then o is the
use in some Ω-computation and not a threshold.

(4) Suppose that 〈τX , τG〉 ∈ Pβ [s′]∩Pβ [s], where s′ < s. If β keeps this promise
stage s′ and (X � |τX |)[s′] = (X � |τX |)[t] for all t ∈ [s′, s] then for all
t ∈ [s′, s] we have τG � (G1 ⊕G2)[t].

Proof. (1): We always first ensure that all previous promises are kept before we
make new promises. If 〈τX , τG〉, 〈τ ′X , τ ′G〉 ∈ Pβ and τX � τ ′X then 〈τX , τG〉 was
made at stage s0 before the promise 〈τ ′X , τ ′G〉 was made at stage s′. As τX and
τ ′X are compatible, it follows that τG � (G1 ⊕ G2)[s2]: either s0 = s′ or s0 < s′

and Case (4) does not apply to β at stage s′ i.e. all promises are kept. As τ ′G is
also selected as an initial segment of (G1 ⊕ G2)[s′], it follows that τG and τ ′G are
compatible.

(2): Suppose 〈τX , τG〉 ∈ Pβ [s] is a promise made at stage s′. Then at stages
t ∈ [s′, s] the strategy β was not initialized or restarted or else Pβ [s′] would be
cancelled. Hence X[s′] � s0(β) = X[s] � s0(β) and (G1 ⊕ G2)[s′] � ω(s0(β)) =
(G1 ⊕ G2)[s] � ω(s0(β)). As τX is selected as an initial segment of X[s′] of length
larger than s0(β) and τG is selected as an initial segment of (G1 ⊕ G2)[s′], the
statement follows.

(3): Suppose that at stage s the strategy β changes the value of G1⊕G2 at a number
o. Then o is part of a promise made by β at some previous stage s′ < s and β is not
initialized at stages in the interval [s′, s]. We have that o < s′ and there is a least
intermediate stage t: s′ < t ≤ s at which the value of G1 ⊕G2 is changed at o by
a strategy γ. Strategies that change G1 or G2 are Ω, R-strategies or Q-strategies.
As β is not initialized at stage t, γ cannot be a higher priority Q- or R-strategy.
All lower priority strategies are initialized at stage s′ and hence do not change G1

or G2 on elements less than s′ at further stages. This follows by construction for
R-strategies and by the previous statement in this Lemma for Q-strategies. This
leaves Ω as the only possibility and so o is the use in some Ω-computation.

(4): Finally let 〈τX , τG〉 ∈ Pβ [s′]∩Pβ [s], where s′ < s and suppose that this promise
was made at stage s0 ≤ s′. At stage s0 we know that ΩτG is an initial segment of
X[s0] and by our choice of uses for Ξ-computations (as fresh numbers) it follows
that ΩτG � τX . At stage s′ we keep this promise, hence ΩτG � τX � X[s′]. By the
previous part of this Lemma it follows that only the Ω-strategy can initiate a series
of changes in G1 ⊕ G2 at a promised number at a stage t ∈ (s′, s]. It will do so
only if ΩτG � X[t]. But since by assumption (X � |τX |)[t] = (X � |τX |)[s′] = τX it
follows that τG remains an initial segment of (G1⊕G2) at all stages in the interval
[s′, s]. �

THE ∆0
2 TURING DEGREES 21

Corollary 6.4. Gi is ∆0
2 and ΛAii = Gi.

Proof. Fix a number n in Gi. The value of Gi(n) changes at most once if n is
a threshold for an R strategy. If n is an ω marker o(x) then by Lemma 6.3 the
number of times thatGi(n) can change is bounded by the number of timesX � x can

change. This gives us that Gi is ∆0
2. Assume inductively that ΛAii (m) ↓= Gi(m)

for m < n. Every time Gi(n) changes the previous Λi-computation is invalidated
forever as the use λi(n) is enumerated in Ai. Let s be a stage such that Gi � n does
not change at further stages. Then λi(n) does not change at further stages and so
Λi(n) ↓= Gi(n). �

Lemma 6.5. Let β be a Qe-strategy which is not initialized after stage s0 and
visited infinitely often. Then Qe is satisfied and there is a stage sβ after which β
does not end stages at which it is visited.

Proof. After stage s0 the strategy β has a fixed parameter s0(β). As X is ∆0
2 there

will be a least stage s1 ≥ s0 after which X � s0(β) does not change. At the next
β-true stage after s1 the parameter s1(β) attains its final value. After stage s1(β)
Cases (1), (2) and (3) do not apply for β.

Suppose that there are infinitely many β-true expansionary stages, i.e. stages at
which Case (5) applies to β. We show that ΞX = Y , contradicting our choice of X
and Y . Fix a natural number x. Let sx > s1(β) be the β-true stage when ΞX(x)
is first defined. We will show that at every expansionary stage t ≥ sx we have that
ΞX(x)[t] ↓= Y (x)[t]. At stage sx this is true by construction. Suppose that it is true
at all β-true expansionary stage sx < t < s and consider s. If at stage s, ΞX(x) ↑
then we define it to be equal to Y (x)[s]. Suppose that ΞX(x)[s] ↓. Then this
computation was defined at a previous expansionary stage t, such that sx ≤ t < s
using the computation ΨG1,G2

e (x)[t]. At stage t the promise 〈X � ξ(x)[t], (G1⊕G2) �
ψe(x)[t]〉 was made. At stage s the construction ensures that all promises are kept.
As (X � ξ(x))[t] � X[s], it follows that (G1 ⊕G2) � ψe(x)[t] � G1 ⊕G2[s]. Hence:

ΞX(x)[s] = ΞX(x)[t] = ΨG1,G2
e (x)[t] = ΨG1,G2

e (x)[s] = Y (x)[s].

By our choice of low approximation to X and the fact that Y is ∆0
2 it follows that

ΞX(x) ↓= Y (x).
We have shown that there can be only finitely many expansionary stages. Let

se be the last β-true expansionary stage. Then for every stage t > se the set of
promises does not change: Pβ [t] = Pβ [se] and the value of l−β does not change:

l−β [t] = lβ [se]. Denote these final values by Pβ and l−β respectively. Let n be the

length of the largest τX in a promise 〈τX , τG〉 ∈ Pβ . Let sX be the least stage
after se such that X � n does not change after stage sX . There are finitely many
promises 〈τX , τG〉 ∈ Pβ with τX � X. By part (1) of Lemma 6.3 they are all
compatible. Suppose that at stage s ≥ sX the strategy β keeps a promise 〈τX , τG〉
by passing through Case (4). By part (4) of Lemma 6.3 it follows this promise is
kept at all further stages. Thus after finitely many passes through Case (4) all of
these promises are kept forever. Let sβ ≥ se be the least stage such that Case (4)
does not apply to β at any further stage. Then at stages t > sβ , the strategy β
always ends in Case (6), it does not end stages prematurely. Furthermore, at all
stages t > sβ we have that the length of agreement between ΨG1,G2

e [t] and Y [t] is
bounded by l−β . It follows that ΨG1,G2 6= Y ; the requirement Qe is satisfied. �

22 SLAMAN AND SOSKOVA

Lemma 6.6. Let α be an Rie-strategy visited at stage s and suppose that α diago-
nalizes via Case (6) at stage s. Then Gi(n)[t] = Gi(n)[s] for all n ∈ [dα, s] and all
t ≥ s.

Proof. Without loss of generality we assume that i = 1. The strategy α selects its
threshold dα at stage s1 < s as (ω(s0(α)) + 1)[s1]. The strategy is not initialized
until at stage s it enumerates dα in G2. First we show that dα remains in G2

at all further stages. By construction when an R-strategy selects the value of its
parameter s0 it ends the stage. Thus α is the unique strategy whose threshold is
selected relative to the use of s0. Note that dα is not the use in any Ω-computation.
Thus by Proposition 6.3 no Q-strategy can extract dα from G2 at any further stage.

Let n ∈ [dα, s] be a number and towards a contradiction assume that G1(n)[t] 6=
G1(n)[s], where t > s. The possible roles of n are - a threshold for an R-strategy
α′, an ω-use and a member of a promise in a Q-strategy β. We rule these out in
turn: If n is a threshold for α′ then it is selected at a stage in the interval [s1, s].
As α is not initialized until stage s, α′ cannot be of higher priority. If α′ is of lower
priority than α then it is initialized at stage s, its threshold is canceled and hence
α′ cannot change the value of G1 at dα. If n is the ω-use of some computation in Ω
then this computation is defined in the interval [s1, s] and hence must involve the
fact that G2(dα) = 0 at these stages. After stage s this computation is invalid as
dα ∈ G2 and hence Ω will never need to change the value of G1(n). Finally suppose
that β changes the approximation to G1(n) after stage s, due to a promise 〈τX , τG〉
with τG(2n) 6= G1(n)[s]. Assume that β is the first Q-strategy to do so. Consider
the stage t0 when β made this promise. It must be that t0 > s0(α)[s1] as n ≥ dα.
At this stage β observed that G1(n) has a different value, i.e. G1(n)[t0] 6= G1(n)[s]
and this is not due to β’s action. As we have already ruled out any other reason for
such a change at stages greater than s, it follows that t0 ≤ s. Whenever β makes a
new promise, it ends the stage thereby initializing all lower priority strategies, thus
β cannot be of higher priority than α. But then β is initialized at stage s and its
list of promises is emptied. �

Lemma 6.7. Let α be an Rie-strategy which is not initialized after stage s0 and
visited infinitely often. Then Rie is satisfied and there is a stage sα after which α
does not end stages at which it is visited.

Proof. Again for concreteness we will assume that i = 1. After stage s0 the param-
eter s0(α) does not change and higher priority R- and Q-strategies do not make
any further changes to any of the global parameters: Ai, Ci, Bi, and Gi. There will
be a stage s1 such that strategies Li where i < s0(α) do not require attention and α
will not be restarted any longer. The parameters rα, Cα, and dα = ω(s0(α))[s1]+1
attain their final values and the Ω-strategy preserves α’s restraint rα, so G1 � dα−1
and hence A1 � dα do not change at any further stage. Similarly Bi � s0(α) and
Ci � s0(α) do not change at any further stage. After stage s1 Cases (1) and (2) do
not apply for α.

Suppose that Case (3) applies for α at a least stage s2. Then at all further
stages t ≥ s2 α ends with outcome f and does not initialize lower priority strategies.
Consider the α-true stage before s2, call it s. At stage s Case (5) applies to α. There

is an element n such that ∆
ΦA1
e

α (n) ↓ via the triple (c, τΦ, τB). This computation was
observed at a previous stage s′, such that s0(α) < s′ < s and so B1[s] � s0(α) � τB .
At stage s α changes the value of B1 on numbers larger than s0(α) to ensure that

THE ∆0
2 TURING DEGREES 23

τB � B1[s]. Thus Θ
ΦA1
e ,B1

e (c) ↓= 0. By Lemma 6.6 G1 � s and hence A1 � s is
preserved at all further stages. At stage s we initialize all lower priority strategies,

so B1 � s is also preserved. Thus Θ
ΦA1
e ,B1

e (c)[s] is preserved at all further stages

and Θ
Φe(A1),B1
e 6= C1.

If Case (3) never applies for α after stage s1 then neither does Case (5). Hence
α does not end prematurely any true stage t > s1(α).

Suppose that there is a stage s4 such that at all α-true stages t > s4 Case (4)
applies for α. It follows that the value of l−α does not change after stage s4 and

hence at all t > s4 there is a number n < l−α such that (Θ
Φe(A1),B1
e (n))[t] ↑ or

(Θ
Φe(A1),B1
e (n))[t] ↓6= C1(n)[t]. Hence Θ

Φe(A1),B1
e is not total or not equal to C1

and R1
e is satisfied.

Finally suppose that at infinitely many α-true stages Case (6) applies. We will

show that if Θ
ΦA1
e ,B1

e is total then ∆
ΦA1
e

α is total and equal to G1. Fix a natural

number n. At every α-true expansionary stage s we have that if ∆ΦA1

α (n)[s] ↓
then ∆ΦA1

α (n)[s] = G1(n) or else Case (5) would apply. As G1 is ∆0
2 we can

fix a stage sn such that G1 � n does not change at any further stage. At the
least α-true expansionary stage after sn the final value of the chit c(n) will be

defined. As Θ
ΦA1
e ,B1

e (c(n)) ↓ there will be a stage sc ≥ sn such that the computation

Θ
ΦA1
e ,B1

e (c(n)) does not change. If at any stage t > sc the computation ∆
ΦA1
e

α (n)
becomes undefined then it will be redefined using the correct computation for c(n)

and hence will not become undefined at further stages. Thus ∆
ΦA1
e

α = G1. �

From Lemma 6.2, Lemma 6.5 and Lemma 6.7 we get immediately the True Path
Lemma.

Corollary 6.8. There is an infinite path f in the tree such that for every n, f � n is
visited infinitely often and initialized only finitely often. All R and Q requirements
are satisfied.

Proof. Assume that Le-strategies with index e that is smaller than the index of
this particular construction do not require attention after stage s0. The proof is by
induction on n. Suppose that f � n is visited infinitely often and initialized only
finitely often. Let o be the true outcome of the strategy f � n, i.e. the leftmost
outcome visited at infinitely many stages and let f � (n + 1) = (f � n)̂ o. The
strategy f � (n + 1) can be initialized at stages s > s0 such that δ[s] is of higher
priority. As R and Q strategies of higher priority along f end finitely many stages
prematurely and are not initialized, there will be a stage after which f � (n+ 1) is
also not initialized for this reason. The only other possibility is that f � (n+1) = α
is anR-strategy and is initialized by the Ω-strategy, because the Ω-strategy violated
α’s restraint. By the induction hypothesis higher priority R-strategies are either
not visited or do not define new restraints, so let r be the largest restraint requested
by a higher priority strategy than α. As G1 and G2 are ∆0

2 by Corollary 6.4, it
follows that Ω will stop modifying either set on numbers less than r after a certain
stage s > s0. From then on at stages t > s the strategy α will be the highest
priority strategy whose restraint can possibly be violated by Ω and Ω will always
choose to respect it. �

Lemma 6.9. ΩG1,G2(n) = X(n).

24 SLAMAN AND SOSKOVA

Proof. At every stage s the Ω strategy ensures that for every n < s, ΩG1,G2(n)[s] ↓=
X(n)[s]. We need to show that Ω is total. Fix a natural number n. Consider f � n
and let s0 = s0(f � n) be such that f � n is not initialized after s0 and let s1 be
the stage such that f � n is not restarted after s1. It follows from Lemma 6.5 and
Lemma 6.7 that these stages exist and that (G1 ⊕G2)[s1] � ω(s0) does not change
after stage s1. Hence ΩG1,G2(n) ↓. �

Lemma 6.10. ΓBi,Gii = Ci

Proof. Let c be a natural number. Suppose that c is enumerated in Ci at stage
s by a strategy α. Then c is a chit for a number n and α attacks in relation
to a computation defined using (c, τΦ, τB). At stage s the strategy α defines the
value of bc. By the way that chits are assigned to numbers it follows that every Γi-
computation defined for c until stage s either uses the fact that Gi(n) = 1−Gi(n)[s]
or uses the fact that B1(bc) = 0. By Lemma 6.6 the value of Gi(n) is the same
at all stages t ≥ s hence computations of the first kind are never valid again.
At stage s α initializes all lower priority strategies and so they can never again
change the value of Bi(bc). From this point on we maintain that Bi(bc) = Ci(c).
There are finitely many strategies α′, the ones of higher priority than α, that can
change the value of Bi(bc) at a stage t > s and each can do this only once when it
diagonalizes under Case (6), given that it is not initialized in the interval [s, t]. It
follows that when such a strategy attacks the value of its parameter s0(α′) is smaller
than c. So if α′ changes the value of Bi(bc) then it also ensures Ci(c) = Bi(bc).
After all these finitely many strategies are done Bi(bc) and Ci(c) stop changing.

It follows that Bi and Ci are ∆0
2 and at all stages t > s if ΓBi,Gii (c)[t] ↓ then

ΓBi,Gii (c)[t] = Ci(c)[t] = Bi(bc)[t].

Suppose inductively that ΓBi,Cii (d) ↓= Ci(d) for all d < c. Suppose that s1 is a
stage such that:

(1) All computations for d < c have settled.
(2) Gi � gi(n) does not change at further stages.
(3) bc ↑ or Bi � bc does not change at further stages.
(4) Ci � c does not change at further stages.

Then at stages t > s the value of γi(c) does not change. Let s2 ≥ s1 be such

that B1 � γi(c) does not change at further stages. If ΓBi,Gii (c)[s2] ↓ and bc ↑ then
at all stages until s2 we have Ci(c) = 0, so every computation defined until s2 is

of the right value of Ci(n). If bc ↓ then by the discussion above ΓBi,Gii (c)[s2] =

Bi(bc)[s] = Ci(c)[s2]. If ΓBi,Gii (c)[s2] ↑ then we define it for the last time correctly
and it remains valid at all further stages. �

References

[1] R. G. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. Theory and

Applications of Computability. New York, NY: Springer. xxvi, 855 p., 2010.
[2] André Nies, Richard A. Shore, and Theodore A. Slaman. Definability in the recursively

enumerable degrees. Bull. Symbolic Logic, 2(4):392–404, 1996.
[3] Gerald Sacks. On the degrees less than 0′. Ann. of Math. (2), 77(2):211–231, 1963.

[4] Richard A. Shore. The theory of the degrees below 0′. J. London Math. Soc, 24:1–14, 1981.
[5] Richard A. Shore. Biinterpretability up to double jump in the degrees below 0′. Proc. Amer.

Math. Soc., 142(1):351–360, 2014.

[6] Stephen G. Simpson. First-order theory of the degrees of recursive unsolvability. Ann. of
Math. (2), 105(1):121–139, 1977.

THE ∆0
2 TURING DEGREES 25

[7] T. A. Slaman and W. H. Woodin. Definability in degree structures. preprint, available at

http://math.berkeley.edu/ slaman/talks/sw.pdf, 2005.

[8] Theodore A. Slaman and Mariya I. Soskova. The enumeration degrees: Local and global struc-
tural interactions. Accepted in Foundations of Mathematics. Essays for W. Hugh Woodin

on the occasion of his 60th Birthday, A. Caicedo, J. Cummings, P. Koellner and P. Larson,

editors, AMS Contemporary Mathematics.
[9] Theodore A. Slaman and W. Hugh Woodin. Definability in the Turing degrees. Illinois J.

Math., 30(2):320–334, 1986.

[10] L. Welch. A hierarchy of families of recursively enumerable degrees and a theorem on bound-
ing minimal pairs. PhD thesis, University of Illinois at Urbana-Champaign, 1981.

(Slaman) Department of Mathematics, University of California, Berkeley, Berkeley,

CA 94720-3840, USA
E-mail address, Slaman: slaman@math.berkeley.edu

(Soskova) Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier

Blvd., 1164 Sofia, Bulgaria
E-mail address, Soskova: msoskova@fmi.uni-sofia.bg

