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Abstract

This thesis discusses properties of the local structure of the enumeration degrees. We

begin with some historical background of the subject. We give motivation for investi-

gating the properties of the local structure of the enumeration degrees and discuss the

basic concepts and methods used throughout the thesis.

Chapter 2 presents evidence that the study of the structure of enumeration degrees

can provide a richer understanding of the structure of the Turing degrees. We prove that

there exists a Π0
1 enumeration degree which is the bottom of a cone within which the Π0

1

enumeration degrees cannot be cupped to 0′e. As a corollary we obtain a generalization

of Harrington’s non-splitting theorem for the ∆0
2 Turing degrees.

Chapters 3 and 4 are dedicated to the study of properties, specific to the properly

Σ0
2 enumeration degrees. In Chapter 3 we construct a properly Σ0

2 enumeration degree

above which there is no splitting of 0′e. Degrees with this property can be used to define

a filter in the local structure of the enumeration degrees that consists entirely of properly

Σ0
2 enumeration degrees and 0′e. In Chapter 4 we strengthen the result obtained by

Cooper, Li, Sorbi and Yang of the existence of a non-bounding enumeration degree

by constructing a 1-generic enumeration degree that does not bound a minimal pair.

Degrees with this property can be used to define an ideal consisting of properly Σ0
2

enumeration degrees and 0e.

Chapters 5 and 6 concern the cupping properties of ∆0
2 enumeration degrees and

the sub-classes of the ∆0
2 enumeration degrees related to the finite and ω- levels of

v
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the Ershov hierarchy. In Chapter 5 we complement a result by Cooper, Sorbi and Yi

by showing that every non-zero ∆0
2 enumeration degree can be cupped by a partial

low ∆0
2 enumeration degree. On the other hand we show that one cannot computably

list a sequence of degrees which contains a cupping partner for every ∆0
2 enumeration

degree. In Chapter 6 we concentrate on the smaller subclasses, where the situation

improves. We prove that every non-zero ω-c.e. enumeration degree can be cupped by

a 3-c.e. enumeration degree and as the 3-c.e. enumeration degrees are computably

enumerable this property constitutes a difference between the ∆0
2 enumeration degrees

and the ω-c.e. enumeration degrees. Furthermore we establish a structural difference

between the class of Π0
1 enumeration degrees and the 3-c.e. enumeration degrees by

proving that one cannot find a single Σ0
2 enumeration degree that cups every non-zero

3-c.e. enumeration degree to 0′e.

Finally in Chapter 7 we show that the structure of the 3-c.e. enumeration degrees is

far from trivial as there exists a Lachlan non-splitting pair with top a Π0
1 enumeration

degree and bottom a 3-c.e. enumeration degree.
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Chapter 1

Introduction

The goal of this thesis is to enrich our understanding of the local structure of the enu-

meration degrees. A goal set in isolation without proper justification of its benefits is

useless. We begin therefore with a some historical background to the subject Com-

putability Theory aiming to motivate the research that is described in the following

chapters. We will not be able to give a complete account of all significant achievements

in this subject, rather we will only point out the ones that have led us to the choice

of problems we investigate. For a fuller historical account of Computability Theory we

refer the reader to [ASF06], which is also our main source.

Computability Theory begins with a paper by Alan Turing [Tur36] in which he solves

the Entscheidungsproblem, one of the long standing problems, set by David Hilbert as

part of his program to formalize the foundations of mathematics. Among the many sig-

nificant concepts developed in this article is the notion of relativized computation with

oracle Turing machines, which allows us to compare the information content of sets.

Through this paper Turing attracts the attention of many distinguished mathemati-

cians, including Kleene and Post who proceed to lay the grounds of the subject Degree

Theory in a series of articles and books ([Kle36], [Kle43], [Pos44], [Pos48], [Kle52] and

[KP54]).

1
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One of the main topics in Degree Theory is the study of computably enumerable

degrees, as these represent unsolvable problems that arise from other fields of math-

ematics. The work done by Kleene and Post, complemented by the discovery of the

priority method by Muĉnik [Muc56] and independently by Friedberg [Fri57], influences

the direction in which computability theory develops and allures many young mathe-

maticians into this field. The priority method evolves from finite to infinite injury in

the works by Shoenfield [Sho61] and Sacks ([Sac63] and [Sac64]) becoming a powerful

tool in the local theory of the Turing degrees and disclosing many nice properties of

the structure of the computably enumerable degrees. These lead Shoenfield [Sho65]

to conjecture that the structure of the computably enumerable degrees as a partial

ordering is rather simple, reminiscent of that of the rational numbers.

This conjecture is quickly refuted through the work of Lachlan [Lac66] and Yates

[Yat66] who show independently that there are minimal pairs of computably enumer-

able degrees. In fact Lachlan brings the priority method to yet another level, the 0′′′

priority method, and proves some very surprising properties of computably enumer-

able degrees, among which appear the non-diamond theorem [Lac66], the existence of

a non-bounding degree [Lac79] and also the non-splitting theorem [Lac75], in which

he shows the existence of a pair of c.e. Turing degrees a < b such that b cannot be

split in the c.e. Turing degrees above a. In this article, also known as The Monster

Paper due to its extreme complexity, Lachlan introduces for the first time the use of

trees of strategies. Harrington [Har80] is later able to strengthen this result by proving

that the top degree can be taken to be 0′. The techniques that he uses to achieve this

enable him and Shelah [HS82] to prove that the theory of the c.e. Turing degrees is

undecidable. Finally Harrington and Slaman prove that the complexity of the theory

of computably enumerable degrees is as high as possible, as the theory of first order

arithmetic can be interpreted in it. These proofs remain unfortunately unpublished

and we refer the reader to Nies, Shore and Slaman [NSS98] for an even more general
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result on this topic.

Thus the structure of computably enumerable degrees, once assumed to be as simple

as that of the rational numbers, turns out to be one of the most complicated structures

studied in mathematics. Naturally computability theorists start to search for other

means of investigating the information content of sets of natural numbers. One example,

probably currently the most fashionable, is the reducibility of sets based on their ability

to recognize patterns as is done in Randomness, see [DH08], [Nie08] and [BLS08].

Another is the study of strong reducibilities, where one considers computations that

are restricted in a certain way. Representatives of this approach include truth-table

reducibility and the study of the computational complexity of sets, see [Odi89] and

[Odi99] for an extensive survey. Each new approach gives a little more insight about

the structure of the Turing degrees and suggests problems of its own. As an example

consider the famous P = NP? problem which arises from the study of polynomial time

reducibility.

The approach we have chosen is based on the enumeration reducibility between

sets. Enumeration reducibility is suggested by Friedberg and Rogers [FR59]. A formal

definition will be given in the next section, but for now it is enough to say that a set A is

enumeration reducible to a set B if given any enumeration of the set B we can effectively

obtain an enumeration of the set A. The sets A and B are enumeration equivalent if

each is enumeration reducible to the other. In contrast to Turing reducibility, where

the information used from the oracle is total, enumeration reducibility uses partial

information. Each operator that compares sets, enumeration reducible to each other,

is called an enumeration operator and is closely related to a computably enumerable

set. One might argue that this reducibility is more natural than Turing reducibility.

Cooper [Coo90] goes as far as to say:

“... enumeration reducibility is the fundamental, general concept of relative com-

putability in as much as the nature of the computable universe is intimately bound up
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with the set of enumeration operators.”

By identifying sets that are enumeration equivalent to each other we obtain a degree

structure, the structure of the enumeration degrees. It is an upper semi-lattice and

Cooper [Coo84] defines a jump operation for it. The local structure of the enumeration

degrees is the structure consisting of all degrees less than the jump of the least degree

0e. Cooper [Coo84] proves that the local structure of the enumeration degrees coincides

with the structure of all Σ0
2 enumeration degrees.

The main argument in defense of taking the approach of studying the structure of

the enumeration degrees is the fact that the Turing degrees can be embedded in the

enumeration degrees using an order theoretic embedding defined by Rogers [Rog68].

This embedding preserves the structure of the Turing degrees, including the order, the

least upper bound and the jump operator. Furthermore the computably enumerable

Turing degrees embed exactly onto the Π0
1 enumeration degrees. Both the local and

the global structures of the enumeration degrees can therefore be viewed as extensions

of the local and global structures of the Turing degrees respectively. We automatically

have a lot of information about the enumeration degrees by transferring results obtained

in the Turing degrees via Rogers’ embedding. On the other hand we may argue that

clarifying the properties of the larger structure may give us more information about

the smaller structure. In Chapter 2 we give substantial proof of the validity of this

argument. We prove that there is an incomplete Π0
1 enumeration degree a such that

the Π0
1 enumeration degrees above a are not cupped by the Σ0

2 enumeration degrees

above a. As an immediate corollary we obtain a generalization of Harrington’s non-

splitting theorem, namely that there is a computably enumerable incomplete Turing

degree a such that no computably enumerable degree above it is cupped to 0′ even by

a ∆0
2 Turing degree above a.

Another interesting feature of the local structure of the Turing degrees requires us

to restrict our attention to the ∆0
2 enumeration degrees. Most of the surprising prop-
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erties listed above and true of the computably enumerable degrees cease to be true of

the extended structure of the ∆0
2 enumeration degrees. Cooper, Sorbi and Yi [CSY96]

prove that every nonzero ∆0
2 enumeration degree is cuppable in contrast to Cooper and

Yates’ result of the existence of a nonzero non-cuppable computably enumerable Turing

degree, see [Coo73]. Cooper, Li, Sorbi and Yang [CLSY05] prove that every nonzero

∆0
2 enumeration degree bounds a minimal pair in contrast to Lachlan’s non-bounding

theorem [Lac79] for the computably enumerable degrees. Arslanov and Sorbi [AS99]

prove that there is a ∆0
2 splitting of 0′e above every ∆0

2 enumeration degree in contrast

to Harrington’s non-splitting theorem for the computably enumerable degrees. Further-

more the ∆0
2 enumeration degrees are dense by Arslanov, Kalimullin and Sorbi [AKS01]

unlike the ∆0
2 Turing degrees, where Spector [Spe56] proves that minimal degrees exist.

All of these results suggest that the local structure of the enumeration degrees is much

better organized and even possibly much simpler than the local structure of the Turing

degrees.

Unfortunately this is not the case at all when we consider the whole structure of

the Σ0
2 enumeration degrees. Although the density is preserved, as proved by Cooper

[Coo84], all of the other strange properties become valid once again. Cooper, Sorbi

and Yi [CSY96] show the existence of a non-cuppable nonzero Σ0
2 enumeration degree.

Cooper, Li, Sorbi and Yang [CLSY05] prove the existence of a nonzero non-bounding

Σ0
2 enumeration degree. This result will be the main topic of Chapter 4, where we will

prove a generalization of it. We prove that there exists a 1-generic enumeration degree

that does not bound a minimal pair in the enumeration degrees. Finally in Chapter 3

we complete this analogy by proving the analog of Harrington’s non-splitting theorem

for the enumeration degrees. We prove that there exists an incomplete Σ0
2 enumeration

degree such that 0′e cannot be split in the Σ0
2 enumeration degrees above it. Thus the

local structure of the enumeration degrees seems just as rich in surprises as is that of

the computably enumerable degrees. Slaman and Woodin [SW97] prove that its theory
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is undecidable.

This close connection between the properties of the Σ0
2 enumeration degrees and

the computably enumerable Turing degrees leads naturally to the conjecture, made by

Cooper [Coo84], that the two structures are elementary equivalent. Cooper’s conjecture

is refuted by Ahmad [Ahm91] who proves that the diamond can be embedded in the

Σ0
2 enumeration degrees preserving least and greatest elements and by Lachlan’s non-

diamond theorem for the computably enumerable degrees the two structures cannot be

elementary equivalent. In fact Ahmad and Lachlan [AL98] discover an extraordinary

property of the ∆0
2 enumeration degrees, the existence of nonzero non-splitting ∆0

2 enu-

meration degrees, i.e. ones that are not the least upper bound of any two lesser degrees,

showing that Sack’s splitting theorem fails for the local structure of the enumeration

degrees. This result later enables Kent [Ken05] to prove that even the theory of the

∆0
2 enumeration degrees is undecidable.

In view of the disclosed complexity of the ∆0
2 enumeration degrees we continue

in Chapter 5 our investigation of their properties. We prove that every nonzero ∆0
2

enumeration degree can be cupped by a partial low ∆0
2 enumeration degree thus com-

plementing the previous result by Cooper, Sorbi and Yi that every nonzero ∆0
2 enu-

meration degree can be cupped by a total ∆0
2 enumeration degree. We next ask the

question whether we can computably list a sequence of ∆0
2 enumeration degrees con-

taining a cupping partner for every nonzero ∆0
2 enumeration degree. Here we are faced

once again with the intricacy of the structure of the ∆0
2 enumeration degrees as we find

that the answer to the proposed question is negative.

In search for a simpler structure we refine our classification of the ∆0
2 enumeration

degrees. In Chapter 6 we consider classes of enumeration degrees based on the finite

and ω- levels of the Ershov hierarchy. Cooper [Coo90] proves that the 2-c.e. enu-

meration degrees coincide with the Π0
1 enumeration degrees. The second level in our

classification consists therefore of all 3-c.e. enumeration degrees. The positive result
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we obtain in favor of a possible simplicity of these finer classes is that every nonzero

ω-c.e. enumeration degree can be cupped by a 3-c.e. enumeration degree. A further

argument in this direction is given by Arslanov, Kalimullin and Sorbi [AKS01], who

show that the n-c.e. degrees are downwards dense and by Kalimullin [Kal02] who shows

that every nonzero n-c.e. degree has a non-trivial splitting. Once again this apparent

simplicity turns out to be elusive as is exhibited in our next discovery. We prove that

for every incomplete Σ0
2 enumeration degree a there is a nonzero 3-c.e. enumeration

degree b such that a does not cup b to 0′e.

The last chapter of this thesis is devoted to providing further evidence of the com-

plexity of the structure of the 3-c.e. degrees. We prove that there exists a Π0
1 enumer-

ation degree a and a 3-c.e. enumeration degree b < a such that a cannot be split in

the enumeration degrees above b, thus providing an analog of Lachlan’s non-splitting

theorem for each class of enumerations degrees that we consider and completing the

study of the non-splitting properties of the Σ0
2 enumeration degrees.

1.1 The enumeration degrees

Enumeration reducibility or e-reducibility is a relation between sets of natural numbers.

As was mentioned earlier intuitively we say that a set A is enumeration reducible to

a set B if given any enumeration of B, we can effectively enumerate the set A. We

formalize this idea in the following way:

Definition 1.1.1. A set A is enumeration reducible (≤e) to a set B if there is a c.e.

set W such that:

n ∈ A ⇔ (∃u)[〈n,Du〉 ∈ W ∧Du ⊆ B],

where Du denotes the finite set with code u under the standard coding of finite sets.

Every c.e. set We can be viewed in this sense as corresponding to an operator Φe,

defined by ΦB
e = { n| (∃u)[〈n, u〉 ∈ We ∧ Du ⊆ B]}. We shall call this operator an
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enumeration operator. It is straightforward to see that a set A is enumeration reducible

to a set B if and only if there is an enumeration operator Φe such that A = ΦB
e . In our

further discussions we shall not distinguish between a c.e. set and its corresponding

operator.

Definition 1.1.2. A set A is enumeration equivalent (≡e) to a set B if A ≤e B and

B ≤e A. The equivalence class of A under the relation ≡e is the enumeration degree

or e-degree de(A) of A.

The structure of the enumeration degrees 〈De,≤〉 is the class of all e-degrees with

relation ≤, defined by de(A) ≤ de(B) if and only if A ≤e B. Similarly to the structure

DT of the Turing degrees it has a least element 0e = de(∅), we can define a least upper

bound, by setting de(A)∨ de(B) = de(A⊕B) and a jump operator de(A)′ = de(Je(A)).

The enumeration jump of a set A, denoted by Je(A) is defined by Cooper [Coo84] as

KA ⊕A, where KA = { n| n ∈ ΦA
n }.

The jump operator gives rise to the local structure of the enumeration degrees,

consisting of all enumeration degrees a ≤ 0′e. We shall refer to degrees that contain a

Σ0
n, a Π0

n or a ∆0
n set as Σ0

n, Π0
n or ∆0

n degrees respectively. The bottom degree, 0e,

consists of all c.e. sets and is the only Σ0
1 enumeration degree. Cooper [Coo84] proves

that the enumeration degrees a ≤ 0′e are exactly the Σ0
2 enumeration degrees. We shall

denote the local structure of the enumeration degrees by De(≤ 0′e).

Rogers [Rog68] defines an embedding ι of the Turing degrees into the enumeration

degrees. Consider ι(dT (A)) = de(A ⊕ A). This embedding preserves the order, the

least upper bound and the jump operator. The images of the Turing degrees under this

embedding are called total degrees.

The local structure of the Turing degrees DT (≤ 0′) embeds into the local structure

of the enumeration degrees De(≤ 0′e). It follows that total enumeration degrees in

the local structure are necessarily ∆0
2 enumeration degrees and the images of the c.e.

Turing degrees are exactly the Π0
1 enumeration degrees.
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Definition 1.1.3. An enumeration degree a is quasi-minimal if for every b ≤ a, if b

is total then b = 0e.

The existence of quasi-minimal degrees, shown by Medvedev [Med55], proves that

there are enumeration degrees that are not images of Turing degrees under ι. These

enumeration degrees shall be referred to as partial. In fact one can easily construct a ∆0
2

quasi-minimal degree, see for example [Cop90] or Chapter 5. Thus the local structure of

the enumeration degrees contains both total and partial degrees and properly extends

the local structure of the Turing degrees. Furthermore Cooper and Copestake [CC88]

prove the existence of properly Σ0
2 enumeration degrees, ones that contain only properly

Σ0
2 sets. This already gives a hierarchy of the enumeration degrees in De(≤ 0′e) as is

illustrated by the following picture.

0′e0′

0

Π0
1

Tot-∆0
2

∆0
2

Σ0
2

C.E

∆0
2

DT (≤ 0′) De(≤ 0′e)

ι

0e

This coarse classification of the degrees in the local structure will be sufficient for

the next four chapters. For the last two chapters we will need to consider a finer

partition of the ∆0
2 enumeration degrees that arises from the Ershov hierarchy, [Ers68a]

and [Ers68b], also known as the difference hierarchy.

Definition 1.1.4. 1. For n < ω a set A is n-c.e. if there is a total computable

function f such that for each x, f(x, 0) = 0, |{s | f(x, s) 6= f(x, s + 1)}| ≤ n and
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A(x) = lims f(x, s).

2. A is ω-c.e. if there are two total computable functions f(x, s) and g(x) such that

for all x, f(x, 0) = 0, |{s | f(x, s) 6= f(x, s+1)}| ≤ g(x) and A(x) = lims f(x, s).

An enumeration degree which contains an n-c.e. set, where n ≤ ω, will be called an

n-c.e. enumeration degree. Cooper [Coo90] proves that the class of 2-c.e. enumeration

degrees coincides with the class of Π0
1 enumeration degrees. This will be the smallest

class in our hierarchy. For every n > 2 we have a class consisting of all n-c.e. enumer-

ation degrees. Each of these classes is proper as observed by Cooper [Coo90]. Then

follows the class of all ω-c.e. degrees, which is proper subclass of all ∆0
2 enumeration

degrees. We have a well defined hierarchy of classes of enumeration degrees within the

local structure De(≤ 0′e) illustrated in the following picture.

0′e

Π0
1 = 2-c.e

3-c.e

0e

∆0
2

ω-c.e.

Σ0
2

Finally we mention a different approach in classifying the enumeration degrees below

0′e, based on the jump of a degree. The jump operator is monotone and hence the jump

of every Σ0
2 enumeration degree is at least 0′e and at most 0′′e .

Definition 1.1.5. Let a be a Σ0
2 enumeration degree. We say that a is low if a′ = 0′e.

We say that a is high if a′ = 0′′e .
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1.2 Computable enumerations

The classification of the Σ0
2 enumeration degrees is closely connected with the way

representative sets of members of each class can be approximated. If {A[s]}s<ω is a Σ0
1

approximation to A then A[0] = ∅ and for all x /∈ A we have that x /∈ A[s] at all stages

s, for all x ∈ A there is a unique t such that x /∈ A[s] at stages s < t and x ∈ A[s] at

stages s ≥ t. If the approximation is Π0
1 then A[0] = N, the set of all natural numbers,

for all x ∈ A we have that x ∈ A[s] at all stages s and for all x /∈ A there is a unique t

such that x ∈ A[s] at stages s < t and x /∈ A[s] at stages s ≥ t. If the approximation is

n-c.e., where n < ω, the number of stages t at which A(x)[t] 6= A(x)[t + 1] is bounded

by n. If it is ω-c.e. then there is a total computable function g such that for every x

the number of stages t at which A(x)[t] 6= A(x)[t + 1] is bounded by g(x). In a ∆0
2

approximation the number of stages at which A(x)[t] 6= A(x)[t + 1] is always finite.

Finally if the approximation is Σ0
2 then the number of changes is finite for elements

x ∈ A and unbounded for elements x /∈ A.

In all cases n ∈ A if and only if there is a stage t such that n ∈ A[s] for all s ≥ t.

A useful notion when dealing with Σ0
2 sets is the age of an element. This notion was

used first by Nies and Sorbi [NS99] and was given its name by Kent [Ken05].

Definition 1.2.1. Given a Σ0
2 approximation {A[s]}s<ω to a set A, a stage s, and an

element n ∈ A[s], we define a(A,n, s), the age of n in A at stage s, to be the least sn

such that for all t, if sn ≤ t ≤ s then n ∈ A[t]. The age of a finite set F ⊂ A[s] at stage

s is a(A,F, s) = max{ a(A,n, s)| n ∈ F}.

An element n belongs to a Σ0
2 set A if and only if its age relative to a fixed Σ0

2

approximation reaches a finite limit value. We will denote this value by a(A,n) and

refer to it as the limit age. The limit age for a finite subset F ⊆ A is defined, as one

might expect, as max{ a(A,n)| n ∈ F}.
In the following chapters we will frequently require a computable enumeration of



12 1.2. Computable enumerations

approximations to all sets of a certain class. The most common example of a class of

sets that can be computably enumerated is the class of all c.e. sets.

Definition 1.2.2. Let C be any of the considered classes of enumeration degrees. A se-

quence of enumeration degrees {ai}i<ω, where ai ∈ C for every i, can be C-computably

enumerated if there is a computable sequence {Ai[s]}i,s<ω of C approximations to rep-

resentatives Ai of each degree ai. The class C is computably enumerable if it is C-

computably enumerable.

Every Π0
1 set A is the complement of a c.e. set W . A Π0

1 approximation to A can

be obtained from a c.e. approximation {W [s]}s<ω to W by setting A[s] = W [s] and

a computable enumeration of the class of all Π0
1 enumeration degrees can be obtained

from a computable enumeration of all c.e. sets. We shall see in Section 1.4.2 that

the class of all Σ0
2 enumeration degrees is also computably enumerable. The class of

∆0
2 enumeration degrees however cannot be computably enumerated. Intuitively this

follows from the well known fact that we cannot computably enumerate the set of all

total computable functions. A formal argument can be obtained, among many other

ways, from the results in Chapter 5.

Every other class of enumeration degrees that we consider is computably enumer-

able. For n < ω we use the fact that every n-c.e. set A is a boolean combination

of n c.e. sets W1 . . .Wn, i.e. A = (((W1 \ W2) ∪ W3) . . . Wn). An n-c.e. approxima-

tion to the set A can be obtained from c.e. approximations {Wi[s]}i<n,s<ω by setting

A[s] = (((W1[s] \W2[s]) ∪W3[s]) . . . Wn[s]). We can computably list a sequence of all

n-tuples of natural numbers and from it we get a computable enumeration of all n-c.e.

sets.

A computable enumeration of all ω-c.e. sets can, for example, be obtained from a

computable enumeration of all pairs of partial computable functions. For every pair of

partial computable functions f and g we will define an approximation {A[s]}s<ω. We

will use the symbol ↓ to denote the phrase is defined and the symbol ↑ to denote the
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phrase is undefined. We set A[0] = ∅. For every s > 0 we set A(x)[s] = A(x)[s − 1] if

one of the following conditions is true.

1. There is some y ≤ x such that g(y)[s] ↑.

2. g(y)[s] ↓ for all y ≤ x but |{t < s | A(x)[t] 6= A(x)[t + 1]}| ≥ g(x)[s].

3. f(x, 0)[s] ↑.

In all other cases let t ≤ s be the largest number such that f(x, r)[s] ↓ for all r ≤ t.

We set A(x)[s] = f(x, t)[s].

First note that every approximation obtained in this way is an ω-c.e. approximation.

If the function g is total then the number of changes at A(x)[t] is bounded by g(x). If

the function g is partial then let n be the least element such that g(n) ↑ and let ĝ be

the total computable function defined by ĝ(x) = g(x) if x < n and otherwise ĝ(x) = 0.

Then the number of changes in A(x)[t] is bounded by ĝ(x).

Now consider an ω-c.e. set B defined using the total computable functions f and

g and the set A approximated by {A[s]}s<ω, the approximation obtained with the

described procedure from the functions f and g. We will prove that A = B. Fix any

number n and let sn be a stage such that f(n, t) = B(n) for all t > sn. From the

definition of an ω-c.e. set it follows that |{ t| f(n, t) 6= f(n, t + 1)}| ≤ g(n). Consider

the least stage s such that g(m)[s] ↓ for all m ≤ n and f(n, t)[s] ↓ for all t ≤ sn.

From the construction of the approximation it follows that every change at A(n)[t]

corresponds to a change at f(n, t), as we can only change the approximation at n at

stage t if we define A(n)[t] under the second case of the construction. Thus at stage

s the number of times that the constructed approximation has changed at n has not

yet reached its limit g(n)[s] = g(n) and we shall define A(n)[s] = f(n, sn) using the

second case of the construction. As f(n, t) = f(n, sn) at all further stages t > sn we

shall correspondingly have A(n)[t] = A(n)[s] = B(n) at all stages t ≥ s.
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1.3 The priority method

In every construction that appears in this thesis we use in one form or other the priority

method. We shall summarize here the basic concepts that underlie this method and

illustrate them with an example. We have chosen the most basic example, historically

the first problem solved with this method by Muĉnik [Muc56] and Friedberg [Fri57],

but set in the enumeration degrees.

Theorem 1.3.1. There exist two incomparable Π0
1 enumeration degrees.

Problems that are solved by the priority method require us usually to construct a

set with certain properties. The first step is to formalize these properties by listing a

countable set of requirements that we need to satisfy in the course of our construction

in order to guarantee that the constructed set has the required properties. The require-

ments are usually divided into a finite number of groups, based on their similarity.

In our example we are required to construct two Π0
1 sets A and B, which are

incomparable, i.e. A �e B and B �e A. This can be formalized by the following two

groups of requirements:

1. Pe : A 6= ΦB
e ;

2. Qe : B 6= ΦA
e ,

where {Φe}e<ω is a computable enumeration of all enumeration operators or equiva-

lently all c.e. sets.

The construction proceeds in stages at which we construct approximations to the

required sets, in our example A and B. These approximations might be required to be

of certain type, for example Π0
1. We shall define the two sets A and B to be the set of

all natural numbers at first and then we shall extract certain numbers from the sets in

the course of the construction.
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To satisfy a requirement we define a computable strategy or module, a set of actions

that need to be taken at a particular stage, that will ultimately lead to the satisfaction

of the requirement. For all requirements of a certain type the strategies are very similar

and differ only in a finite number of parameters, such as their index. A strategy can be

considered as a program that keeps record of its own parameters and is activated by us

at certain stages, when it is allowed to modify the values of its parameters, to enumerate

or extract elements from the constructed sets and to impose certain restrictions on the

actions of strategies executed at further stages.

The strategy for satisfying the requirement Pe is very standard and will be referred

to as the Friedberg-Muĉnik strategy.

Definition 1.3.1. Let A be any set of natural numbers and Φ be an enumeration

operator. If n ∈ ΦA then we will denote by use(Φ, A, n) the length l of the least initial

segment of A such that n ∈ ΦA¹l.

The strategy has one parameter, a witness x, which will be undefined initially and

proceeds as follows if executed at stage s:

1. If the witness x is not selected, then let x be a fresh number, one that has not

appeared in the construction so far.

2. If x /∈ ΦB
e [s] then do nothing.

3. If x ∈ ΦB
e [s] then extract x from A[s] and restrain B[s] ¹ use(Φe, B, x)[s] in B.

The strategy for a requirement Qe is almost the same as that for Pe, but in it the

places of A and B are exchanged.

Strategies may have more than one possible method for satisfying their requirement.

They choose the correct one based on the situation that they observe when executed.

The choice of a particular method gives an outcome of the strategy. In our example the

strategies have two outcomes. If every time we execute a particular strategy, working
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on Pe say, it stops at step 2 then the requirement will be satisfied as x ∈ A \ ΦB
e . We

denote this outcome by w for ‘wait’. If on the other hand the strategy executes step

3 at some stage, then it is successful as x ∈ ΦB
e \ A. This outcome will be denoted by

f for ‘finished’. Every time a strategy is executed it will select one of these outcomes,

depending on what it currently assumes to be the right method. In our case the strategy

will have outcome w at stage s if it ends its actions at step 2 and outcome f at stage

s if it executes step 3.

To satisfy a requirement we need to execute the corresponding strategy at infinitely

many stages. The main difficulty in this method is that strategies of different types

usually contradict each other. For example a Pe-strategy at step 3 would like to keep

a certain finite set B ¹ u(Φe, B, x1) in B. A Qe-strategy on the other hand might have

already chosen a witness x2 < use(Φe, B, x1) and upon reaching step 3, would like to

extract it from B, thereby injuring the restraint imposed by the first strategy. To resolve

conflicts of this sort we order the requirements linearly and give requirements that

appear earlier in this ordering higher priority. A possible ordering of the requirements

in our example is

P0 < Q0 < P1 < Q1 < P2...

Strategies of higher priority, i.e. strategies for satisfying a requirement of higher

priority, are allowed to ignore restrictions imposed by strategies of lower priority. We

call this to injure a lower priority strategy. Injury appears usually when a strategy

decides to switch to a different method for satisfying its requirement. Strategies of

lower priority work under the assumption that the method chosen by higher priority

strategies is final. If they are injured, they are initialized and restart their work under

new assumptions. As a consequence strategies of lower priority do not injure strategies

of higher priority. So the aim of the priority method is to organize the execution of

strategies in a way so that a strategy for each requirement is executed at infinitely

many stages and initialized (or restarted) only at finitely many stages.
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An effective way to organize this process is by using a tree of strategies. First we

order the outcomes of the strategies. This ordering will be denoted by <L. Outcomes

that require the initialization of lower priority strategies appear first. In our example

f <L w. Let O denote the set of all outcomes. The set O<ω, consisting of all finite

strings in the alphabet O, has a natural lexicographical order < induced by the one

defined on O. For α, β ∈ O<ω we shall also use the relations α ⊂ β if β is an extension

of α and α <L β if α < β and β is not an extension of α.

Let R denote the set of all requirements. The tree of strategies is a computable

function T with domain D(T ) a downwards closed subset of O<ω and range R(T ) = R.

The tree of strategies therefore assigns a requirement to every node in its domain.

Higher priority requirements are assigned to nodes at higher levels of the tree. If

T (α) = Re then we shall say that α is an Re-node or an Re-strategy and α will be

equipped with its own instance of the Re-module, i.e. it will have its own parameters,

whose values it will be allowed to modify when activated. We will use the word strategy

in two ways: to represent a module, a description of a specific set of actions and

parameters, and to represent a node on the tree equipped with a module.

P0

Q0 Q0

P1 P1 P1 P1

f

f w f w

Q1 Q1 Q1 Q1 Q1 Q1 Q1Q1

w

f w f w f w f w

The first few levels of the tree of strategies T in our example are illustrated in

the picture above. It will have D(T ) = {f, w}<ω. Nodes α of even length 2n shall be
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assigned to P-requirements: T (α) = Pn. Nodes β of odd length 2n+1 shall be assigned

to Q-requirements: T (β) = Qn.

An infinite path g in the tree of strategies is a maximal linearly ordered subset of

D(T ). The tree of strategies shall also have the property that for each infinite path g,

R(T ¹ g) = R, i.e. each requirement appears at least once along each infinite path.

The tree of strategies therefore lists all possibilities for the distribution of the out-

comes of all strategies in order of their priority. The aim of the construction will be to

single out an infinite path trough the tree, which corresponds to the correct distribution,

and activate its corresponding nodes at infinitely many stages.

Having defined the tree of strategies we are ready to describe the general construc-

tion. At stage 0 all nodes are initialized. At each stage s > 0 we construct a finite path

δ[s] of length s through the domain of T starting at the root of the tree. We say that

a node α is visited at stage s, also that s is an α-true stage, if α ⊆ δ[s]. At true stages

the node α is activated. It will execute its strategy and approximate its outcome o.

The next node visited at stage s will be α ô. At the end of each stage s we initialize

all nodes β > δ[s].

Thus the main focus in every proof will be the existence of an infinite path h in the

tree of strategies, called the true path, with the following properties:

1. (∀n)(∃∞s)[ h ¹ n ⊆ δ[s] ];

2. (∀n)(∃si(n))(∀s > si(n))[ h ¹ n is not initialized at stage s ].

It follows that if the true path exists then every strategy along it is eventually able

to satisfy its requirement.

Following this general recipe we carry out the construction of the required sets A

and B in our example. The true path exists and it is the leftmost path of nodes visited

at infinitely many stages. To prove that every requirement is satisfied is now an easy

task and we will not give further details.
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1.4 Approximations

The basic method discussed in the previous sections uses the information obtained from

the approximations of a list of given sets. The example illustrated the easiest situation:

the given sets were only the enumeration operators. In constructions examined in

further chapters we will be required to approximate much more complicated sets and

will have to choose our approximations carefully.

If we would like to obtain information about all sets that are enumeration reducible

to a certain set A, we might be faced with an impossible task. To illustrate this

difficulty suppose we are approximating the set ΦA, where A is a Σ0
2 set with a Σ0

2

approximating sequence {A[s]}s<ω and Φ is an enumeration operator with standard c.e.

approximating sequence {Φ[s]}s<ω. We approximate ΦA by setting ΦA[s] = Φ[s]A[s].

The set Φ contains only two axioms for the element n: 〈n, {a}〉 and 〈n, {b}〉. The Σ0
2

approximation of our set A has the following property: at even stages 2s we have that

a ∈ A[2s] and b /∈ A[2s]; at odd stages 2s + 1 we have a /∈ A[2s + 1] and b ∈ A[2s + 1].

As a consequence both elements a and b do not belong to the set A, hence n /∈ ΦA

as both axioms are invalid. But in our approximating sequence {ΦA[s]}s<ω it seems

that n ∈ ΦA at all stages s. Thus we obtain no information from this approximating

sequence, as we cannot distinguish in any way between elements in and out of the set.

The requirement that A is Σ0
2 is not essential. The same situation could appear

with a Π0
1 set. Suppose that the operator Φ has infinitely many axioms for n of the form

〈n, {ai}〉, where {ai} is some sequence of distinct natural numbers. The approximations

now have the following property for every stage s, 〈n, {as}〉 ∈ Φ[s] and

as ∈ A[s] \ A[s + 1]. Again at every stage it seems that n ∈ ΦA[s], but every axiom is

eventually invalid and ultimately n /∈ ΦA.

So to be able to approximate a set of the form ΦA we will have to select a ‘nicer’

approximation to the set A. Cooper [Coo90] suggests a Σ0
2 approximation, with in-

finitely many thin stages. That every Σ0
2 set has such an approximation is proved by
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Jockusch [Joc68]. Lachlan and Shore [LS92] generalize this notion by defining a good

approximation.

Definition 1.4.1. Let {A[s]}s<ω be a uniform computable sequence of finite sets. We

say that {A[s]}s<ω is a good approximation to the set A if:

G1: (∀n)(∃s)[ A ¹ n ⊆ A[s] ⊆ A ] and

G2: (∀n)(∃s)(∀t > s)[ A[t] ⊆ A ⇒ A ¹ n ⊆ A[s] ].

Stages s at which A[s] ⊆ A are called good stages.

The main useful property of good approximations is given by the following propo-

sition, proved in [LS92]:

Propostion 1.4.1. If {A[s]}s<ω is a good approximation to A, G the set of good stages

and Φ is any enumeration operator then

lims∈G ΦA[s] = ΦA.

Proof. First we note that at any good stage s, we have ΦA[s] ⊆ ΦA, i.e. if n /∈ ΦA

then n /∈ ΦA[s] at all good stages s ∈ G. On the other hand if n ∈ ΦA then there is a

valid axiom in Φ, say 〈n,D〉, that appears in the approximation of Φ at stage s′. Let

m be the largest element in D. By G2 there is a stage sm such that for all good stages

t > sm, we have A ¹ m ⊆ A, and so at all good stages t > max(sm, s′) the axiom 〈n, D〉
will be valid and n ∈ ΦA[t].

Using a good approximation to the set A will make the previously described situa-

tions impossible and will enable us to obtain sufficient information about any approxi-

mated set ΦA. For each of type of sets, Π0
1, ∆0

2 and Σ0
2, we will define a specific way to

obtain a good approximation and prove some additional properties. In the construc-

tions described in further chapters we will always state explicitly if we require a good

approximation to a certain set. In all other cases the standard approximation will be

used.
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1.4.1 A good approximation for a Π0
1 or a ∆0

2 set

We shall give a uniform way to obtain a good approximation to a Π0
1 set or a ∆0

2 set

from a standard approximation. Suppose we are given an approximation {A[s]}s<ω

to the set A. For every s define ap(s) = µn[ A[s](n) 6= A[s − 1](n) ], if s > 0 and

A[s] 6= A[s− 1], and ap(s) = s otherwise. Now we set Â[s] = A[s] ¹ ap(s).

Propostion 1.4.2. If {A[s]}s<ω is a ∆0
2 approximation to A, then {Â[s]}s<ω is a good

∆0
2 approximation to A.

Proof. Fix n. Let s > n be a stage such that A[s] ¹ n = A[t] ¹ n for all t ≥ s. It follows

that ap(t) > n for all t > s. This is enough to guarantee that the approximation Â[t]

changes finitely often on all elements m < n and as n is arbitrary {Â[s]}s<ω is a ∆0
2

approximation to A. This property implies G2, we only need to establish G1. Now let

k > n be the least element such that (∃s′ > s)[ A(k)[s′] 6= A(k)[s′ − 1] ]. Then at such

a stage s′ we have ap(s′) = k and Â[s′] = A[s] ¹ k ⊆ A.

If we modify a Π0
1 approximation in this way, will not obtain a Π0

1 approximation.

An element n might be extracted at stage s only because n > ap(s) and later it can

re-appear in the approximation. We can show nevertheless that we have a computable

way of telling if a certain element has left the approximation for good.

Propostion 1.4.3. If {A[s]}s<ω is a Π0
1 approximation to A, then {Â[s]}s<ω is a good

approximation to A. For every element n:

n /∈ A ⇔ (∃s)[ Â[s](n) = 0 ∧ n < ap(s) ].

Furthermore if Â[s](n) = 0 and n < ap(s), then for all t > s, Â[t](n) = 0.

Proof. As every Π0
1 approximation is a ∆0

2 approximation the first statement follows

from the previous lemma. From G1 it follows that the value of ap(s) grows unboundedly.

If n /∈ A then there is a stage s such that n /∈ A[t] ⊇ Â[t] for all t > s. On the other

hand if n /∈ Â[s] and n < ap(s) then n /∈ A[s]. By the properties of a Π0
1 approximation

it follows that n /∈ A and n /∈ A[t] ⊇ Â[t] for all t > s.
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1.4.2 A good approximation for a Σ0
2 set

The method described in the previous section cannot be applied for Σ0
2 approximations.

Consider again the approximation {A[s]}s<ω of a Σ0
2 set A, where a ∈ A[2s] \A[2s + 1]

and b ∈ A[2s + 1] \ A[2s] for every s. Then for every t we will have ap(t) ≤ max(a, b)

and the modified approximating sequence {Â[s]}s<ω approximates at most the finite

set A ¹ max(a, b).

In this section instead of giving an effective method to modify a given Σ0
2 approxima-

tion, we shall define a computable enumeration of good approximations to all Σ0
2 sets,

following a result by Jockusch [Joc68]. The Σ0
2 sets are exactly the sets that are c.e. in

the halting set K. Thus {WK
e }e<ω is an enumeration of all Σ0

2 sets. Note that here we

are using notions from Turing reducibility, rather than enumeration reducibility. WK
e

denotes the domain of the e-th oracle Turing machine using oracle K.

The first step is to define a better approximating sequence, also defined in [LS92], to

the characteristic function χK of the c.e. set K. This is a uniform computable sequence

of finite binary functions κ[s] such that:

B1: (∀n)(∃s)[ χK ¹ n ⊆ κ[s] ⊆ χK ].

B2: (∀n)(∃s)(∀t > s)[ { n| κ[t](n) = 1 } ⊆ K ⇒ χK ¹ n ⊆ κ[t] ].

A stage s at which κ[s] ⊆ χK is called a better stage.

Let {K[s]}s<ω be the standard approximating sequence to the c.e. set K. Define

ap(s) as in the previous section: ap(s) = µn[ K[s](n) 6= K[s − 1](n) ], if s > 0 and

K[s] 6= K[s− 1], and ap(s) = s otherwise. Then set κ[0] = ∅ and if s > 0

κ[s](n) =





1 if n ∈ K[s],

0 if n /∈ K[s] and n < ap(s)

not defined otherwise.

It is straightforward to check that {κ[s]}s<ω is a better approximating sequence to

χK . Furthermore as for all t we have that {n |κ[t](n) = 1} ⊆ K, the second property
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of a better approximating sequence can be improved:

B2: (∀n)(∃s)(∀t > s)[ χK ¹ n ⊆ κ[t] ].

We now approximate the Σ0
2 set A = WK

e with the sequence {A[s]}s<ω, where

A[s] = We[s]κ[s].

Propostion 1.4.4. 1. Every better stage for the approximating sequence {κ[s]}s<ω is

a good stage for the approximating sequence {A[s]}s<ω.

2. {A[s]}s<ω is a good Σ0
2 approximation to A.

Proof. The first property is obvious and follows from the definition of oracle Turing

machines and our definition of the approximating sequence {A[s]}s<ω. It yields that

{A[s]}s<ω has infinitely many good stages.

First we prove that the approximation is Σ0
2, i.e:

Σ0
2 : (∀n)[ n ∈ A ⇒ (∃s)(∀t > s)[ n ∈ A[t] ]].

Let n ∈ A = WK
e . As every Turing computation is finite there is an m and an s such

that n ∈ We[s]K¹m. By the modified property B2 we have that there is a stage s′ such

that at all stages t > s′ ( χK ¹ m ⊆ κ[t] ). Hence at all stages t > max(s′, s) we will

have n ∈ A[t].

This property together with the fact that if n /∈ A and s is a good stage then

n /∈ A[s] proves that {A[s]}s<ω has also both properties G1 and G2.

Note that by the first property of Proposition 1.4.4 the so defined approximations

of Σ0
2 sets have infinitely many common good stages. This can be used for example

to obtain a good approximating sequence to A ⊕ B, where A and B are Σ0
2 sets. If

{A[s]}s<ω and {B[s]}s<ω are obtained in the described way then {A⊕B[s]}s<ω, where

A⊕B[s] = A[s]⊕B[s], is a good approximation to A⊕B.



24 1.5. Structural properties

1.5 Structural properties

Throughout the rest of the thesis we will be discussing various properties of the local

structure of the enumeration degrees and their relationship to the local structure of

the Turing degrees. Both discussed structures are upper semi-lattices with least and

greatest element and naturally the structural properties concern the greatest lower

bound and the least upper bound of certain elements. We summarize here some basic

algebraic relations between elements of any upper semi-lattice with least and greatest

element, that will be used frequently in the following chapters.

Let 〈A,0,1, <,∨〉 be an upper semi-lattice. With letters a,b, c we shall denote

elements of this semi-lattice. The two basic notions are the dual relations to cup and

to cap. Their names stem from the symbols used to denote least upper bound (∨) and

greatest lower bound (∧), respectively.

Definition 1.5.1. If a∨b = c and a, b < c then we shall say that a cups b to c. We

shall also say that the pair (a,b) is a splitting of c.

In the special case when c = 1, we shall simply say that a cups b.

Definition 1.5.2. If a∧b = c and a, b > c then we shall say that a caps b to c. We

shall also say that a and b form a minimal pair above c.

In the special case when c = 0, we shall simply say that a caps b and that (a,b) is a

minimal pair.



Chapter 2

Extended Harrington

Non-splitting

We begin with a result meant to give convincing motivation for the investigation of

the properties of the local structure of the enumeration degrees. Our aim will be to

prove an extension of Harrington’s non-splitting theorem for DT (≤ 0′) using the wider

context of the Σ0
2 enumeration degrees. We start by reviewing previous results about

splitting and non-splitting in the local structure of the Turing degrees.

Sacks [Sac63] showed that every nonzero computably enumerable degree has a c.e.

splitting. Hence, relativising, every c.e. degree has a ∆0
2 splitting above each proper

predecessor. Arslanov [Ars85] showed furthermore that 0′ has a 2-c.e. splitting above

each c.e. a < 0′.

It had been commonly believed that one can combine Sacks’ splitting theorem

[Sac63] with his result about the density of the c.e. degrees, [Sac64]. Lachlan [Lac75]

showed that this is not the case by proving the existence of a c.e. a > 0 which has no

c.e. splitting above some proper c.e. predecessor. The technique that he used to prove

this result, the first instance of a 0′′′-priority method using a tree of strategies, was

significantly more complicated than any other known at the time and the article came

25
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to be known as “The monster paper”. Harrington’s work presented as hand-written

notes [Har80] led to a better understanding of the technique. He improved the result

by showing that one could take a = 0′. This method has been widely used thereafter

and has had a number of consequences for definability and elementary equivalence in

the Turing degrees below 0′. We prove below what appears to be the strongest possible

of such non-splitting results.

Theorem 2.0.1. There exists a computably enumerable degree a < 0′ such that there

is no nontrivial splitting of 0′ by a pair of a c.e. degree and a ∆0
2 degree both above a.

The result is obtained by transferring a structural feature of De(≤ 0′e) back to

DT (≤ 0′) via the inverse ι−1 of the standard embedding of the Turing degrees into the

enumeration degrees.

Theorem 2.0.2. There exists a Π0
1 enumeration degree a < 0′e such that there exists

no nontrivial splitting of 0′e by a pair of a Π0
1 enumeration degree and a Σ0

2 enumeration

degree both above a.

0′e

0

Π0
1

∆0
2

Σ0
2

C.E

∆0
2

DT (≤ 0′)De(≤ 0′e)

0e

0′

ι : DT ↪→ De

a ι−1(a)

ι(u) u

wι(w)

u ∨ w 6= 0′ι(u ∨ w) 6= 0′e

This would appear to be the first example of a structural feature of the Turing

degrees obtained via a proof in the wider context of the enumeration degrees (rather
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than the other way round) and can be viewed as justification of the study of De(≤ 0′e),

suggesting that structural properties of the enumeration degrees can be used to obtain

definability of natural relations over the Turing degrees, where this cannot be got just

within the Turing degrees. Whether such relations exist is completely open, of course.

The property we prove is stronger than its corollary can express, as the Σ0
2 enumera-

tion degrees are a proper superclass of the total ∆0
2 enumeration degrees. This suggests

that the local structure of the enumeration degrees is possibly richer than that of the

Turing degrees. The proof of Theorem 2.0.2 brings us one step closer to the desired

non-splitting result for the Σ0
2 e-degrees which will be presented in the next chapter.

The work presented in this chapter is joint with S. Barry Cooper and will be pub-

lished in [SC07].

2.1 Requirements and strategies

To prove Theorem 2.0.2 we shall use the priority method and follow the basic steps

outlined in Section 1.3. We start by formalizing the requirements.

We assume standard computable enumerations of all enumeration operators {Ψi}i<ω

and of all triples {(Θ, U,W )i}i<ω of enumeration operators Θ, Σ0
2 sets U and Π0

1 sets

W . We shall denote the elements of the i-th such triple by Θi, Ui and W i respectively.

We will construct a Π0
1 set A whose enumeration degree a will be the one required in

Theorem 2.0.2 and an auxiliary Π0
1 set E to satisfy the following list of requirements:

1. The degree a should be strictly less than that of 0′e. It will be enough to construct

the set A as Σ0
2-incomplete. We shall use E to witness the incompleteness of A.

Ni : E 6= ΨA
i .

2. Any pair of an incomplete Σ0
2 enumeration degree u and an incomplete Π0

1 enu-

meration degree w above a should not form a splitting of 0′e. The second group

of requirements ensures that either u ∨w is incomplete or at least one of the
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degrees u or w is already complete:

Pi : E = ΘUi,W i
i ⇒ (∃Γi,Λi)[K = ΓUi,A

i ∨K = ΛW i,A
i ],

where K is any Π0
1 member of the degree 0′e and ΓUi,A

i , for example, denotes an

e-operator enumerating relative to the data enumerated from two sources Ui and

A or equivalently from their least upper bound Ui ⊕A.

The requirements shall be given the following priority ordering:

N0 < P0 < N1 < P1 < . . . .

We shall describe the basic strategies for both types of requirements, the problems

that we need to overcome in order to implement them and the conflicts that might arise

when we combine them.

An N -requirement could be satisfied by the simple Friedberg-Muĉnik strategy from

Section 1.3 which we shall denote in our further discussions by FM .

We are given three options to satisfy a single P-requirement with corresponding

parameters Θ, U and W . The first and simplest one is to provide evidence that ΘU,W 6=
E. The other two options are to construct enumeration operators Γ or Λ proving that

at least one of the sets U or W is already too powerful and can reduce K by itself

without the help of the other.

Definition 2.1.1. The length of agreement between two sets A and B, denoted by

l(A,B), is the length of the initial segment on which the sets A and B agree.

The intent is that we monitor the length of agreement l(ΘU,W , E)[s] at each stage

s of the construction. A bounded length of agreement should turn out to be sufficient

proof for the inequality between the two sets. Further actions only need to be made

at expansionary stages, stages at which the length of agreement attains a greater value

than it has had at previous stages. Initially we will use a (P, Γ)-strategy designed to

construct an enumeration operator Γ which reduces the set K to the sets U and A. We

progressively try to rectify Γ at each stage s by ensuring that n ∈ K[s] ⇔ n ∈ ΓU,A[s]
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for each n below l(ΘU,W , E)[s]. We will do this by defining markers u(n) and γ(n) and

enumerating axioms of the form 〈n,U [s] ¹ u(n), {γ(n)}〉 for elements n ∈ K[s]. If at a

later stage n leaves the set K then Γ can be rectified via an extraction of the marker

γ(n) from A.

By using a good Σ0
2 approximation to the sets U and U ⊕ W we automatically

achieve two things:

• For every element u there will be cofinitely many stages t at which U ¹ u ⊂ U [t]

and infinitely many good stages s at which U ¹ u = U [s] ¹ u. Hence we will

eventually be able to enumerate correct axioms in the constructed operator Γ.

• If ΘU,W = E then it follows from Proposition 1.4.1 that the length of agreement

will grow unboundedly at good stages.

2.1.1 Conflicts

A substantial difficulty arises when we consider how to combine the strategies of the

two different types. Consider one N -requirement below one P-requirement. (P, Γ) is

constructing an operator Γ using markers u(n) and γ(n) for the axiom of elements n.

The A-restraint of N following the extraction of the witness x from E is in conflict

with the need to rectify the operator Γ at expansionary stages. We try to resolve this

by using a modified strategy (N ,Γ). It will choose a number d, called a threshold, and

try to achieve γ(n) > use(Ψ, A, x) for all n > d at a stage previous to the imposition

of the restraint. We will need to use a modified version of the use-function.

Definition 2.1.2. Let Φ be an enumeration operator and A a set. The generalised

use-function ϕ is defined as follows: ϕ(x) = max
{

use(Φ, A, y)| (y ≤ x) ∧ (y ∈ ΦA)
}

.

(N , Γ) tries to maintain θ(x) < u(d) in the hope that after we extract x from E

each return of l(E,ΘU,W ) will produce an extraction from U ¹ θ(x) which can be used

to avoid an A-extraction in moving γ(d).
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In the event that some such attempt to satisfy N ends with a W ¹ θ(x)-change

then we must implement a backup P-strategy, (P, Λ), which is designed to allow lower

priority N -strategies to work below the Γ-activity and to construct an operator Λ

reducing K to W and A, using the W ¹ θ(x)-changes to move λ-markers. Below (P, Λ)

is a backup strategy (N ,Λ) designed to take advantage of the improved strategy for P.

Both strategies (N , Γ) and (N , Λ) will attack simultaneously at stage s1 by extracting

their witnesses x1 and x̂1 from E ensuring that at least one of them has succeeded in

providing the necessary U - or W -change at the next expansionary stage.

2.1.2 Approximations

Consider a triple (Θ, U,W ) corresponding to a P-requirement. We have already estab-

lished that we require good Σ0
2 approximations to the sets U and U ⊕W to implement

the P-strategies. To implement the backup strategies we will substantially use the fact

that W is a Π0
1 set and the changes observed in it are essentially permanent. Therefore

we need to define a good Σ0
2 approximation to U a good Π0

1 approximation to W in

the sense of Section 1.4.1 with infinitely many common good stages, so that, when we

combine these two approximations, we obtain a good Σ0
2 approximation to U ⊕W .

The set W is the complement of a c.e. set W . As W ⊕K ≡T K and hence U is

c.e. in W ⊕ K, there is some e such that U = WW⊕K
e . In fact we can equivalently

enumerate all Σ0
2 set as {WW⊕K

e }e<ω. Let {Wi}i<ω be a computable enumeration of

all c.e. sets. The index of every P-requirement i corresponds to a triple (j, e, a). Then

Θi will be the j-th enumeration operator Wj in this computable enumeration, W i will

be the complement of the a-th c.e. set Wa in this listing, and Ui will be the domain of

the e-th oracle Turing machine We using oracle K ⊕Wa.

To approximate the sets now we proceed as in Section 1.4.2. We define a better

approximation {α[s]}s<ω to the characteristic function of the c.e. set W ⊕K together

with the corresponding function ap(s). We set U [s] = We[s]α[s]. We can prove easily
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as in Proposition 1.4.4 that {U [s]}s<ω is a good Σ0
2 approximation to U and that every

α-better stage is a good stage for {U [s]}s<ω.

We approximate W using the same better approximation to W ⊕ K by setting

W [s] = { n| α[s](2n) = 0}. Notice that this is roughly the same as taking the Π0
1

approximation {W [s]}s<ω and modifying it as in Section 1.4.1. Naturally we have the

following property:

Propostion 2.1.1. {W [s]}s<ω is a good approximation to W with good stages a su-

perset of the α-better stages. If s is a stage such that n /∈ W [s] and 2n < ap(s) then

for all t > s we have that n /∈ W [t] and hence n /∈ W .

Proof. If s is an α-better stage and n ∈ W [s] then χW (n) = χW⊕K(2n) = α(2n) = 0

and hence n ∈ W .

If s is a stage such that n /∈ W [s] and 2n < ap(s) then α[s](2n) = 1 hence 2n ∈
W ⊕K[s] ⊂ W ⊕K. It follows that 2n ∈ W ⊕K[t] for all t > s and hence α[t](2n) = 1

for all t > s, hence n /∈ W [t] at all t > s and n /∈ W .

That {W [s]}s<ω is a good approximation to W is now proved easily.

We have obtained good approximations to the sets U and W with infinitely many

common good stages. Thus by setting U ⊕W [s] = U [s] ⊕W [s] we obtain a good Σ0
2

approximation to the set U ⊕ W . As a consequence if ΘU,W = E and G is the set

of all good stages in the approximation to U ⊕ W then there will be infinitely many

expansionary stages, as by Proposition 1.4.1

lims∈G ΘU,W [s] = ΘU,W .

Moreover if n ∈ ΘU,W , then there is a stage s such that (∀t > s)[n ∈ ΘU,W [t]], and

if n /∈ ΘU,W then at good stages t we have n /∈ ΘU,W [t]. Of course, it could happen

that the expansionary stages are not necessarily the good stages. And if ΘU,W 6= E,

we could still have infinitely many expansionary stages.
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2.2 The first levels of the tree of strategies

We will describe the modules for each of the strategies and list the parameters that will

be related to them. In each of our descriptions of a particular strategy we shall have

the context of the tree in mind. The strategy shall be assigned to a particular node δ on

the tree (a formal definition of the tree of strategies will be given in Section 2.4.1), the

current stage will be denoted by s and the previous δ-true stage by s− (s− = s if δ has

been initialized since the last stage at which it was visited). All parameters will inherit

their values from s− unless otherwise specified. For this reason we will sometimes omit

the indices that specify the stage if it is clear.

The highest priority strategy will be assigned to the root of the tree. It is N0 and

will simply follow the Friedberg- Muĉnik strategy (N0, FM0). The first level of the tree

will work on the requirement P0 with its first possible strategy (P0, Γ0).

2.2.1 The (P ,Γ)-strategy

We have already discussed the main idea for this strategy in Section 2.1. Here we will

add details to it and give the formal module. Suppose for definiteness that the (P, Γ)-

strategy we are discussing is α. The strategy α shall be assigned a distinct infinite

computable set Aα from which it will choose the values of its A-markers. Whenever α

chooses a fresh marker it will be of value greater than any number appeared so far in

the construction. The sets U , W and Θ that α works with shall be approximated at

α-true stages.

The strategy will have two outcomes e <L l, with which it will distinguish between

expansionary and non-expansionary stages. To every element at every stage s we will

associate current markers u(n)[s] and γ(n)[s] ∈ Aα and a corresponding current axiom

〈n,U [t] ¹ u(n)[s], {γ(n)[s]}〉, where t ≤ s is the stage at which γ(n) was assigned its

current value. An axiom 〈n,Un,m〉 is valid at stage s if Un ⊆ U [s] and m ∈ A[s].

We will examine the current axiom in Γ for an element n ∈ K[s] if n is below the
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length of agreement between E[s] and ΘU,W [s], choosing a new axiom as current if the

old one is invalid. In this way will be sure to catch the true approximation to the set

U ¹ u(n) so that if u(n) remains constant, so will the axiom for n after a certain stage

due to the Σ0
2-property of our approximations. If n /∈ K then it will be enough to

ensure that it does not appear in ΓU,A[s] at infinitely many stages s. We choose the

expansionary stages for this purpose. During the construction we may enumerate a

number of axioms for a particular element. Any enumerated axiom might seem invalid

at one stage but turn out to be valid at a later stage. We shall say that an axiom is

potentially applicable if its A-marker is in A. At expansionary stages s for elements

n /∈ K[s] we shall make sure that there are no valid axioms by extracting the A-markers

of any axiom that seems valid at stage s.

At stage s the strategy α acts as follows:

1. If the stage s is not expansionary then o = l, otherwise o = e.

2. Choose n < l(ΘU,W , E)[s] in turn (n = 0, 1, . . . ) and perform following actions:

• If u(n) ↑ then define it anew as u(n) = u(n − 1) + 1 (if n = 0 then define

u(n) = 1). If u(n) is defined, but ap(s) < 2u(n) skip to the next element.

• If n ∈ K[s]:

– If γ(n) ↑ then define it anew and enumerate the current axiom

〈n,U [s] ¹ u(n), {γ(n)}〉 in Γ.

– If γ(n) ↓ but the current axiom for n is not valid then define the current

marker γ(n) anew and enumerate the new current axiom

〈n,U [s] ¹ u(n), {γ(n)}〉 in Γ.

• If n /∈ K[s] but n ∈ ΓU,A[s] and the stage is expansionary then look through

all the axioms defined for n, say 〈n,Un,m〉 ∈ Γ[s], and extract m for all valid

ones.
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Note that if n /∈ K then we will enumerate only finitely many axioms for n in Γ and

hence extract only finitely many markers from A.

The third level of the tree will try to satisfy the requirement N1. The (P0, Γ0)-

strategy will extract markers only at expansionary stages. Hence if its true outcome is

l, the strategy will not modify the set A after a certain stage and N1 can be satisfied

via the simple Friedberg-Muchnik strategy proposed initially (N1, FM0). Below the

outcome e we will need the more elaborate (N1,Γ0).

2.2.2 The (N ,Γ)-strategy

Suppose the node on which the (N , Γ)-strategy acts is labelled by β ⊃ α. We shall say

that α is the active P-strategy at β. The strategy β shall have four outcomes:

g <L f <L h <L w.

We start β’s activity by performing Check first to see whether the threshold is chosen

correctly and whether any activity of the active P-strategy for elements below the

threshold has injured β’s work sofar. If so we restart the module from Initialization,

otherwise we continue the module from where we left it at the previous β-true stage

s−. If β has been initialized since the last stage at which it was visited or if it has never

been visited then β starts from Initialization with all parameters undefined.

At Initialization the values of the threshold and witness are determined after that

the markers for all elements n ≥ d are reset so that (N ,Γ) will have some control over

the current axioms. The third part of the module, called Honestification, ensures that

a change in U after an attack will be useful. Then (N , Γ) waits for its witness to enter

ΨA but always checks if Γ has remained honest, defined below. If x ∈ ΨA and the

operator is honest, (N , Γ) is ready to start the Attack. After the attack comes the

evaluation of the Result, which will determine whether the backup strategies should be

activated or the requirement N is satisfied for the moment.

• Check: If the threshold is not defined, then go to Initialization, otherwise:
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1. If d /∈ K[s] then find the least n > d, n ∈ K[s] and let that be the new value

of the threshold. Cancel the current witness and start from Initialization,

initializing all strategies below β. Note that the set K is infinite, hence we

shall eventually find the right threshold.

2. Scan the elements n ≤ d such that n /∈ K[s]. If a marker m of n has

been extracted from A at this expansionary stage by α then we will cancel

the current witness and start from Initialization, initializing all strategies

below β. This can happen finitely often as long as the threshold remains

permanent, as there are finitely many axioms and hence markers that can

be extracted from A for elements n ≤ d, n /∈ K[s].

• Initialization:

1. If a threshold has not yet been defined or is cancelled, choose a fresh thresh-

old d > l(ΘU,W , E)[s].

2. If a witness has not yet been defined or is cancelled, choose a fresh witness

x ∈ E[s], d < x, bigger than any witness defined previously.

3. Wait for a stage s such that x < l(ΘU,W , E)[s] . Until such a stage is reached

the outcome is (o = w).

4. Extract from A all Aα-markers m(n) for potentially applicable axioms of

elements n such that d ≤ n < l(ΘU,W , E)[s]. Cancel the current markers for

the elements n ∈ K[s].

5. For every element y ≤ x, y ∈ E[s], enumerate in a list Axioms the current

valid axiom 〈y, Uy, W y〉 ∈ Θ[s], which was valid the longest, i.e. with least

age a(U ⊕W, Uy ⊕W y, s) (See Definition 1.2.1). Here the definition of θ(x)

at stage s will be modified again to capture the greatest element of precisely

these axioms currently listed in Axioms. Define the current marker u(d) to

be greater than θ(x)[s] and let the outcome be (o = h).
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• Honestification: Scan the list Axioms. If for any element y ≤ x, y ∈ E[s], the

listed axiom was not valid at some stage t since the last β-true stage then update

the list Axioms, let (o = h) and

1. Extract from A all Aα-markers m(n) of potentially applicable axioms for

elements n such that d ≤ n, cancel the current markers for the elements

n ∈ K[s] and define u(d) > θ(x). This ensures the following property: for

all elements n ≥ d, n ∈ K[s] the U -parts of the axioms in Γ include the

U -parts of all axioms listed in Axioms for elements y ≤ x, y ∈ E[s]. If

n /∈ K[s] then all its Aα-markers will be extracted from A so that no new

extraction of a marker by the active P-strategy α for these elements can

surprise us.

Otherwise we shall say that the operator is honest and move on to:

• Waiting: Wait for a stage s such that x ∈ ΨA[s] returning at each successive

stage to Honestification. Let the outcome be (o = w).

• Attack:

1. If x ∈ ΨA[s] and u(d) > θ(x) then extract x from E and restrain A on

use(Ψ, A, x)[s]. The outcome is (o = g) starting a nonactive stage for the

backup strategies. At this stage they cannot perform any actions except for

attacking with their own witnesses.

• Result: Let x̄ ≤ x be the least element that has been extracted from E during

the stage of the Attack.

As this is an expansionary stage x̄ /∈ ΘU,W [s], hence all axioms for x̄ in Θ[s] are

not applicable, in particular the one enumerated in Axioms, say 〈x̄, Ux̄, W x̄〉. At

least one element from Ux̄ or W x̄ has been extracted from U or W respectively.
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We will attach to the witness x the necessary information about this attack,

namely a parameter Attack(x) = 〈x̄, Ux̄, W x̄〉.

If W x̄ ⊆ W [s] then the attack is successful. The Aα-markers of elements n ≥
d have been lifted above use(Ψ, A, x)[s], the restraint on A, as all previously

enumerated axioms for elements n ≥ d will not be valid. Hence if later on we

want to ensure that ΓU,A(n) = 0 we will only need to extract a marker that is

already above the restraint. If the change in Ux̄ is permanent, then this will lead

to success for (N ,Γ).

If W x̄ * W [s] then the attack is unsuccessful. The plan is to start the backup

strategies and then try again with a new witness. In this case we will move the

markers γ(n) for n ≥ d, n ∈ K[s], by extracting the current ones and defining the

markers anew in order to provide a safe working space for the backup strategy.

We will only do this if we can guarantee that the change in W [s] is permanent.

We will only evaluate the result at stages s at which ap(s) > 2θ(x). The value

of ap(s) grows unboundedly and the active P-strategy α will perform any action

on element n ≥ d only at stages at which ap(s) > 2u(n) ≥ 2θ(x). Thus this

restriction just delays the work of the strategy by a few stages.

1. Wait until the length of agreement has returned and ap(s) > 2θ(x). The

outcome is (o = w) while we wait.

2. Unsuccessful attack: If W x̄ * W [s] then extract from A and cancel all Aα-

markers for elements n ≥ d. Remove the restraint on A and cancel the

current witness x. Return to Initialization at the next stage. The outcome

is (o = g) starting an active stage for the backup strategies.

3. Successful attack : If W x̄ ⊆ W [s] then the outcome is (o = f). Return to

Result at next stage. Note that if it later on turns out that W does change,

α will re-evaluate the attack as unsuccessful and proceed with a new cycle.
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2.2.3 Analysis of outcomes

We shall list the possible outcomes of the defined modules and determine a right bound-

ary R below which successive strategies are allowed to work. The right boundary is rel-

evant only for N -strategies, it tells them that the set A will not be modified below R by

higher priority N -strategies and nonactive P-strategies. The right boundary will move

off to infinity as the stages grow. So for example the (N , FM) strategy working below

R after selecting a witness x will (2) Wait for x ∈ ΨA[s] with use(Ψ, A, x)[s] < R[s]

and (3) extract x from E and restrain A on (A ¹ use(Ψ, A, x))[s].

(P,Γ) has two possible outcomes:

(l) There is a stage after which l(ΘU,W , E) remains bounded by its previous expan-

sionary value. Then P is trivially satisfied. In this case N will be satisfied by the

strategy (N , FM) working below right boundary R = ∞.

(e) There are infinitely many expansionary stages. The (N , Γ)-strategy is activated.

The possible outcomes of (N , Γ) are:

(w) There is an infinite wait at Waiting for ΨA(x) = 1 for some witness x. Then

N is satisfied because E(x) = 1 6= ΨA(x) and (P, Γ) remains intact. Successive

strategies work below R = ∞.

(f) There is some witness x with Attack(x) = 〈x̄, Ux̄, W x̄〉, for which the attack is

permanently successful. Then there is a permanent change in Ux̄ and the markers

of all witnesses are moved above use(Ψ, A, x). At sufficiently large stages K ¹ d

has its final value. So there is no injury to the strategies below f . ΨA(x) = 1 6=
E(x) and N is satisfied, leaving (P, Γ) intact. R = ∞.

(h) There are infinitely many occurrences of Honestification for some witness x pre-

cluding an occurrence of Attack. Then there is a permanent witness x which has

unbounded limsup θ(x). This means that ΘU,W (y) = 0 for some y ≤ x, y ∈ E,
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thus P is satisfied. In this case (N , Γ) destroys the operator Γ, as it changes

infinitely often the markers of a fixed element - its threshold. We call this capri-

cious destruction. As a consequence we can guarantee that the activity of both

(P, Γ) and (N , Γ) will be above γ(d) and as the stages grow, the value of γ(d)

grows unboundedly, providing enough space for lower priority strategies below

outcome h to work properly. The requirement N is satisfied by a second instance

of (N , FM) placed immediately below outcome h working below R = γ(d).

(g) We implement the unsuccessful attack step infinitely often. The (P,Γ)-strategy

is capriciously destroyed in this case as well. As anticipated we must activate the

backup strategies. They work below R = x.

(P0, Γ0)

(N1,Γ0)

(N1, FM0)

(P0, Γ0)

(P0, Λ0)

(N1, FM0)(N1, Λ0)

(N1, FM0)

(N0, FM)

f w

e l

g f h w

e

f h w

2.2.4 The backup strategies

The outcome g is visited in two cases: at the beginning of an attack and after an

unsuccessful attack. The first case starts a nonactive stage for the subtree below g

allowing N -strategies to synchronize their attacks with the one performed by (N , Γ).

The second case starts an active stage at which the strategies will do their usual work.

Unless otherwise specified the described actions are performed at active stages.
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The (P,Λ)-strategy

Suppose for definiteness that the (P, Λ)-strategy we visit at stage s is α̂. The (P, Λ)-

strategy acts only at active stages in a similar but less complicated way than the

(P,Γ)-strategy. The strategy is only visited at expansionary stages. It has only one

outcome e.

1. Choose n < l(ΘU,W , E) in turn (n = 0, 1, . . . ) and perform following actions:

• If w(n) ↑, then define it new as w(n) = w(n− 1) + 1. If w(n) is defined, but

ap(s) < 2w(n) skip to the next element.

• If n ∈ K[s] :

– If λ(n) ↑, then define it anew and define an axiom

〈n,W [s] ¹ w(n), {λ(n)}〉 ∈ Λ.

– If λ(n) ↓, but ΛW,A[s](n) = 0 then define λ(n) anew and define an axiom

〈n,W [s] ¹ w(n), {λ(n)}〉 ∈ Λ.

Note that in this case the old axiom will never be valid again as either

the old λ-marker is extracted from A or there is a change in the ap-

proximation to W . In the second case there is some element m used in

the old axiom such that m ∈ W [t] − W [s], where stage t is when the

old axiom was defined. As ap(s) > 2w(n) by Proposition 2.1.1 we have

m /∈ W [s′] at all s′ ≥ s.

• If n /∈ K[s], but n ∈ ΛW,A[s] then extract λ(n) from A.

The (N ,Λ)-strategy

Let the (N , Λ)-strategy be β̂. The actions that (N , Λ) performs are similar to the ones

performed by (N ,Γ) but are directed at the active P-strategy at β̂ which is now α̂.

The strategy β̂ extracts only Aα̂-markers used in the definition of the operator Λ. It

has its own threshold d̂, witness x̂. Every attack that this strategy performs will be
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successful, so the outcomes of this strategy are only

f <L h <L w.

• Check: If the threshold is not defined, then go to Initialization, otherwise:

1. If d̂ /∈ K[s] then find the least n > d̂, n ∈ K[s] and let that be the new value

of the threshold. Cancel the current witness and start from Initialization,

initializing all strategies below β̂.

2. Scan the elements n ≤ d̂ such that n /∈ K[s]. If a new Aα̂-marker m(n)

has been extracted from A at this stage then cancel the current witness and

start from Initialization, initializing all strategies below β̂.

• Initialization:

1. Choose a new threshold d̂, bigger than any defined until now such that

l(ΘU,W , E)[s] < d̂.

2. Choose a new witness x̂ ∈ E[s] such that d̂ < x̂, bigger than any witness

defined until now. Note that when x̂ is chosen β has just started an active

backup stage and cancelled its own witness. The next witness that β will

use will be defined after this stage and hence will be of value greater than x̂.

3. Wait for a stage s such that x̂ < l(ΘU,W , E)[s], (o = w).

4. Extract all Aα̂-markers m(n) for elements n such that d̂ ≤ n and cancel the

current markers for n ∈ K[s].

5. For every y ≤ x̂, y ∈ E[s], enumerate in the list Axioms the current valid

axiom from Θ[s], that has been valid longest. Define w(d̂) > θ(x̂), (o = h).

• Honestification: If for some y ≤ x̂, y ∈ E[s], the corresponding axiom in

Axioms was not valid at some stage since the last β̂-true stage then update the

list and let (o = h) and:
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1. Extract all Aα̂-markers m(n) for elements n such that d̂ ≤ n, cancel the

current markers for elements n ∈ K[s] and define w(d̂) > θ(x̂).

• Waiting: Wait for a stage s such that x̂ ∈ ΨA[s] with use(Ψ, A, x̂)[s] < R[s]

returning at each successive step to Honestification, (o = w). Once this happens

go to Attack.

• Attack:

1. Wait for a nonactive stage, (o = w). This synchronizes the attacks of the

two strategies β and β̂.

2. If Λ is not honest do nothing and return to Honestification at the next active

stage. Otherwise extract x̂ from E.

• Result: The next stage at which this strategy will be accessible will be an

unsuccessful attack for (N , Γ), hence if the strategy does not get initialized due

to a K ¹ d̂-change, there will be a permanent W ¹ θ(x̂)-change and the (P, Λ)-

strategy will have cleared its λ-markers so that x̂ ∈ ΨA will be preserved:

The least element that has been extracted during the attack is x̄ ≤ x̂. This

outcome is visited if the attack is unsuccessful, i.e. W ¹ θ(x̄) has changed. By the

monotonicity of the generalized use function θ(x̄) ≤ θ(x̂) and we have therefore

a change in W ¹ θ(x̂). At the next accessible stage we can simple assume:

Successful attack : Return to Result at the next stage, (o = f).

2.3 An N -strategy below two P-strategies

The next levels of the tree of strategies are defined in the expected way. We start up

the (P,Γ)-strategies for the next P-requirement, P1. After this follow the strategies

for N1. The most complicated one among them is the (N1, Γ0, Γ1)-strategy, the one

that is placed below the two expansionary outcomes of the two P-strategies working
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above it. We shall try to give the basic intuition about how this strategy is designed,

leaving the formal definition of the various strategies for Section 2.4.2, where a general

construction will be given.

As we saw in the previous section an N -strategy can force a P-strategy to change

its method to FM below outcome h or to (P, Λ) below outcome g. In both cases

the strategy capriciously destroys the operator Γ. Now we need to be more careful as

two higher priority P-strategies are involved. As P0 < P1 we will keep in mind when

designing the strategy that if the P0-strategy needs to be changed we can afford to

restart the P1-strategy. If the P1-strategy is changed though, we must make sure that

this does not affect the strategy for P0.

Let β be the (N , Γ0,Γ1)-strategy with active P-strategies α0 and α1. The module

of β will be divided in the same submodules: Check, Initialization, Honestification,

Waiting, Attack and Result. Most submodules shall have two copies, one for each

active P-strategy. The strategy β will have one witness x but two thresholds d2 < d1.

Some of the outcomes will also come in two copies as can be seen from the following

picture:

(P1, Γ1)

(N1,Γ0, Γ1)

(N1,Γ0, FM1)(P1, Γ1)

(P1, Λ1)

(P0, Λ0)

(N1,Γ0, Λ1) (P1, Γ1) (N1, FM0, Γ1)

(N1, Λ0,Γ1)

(P0,Γ0)
le

e l

(N1, Λ0, FM1)

(N1, FM0, FM1)
l

h1h0fg1 g0

e

e

e l

w

e

After the two thresholds and witness are selected at Initialization the strategy
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performs Honestification first to Γ0 with the list Axioms0. If Γ0 is not honest then

β will clear both the Aα0- and Aα1-markers, providing safe working space for strategies

below outcome h0. This will destroy the strategy α1, therefore below outcome h0 we

shall have a new copy of the P1-strategy (P1, Γ1) starting work from the beginning. If

Γ0 is honest then we will perform Honestification(1). In case Γ1 is not honest only

Aα1-markers will be extracted. If this is the true outcome β shall eventually not extract

any Aα0-markers and α0 will remain intact and still be active for N -strategies below

outcome h1. N -strategies below either outcome h0 and h1 will work in the same way

as was described in the previous section as they have only one active P-strategy. The

only difference is that now they too need to work below a right boundary R set up by

(N , Γ0, Γ1).

Attack is performed once x ∈ ΨA and both operators are honest. There are two

sorts of backup strategies: the ones below outcome g0 and the ones below outcome g1.

A nonactive stage shall be started for strategies below the outcome visited during the

previous attack.

Result is performed first for Γ0. If the attack is 0-unsuccessful then outcome

g0 is visited and capricious destruction is performed on both operators. Again below

outcome g0 we have a copy of the (P1, Γ1)-strategy starting its work from the beginning.

Only if the attack is 0-successful will we examine the result for the second operator Γ1.

With outcome g1 we are faced with a difficulty in design. We need to provide

safe working space for strategies below this outcome and start a new cycle of the

(N , Γ0, Γ1)-strategy. We will only perform capricious destruction on Γ1. We have seen

a 0-successful attack and it looks like the method for satisfying P0 is correctly chosen.

Below outcome g1 the P0-active strategy will still be α0. The difficulty is that when we

start a new cycle we will carry on extracting Aα0-markers for d0 and elements greater

than d0 in order to prepare Γ0 for the attack with the next witness. If this situation

repeats infinitely many times we will have actually destroyed Γ0 with no advancement
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on the satisfaction of P0. We solve this by selecting a new value for the threshold d0

at every active visit of the outcome g1. So on each new cycle after an active g1-visit β

will move its activity regarding Aα0 , allowing α0 to remain intact. As a consequence

we will need to rethink the Check module. We can safely perform Check for the Γ1 as

in the previous section, initializing all lower priority strategies should a marker for an

element n < d1 be extracted since the last β-true stage. When we perform Check for

Γ0 we will only initialize strategies below outcomes which assume that the threshold

d0 is constant. We will not initialize strategies below outcome g1 as if this is the true

outcome, then the value of d0 grows unboundedly and there is a risk that we might

need to initialize at infinitely many stages.

Now we are ready to proceed to the main construction and the proof that it works.

2.4 All requirements

We will start by describing the different strategies connected with each requirement and

the outcomes of each strategy. Each P-requirement has two types of strategies. An N -

requirement has many types of strategies, depending on the number of P-requirements

of higher priority.

For every P-requirement Pi there is a (Pi, Γi)-strategy with outcomes e <L l and a

(Pi, Λi)-strategy with one outcome e.

The requirement N0 has one strategy (N0, FM). For every N -requirement Ni,

where i > 0, we have strategies of the form (Ni, S0, . . . , Si−1), where Sj ∈ {Γj , Λj , FMj}.
The outcomes are f , w and for each j < i if Sj ∈ {Γj ,Λj} there is an outcome hj , if

Sj = Γj , there is an outcome gj . They are ordered according to the following rules:

1. For all j1 and j2, gj1 <L f <L hj2 <L w.

2. If j1 < j2 then gj2 <L gj1 and hj1 <L hj2 .

Let O be the set of all possible outcomes and S be the set of all possible strategies.
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2.4.1 The tree of strategies

The tree of strategies is a computable function T : D(T ) ⊂ O<ω → S which has the

following properties:

1. If T (α) = S and OS is the set of outcomes for the strategy S then for every

o ∈ OS , α ô ∈ D(T ).

2. T (∅) = (N0, FM) and ∅ has no active P-nodes.

3. If T (α) = (Ni, S0, S1, . . . , Si−1) with active P-nodes α1, . . . , αi−1 then

Below outcome gj: T (α ĝj) = (Pj , Λj) and T (α ĝj ê) = (Pj+1, Γj+1), . . . ,

T (α ĝj ê̂ oj+1 ôi−2) = (Pi−1,Γi−1), where ok ∈ {ek, lk} for j + 1 ≤ k ≤ i− 2.

T (α ĝj ê̂ oj+1 ôi−1) = (Ni, S0, . . . , Λj , S
′
j+1 . . . , S′i−1), where S′k = Γk if ok = e and

S′k = FMk if ok = l for every k such that j < k < i. The active Pk-nodes at this

node are αk for k < j, α ĝj for k = j, if oj+1 = e then α ĝj ê for j + 1, if ok = e then

α ĝj ê . . . ôk−1 for k > j + 1. In all other cases there is no active Pk-node.

Below outcome hj: T (αˆhj) = (Pj+1, Γj+1), . . . , T (αˆhj ôj+1 ôi−2) = (Pi−1, Γi−1),

where ok ∈ {ek, lk} for j + 1 ≤ k ≤ i− 2.

T (αˆhj ôj+1 ôi−1) = (Ni, S0, . . . , FMj , S
′
j+1, . . . , S

′
i−1), where S′k = Γk if ok = ek and

S′k = FMk if ok = lk for every k such that j < k < i. There is no active Pj-node at

this node, the rest of the active Pk-nodes are defined as below outcome gj .

Below outcome f : T (α f̂) = (Pi,Γi). Then T (α f̂ ê) = (Ni+1, S0, . . . , Si−1,Γi)

with active P-nodes α0, . . . , αk, α f̂ ê and T (α f̂ l̂) = (Ni+1, S0, . . . , Si−1, FMi) with

active P-nodes α0, . . . , αk and no active Pi-node.

Below outcome w: T (αˆw) = (Pi,Γi). Then T (αˆw ê) = (Ni+1, S0, . . . , Si−1,Γi),

with active P-nodes α0, . . . , αk, αˆw ê and T (αˆw l̂) = (Ni+1, S0, . . . , Si−1, FMi) with

active P-nodes α0, . . . , αk and no active Pi-node.
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2.4.2 Construction

Following the basic rules from Section 1.3 at each stage s we shall construct a finite

path through the tree of strategies δ[s] of length s starting from the root. The nodes

that are visited at stage s shall perform activities as described below and modify their

parameters. Each N -node α shall have a right boundary Rα which will also be defined

below. R∅ = ∞. After the stage is completed, all nodes to the right of the constructed

δ[s] will be initialized, their parameters will be cancelled or set to their initial value ∅.
An N -strategy on node α works with respect to the active P-strategies at α. It also

synchronizes its work with some of the higher priority N -strategies. It will be useful

to define a notion of dependency between the different N -strategies.

Definition 2.4.1. A node α with T (α) = (Ni, S0, S1, . . . , Si−1) depends on node β ⊂ α,

if α ⊇ βˆgj and Sj = Λj for some j. The node α is independent if it is not dependent

on any node β ⊂ α.

If α is dependent it might depend on many of its initial segments. The biggest(closest)

node on which α depends will be called the instigator of α, denoted by ins(α). The

strategy α must time its attacks with the attacks performed by ins(α), i.e. whenever

α is ready to attack, it waits for an ins(α)-nonactive stage and attacks on that stage.

All the rest of the activity by α is performed only at active stages. We define a stage

s to be nonactive if a strategy σ ⊂ δ[s] starts an attack at stage s. Stage s is also

σ-nonactive. A stage is active if it is not nonactive. Note that if β ĝj is on the true

path then there will be infinitely many β-nonactive stages at which β ĝj is visited. In

fact every β ĝj-true active stage is followed by a β ĝj-nonactive stage before the next

β ĝj-true active stage.

In our further discussions we shall denote with Mα, mα, Zα and zα: Γα, γα, Uα

and uα respectively if α is a (P, Γ)-strategy and Λα, λα, Wα and wα respectively if

α is a (P, Λ)-strategy. We will denote by s− the previous α-true stage and by o− the
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outcome it had at that stage. If α has been initialized since its previous true stage or

if it has never before been visited then s− = s and o− is the rightmost outcome.

Suppose we have constructed δ[s] ¹ n = α. If n = s then the stage is finished and

we move on to stage s + 1. If n < s then α is visited and the actions that α performs

are as follows:

(I.) T (α) = (Pi,Γi). This strategy is responsible for approximating the sets Ui, W i

and Θi. It considers the next approximation only at active stages and will define the

function apα(s) accordingly. At these we perform the actions as stated in the main

module in Section 2.2.1. δ[s](n + 1) = l at non-expansionary stages. At expansionary

stages δ[s](n+1) = e. At nonactive stages no actions are performed and δ[s](n+1) = o−.

(II.) T (α) = (Pi, Λi). At active stages we perform the actions as stated in the main

module in Section 2.2.4. δ[s](n+1) = e. At nonactive stages no actions are performed,

δ[s](n + 1) = e.

(III.) T (α) = (Ni, S0, . . . , Si−1) with active P-nodes α0, . . . , αi−1. At active stages we

perform Check first. If it doesn’t instruct us otherwise then we carry on with the

module from where it was left at the previous α-true stage s− (from Initialization if

s− = s). At nonactive stages α may only attack, otherwise it has outcome o = o−.

• Check: If a threshold is not defined, then the strategy α goes to Initialization,

otherwise it performs Check(j) for j = i− 1, i− 2, . . . , 1.

Check(i−1): Scan all n ≤ di−1. If an Aαk
-marker for n has been extracted from

A by αk, the active Pk-strategy at α, for k ≤ i− 1 at a stage t: s− < t ≤ s then

we will initialize all strategies below α and start from Initialization.

Check(j): Scan all dj+1 < n ≤ dj . If an Aαk
-marker for n has been extracted

from A by αk for k ≤ j, at a stage t: s− < t ≤ s then all successors of α,

that assume that dj does not change infinitely often, are initialized. These are
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strategies γ such that γ ⊇ α ĝk for k ≤ j or γ ⊇ α ô, where o ∈ { hl, f, w| l < i},
hence all strategies below and to the right of outcome gj .

If α is evaluating Result and the last active g-outcome was gl and l < j then α

continues from the Initialization step. Otherwise α continues to evaluate Result.

If a threshold dj is extracted from K[s] then it is shifted to the next possible value,

i.e. to the least n > dj , n ∈ K[s]. If this injures the order between thresholds

then the other thresholds are shifted as well.

• Initialization: Each strategy Sj 6= FMj picks a threshold if it is not already

defined. The different thresholds must be in the following order:

di−1 < di−2 < · · · < d0.

The strategy picks its j-threshold as a fresh number such that its marker has not

yet been defined by the active Pj-strategy αj . Then α picks a witness x ∈ E[s]

again as a fresh number.

If l(ΘUj ,W j

j , E)[s] ≤ x for some j < i then δ(n + 1)[s] = w, working below

R = Rα[s].

If l(E, ΘUj ,W j

j )[s] > x for all j < i then α extracts from A all Aαj -markers for all

axioms for all elements n ≥ dj . Then cancels all current αj-markers for n ≥ dj

and n ∈ K[s] and defines zαj (dj) > θj(x)[s].

For every element y ≤ x, y ∈ E[s], α enumerates in the list Axiomsj the current

valid axiom from Θj [s] that has been valid longest. The next stage will start from

Honestification. δ[s](n + 1) = h, working below R = Rα[s].

• Honestification: The strategy α performs Honestification(0), which suggests

an outcome. Depending on what this outcome is the strategy may or may not

execute Honestificaion(1):

Honestification(j): If Sj = FMj then (o = w). Otherwise:
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1. Scan the list Axiomsj . If for some element y ≤ x, y ∈ E[s], the listed axiom

was not valid at some stage t since the last α-true stage s− then update the list

Axiomsj , let (o = h) and go to (2) otherwise let (o = w).

2. Extract all Aαj -markers of potentially applicable axioms for elements n such

that dj ≤ n < l(ΘUj ,W j

j , E)[s]. Cancel the current αj-markers for elements n ∈
K[s] and define zαj (dj) > θj(x)[s].

If the outcome of Honestification(j) is w then α performs Honestification(j+1)

if j+1 < i and goes to Waiting if j+1 = i. If the outcome is h then α extracts all

Aαk
-markers of potentially applicable axioms for elements n ≥ dk for all k > j.

Then cancels the current αk-markers for element n ∈ K[s]. The outcome is

δ[s](n + 1) = hj working below R = min(Rα[s],mαj (dj)). At the next stage α

starts from Honestification.

• Waiting: If all outcomes of all Honestification(j)-modules are w, i.e all enumer-

ation operators are honest then α checks if x ∈ ΨA
i [s] with use(Ψ, A, x)[s] < Rα[s].

If not then the outcome is δ[s](n+1) = w, working below R = Rα[s]. At the next

stage α returns to Honestification. If x ∈ ΨA
i [s] with use(Ψ, A, x)[s] < Rα[s]

then α goes to Attack.

• Attack: If α is dependent then it waits for an ins(α)-nonactive stage.

δ[s](n + 1) = w, working below R = Rα[s].

If the stage is ins(α)-nonactive, x ∈ ΨA[s], use(Ψ, A, x)[s] < Rα and all op-

erators are honest (i.e. the axioms recorded in the lists Axiomsj , j < i, have

remained valid at all stages since s− ) then α extracts x from E and restrains

A on u(Ψ, A, x)[s]. This starts an α-nonactive stage for the strategies below the

most recently visited outcome gj (if none has been visited until now then below

the leftmost g-outcome) working below the boundaries they worked before.

Otherwise it will return to Honestification at the next active stage.
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• Result: If at stage s for some j < i we have that apαj (s) < 2θj(x) then set

δ[s](n + 1) = w, working below R = Rα[s].

Otherwise let x̄ be the least element extracted from E during the attack. It has a

corresponding entry 〈x̄, Ux̄,j , W x̄,j〉 in Axiomsj . Define Attack(x) = 〈x̄, Ux̄,0,W x̄,0,

. . . , Ux̄,i−1,W x̄,i−1〉. We will denote by Attack(x)[j] the pair (Ux̄,j ,W x̄,j). Let L

be the largest restraint imposed on A during the attack and preform Result(0).

Result(j):

If Sj = FMj or Sj = Λj , then go to Result(j + 1). Otherwise if Sj = Γj and one

of the following two conditions is true:

1. There was a change in W x̄,j , i.e W x̄,j *W j [s].

2. For some k < j an Aαk
-marker mk(n) of an element n, where n < dk, was

extracted by αk after the stage of the attack and mk(n) < L.

Then extract and cancel all Aαk
-markers for all elements n ≥ dk, where k ≥ j.

Cancel the witness and all thresholds dl, where l < j. Remove any restraint on

A and start from Initialization at the next stage. δ(n + 1) = gj , working below

R = min(x,Rα[s]). Otherwise the attack is j-successful. Go to Result(j + 1).

Result(i): is reached only in case all attacks were successful. Then δ(n+1) = f ,

working below R = Rα[s]. Return to Result(0) at the next stage.

2.5 Proof

2.5.1 The true path

We define the true path h to be the leftmost path of nodes on the tree that are visited

at infinitely many stages. Such a path exists because the tree is finitely branching. It

already has the following properties:

1. (∀n)(∃∞s)[h ¹ n ⊆ δ[s]];
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2. (∀n)(∃sl(n))(∀s > sl(n))[δ[s] 6<L h ¹ n].

As outlined in Section 1.3 we will prove that the strategies along the true path

satisfy their requirements. To do this we have to first establish that these nodes are

initialized at finitely many stages. The leftmost property of the true path deals with

initialization at the end of each stage. There is one more case that we have to consider,

initialization which occurs during Check. So we prove the following lemma.

Lemma 2.5.1. For every n there is a stage si(n) such that h ¹ n does not get initialized

after stage si(n).

Proof. We will prove this by induction on the number n. The first case n = 0 is trivial,

as the root of the tree is never initialized.

Assume that the statement is true for numbers m ≤ n. Let s > max(si(n), sl(n+1))

be a stage such that at stages t > s, h ¹ n is not initialized and δt ≮L h ¹ (n + 1). We

will consider the different cases depending on the type of the strategy h ¹ n.

I. T (h ¹ n) = (Pi, Si), where Si ∈ {Γi, Λi}. In this case the strategy h ¹ (n + 1) will

not be initialized at further stages and si(n + 1) = s.

II. T (h ¹ n) = (Ni, S0, . . . , Si−1). Now there are different cases depending on the

outcome o along the true path. Starting from the leftmost, we will examine each.

• If o = gi−1, then after stage s the threshold di−1 can only change if di−1 /∈ K, and

in this case we will shift the value of di−1 to the next element that is currently in

the approximation of K. As K is infinite there will be a stage s0 ≥ s after which

di−1 will remain fixed. Let s1 ≥ s0 be a stage after which K ¹ (di−1 + 1) remains

unchanged, i.e. no numbers z ≤ di−1 leave K after stage s1. At this stage there

are finitely many axioms enumerated in Γi for elements z ≤ di−1, z /∈ K. And at

further stages no new axioms are enumerated for these elements. The markers of

these finitely many axioms are the only ones whose extraction from A will force

(h ¹ n)̂ gi−1 to be initialized. Let s2 ≥ s1 be a stage by which all of the finitely
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many markers that get extracted from A are already extracted. Then at stages

t > si(n + 1) = s2, the node h ¹ (n + 1) will not be initialized.

• If o = gj , where 0 ≤ j < i − 1, then similarly after some stage s0 ≥ s all

thresholds dk for k ≥ j will remain fixed, as in order to cancel dk we need to

pass through an outcome gl with l > k and hence to the left of gj . But this

will not happen according to our choice of stage s. Let s1 ≥ s0 be a stage after

which K ¹ (max(dj , . . . , di−1)+1) does not change. Again, by that time there are

finitely many axioms enumerated in each of the operators Sk, j ≤ k ≤ i − 1, for

elements z /∈ K. Hence there are finitely many markers whose extraction from A

could initialize h ¹ (n + 1). Let s2 ≥ s1 be a stage by which all of these finitely

many markers that ever get extracted from A are already extracted. Then after

stage si(n + 1) = s2, we have that h ¹ (n + 1) will not be initialized.

• If o ∈ { w, s, hj | j < i}, then after a stage s0 ≥ s all thresholds remain unchanged

and after stage s1 ≥ s0 the initial segment

K ¹ (max(d0, . . . , di−1) + 1) remains unchanged. Finally there is a stage s2 ≥ s1,

after which no more markers for elements less than or equal to dj will be extracted

from A. Then after stage si(n + 1) = s2, the node h ¹ (n+1) will not be initialized.

From now on for every node α ⊂ h we will denote by si(α) the last stage at which

α is initialized. We will prove formally one more property of the true path, one that

we have already claimed in the previous sections concerning the distribution of active

and nonactive stages.

Propostion 2.5.1. Suppose αˆgj ⊆ β ⊂ h. Then β is visited at infinitely many active

and at infinitely many α-nonactive stages.

Proof. We will prove this with induction on the distance d between α and β.
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If the distance is 1 then β = α ĝj . The g-outcome that α has during an attack is

determined by α’s previous active g-outcome. β is visited infinitely often, hence it is

visited at infinitely many active stages and after each β is visited at an α non-active

stage.

Suppose the distance is greater than 1. If there are no nodes σ such that α ĝj ⊂
σ ĝk ⊆ β then the same argument proves that β will be visited at an active stage

followed by an α-nonactive stage, as at nonactive stages the strategies between α and

β will have the same outcome as at the previous active stage. If there is such a σ then

induction hypothesis gives us the lemma for α and σ: σ is visited at infinitely many

active stages each followed by an α-nonactive visit. By the induction hypothesis again

but now for σ and β the strategy β will be visited on infinitely many active stages each

followed by a σ-nonactive visit. The only thing left to note is that any σ-nonactive stage

is also α-nonactive (although not every α-nonactive stage will be σ-nonactive).

2.5.2 Satisfaction of the P-requirements

We turn our attention to the P-requirements. First we establish that P-strategies along

the true path will succeed in finding a true axiom for each of the elements n ∈ K.

Propostion 2.5.2. Suppose ΘUj ,W j

j = E and let α ⊂ h.

1. Suppose α = (Pj ,Γj) and for some element n ∈ K the current Uα-marker and

the γα-marker for each m ≤ n is not changed by any other strategy after stage s0. Then

α will stop changing the current marker eventually and n ∈ ΓUj ,A
j .

2. Suppose α = (Pj , Λj). And suppose that for some element n ∈ K the current

Wα-marker and the λα-marker for all m ≤ n are not changed by any other strategy after

stage s0. Then α will stop changing the current marker eventually and then n ∈ ΛW j ,A
j .

Proof. The proof is by induction on n. We omit various indices as we only discuss α’s

parameters. Suppose the lemma is true for all m < n. Then:
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1. Suppose u(n) remains the same after stage s0 and the axioms for elements m < n

do not change anymore. We will use what we know about the approximation to

the set U , namely that it is good and Σ2. Let G denote the set of good stages.

There will be a stage s1 ≥ s0 such that:

Good: (∀t > s1)[s ∈ G ⇒ U ¹ u(n) = U [t] ¹ u(n)];

Σ2: (∀t > s1)[U ¹ u(n) ⊆ U [s]].

After stage s1 the strategy α will examine n. The value of the function apα(t)

grows unboundedly as the stages progress, so eventually apα(t) ≥ 2u(n) at all

stages t ≥ s2. On the other hand the length of agreement l(ΘU,W , E)[t] grows

unboundedly at good stages for the approximation of U ⊕W . As U ⊕W -good

stages are U -good stages, it follows that in fact there will be infinitely U -many

good stages on which α examines n.

Let s2 ≥ s1 be a U -good stage at which α examines n. Let 〈n,Un, {m}〉 be the

current axiom for n at stage s2. If this axiom is valid at stage s2 then Un ⊆ U [s2] =

U ¹ u(n). And hence at all stages t > s2, we have Un ⊂ U [t]. If the axiom is not

valid at stage s2, then we will enumerate a new axiom 〈n,U [s2] ¹ u(n), {γ(n)[s2]}〉
in Γ, and for this axiom we will have that at all stages t > s2, U [s2] ¹ u(n) ⊂ U [t].

In both cases the marker γ(n) will not be moved at any later stage t > s2 and

the axiom remains valid forever, hence n ∈ ΓU,A.

2. Suppose w(n) remains constant after stage s0 and the axioms for elements m < n

do not change anymore. Similarly to the first case we can find a stage s1 > s0

such that:

Good: (∀t > s1)[t ∈ G ⇒ W ¹ w(n) = W [s] ¹ w(n)];

Stable: (∀t > s1)[apα(t) > 2w(n)].
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In fact after stage s1 the approximation to W ¹ w(n) will remain constant. Then

at the next α-true stage s2 ≥ s1 we will examine the current axiom for n in Λ,

say 〈n,Wn, {m}〉. If it is valid at stage s2 then it will be valid forever. If it is not

valid at stage s2 then we will enumerate a new axiom 〈n, W [s2] ¹ w(n), {λ(n)}〉,
and this axiom will remain valid forever.

We now need to establish that if a N -strategy capriciously destroys a P-strategy

along the true path then the P-strategy is either satisfied trivially by E 6= ΘU,W or

there is a backup P-strategy also on the true path.

Propostion 2.5.3. 1. Let α ⊂ h be the biggest (Pj , Γ)-strategy. Suppose for some

number n the value of the marker γα(n) grows unboundedly. If ΘUj ,W j

j = E then there

is an N -strategy β such that α ⊂ βˆgj ⊂ h.

2. Let α ⊂ h be the biggest Pj-strategy. It builds an operator Mj with Aα-markers

denoted by mα. If for some number n the value of the marker mα(n) grows unboundedly

then ΘUj ,W j

j 6= E.

Proof. 1. Suppose ΘUj ,W j

j = E and there is some number with unbounded γα-

marker. Let n be the least such number and let s be a stage after which the

Aα-markers for n′ < n do not change and are already extracted from A, if they

ever get extracted.

If n /∈ K then there will be a stage s0 at which n exits K, i.e. n /∈ K[t] for all

t > s0. After stage s0 the marker γα(n) will remain constant. Hence n ∈ K.

At any stage t there are finitely many thresholds dj [t] ≤ n assigned to nodes in

the tree. If γα(n) grows unboundedly then it follows from Proposition 2.5.2 that

there is an N -strategy β ⊇ α ê with active Pj-strategy α and a constant threshold

dj ≤ n, whose γα-marker also grows unboundedly. According to our choice of n
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as the least element with unbounded γα-marker, n = dj . Furthermore β is on the

true path. Strategies to the left of the true path are accessible at finitely many

stages hence change the markers of their thresholds finitely often. A strategy to

the right of the true path is initialized infinitely often and at initialization a new

value for its threshold is chosen.

Suppose that β is a (Ni, S0, . . . , Si−1)-strategy. The true outcome of β cannot be

gk with k > j, because then dj would change its value at infinitely many stages.

Outcomes gk with k < j and hk for k < j are followed by a new (Pj ,Γj)-strategy

and hence are also impossible according to our assumption. Outcomes f and

w and hk for k > j do not move γα(dj) infinitely often, hence γα(dj) would be

bounded. Suppose that hj is β’s true outcome. And let x be β’s witness at stages

t > sl(|β|+ 1), i.e stages after which β does not have outcomes to the left of hj .

Then the entry for x in Axiomsβ
j changes at infinitely many stages and hence

x /∈ ΘUj ,W j

j . On the other hand x ∈ E as β never attacks with this witness. This

contradicts the assumption that ΘUj ,W j

j = E.

Thus the only possible outcome is gj .

2. Towards a contradiction assume that ΘUj ,W j

j = E, but there is some number

with unbounded γα-marker. Let n be the least such number. If Mj = Γj , then

by the previous case there will be a strategy β with α ⊂ β ĝj along the true path,

followed by another Pj-strategy. This contradicts α being the biggest one.

Hence Mj = Λj . Let s be a stage after which the markers for n′ < n do not

change and are extracted from A, if they ever get extracted.

Again if n /∈ K then there will be a stage s0 at which n exits K and after which

λα(n) remains the same. Hence n ∈ K.

As in the previous case it is clear that n = dj for some threshold and some

(Ni, S0, . . . , Λj , . . . , Si−1)-strategy β ⊃ α along the true path. The true outcome
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of the strategy β cannot be gk with k > j, because then the value of dj would

grow unboundedly. Outcomes gk with k < j and hk for k < j are followed by a

new Pj-strategy and hence are impossible as well. Outcomes f and w and hk for

k > j do not move λα(dj) infinitely often, hence λα(dj) would be bounded.

As β does not have outcome gj , the only possible outcome is hj . With a similar

argument as in case 1, this yields E 6= ΘUj ,W j

j , giving us the desired contradiction.

Corollary 2.5.1. Every requirement Pj is satisfied.

Proof. If ΘUj ,W j

j 6= E then the requirement is trivially satisfied. Suppose we have

ΘUj ,W j

j = E. Let α ⊂ h be the biggest (Pj ,Mj)-strategy along the true path. Then

α has infinitely many expansionary stages and by Propositions 2.5.2 and 2.5.3 all Aα-

markers used to build the operator Mj are bounded.

For each n we prove that K(n) = M
Zj ,A
j (n), where Zj = Uj if Mj = Γj and

Zj = W j if Mj = Λj .

If n /∈ K then n is extracted from M
Zj ,A
j at least once at every α-true expansionary

stage t at which apα(t) > 2zj(n). By Proposition 2.5.2 there are infinitely many such

stages, thus n /∈ M
Zj ,A
j .

If n ∈ K, then Proposition 2.5.2 proves that n ∈ M
Zj ,A
j .

2.5.3 Satisfaction of the N -requirements

We turn our attention to the N -requirements, examining first the interactions between

them.

Lemma 2.5.2. Let α ⊂ h be an Ni requirement along the true path.

1. For every α-true stage s > si(α) and every stage t > s none of the nodes to the

right or to the left of α extract elements from A[t] that are less than Rα[s].
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2. For every α-true stage s > si(α) and every stage t > s none of the Nj-nodes

above α extract elements from A[t] that are less than Rα[s].

3. Suppose β ⊂ α is a Pj-node which is not the active Pj-node at α. Then for

every α-true stage s > si(α) and every stage t > s the strategy β does not extract

elements from A[t] that are less than Rα[s].

Hence after stage si(α) the only strategies above α that extract elements from A that

are less than the right boundary are the active P-strategies at α.

Proof. 1. The nodes to the left of α are not accessible at stages t > si(α) and do

not extract any elements at all. Nodes to the right are initialized at every α-true

stage s. The P-strategies visited at stage t > s will choose their markers to be

bigger than the current Rα[s] and N -strategies work with new thresholds whose

markers are defined after this and are bigger than Rα[s].

2. We prove this case with induction on the length of α using the fact that if β ⊂ α

then Rα ≤ Rβ. The first case when l(α) = 0 is trivial.

Let α be of length n > 0 and let β be the greatest N -node above α, β is an

(Nj , S0, . . . , Sj−1)-strategy with j ≤ i. Let s > si(α) be an α-true stage.

By the induction hypothesis at stages t > s none of the N -nodes above β extract

elements less than Rβ[s], hence they do not extract element less than Rα[s] ≤
Rβ[s]. Thus we only need to prove that β also respects this boundary Rα[s] at

stages t > s. As β is the largest N -strategy above α, β is the strategy that will

determine Rα[s] at stage s. We have a few cases depending on the true outcome

of β.

Case β ĝl ⊂ α, where l < j: then Rα[s] = min(x,Rβ)[s]. At stages t > si(α)

outcomes to the left will not be accessible. At stage s the thresholds dk, for

k < l are cancelled and then redefined at the next β-true stage to be bigger than
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Rα[s]. Their A-markers at the active Pk-strategy, and hence the corresponding

A-markers of all element n ≥ dk, are chosen at a later stage and hence are bigger

than Rα[s]. For r ≥ l all A-markers at the active Pr-strategy for n ≥ dr are

cancelled and extracted from A[s]. Any new A-marker defined after stage s will

be bigger than Rα[s]. Thus at stages t > s the strategy β will not extract elements

less than Rα[s].

Case βˆhl ⊂ α, l ≥ 0: then Rα[s] = min(m(dl)[s], Rβ[s]). At stages t > si(α) the

outcomes to the left are not accessible and for every k < l the A-markers at the

Pk-active strategy for elements n ≥ dk are not extracted by β. For every r ≥ l

the A-markers at the active Pr strategy for n ≥ dr are cancelled at stage s and

later redefined to be bigger than Rα[s].

Case β f̂ ⊂ α or βˆw ⊂ α: then β does not extract elements at any stage t > si(α).

This completes the proof of the induction step and hence the statement.

3. If β is not the active Pj-node at α then either β l̂ ⊂ h in which case β dose not

extract any markers after stage si(α) or there is an Nk-strategy γ with j < k ≤ i,

β ⊂ γ ⊂ α and true outcome o ∈ { hl, gl| l ≤ j}.

Whatever γ’s true outcome is its j-threshold dj remains unchanged after stage

si(α). At every α-true stage s we visit γ ô and the Aβ-markers for n ≥ dj are

cancelled and extracted from A. The values of the new Aβ-markers will be bigger

than Rα[s]. Hence if β extracts an element at stage t of value less than Rα[s]

then it must be a marker of an element n < dj . In this case at the next γ-true

stage t′ ≥ t during Check(j) the strategy α would be initialized.

We claimed that the right boundary R moves off to infinity. Here we give a formal

proof.
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Propostion 2.5.4. For every node α along the true path lims Rα[s] = ∞.

Proof. We prove this statement by induction on the length |α| of the node α ⊂ h. The

case |α| = 0 is trivial because then T (β) = N0, and Rα = ∞. Suppose the statement

is true for α, we will prove it for its successor on the true path α ô.

If α is a P-strategy or α is an N -strategy with o ∈ {w, f} then Rαˆo[s] = Rα[s] for

every α ô-true s.

If o = gj , where j < i, then the boundary is Rαˆo[s] = min(x[s], Rα[s]) at every

α ô-true stage s, where x[s] is α’s witness at stage s. The witness x[s] is cancelled at

such stages s and later redefined to be bigger. Hence lims x[s] = ∞ and from this and

the induction hypothesis it follows that Rαˆo grows unboundedly.

If o = hj , where j < i, then Rαˆo[s] = min(mj(dj)[s], Rα[s]), where mj(dj) is the

current A-marker of α’s threshold dj defined by the active Pj-strategy at α. At every

α ô-true stage s this marker is cancelled and later redefined bigger, hence again Rαˆo

grows unboundedly.

We prove two technical, but rather easy properties of the construction. We have

claimed these properties already and state them here for completeness.

Propostion 2.5.5. Let α ⊂ h be an N -strategy with ins(α) = β. Suppose α ⊃ βˆgj

and α attacks with a witness x̂ at stage t together with an attack of β with x. Then

Attack(x̂)[k] = Attack(x)[k] for all k ≤ j.

Proof. Let T (α) = (Ni, S0, . . . , Si−1). It follows from the definition of an instigator

that Sj = Λj and both strategies α and β are dealing with the same approximations of

the sets Θj , Uj , Vj controlled by the active Pj-strategy at β. First we will prove that

the active Pk-strategies at α for k < j are the active Pk-strategies at β. Suppose this

is not true. Then some Pk active strategy at β was destroyed by some N -strategy σ

such that β ĝj ⊆ σ ⊂ α. If σ has a g-outcome then it would be the instigator of α.

Hence it had outcome hk, where k < j. But then Pj starts from (Pj , Γj) below σˆhk
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and can only change back to Λj if a second strategy σ′ such that σˆhk ⊆ σ′ ⊂ α has

outcome gj in which case σ′ would be the instigator of α. Hence for all k ≤ j both α

and β are dealing with the same approximations to the sets Θk, Uk and Vk.

By Proposition 2.5.1 α is visited at β-active stages, followed by β-nonactive stage.

Stage t is a β-nonactive stage, let t− be the previous β-active α-true stage. At this

stage α had in its Axiomsα
k for k ≤ j a list of axioms for all elements y ≤ x̂, which were

valid the longest. After stage t− the strategy β chooses its witness x > x̂ and fills in

the corresponding lists Axiomsβ
k . For elements y ≤ x̂ these are the same axioms that

α recorded. If during β′s work, one of the list changes its entry for an element y ≤ x̂

then at stage t the strategy α would not attack but go back to Honestification instead

and wait for an active stage at which to modify its own lists. Hence the entry in all

Axiomsβ
k for elements y ≤ x̂ is the same as the entry Axiomsα

k for all k ≤ j and in

particular the entries are the same for the least element extracted during the attack at

stage t, say x̄ ≤ x̂ < x. Hence Attack(x̂)[k] = Attack(x)[k] for all k ≤ j.

Propostion 2.5.6. Suppose an Ni-strategy α ⊂ h with active Pj-strategy βj starts

an attack with witness x at stage s. Let y ≤ x, y ∈ E be a number with entry

〈y, Uy,j ,W y,j〉 in Axiomsj [s]. Let n ≥ dj be a number with a potentially applicable

axiom 〈n,Zn,j , {m}〉 at stage s at βj. Then Zn,j ⊇ Uy,j if βj is a (P,Γ)-strategy and

Zn,j ⊇ W y,j if βj is a (P,Λ)-strategy.

Proof. We consider the case when βj is a (P, Γ)-strategy. During α′s cycle with x,

the strategy completes Initialization at stage s0, say. Let s1 ≥ s0 be the last stage

at which α performs Honestification(k) for k ≤ j. At stage s1 the strategy extracts

the markers of all potentially applicable axioms for n and cancels its marker uj(n).

Thus at stages t > s1 the marker uj(n)[t] is defined to be bigger than u(dj)(n)[s1] ≥
θ(x)[s1] ≥ max(Uy,j). The axiom 〈n,Zn,j , {m}〉 is enumerated in Γj at a stage s2 > s1

and Zn,j = U [s2] ¹ uj(n)[s2]. As α attacks at stage s, the operator Γj is honest at
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stages t with s1 < t ≤ s, in particular it is honest at stage s2, i.e. Uy,j ⊆ U [s2], and

hence Zn,j ⊇ Uy,j .

Given an Ni-strategy α = (Ni, S0, . . . , Si−1) along the true path with true outcome

f , it is easy to verify that α is j-successful if Sj = Γj or Sj = FMj . If Sj = Λj

though the success depends on the actions of the instigator of α. We prove that our

construction ensures j-success for the last witness x of α.

Lemma 2.5.3. Suppose α ⊂ h, T (α) = (Ni, S0, . . . , Si−1) and Sj = Λ. Suppose α

begins an attack with witness x at stage s > si(α). Then at the next stage, at which

α is accessible, either there is a W j ¹ θj(x)-change or α has a g-outcome or else α is

restarted during Check.

Proof. Unfortunately to prove this lemma we need to consider all j such that Sj = Λj .

So suppose that i0 < i1 < · · · < ir are the indices among 0, 1, . . . , i − 1 such that

Sij = Λi1 . Then there are strategies α0, . . . , αr such that α0 ĝi0 ⊂ α1 ĝi1 . . . αr ĝir ⊂ α.

Furthermore ins(α) = αr, . . . , ins(α1) = α0.

Suppose the active P-strategies at α are β0, . . . , βi−1. Then βk for k < i0 are the

active P-strategies at αl, l ≥ 0; the strategies βk for k < i1 are active at αl, l ≥ 1; . . . ;

the strategies βk for k < ir are active at αir .

At stage s all strategies α0, . . . , αr attack with their own witnesses x0, . . . , xr. As α

will be visited again at stage s+ each of the strategies αj , j ≤ r will have a g-outcome

at a least stage sj > s.

When each of these strategies is visited for the first time after stage s it records

an entry in its parameter Attack. The first entry of all parameters Attackα(x) and

Attackαj (xj), j ≤ r is the same: x̄, the least element extracted from E during the

attack at stage s. By Proposition 2.5.5 we have that Attackα(x)[k] = Attackαj (xj)[k]

for all k ≤ j and all j ≤ r. Furthermore the value of the parameter L, the largest

element restrained in A during the attack at stage s, is the same for all α and αj ,
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j ≤ r.

We will prove by induction on j that if α is not restarted and does not have a g-

outcome at stage s+, then there is a permanent W j-change. Assume that the statement

is true for k < j.

At stage sj > s the strategy αj is visited and has outcome gk. It follows that k ≤ j

as α is not initialized at stage sj > si(α).

Thus at stage sj the strategy αj evaluates Result(k) with Attack(xj)[k] = (Ux̄,k,W x̄,k)

and one of the two clauses is valid:

(1) There was a change in W x̄,k, i.e. W x̄,k *W k[sj ].

(2) For some l < k an Aβl
-marker ml(n) of an element n, where n < dβ

l , was

extracted by βl after the stage of the attack and ml(n) < L.

Suppose (1) is valid. As the result is evaluated at a stage sj only if apβk
(sj) >

2θk(x) > 2θk(x̄), this change in W is permanent. So at stage s+ when we visit α and

it evaluates its result we will have W x̄,k *W k[s+].

Suppose k < j. If at stage sj , α reaches Result(k) without having a g-outcome for

l < k, then (1) will be valid as well for α’s evaluation of Result(k). Thus α will have a

g-outcome contradicting our assumptions.

If k = j then α has the desired W j-change.

Suppose that (2) is valid. Then βl, for some l < k extracted a marker ml(n) <

Lβ[sj ] = Lα[s+] for an element n < d
αj

l . This marker was defined before stage s and

the corresponding axiom was potentially applicable at stage s. If n < dα
l then clause

(2) will be valid for α’s evaluation of Result(k) at stage s+ and if α is not restarted

during Check it will have a g-outcome, contradicting our assumption again.

Suppose dl(α) < n and let us consider what happened with the attack regarding

ΘUl,W l
l . If βl is an (Pl, Λl)-strategy then ip = l, where p < j. By induction for p < j

we have the necessary W l-change at stage sp before βl is accessible again after stage

s. This change is permanent and by Proposition 2.5.6 all potentially applicable axioms
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for n at βl are invalid at stages t ≥ sp. It follows that βl will not extract ml(n).

This leaves us with the only possibility that βl is a (P, Γ)-strategy. Thus at an

expansionary βl-true stage s′ > s the strategy βl sees that the potentially applicable

at stage s axiom for n in Γl, say 〈n,Ul,n, {ml(n)}〉, is valid. Thus by Proposition

2.5.6 Ux̄,l ⊆ Ul,n ⊆ U [s′] and as s′ is expansionary it must be the case that W x̄,l *

W [s′]. Finally as apβl
(s′) > 2ul(n) > 2θ(x̄) we have that this change is permanent.

Then at stage s+ when α evaluates Result(l) clause (1) will be valid and α will have

outcome gl again contradicting the assumption. Thus α has the desired W j-change

which completes the induction step and the proof of the lemma.

Corollary 2.5.2. Every requirement Ni is satisfied.

Proof. Let α be the last Ni-strategy along the true path. We will prove that it satisfies

Ni. The strategy α has true outcome w or f , otherwise there will be a successive

Ni-strategy along the true path.

In the first case there is a stage s1 after which α has only outcome w without passing

through any other outcome. Let s2 ≥ s1 be a stage after which αˆw is not initialized or

restarted. Then the thresholds remain constant after stage s2 and so does the witness

x. The strategy α waits forever for ΨA
i (x) = 1 with use below Rα. The right boundary

Rα grows unboundedly by Proposition 2.5.4, giving ΨA
i (x) = 0 and E(x) = 1.

Let the true outcome be f . Then the strategy α has a permanent witness x at

stages t > si(α f̂) with which it has attacked at a previous stage, as outcome f is only

accessible after a successful attack. Let s be the stage of the attack with x. Then

x ∈ ΨA
i [s] with use(Ψi, A, x)[s] < Rα[s]. Hence by Lemma 2.5.2 none of the strategies

to the left, right and above, except for the active P-strategies at α, will extract elements

n < Rα[s] from A at stages t > s.

The active P-strategies at α do not extract any markers below the restraint either.

Indeed if a marker m(n) < use(Ψi, A, x) for some element n < dj , j < i, is extracted

from A, then the witness x would be cancelled. On the other hand after α attacks



66 2.5. Proof

with x at stage s, it receives all required permissions. This is clear for Sj = Γj : the

permission is correct and permanent, as otherwise α would have a g-outcome to the

left of f . By Lemma 2.5.3 if Sj = Λj the permission is correct as well, otherwise the

witness would be cancelled. By Proposition 2.5.6 the potentially applicable axioms at

stage s for element n ≥ dj , j < i, at the corresponding Pj-active strategy βj will not

be valid at any stage βj-true stage t > s.

Strategies below α f̂ are accessible for the first time after their initialization at the

stage of the attack. All their A-markers are defined after the stage of the attack and

would be greater than the restraint on A. Every new threshold is bigger than the

thresholds used by α, and their markers will be defined above the restraint. Hence

strategies below α f̂ will never injure x ∈ ΨA
i .

Thus A[s] ¹ use(Ψi, A, x)[s] ⊆ A and n ∈ ΨA
i \ E. This completes the proof of the

lemma and of Theorem 2.0.2.



Chapter 3

Non-splitting in the Σ0
2

Enumeration Degrees

We are ready to break the thread that ties our proofs to the known techniques created

for problems of the Turing unverse and move on to the far more complicated world of

the Σ0
2 enumeration degrees.

We already have partial knowledge of the non-splitting properties of the Σ0
2 enumer-

ation degrees. We have shown the existence of an incomplete Π0
1 enumeration degree

such that there is no nontrivial splitting of 0′e by a pair of a Σ0
2 enumeration degree and

Π0
1 enumeration degree above it. The restriction of the second element in the considered

pairs to the class of the Π0
1 enumeration degrees is essential. Arslanov and Sorbi [AS99]

have shown that there is a ∆0
2-splitting of 0′e above every incomplete ∆0

2 enumeration

degree. The question that remains to be answered is whether or not 0′e can be split

above every incomplete Σ0
2 enumeration degree. In this chapter we present the result

of our investigations, an analog of Harrington’s non-splitting theorem for De(≤ 0′e):

Theorem 3.0.1. There is a Σ0
2 enumeration degree a < 0′e such that 0′e cannot be split

in the enumeration degrees above the degree a.

67
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This provides some insight to the structure of properly Σ0
2 enumeration degrees

within De(≤ 0′e). Cooper and Copestake [CC88] prove the existence of properly Σ0
2

enumeration degrees that are incomparable with any nonzero incomplete ∆0
2 enumer-

ation degree. An enumeration degree with a non-splitting property of Theorem 3.0.1

is properly Σ0
2 and does not have any ∆0

2 enumeration degrees above it by the result

of Arslanov and Sorbi, [AS99]. Kalimullin [Kal03] shows that 0′e and the enumeration

jump are definable in the partial ordering De. This allows us to define a nonempty set

of enumeration degrees F consisting entirely of properly Σ0
2 enumeration degrees in De:

F = { a| a < 0′e ∧ (∀u, v)[a ≤ u < 0′e ∧ a ≤ v < 0′e ⇒ u ∨ v 6= 0′e]}.

The set F is upwards closed in the properly Σ0
2 enumeration degrees, thus F ∪{0′e} is a

filter in De(≤ 0′e). Furthermore by the density of the Σ0
2-enumeration degrees, [Coo84],

F is an infinite set of properly Σ0
2 enumeration degrees.

The work presented in this chapter will be published in [Sos08a].

3.1 Requirements and strategies

The statement of Theorem 3.0.1 is very similar to the main theorem of Chapter 2. As

we shall see the requirements for example are almost the same. The main difference is

that in the P-requirements we are dealing with a pair of Σ0
2 enumeration sets instead

of a pair of a Σ0
2 and a Π0

1 set. We are also less restricted in the construction of the

required set, which is now allowed to be a Σ0
2 set instead of a Π0

1 set. Naturally our

strategies will follow the main ideas from Chapter 2. In this section we shall explain

some further difficulties that we will need to consider when designing the strategies.

We assume a standard listing of all enumeration operators {Ψi}i<ω and of all triples

{(Θ, U, V )i}i<ω of enumeration operators Θ, Σ0
2 sets U and V . We will construct a Σ0

2

set A whose enumeration degree a will be the one required in Theorem 3.0.1 and an

auxiliary Π0
1 set E to satisfy the following list of requirements:
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1. The degree a should be incomplete. We shall use the set E to witness the incom-

pleteness of A.

Ni : E 6= ΨA
i .

2. Any pair of incomplete Σ0
2 enumeration degrees u and v above a should not form

a splitting of 0′e.

Pi : E = ΘUi,Vi
i ⇒ (∃Γi,Λi)[K = ΓUi,A

i ∨K = ΛVi,A
i ].

The requirements shall be given the same priority ordering:

N0 < P0 < N1 < P1 < . . . .

The first N -requirement can be satisfied by the simple Friedberg-Muchnik strategy

(N , FM).

To satisfy a single P-requirement, with corresponding triple (Θ, U, V ) we are given

again three options. The first and simplest one is to provide some proof that ΘU,V 6= E.

The other two options are to construct enumeration operators Γ or Λ proving that at

least one of the sets U or V is already too powerful and can reduce K by itself without

the help of the other.

We will use good Σ0
2 approximations to the sets Ui and Vi as defined in Section 1.4.2

for every i < ω. We already saw that by setting Ui ⊕ Vi[s] = Ui[s]⊕ Vi[s] we obtain a

good Σ0
2 approximation to the set Ui⊕Vi. Using this approximation we can implement

the same techniques that we used in Chapter 2. First we use a (P, Γ)-strategy with

two outcomes e <L l, that will monitor the length of agreement l(ΘU,V , E)[s] at each

stage s of the construction. A bounded length of agreement proves that ΘU,V 6= E

and further actions only need to be made at expansionary stages. The strategy will

attempt to reduce the set K to the sets U and A via an enumeration operator Γ. At

every stage s we ensure that n ∈ K[s] ⇔ n ∈ ΓU,A[s] for each n below l(ΘU,V , E)[s].

We will do this by defining markers u(n) and γ(n) and enumerating axioms of the form

〈n, U [s] ¹ u(n), {γ(n)}〉 for elements n ∈ K[s]. If at a later stage n leaves the set K
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then Γ can be rectified via an extraction of the marker γ(n) from A.

Below outcome e we need a more elaborate N -strategy (N , Γ). At this point it

seems reasonable to assume that we can use the same strategy as we used in Chapter

2. To deal with conflicts with the higher priority (P, Γ)-strategy it chooses a threshold

d and tries to achieve γ(n) > use(Ψ, A, x) for all n > d at a stage previous to the

imposition of a restraint. It tries to maintain θ(x) < u(d) in the hope that after we

extract x from E each return of l(E, ΘU,V ) will produce an extraction from U ¹ θ(x)

which can be used to avoid an A-extraction in moving γ(d). We use the generalised

use function θ(x), as defined in Section 2.1.1.

(N , Γ) will have an extra outcome g which shall be visited in the event that some

such attempt to satisfy N ends with a V ¹ θ(x)-change. Below this outcome we

implement a backup P-strategy, (P, Λ), which is designed to allow lower priority N -

strategies to work below the Γ-activity and to construct an operator Λ reducing K to

V and A, using the V ¹ θ(x)-changes to move λ-markers.

The need for an even more sophisticated (N , Γ)-strategy arises only after we consider

the backup strategy (N ,Λ), placed immediately after the strategy (P,Λ).

3.1.1 Conflicts

Both strategies (N , Γ) and (N , Λ) will attack simultaneously at stage s1 by extracting

their witnesses x1 and x̂1 from E ensuring that at least one of them will succeed

in providing the necessary U - or V -change at the next expansionary stage s+
1 . Here

x̂1 < x1, thus any change in U or V below θ(x̂1) will be a change in U or V below

θ(x1).

If (N , Λ) turns out to be successful then (N , Γ) will clear the working space for the

backup strategies by extracting the current markers of its threshold forcefully, perform-

ing capricious destruction, choose a new witness x2 and start a new cycle timing its next

attack with the next N -strategy (N ′, Λ) below (P, Λ). The strategy (N ′, Λ) chooses its
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witness x̂2 > x̂1 at stage s2. The success of (N , Λ) depends on the assumption that the

change in the set V ¹ θ(x̂1) observed at stage s+
1 is permanent. This assumption would

be true if V were a Π0
1 set as in Theorem 2.0.2. Unfortunately we are now dealing with

a Σ0
2 set and there is no guarantee that this change will remain in the approximation

at further stages. So it could happen that at stage s+
2 after the simultaneous attack

by (N , Γ) and (N ′, Λ) there is a further V -change below θ(x̂2) at an element greater

than θ(x̂1) making us visit the backup strategies, but the old V -change below θ(x̂1)

has moved to the set U . The change we observed at stage s+
1 in V has disappeared

and V ¹ θ(x̂1)[s1] = V ¹ θ(x̂1)[s+
2 ]. This will result in an irreparable injury to the

strategy (N , Λ). The figure below illustrates this situation, the grey circles represent

the changes in the sets U an V as they appear after each attack.

(P, Γ)

(N , Γ) (N , FM) θ(x̂1)

(P, Λ)

(N , Λ)

(N ′,Λ)

Attack with x1, x̂1:

θ(x̂2)Attack with x2, x̂2:

U [s+
2 ]

V [s+
2 ]

U [s+
1 ]

V [s+
1 ]

e l

g hf w wf

whf

f wh

Fortunately we are constructing a Σ0
2 set as well and are thus allowed to extract its

elements any finite number of times without consequence to its characteristic function.

(N , Γ) will keep track of its old witnesses. If the change associated with the old witness

x1 moves to the set U , as in the example described above, (N ,Γ) will not activate the

backup strategies. It will instead restore A as it was during the attack with x1 at stage

s1 and use the newly appeared U -change for success. Only after changes in V for each
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of the old witnesses have been observed will the backup strategies be visited.

3.2 The basic modules

The set A will be constructed as a Σ0
2 set in the following way. At each stage s, the

set A will be initially approximated by the set of all natural numbers N. Then we

will activate strategies that will extract elements from A. The resulting set after all

extractions have been made will be the approximation to A at stage s. We define

n ∈ A if and only if there is a stage s such that (∀t > s)[n ∈ A[t]]. This will ensure that

essentially only the strategies along the true path will be responsible for the elements

extracted from A. This is an important feature of the construction that distinguishes

it from Harrington’s original proof of the non-splitting theorem in the Turing degrees

and the proof of Theorem 2.0.2.

We will describe the modules for each of the strategies and list the parameters that

will be related to them. We will describe the strategies with the context of the tree

in mind. A strategy will be assigned to a particular node δ on the tree, the current

stage will be denoted by s and the previous δ-true stage by s− (s− = s if δ has been

initialized since the last stage at which it was visited). All parameters will inherit their

values from s− unless otherwise specified. For this reason we will sometimes omit the

indices that specify the stage if the stage is clear.

3.2.1 The (P ,Γ)-strategy

This strategy is almost the same as the one described in Section 2.2.1. To every

element at every stage s we will again associate current markers u(n)[s] and γ(n)[s]

and a corresponding current axiom. We examine the element n if it is below the length

of agreement l(ΘU,V , E)[s], updating its parameters if necessary. If n /∈ K then it will

be enough to ensure that it does not appear in ΓU,A[s] at infinitely many stages s, the

expansionary stages.
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Each P-strategy α shall be assigned a distinct infinite computable set Aα from

which it will choose the values of its A-markers. Whenever a strategy chooses a fresh

marker it will be of value greater than any number appeared so far in the construction.

Suppose for definiteness that the (P,Γ)-strategy we visit at stage s is α.

1. If the stage is not expansionary then o = l, otherwise o = e.

2. Choose n < l(ΘU,V , E)[s] in turn (n = 0, 1, . . . ) and perform following actions:

• If u(n) ↑ then define it anew as u(n) = u(n − 1) + 1 (if n = 0 then define

u(n) = 1).

• If n ∈ K[s]

– If γ(n) ↑ then define it anew and enumerate the current axiom

〈n,U [s] ¹ u(n), {γ(n)}〉 in Γ.

– If γ(n) ↓ but the current axiom for n is not valid then define the current

marker γ(n) anew and enumerate the new current axiom

〈n,U [s] ¹ u(n), {γ(n)}〉 in Γ.

• If n /∈ K[s] but n ∈ ΓU,A[s] and the stage is expansionary then look through

all the axioms defined for n, say 〈n,Un,m〉 ∈ Γ[s], and extract m for all valid

ones.

Note that this strategy will extract markers only at expansionary stages. Hence if the

true outcome is l, the strategy will not modify the set A and N can be satisfied via

(N , FM).

3.2.2 The (N ,Γ)-strategy

Suppose the node on which the (N , Γ)-strategy acts is labelled by β ⊃ α. We shall say

that α is the active P-strategy at β.

Some of the parameters that β will have are the same as the ones in Section 2.2.2. It

will use a threshold d, a natural number that determines the beginning of the influence
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of β on the set A. Furthermore β is equipped with a list of witnesses that it has used

so far in its attempts to satisfy N denoted by Wit. One of the witnesses is called the

current witness, denoted by x, and plays a special role.

The main feature of the construction, the way we approximate A, clashes with the

idea that a certain strategy progressively acts towards satisfying its requirement. Any

influence it has tried to inflict on the set A by extracting some element from it will

be lost unless the element is extracted again and again infinitely often. This is why

each strategy will keep track of all elements it has previously extracted in course of its

work and extract these elements at every stage at which the strategy is active. So if a

strategy remains inactive, to the left of the true path, it will not have any influence on

the set A. If it is on the true path then it will restore its previous work at the beginning

of every true stage and build onto that work during the stage.

We will have three different groups of parameters responsible for elements extracted

by β during its activities. The first will be the set of markers extracted for elements

less than the threshold in Od by the active P-strategy. Note that the valid axioms

whose markers are extracted at expansionary stages need not be the same at every

stage. We need to provide some stability for β: if a marker that was extracted from

A at a previous β-true stage is not extracted at this one, β will extract it nevertheless

and keep track of such elements in Od. The second group, Oβ, will consist of markers

extracted during the activity of β. The third group will be markers extracted due to

capricious destruction after an attack that seems unsuccessful, kept in a parameter Ow

for each witness w. These can be later re-enumerated in A (i.e. not extracted from A

at β-true stages) if the attack is re-evaluated as successful.

The (N ,Γ)-module is divided into the same sub-modules as were used in Section

2.2.2: Check, Initialization, Honestification, Waiting, Attack and Result. The first five

sub-modules are implemented differently, to incorporate the use of the parameters Od,

Oβ and Ow but follow essentially the same ideas. The evaluation of the Result is
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significantly modified as anticipated in Section 3.1.1.

• Check: If the threshold is not defined, then go to Initialization, otherwise:

1. If d /∈ K[s], i.e the threshold has just been extracted from K, then find the

least n > d, n ∈ K[s] and let that be the new value of the threshold. Empty

Wit, cancel the current witness and start from Initialization, initializing all

strategies below β. Note that the set K is infinite, hence we shall eventually

find the correct threshold.

2. Scan the elements n ≤ d such that n /∈ K[s]. If a marker m of n, m /∈ Oβ∪Od,

has been extracted from A at this expansionary stage by α then we will

enumerate it in Od, empty Wit, cancel the current witness and start from

Initialization, initializing all strategies below β. Note that this can happen

finitely often as long as the threshold remains permanent, as there are finitely

many axioms and hence markers that can be extracted from A for elements

n ≤ d, n /∈ K.

3. Extract from A: Outβ = Oβ ∪Od ∪
⋃

w∈Wit,w<x Ow.

• Initialization:

1. If a threshold has not yet been defined or is cancelled, choose a fresh thresh-

old d > l(ΘU,V , E)[s].

2. If a witness has not yet been defined or is cancelled, choose a new witness

x ∈ E[s], d < x, bigger than any witness defined until now. Enumerate

x ∈ Wit.

3. Wait for a stage s such that x < l(ΘU,V , E)[s] . (o = w)

4. Extract from A and enumerate in Oβ all Aα-markers m(n) of potentially

applicable axioms for elements n such that d ≤ n < l(ΘU,V , E)[s]. An axiom
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is potentially applicable, if its Aα-marker is not already extracted from A

and enumerated in Outβ. Cancel the current markers for these elements.

5. For every element y ≤ x, y ∈ E[s], enumerate in the list Axioms the current

valid axiom from Θ[s], which was valid the longest, i.e. with least age

a(U ⊕W, Uy ⊕W y, s) (See Definition 1.2.1). Here the definition of θ(x) at

stage s will be modified as well to capture the greatest element of precisely

these axioms currently listed in the list Axioms. Let the outcome be (o = h).

• Honestification: Scan the list Axioms. If for any element y ≤ x, y ∈ E[s],

the listed axiom was not valid at any stage t since the last β-true stage s− then

update the list Axioms, let (o = h) and

1. Extract and enumerate in Oβ all Aα-markers m(n) of potentially applicable

axioms for elements n such that d ≤ n, cancel the current markers for these

elements and define u(d) > θ(x).

Otherwise go to:

• Waiting: Wait for a stage s such that x ∈ ΨA[s] returning at each successive

stage to Honestification, (o = w).

• Attack:

1. If x ∈ ΨA[s] and u(d) > θ(x) then extract x from E. The outcome is (o = g)

starting a nonactive stage for the backup strategies. Define Ox to be the set

of all Aα-markers of potentially applicable axioms for elements n such that

d ≤ n and set In(x) = (A ¹ use(Ψ, A, x))[s]. At the next true stage go to

Result.

• Result: Let x̄ ≤ x be the least element that has been extracted from E during the

stage of the attack. As this is an expansionary stage x̄ /∈ ΘU,V [s], hence all axioms
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for x̄ in Θ[s] are not applicable, in particular the one enumerated in Axioms, say

〈x̄, Ux̄, Vx̄〉. At least one element from Ux̄ or Vx̄ has been extracted from U or

V respectively. We will attach to the witness x the necessary information about

this attack, namely a parameter Attack(x) = 〈x̄, Ux̄, Vx̄〉.

If Vx̄ ⊆ V [t] at all stages t since the attack then the attack is successful. The Aα-

markers of elements n ≥ d have been lifted above use(Ψ, A, x) as all previously

enumerated axioms for elements n ≥ d will not be valid. Hence if later on we

want to ensure that ΓU,A(n) = 0 we will only need to extract a marker that is

already above the restraint.

If the attack was unsuccessful then we had a change in V . The plan is to start

the backup strategies and then try again with a new witness. In this case we

will move the markers γ(n) for n ≥ d, n ∈ K[s], by extracting the current ones,

which are already enumerated in the set Ox, and defining the markers anew in

order to provide a safe working space for the backup strategy. At any later

stage when we activate the backup strategy we would like to have all changes

in V for all unsuccessful witnesses that have already been used. As we already

discussed in Section 3.1.1 the Σ0
2 nature of the sets U and V can trick us to

believe that a certain witness is unsuccessful, where in fact after finitely many

changes in V it turns out to be successful. We would like to be able to restore

the old situation as it were during the attack with this old witness and use it to

satisfy the requirement. This is where the parameter Ox comes into use. Every

time we reach this step of the module we will stop and look back at what has

happened with the previous witnesses recorded in the list Wit. If it turns out

that we have a permanent U -change useful for some w ∈ Wit then we can re-

enumerate the corresponding Ow in A and satisfy the requirement N with this

witness. Otherwise as the stage is expansionary and hence w /∈ ΘU,V [s] we have

the necessary change in V and can activate the backup strategy.
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Thus we scan all w ∈ Wit.

1. Let Attack(w) = 〈w̄, Uw̄, Vw̄〉. If there was a change in Vw̄ since this witness

was last examined, i.e. there is a stage t such that t is bigger than the stage

of the last attack and Vw̄ * V [t] then extract Ow from A and go to the next

witness.

2. Otherwise w is successful, the outcome is (o = fw). We set the current

witness to be w so that Ow is not extracted from A during Check. Return

to Result at the next stage. We say that β restrains the elements In(w) in

A.

3. If all witnesses are scanned and all are unsuccessful then cancel the last wit-

ness together with the current markers of the elements n ∈ K[s], d ≤ n and

let the outcome be o = g starting an active stage for the backup strategies.

Return to Initialization at the next stage, choosing a new witness. Note

that capricious destruction will be preformed in the sense that Ox will be

extracted at further β-true stages during Check.

3.2.3 Analysis of outcomes

We shall again define a right boundary R below which successive N -strategies are

allowed to work, assuming that the set A shall not change below R due to the activity

of higher priority N -strategies or nonactive P-strategy.

(P,Γ) has two possible outcomes:

(l) There is a stage after which l(ΘU,V , E) remains bounded by its previous expan-

sionary value. Then P is trivially satisfied. In this case N will be satisfied by the

strategy (N , FM) working below right boundary R = ∞.

(e) There are infinitely many expansionary stages. The (N , Γ)-strategy β is activated.

The possible outcomes of (N , Γ) are:
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(w) There is an infinite wait at Waiting for ΨA(x) = 1 for some witness x. Then

N is satisfied because E(x) = 1 6= ΨA(x) and (P,Γ) remains intact. Successive

strategies work below R = ∞.

(fx) There is a stage after which some witness x with Attack(x) = 〈x̄, Ux̄, Vx̄〉 never

gets its Vx̄-change. Then there is a permanent change in Ux̄ and the markers of

all witnesses are moved above use(Ψ, A, x). At sufficiently large stages K ¹ d has

its final value. So there is no injury to the strategies below fx. ΨA(x) = 1 6= E(x)

and N is satisfied, leaving (P, Γ) intact. Successive strategies work below R = ∞.

(h) There are infinitely many occurrences of Honestification for some witness x pre-

cluding an occurrence of Attack. Then there is a permanent witness x which has

unbounded limsup θ(x). This means that ΘU,V (y) = 0 for some y ≤ x, y ∈ E,

thus P is satisfied. In this case N is satisfied by a second instance of (N , FM)

working below R = γ(d).

(g) We implement the unsuccessful attack step infinitely often. As anticipated we

must activate the backup strategies. They work below R = x.

(P0, Γ0)

(N1,Γ0)

(N1, FM0)

(P0, Γ0)

(P0, Λ0)

(N1, FM0)(N1, Λ0)

(N1, FM0)

(N0, FM)

f w

e l

g f1 f0

. . .
h w

e

f h w
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3.2.4 The backup strategies

The backup strategies will be visited at active stages when they perform their usual

activities and at non-active stages, when the N -strategies can attack. In this section

as well the basic ideas follow the ones from Section 2.2.4. The (N ,Λ)-strategy has a

threshold d̂ and witness x̂, with d[s] < d̂[s] < x̂[s] < x[s] at every non-active stage s. Its

actions are directed at its active P-strategy, (P, Λ). After an attack it will be visited

only if (N , Γ) has observed a stage at which there was an extraction from V below θ(x̂).

We will implement the (P, Λ)-strategy so that this will enough to guarantee the safety

of (N ,Λ). Thus the (N , Λ)-strategy will not have a g-outcome as if it is visited after an

attack, it will be successful. In this section we will only implement the (P, Λ)-strategy,

as the module for (N ,Λ) does not use any new ideas. It is obtained from the (N , Γ)-

module by simplifying the sub-module Result. Note that the backup strategy will as

well need to keep track of the elements it has extracted in a parameter Out = O
d̂
∪O,

to be able to build on its previous work.

The (P, Λ)-strategy is quite similar to the (P,Γ)-strategy, with the difference that

it needs to be extra careful in order to catch the true approximations of the initial

segments of V as it is only visited at expansionary stages, not necessarily true ones.

It has only one outcome e. Suppose it is assigned to the node α̂ and is visited at an

active stage s. Let s− be the previous active visit of α̂.

1. Choose n < l(ΘU,V , E)[s] in turn (n = 0, 1, . . . ) and perform following actions:

• If v(n) ↑ then define it anew as v(n) = v(n− 1) + 1.

• If n ∈ K[s] :

– If λ(n) ↑ then define it anew and enumerate the current axiom

〈n, V [s] ¹ v(n) + 1, {λ(n)}〉 in Λ.

– If λ(n) ↓ but the current axiom was not valid at some stage t: s− < t ≤ s.

Then define λ(n) anew and let Vn be the finite set chosen out of all
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V [p] ¹ v(n) for s− < p ≤ s as the one with least age a(V, V [p] ¹ v(n), s),

see Definition 1.2.1. Define the current axiom to be 〈n, Vn, {λ(n)}〉 and

enumerate it in Λ.

• If n /∈ K[s] but n ∈ ΛV,A[s] then extract from A all Aα̂-markers of axioms

for n with V -part Vn such that (∀t)[s− < t ≤ s ⇒ Vn ⊆ V [t]].

3.3 An N -strategy below two P-strategies

The consideration of an N -strategy below two P-strategies reveals further difficulties.

We will discuss intuitively the most general case: an (N ,Γ0, Γ1)-strategy β working

below the expansionary outcomes of two (P, Γ)-strategies α0 < α1. We leave the

formal definition of the various strategies for Section 3.4.2, where a general construction

regarding all requirements will be given.

As in Section 2.3 the strategy β will perform most of its modules twice, once for

each active P-strategy. It will have two g-outcomes and two h-outcomes. It will restart

(P1, Γ) on a successor node if it sees the need to change the method for satisfying P0

and perform capricious destruction on both α0 and α1. If the method for P1 needs to

be changed then β shall be careful to leave the strategy at α0 intact.

(P1, Γ1)

(N1,Γ0, Γ1)

(N1,Γ0, FM1)(P1, Γ1)

(P1, Λ1)

(P0, Λ0)

(N1,Γ0, Λ1) (P1, Γ1) (N1, FM0, Γ1)

(N1, Λ0,Γ1)

(P0,Γ0)
le

e l

(N1, Λ0, FM1)

(N1, FM0, FM1)
l

h1h0f1 f0

. . .

g1 g0

e

e

e l

w

e
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There will be two thresholds d1 < d0 and one current witness x defined at Initial-

ization. Each new witness is enumerated in Wit0. The first witness used is enumerated

in Wit1 as well. Any further witness will be enumerated in Wit1 only if the attack

performed with it will be timed with the backup strategies below outcome g1, that is

if after the previous attack we visited actively outcome g1.

Honestification is performed first to Γ0 with the list Axioms0. If Γ0 is not honest

then β will clear both the Aα0- and Aα1-markers, providing safe working space for

strategies below outcome h0. This will destroy the strategy α1, therefore below outcome

h0 we have a new copy of the P1-strategy (P1, Γ1) starting work from the beginning.

If Γ0 is honest then we will perform Honestification(1). In case Γ1 is not honest only

Aα1-markers will be extracted. If this is the true outcome β shall not extract any Aα0-

markers and α0 will remain intact and still be active for N -strategies below outcome

h1.

Attack is performed once x ∈ ΨA and both operators are honest. There are two

sorts of backup strategies: the ones below outcome g0 and the ones below outcome g1.

A nonactive stage shall be started for strategies below the outcome visited during the

previous attack.

Result is performed first for Γ0. If the attack is 0-unsuccessful then outcome

g0 is visited and capricious destruction is performed on both operators. Again below

outcome g0 we have a copy of the (P1, Γ1)-strategy starting its work from the beginning.

The outcome g0 can be visited after many consecutive attacks so the witnesses used

will be collected in Wit0. Only after we see a successful witness w ∈ Wit0 will we

examine the result for the second operator Γ1.

The witnesses in Wit1 are then examined one by one. In this case we are not

able to guarantee a V1-change for each of the witnesses to the backup strategies below

outcome g1. Instead a witness w with Attack(w) = 〈w̄, Uw̄,0, Vw̄,0, Uw̄,1, Vw̄,1〉, where w̄

is the least witness extracted by some strategy during the attack with w, is considered 1-
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unsuccessful if there is a Vw̄,0-change or a Vw̄,1-change. If all witnesses are 1-unsuccessful

the outcome g1 is visited.

To explain how an attack works we will need to consider the backup strategies

below outcome g1 as well. We have β′ which is the (N , Γ0,Λ1)-strategy, then below it

β′′ which is the (N , Λ0, Γ1)-strategy, finally β′′′ is the (N , Λ0, Λ1)-strategy.

fw′′′ h0 w

β′′′

β′′

α′′1

α′′0

β′

α′1

β

α′′′1

...
fw h0 h1 w

h1

...

fw′ h0 w

l

fw′′

...

h0 h1 w

h1

g1

g0

g0

g1

β : (N ,Γ0, Γ1)
α′1 : (P1, Λ1)
β′ : (N , Γ0, Λ1)
α′′0 : (P0, Λ0)
α′′1 : (P1, Γ1)
β′′ : (N ,Λ0, Γ1)
α′′1 : (P1, Λ1)
β′′′ : (N , Λ0, Λ1)

All strategies attack together with w′′′ < w′′ < w′ < w and hence the least element

extracted during the attack is w′′′. The strategy α′′1 restarts the approximations to U1

and V1 and so we have the following connections between the entries recorded in the

corresponding Attack-parameters:

(Uw̄,0, Vw̄,0) = (Uw̄′,0, Vw̄′,0) = (Uw̄′′,0, Vw̄′′,0) = (Uw̄′′′,0, Vw̄′′′,0), i.e. Attack[0] is the

same for all strategies. Furthermore (Uw̄,1, Vw̄,1) = (Uw̄′,1, Vw̄′,1) and (Uw̄′′,1, Vw̄′′,1) =

(Uw̄′′′,1, Vw̄′′′,1), i.e. the pairs (β, β′) and (β′′, β′′′) share the same entry in Attack[1].

Suppose that after we evaluate the result of β it has outcome g1. This means that

there is a change in Vw̄,0 or Vw̄,1. Then β′ evaluates the result of the attack. If the

change was not in Vw̄,0 = Vw̄′,0 then β′ is successful as it has the desired (Uw̄′,0, Vw̄′,1)-

change. Otherwise we have a Vw̄′,0 = Vw̄,0-change and β′ will have outcome g0. Now

β′′ has its desired Vw̄′′,0 = Vw̄′,0-change. If there is a Uw̄′′,1-change then it is successful,
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otherwise there is a Vw̄′′,1 = Vw̄′′′,1-change. β′′ will have outcome g1 and the strategy β′′′

will be successful. Thus at least one of the strategies along the tree will be successful

regardless of the distribution of the changes.

As discussed in Section 2.3, to keep the strategy α0 intact in the case of infinitely

many 1-unsuccessful attacks performed by β, a new value of the threshold d0 will be

chosen at every active visit of the outcome g1, the set Od0 will be emptied. So on each

new cycle after an active g1-visit β will move its activity regarding Aα0 , allowing α0 to

remain intact.

Again we will need to modify the Check(0) submodule. It should not be allowed

the initialize all strategies below β should an Aα0-marker of an element less than d0

be extracted by the active P0-strategy and enumerated in Od0 . If the true outcome

is g1 then the value of d0 will grow unboundedly and we might initialize all strategies

β infinitely often. Check(0) shall instead be only allowed to initialize strategies that

believe the threshold d0 is constant, that is all except for the ones below g1.

The strategy β′ working below outcome g1 has the same active P0-strategy. It has

threshold d′0 < d0 and prepares its attack by extracting Aα0-markers. As we saw in

the proof of Lemma 2.5.3 this preparation is useful for β as it ensures that α0 will not

extract markers for elements n ≥ d′0 if the attack is 0-successful.

If we neglect this preparation the following situation might happen: Suppose during

β′’s preparation with a witness w′, it extracts and enumerates in Oβ′ an α0-marker m

for an element d′0 ≤ n. Then β chooses a new threshold d0 > n and the two strategies

attack with w and w′.

While we are evaluating β’s Result the marker m for the element n with d′0 ≤ n ≤ d0

is extracted by α0. The strategy β has never before seen this marker extracted, it

might injure its restraint on A, thus β’s module Check(0) would like to restart β from

initialization. In this case the witness w will be discarded and the attack with w′ will

be neglected. If we visit β′ again we will not be able to guarantee the expected changes
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regarding w′. The strategy β′ cannot handle a (Uw′,0, Uw′,1)-change.

We will therefore incorporate the preparation provided by β′. If a new marker

m < use(Ψ, A, w) for an element d′0 ≤ n < d0 is extracted after the attack with w and

w′, then we can argue that due to the actions of β′ this means that w′ is 1-unsuccessful,

as a U0,w̄ = U0,w̄′ change will ensure that no markers for elements n ≥ d′0 will be

extracted by α0. For this reason the parameter Ow will appear in two ways: Ow,own

will have the same definition as in the first case, it will include the markers that we

extract during capricious destruction, Ow,else will contain markers extracted by backup

strategies during their preparation for an attack that will be performed together with

β’s attack with w. It will be enough for β to extract the set Ow,else only during the

preparation for attack with w, while it is performing Honestification and Waiting.

This will guarantee that markers in Oelse do not appear in the axiom for w in ΨA.

After the attack we will not extract this set any longer as this might interfere with the

elements that previous witnesses need to keep in A for their own success.

Now we are ready to proceed to the main construction and the proof that it works.

3.4 All requirements

The set of different strategies is the same as in Section 2.4. For every P-requirement

Pi we have two different strategies: (Pi, Γi) with outcomes e <L l and (Pi,Λi) with one

outcome e.

The requirement N0 has one strategy (N0, FM). For every N -requirement Ni,

where i > 0, we have strategies of the form (Ni, S0, . . . , Si−1), where Sj ∈ {Γj , Λj , FMj}.
The outcomes are fx, where x is a natural number, w and for each j < i if Sj ∈ {Γj ,Λj}
there is an outcome hj , if Sj = Γj , there is an outcome gj . They are ordered according

to the following rules:

1. For all j1 and j2, gj1 <L . . . fn <L fn−1 <L · · · <L f0 <L hj2 <L w.

2. If j1 < j2 then gj2 <L gj1 and hj1 <L hj2 .
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3.4.1 The tree of strategies

Let O be the set of all possible outcomes and S be the set of all possible strategies.

The tree of strategies is a computable function T : D(T ) ⊂ O∗ → S. It resembles the

tree defined in Section 2.4.1, but an N -node has, instead of one outcome f , infinitely

many outcomes fx with order type ω∗ - the order type of the negative integers. The

tree T has the following properties:

1. If T (α) = S and OS is the set of outcomes for the strategy S then for every

o ∈ OS , α ô ∈ D(T ).

2. T (∅) = (N0, FM).

3. If S = (Ni, S0, S1, . . . , Si−1) then

Below outcome gj: T (α ĝj) = (Pj , Λj) and T (α ĝj ê) = (Pj+1, Γj+1), . . . ,

T (α ĝj ê̂ oj+1 ôi−2) = (Pi−1,Γi−1), where ok ∈ {ek, lk} for j + 1 ≤ k ≤ i− 2.

T (α ĝj ê̂ oj+1 ôi−1) = (Ni, S0, . . . ,Λj , S
′
j+1, . . . , S

′
i−1), where S′k = Γk if ok = ek and

S′k = FMk if ok = lk for every k such that j < k < i.

Below outcome hj: T (αˆhj) = (Pj+1,Γj+1), . . . , T (αˆhj ôj+1 ôi−2) = (Pi−1, Γi−1),

where ok ∈ {ek, lk} for j + 1 ≤ k ≤ i− 2.

T (αˆhj ôj+1 ôi−1) = (Ni, S0, . . . , FMj , S
′
j+1, . . . , S

′
i−1), where S′k = Γk if ok = ek and

S′k = FMk if ok = lk for every k such that j < k < i.

Below outcome fx: T (α f̂x) = (Pi, Γi). Then T (α f̂x ê) = (Ni+1, S0, . . . , Si−1, Γi),

T (α f̂x l̂) = (Ni+1, S0, . . . , Si−1, FMi).

Below outcome w: T (αˆw) = (Pi,Γi). Then T (αˆw ê) = (Ni+1, S0, . . . , Si−1,Γi),

T (αˆw l̂) = (Ni+1, S0, . . . , Si−1, FMi).

The active P-strategies for each node are defined as in Section 2.4.1.

3.4.2 Construction

Following the basic rules from Section 1.3 again at each stage s we shall construct a

finite path through the tree of strategies δ[s] of length s starting from the root. Each
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N -node α shall have a right boundary Rα, defined below. R∅[s] = ∞. After the stage

is completed, all nodes to the right of the constructed δ[s] will be initialized and their

parameters will be cancelled or set to their initial value ∅.

We shall use the notion of dependence between strategies and an instigator defined

in 2.4.1. In our further discussions we shall denote with Mα, mα, Zα and zα: Γα, γα,

Uα and uα respectively if α is a (P, Γ)-strategy and Λα, λα, Vα and vα respectively if

α is a (P, Λ)-strategy. We will denote by s− the previous α-true stage and by o− the

outcome it had at that stage. If α has been initialized since its previous true stage or

if it has never before been visited then s− = s and o− is the rightmost outcome.

Suppose we have constructed δ[s] ¹ n = α. If n = s then the stage is finished and

we move on to stage s + 1. If n < s then α is visited and the actions that α performs

are as follows:

(I.) T (α) = (Pi,Γi). This strategy is responsible for approximating the sets Ui, Vi

and Θi. It will consider the next approximation only at active stages. At these we

perform the actions as stated in the main module in Section 3.2.1, δ[s](n + 1) = l at

non-expansionary stages. At expansionary stages δ[s](n + 1) = e. At nonactive stages

no actions are performed. The outcome is o = o− .

(II.) T (α) = (Pi,Λi). At active stages we perform the actions as stated in the main

module in Section 3.2.4, δ[s](n+1) = e. At nonactive stages no actions are performed,

δ[s](n + 1) = e.

(III.) T (α) = (Ni, S0, . . . , Si−1) with active P-nodes α0, . . . , αi−1. At active stages

we perform Check first. If it doesn’t instruct us otherwise then we carry on with the

module from where it was left at the previous α-true stage s− (from Initialization if

s− = s). At nonactive stages α may only attack, otherwise is has outcome o = o−.

• Check: If one of the thresholds is not defined or cancelled, then the strat-



88 3.4. All requirements

egy α goes to Initialization. Otherwise let Outα =
⋃

j<i Odj ∪ Oα ∪ Ox,else

⋃
w∈Witj ,w<x,j<i Ow,own. The strategy performs Check(j) for j = i−1, i−2, . . . , 1.

Check(i − 1): Scan all n ≤ di−1. If an Aαk
-marker for n, mk(n) /∈ Outα, has

been extracted from A by αk, the active Pk-strategy at α, for k ≤ i− 1 at a stage

t: s− < t ≤ s then we will enumerate it in Odi−1 and empty Witj , j < i, initialize

all strategies below α and start from initialization.

Check(j): Scan all dj+1 < n ≤ dj . If an Aαk
-marker for n, mk(n) /∈ Outα,

has been extracted from A by αk for k ≤ j, at a stage t: s− < t ≤ s then we

will enumerate it in Odj . Then all successors of α, that assume that dj does not

change infinitely often, are initialized. These are strategies γ such that γ ⊇ α ĝk

for k ≤ j or γ ⊇ α ô, where o ∈ { hl, fx, w| l < i, x ∈ ω}, hence all strategies

below and to the right of outcome gj . Then we will empty Witk for k ≤ j and

leave only the current witness x in them.

If α is evaluating Result and the last active g-outcome was gk and k ≤ j then α

continues from the Initialization step. Otherwise α continues to evaluate Result.

If a threshold dj is extracted from K[s] then it is shifted to the next possible value,

i.e to the least n > dj , n ∈ K[s]. If this injures the order between thresholds then

the other thresholds are shifted as well. In this case the strategy resets its work

in the same way as described in Check(j) when an element enters Odj .

Extract Outα from A.

• Initialization: Each strategy Sj 6= FMj picks a threshold if it is not already

defined. The different thresholds must be in the following order:

di−1 < di−2 < · · · < d0.

Strategy Sj picks its threshold as a fresh number such that its marker has not yet

been defined by the active Pj-strategy αj . Then α picks a witness x ∈ E again

as a fresh number.
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If this is the first witness that α picks after it was initialized then x is enumerated

in all Witj j < i, where Sj = Γj and Ox,else = ∅.

If the previous active g-outcome was gj at stage s− then x is enumerated in

Witk, for k ≤ j such that Sk = Γk. Then Ox,else is the set of all Aαk
-markers

mk of potentially applicable axioms defined by the current active Pk-strategy for

elements n < dk, for k < j, that were extracted from A at stage s−.

If l(ΘUj ,Vj

j , E)[s] ≤ x for some j < i then δ(n + 1)[s] = w, working below R =

Rα[s].

If l(E,ΘUj ,Vj

j )[s] > x for all j < i then α extracts from A and enumerates in Oα

all Aαj -markers for all potentially applicable axioms for all elements n ≥ dj from

all active operators Sj . Then cancels all current j-markers for n ≥ dj and defines

zαj (dj) > θj(x)[s].

For every element y ≤ x, y ∈ E[s], α enumerates in the list Axiomsj the current

valid axiom from Θj [s] that has been valid longest as defined in Section 3.2.2.

The next stage will start from Honestification. δ[s](n + 1) = w, working below

R = Rα[s].

• Honestification: The strategy α performs Honestification(0).

Honestification(j): If Sj = FMj then (o = w). Otherwise:

1. Scan the list Axiomsj . If for any element y ≤ x, y ∈ E[s], the listed axiom was

not valid at any stage t since the last α-true stage then update the list Axiomsj ,

let (o = h) and go to the next step, otherwise let (o = w).

2. Extract and enumerate in Oα all Aαj -markers mj(n) of potentially applicable

axioms for elements n such that dj ≤ n < l(ΘUj ,Vj

j , E)[s]. Cancel their current

j-markers. For the elements n ∈ K[s] define zαj (n) > θj(x).

If the outcome of Honestification(j) is w then α performs Honestification(j+1)
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if j +1 < i and goes to waiting if j +1 = i. If the outcome is h then α extracts all

Aαk
-markers of potentially applicable axioms for elements n ≥ dk, enumerating

them in Oα for all k > j. Then cancels their current Aαk
-markers. The outcome

is δ[s](n + 1) = hj working below R = min(Rα[s],mαj (dj)). At the next stage α

starts from Honestification.

• Waiting: If all outcomes of all Honestification(j)-modules are w, i.e. all enu-

meration operators are honest then α checks if x ∈ ΨA
i [s] with use(Ψ, A, x)[s] <

Rα[s]. If not then the outcome is δ[s](n+1) = w, working below R = Rα[s]. At the

next stage α returns to Honestification. If x ∈ ΨA
i [s] with use(Ψ, A, x) < Rα[s]

then α goes to Attack.

• Attack: If α is dependent then it waits for an ins(α)-nonactive stage.

δ[s](n + 1) = w, working below R = Rα[s].

If the stage is ins(α)-nonactive, x ∈ ΨA[s], use(Ψ, A, x) < Rα[s] and all operators

are honest, (the axioms recorded in the lists Axiomsj , j < i, have remained valid

at all stages since s− ) then α extracts x from E. Define Ox,own to be the set of all

potentially applicable axioms in the active Pj-operators for elements n ≥ dj and

j < i. Let tx = s and L(x) = use(Ψ, A, x) and In(x) = A ¹ L(x). This starts an

α-nonactive stage for the strategies below the most recently visited outcome gj

(if none has been visited until now then below the leftmost g-outcome) working

below the boundaries they worked before.

Otherwise it will return to Honestification at the next active stage.

• Result: Let x̄ be the least element extracted from E during the attack. It has a

corresponding entry 〈x̄, Ux̄,j , Vx̄,j〉 in Axiomsj . Define Attack(x) = 〈x̄, Ux̄,0, Vx̄,0,

. . . , Ux̄,i−1, Vx̄,i−1〉. We will denote by Attack(x)[j] the pair (Ux̄,j , Vx̄,j). Redefine

L(x) to be the maximum of all L(y) for all elements y that were extracted dur-

ing the attack. Empty Ox,else as it has done its job. The strategy α performs



Chapter 3. Non-splitting in the Σ0
2 Enumeration Degrees 91

Result(0).

Result(j): If Sj = FMj or Sj = Λj then go to Result(j + 1). Otherwise scan

all witnesses w in Witj . Let Attack(w)[k] = (Uw̄,k, Vw̄,k) for k ≤ j. If one of the

following two conditions is true for any k ≤ j:

1. Sk = Γk and there was a change in Vw̄,k since this witness was last examined,

i.e. there is a stage t such that t is bigger than the stage at which this witness

was last examined such that Vw̄,k * Vk[t].

2. An Aαk
-marker mk < L(w) of an element n < dk[tw] such hat mk ∈ A[tw] was

enumerated in Odk
for k < j.

Then extract Ow,own from A and go to the next witness.

Otherwise w is k-successful for all k ≤ j then go to Result(j + 1).

If all witnesses are scanned then cancel the last witness cancel the current Aαk
-

markers for elements n ≥ dk, k > j. Empty Witl and cancel dl together with Odl

for l < j. Return to Initialization at the next stage, choosing a new witness and

thresholds. The outcome is δ[s](n + 1) = gj . boundary is R = min(x,Rα[s]).

Result(i): We reach this result only in case we have found some witness w that is

j-successful for all j < i. Then let the current witness be w. Restrain In(w) in A.

Let the outcome be o = fw, working below R = Rα[s]. At the next stage go back

to Result(q), where q is the greatest index of a Γ-strategy among (S0, . . . , Si−1)

and q = i if the are no Γ-strategies.

3.5 Proof

We shall now prove that the construction described in Section 3.4.2 works. We shall

start by defining a true path in the tree of strategies. Using this path we shall then

prove some basic properties of the construction. This will enable us to prove that all
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P-requirements are satisfied. Finally we will turn our attention to the N -requirements.

3.5.1 The true path

In this construction for the first time we have an infinitely branching tree of strategies.

It is not straightforward that there exists leftmost infinite path of nodes visited at

infinitely many stages. Fortunately in this case we are able to prove the following

lemma:

Lemma 3.5.1. There is an infinite path h in our tree of strategies with the following

properties:

1. (∀n)(∃∞s)[h ¹ n ⊆ δ[s]].

2. (∀n)(∃sl(n))(∀s > sl(n))[δ[s] 6<L h ¹ n].

3. (∀n)(∃si(n))(∀s > si(n))[h ¹ n is not initialized at stage s].

Proof. We will define the true path with induction on n and prove that it has the

properties needed. The case n = 0 is trivial: h ¹ 0 = ∅ is visited at every stage of the

construction and is never initialized, sl(0) = si(0) = 0.

Suppose we have constructed h ¹ n = α with the required properties. We shall

define h ¹ (n + 1). We have three cases depending on the type of α.

If α is a (Pi, Γ)-strategy then it has two possible outcomes e <L l. If outcome e

is visited infinitely often then let h ¹ (n + 1) = α ê. It has the infinite visit property

and being the leftmost possible outcome has sl(n + 1) = sl(n). Otherwise there is a

stage t after which whenever we visit α, we visit also α l̂. Then h ¹ (n + 1) = α l̂

is visited infinitely often with sl(n + 1) = max(sl(n), t). In both cases si(n + 1) =

max(si(n), sl(n + 1)), as α does not initialize its successors.

If α is a (Pi,Λi)-strategy then it has only one outcome o = e visited at every α-true

stage, hence h ¹ (n + 1) = α ê has the needed properties with sl(n + 1) = sl(n). α does

not initialize its successors, hence si(n + 1) = max(si(n), sl(n + 1)).
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Let α be an (Ni, S0, . . . , Si−1)-strategy, where S ∈ {Γ, Λ, FM}. After a stage

t > si(n), α has a permanent threshold di−1 ∈ K. If we assume otherwise this would

mean that K is finite and hence computable which is not true. There are finitely

many elements n /∈ K, n < di−1, with finitely many axioms defined for them in the

corresponding operators S0, . . . , Si−1, as once an element exits K no more axioms are

enumerated for it in any operator. Hence there are finitely many markers, which can

initialize all nodes below α each only once, on its entry in Odi−1 , which is not emptied

after stage si(n). Hence there is a stage t1 > t after which no more markers enter Odi−1 .

If α has an outcome gi−1 (and hence Si−1 = Γi−1) that is visited infinitely often, then

let h ¹ (n + 1) = α ĝi−1 with sl(n + 1) = sl(n) and si(n + 1) = max(t1, sl(n + 1)).

In general suppose gj is the leftmost outcome that is visited infinitely often. Then

there is a stage t > si(n) such that for all α-true stages s > t no outcome gk for

j < k < i is visited again. In this case the thresholds di−1, . . . , dj are never cancelled

and the corresponding sets Odi−1
, . . . , Odj

are never emptied after stage t. Eventually

the thresholds stop shifting, as K is infinite. There are finitely many elements n < dj

such that n /∈ K with finitely many axioms defined in each of the operators S0, . . . , Si−1.

There will be a stage t1 > t after which no new marker enters Odk
, for j ≤ k < i. After

this stage the outcome gj will not be initialized. Hence we can define h ¹ (n+1) = α ĝj

with sl(n + 1) = t and si(n + 1) = max(t1, sl(n + 1)).

If no g-outcome is visited at infinitely many stages then there is a stage t > si(n)

such that for all α-true stages s > t no g-outcome gk for k < i is visited again. In

this case none of the thresholds are ever cancelled again and none of the sets Odj
are

emptied after stage t. Similarly to the previous case we get a stage t1 > t such that at

stages s > t no new markers enter any of the sets Odj and α does not initialize any of

its successors during Check.

If the last time we visited a g-outcome it was at an active stage, if Check restarts

α after stage t or if we never visited any g-outcome then the only possible outcome
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accessible at stages s > t are w and hj for j < i.

If h0 is visited infinitely often then let h ¹ (n + 1) = αˆh0 with sl(n + 1) =

max(si(n), t) and si(n + 1) = max(t1, sl(n + 1)).

In general let hj be the leftmost h-outcome visited infinitely often. Then there is

a stage t2 > t after which no other h-outcome is visited again and then we can define

h ¹ (n + 1) = αˆhj with sl(n + 1) = max(si(n), t2) and si(n + 1) = max(t2, sl(n + 1)).

If none of the h-outcomes are visited infinitely often then there is a stage t2 > t

after which hj for j < i is never visited again. Then h ¹ (n+1) = αˆw with sl(n + 1) =

max(si(n), t2) and si(n + 1) = max(t2, sl(n + 1)).

Suppose the last time we visited a g-outcome it was at a non-active stage and α is

not restarted after stage t. Then after stage t no more witnesses will be defined as in

order to cancel a witness and choose a new one we pass through a g-outcome. Hence

at stages s > t we have Witj [s] = Witj [t] for all j < i. The only accessible outcomes

after stage t are finitely many: fx for x ∈ Witi−1. Denote them by fxk
<L · · · <L fx1 .

Suppose outcome fxp is visited at a stage s > t. Then the only outcomes that can

be accessible at later stages will be fxq with q ≥ p. In order to reach outcomes w, h or

fxr with r < p we need to pass through a g-outcome again, which we know does not

happen. Then choose the biggest p such that there is a stage t1 > t at which we pass

through outcome fxp . It follows that after this stage we will always pass through fxp

whenever we visit α. Hence h ¹ (n + 1) = α f̂xp with sl(n + 1) = max(sl(n), t1) and

si(n + 1) = sl(n + 1).

Some of the properties of this construction are the same as the properties of the

construction defined in Chapter 2. We will state without proof several such properties.

The first one concerns the distribution of active and nonactive stages, see Proposition

2.5.1.

Propostion 3.5.1. Suppose αˆgj ⊆ β ⊂ h. Then β is visited at infinitely many active

and at infinitely many α-nonactive stages.
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3.5.2 Satisfaction of the P-requirements

Propostion 3.5.2. Suppose ΘUi,Vi
i = E and α ⊂ h is a Pi-strategy.

1. Suppose T (α) = (Pi, Γi) and for some element n ∈ K the current Uα-marker

and the Aα-marker are not changed by any other strategy after stage t. Then α will

stop changing the current marker eventually and n ∈ ΓUi,A
α .

2. Suppose T (α) = (Pi, Λi) and for some element n ∈ K the current Vα-marker

and the Aα-marker are not changed by any other strategy after stage t. Then α will

stop changing the current markers eventually and n ∈ ΛVi,A
α .

Proof. We shall omit the index α in the proof as we will be talking only about param-

eters that belong to α. We shall omit the index i as well as we will only be concerned

with Ui,Vi and Θi.

1. Suppose u(n) remains the same after stage t. We will use what we know from

Section 1.4.2, more precisely Proposition 1.4.4, about the approximation to the

set U , namely that it is Good and Σ0
2. As α is the strategy responsible for the

approximations of the set all the rest of the stages that appear in the proof of (1)

can be considered α-true. Let G denote the set of all good stages, then there will

be a stage t1 > t such that:

Good: (∀s > t1)[s ∈ G ⇒ U ¹ u(n) = U [s] ¹ u(n)].

Σ0
2: (∀s > t1)[U ¹ u(n) ⊆ U [s]].

As {U [s]⊕V [s]}s<ω is also a good Σ0
2 approximation to U ⊕V , if n ∈ ΘU,V , there

is a stage s such that at all s′ > s we have n ∈ ΘU,V [s′] and if n /∈ ΘU,V then at

good stages s′ ∈ G we have that n /∈ ΘU,V [s′]. It follows that as E = ΘU,V for

any number n there will be a stage tn such that at all good stages s > tn we have

that l(ΘU,V , E)[s] > n.

So there will be a good stage t2 > max(t1, tn) at which n < l(ΘU,V , E)[t2]. At

this stage we will examine the current axiom for n in Γ, say 〈n,Un, {m}〉. If it is
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valid then Un ⊆ U [t2] = U ¹ u(n). And hence at all stages s > t2 (Un ⊆ U [s]).

If it isn’t valid then we will enumerate a new axiom 〈n,U [t2] ¹ u(n), {γ(n)}〉 and

for this axiom we will have that at all stages s > t2(U [t2] ¹ u(n) ⊆ U [s]). In

both cases the marker γ(n) will not be moved at any later stage and the axiom

remains valid forever, hence n ∈ ΓU,A.

2. Here the strategy α is not responsible for the approximations of the sets. Instead

there is a (Pi, Γi)-strategy β ⊂ α that approximates the sets. All stages considered

for the rest of the proof of (2) are β-true. Suppose v(n) remains constant after

stage t. As in part (1) we can find a stage t1 > t such that:

Good: (∀s > t1)[s ∈ G ⇒ V ¹ v(n) = V [s] ¹ v(n)].

Σ0
2: (∀s > t1)[V ¹ v(n) ⊆ V [s]].

There will be a good stage t2 > t1 at which n < l(ΘU,V , E)[t2]. At the next α-true

stage t3 ≥ t2 we will examine the current axiom for n in Λ, say 〈n, Vn, {m}〉. If

the current axiom is valid, i.e. it was valid at all stages since the last α-true stage

t−3 then Vn ⊆ V [t2] ¹ v(n) = V ¹ v(n). And hence at all stages s > t3(Vn ⊆ V [s]).

If it isn’t valid then we will enumerate a new axiom 〈n, V ′
n, {λ(n)}〉. We choose

this V ′
n as V [t] ¹ v(n) for some t : t−3 < t ≤ t3 so that it is of least age. Obviously

V [t2] ¹ v(n) would be among these choices. Hence V ′
n ⊆ V [t2]. In both cases the

marker λ(n) will not be moved at any later stage and the axiom remains valid

forever, hence n ∈ ΛV,A.

Propostion 3.5.3. 1. Let α be the biggest (Pi, Γi)-strategy along the true path h.

Suppose that the current Aα-marker for some element n grows unboundedly. If ΘUi,Vi
i =

E then there is an outcome gi along the true path.

2. Let α ⊂ h be the biggest Pi-strategy. Suppose it builds an operator Mi. Suppose

that the current Aα-marker for some element n grows unboundedly. Then ΘUi,Vi
i 6= E.
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Proof. 1. Assume for a contradiction that ΘUi,Vi
i = E and there is no gi-outcome

along the true path. Let n be the least element, whose current Aα-marker moves

off to infinity. If n /∈ K then there will be a stage at which n exits K. After that

stage no more axioms for n are enumerated in Γα, hence the marker γα(n) will

remain constant. Hence n ∈ K.

At every stage s there are finitely many N -strategies that can move n’s markers,

namely the ones with threshold di[s] ≤ n. Every time a new N -strategy is

activated it chooses its threshold di > l(ΘUi,Vi
i , E). Hence once the length of

agreement l(ΘUi,Vi
i , E) is above n, no newly activated N -strategy or no strategy

whose threshold di is cancelled and then re-chosen will have influence on n . So

out of the finitely many N -strategies, which have di ≤ n at any stage, only the

ones that are active infinitely often and do not get initialized after they have

chosen this threshold can have a permanent effect on n, i.e. only the strategies

along the true path. The ones to the right will be initialized and will re-choose

their thresholds to be bigger than n, the ones to the left will not be accessible

after a certain stage.

We assumed ΘUi,Vi
i = E, hence there will not be an outcome hi along the true

path. Indeed if β ⊃ α has active Pi-strategy α and true outcome hi then there

is a permanent witness xβ so that Axiomsi,β changes its entries infinitely often.

Axiomsi has finitely many entries, one for each y ≤ x, y ∈ E. Hence the entry

for at least one element y ∈ E changes infinitely often, thus y /∈ ΘUi,Vi
i .

Let h ¹ m be the biggest N -strategy which has an active Pi-strategy α and a

permanent threshold di ≤ n after stage t0. Let t2 > max(sl(m + 1), si(m + 1), t0)

be a stage such that all other N -strategies along the true path and to the right

of it have already changed the value of their threshold di to a value greater than

n.
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We claim that after stage t2 no N -strategy β will change the current i-markers

of n. So suppose β is visited at stage t > t2 and has outcome o. Suppose β ⊂ h

and has a permanent threshold di[t] < n. In all other cases it follows from the

choice of stage t2 that β will not change the i-markers of n. Note that according

to the choice of t2 > si(m+1) the outcome o is equal to or to the right of the true

outcome oβ of β. We shall examine the different possibilities for oβ. Outcome

oβ = gj for j > i would cancel di at every β ôβ-true stage contradicting the

assumption that di is permanent. If oβ = gk or oβ = hk, for k < j then there will

be a new (Pi, Γi)-strategy along the true path, contradicting the assumption that

α is the biggest one. If oβ = fx then it follows from Lemma 3.5.1 and the choice

of t2 ≥ si(m + 1) that o = fx′ , where x′ ≤ x. If oβ = w or oβ = hj , for j > i then

o = w or o = hk for k > j. In all three cases β will not move any i-markers at

stage t.

Proposition 3.5.2 proves that under these circumstances the strategy α will not

move the markers either. Hence our assumption is wrong and there is an outcome

gi along the true path.

2. Assume for a contradiction that ΘUi,Vi
i = E. Let n be the least element whose

Aα-marker moves off to infinity. If Mi = Γi then according to the previous case

there will be an N -strategy along the true path with true outcome gi, followed

by another Pi-strategy, namely working with Λi. Hence Mi = Λi.

We will prove that after a certain stage t the current marker of n is not moved by

any N -strategy β. The ones that are not in α’s subtree do not have access to the

markers defined by α. There are only finitely many strategies with permanent

threshold di ≤ n. They are all on the true path. Let s be a stage bigger than

si(m + 1), where h ¹ m is the greatest such N -strategy and such that all nonper-

manent thresholds are already bigger than n, n < l(ΘUi,Vi
i , E)[s] and all strategies
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to the right of h ¹ m are initialized. Note that after this stage, whenever we visit

β ⊃ α such that β ⊆ h ¹ m then β can only have an outcome equal to or to the

right of the true path.

Let β ⊃ α be an N -strategy along the true path with true outcome oβ. Outcomes

oβ = gj for j > i would mean that di > n and β does not influence n′s marker

after stage t. There is no outcome gi. Outcomes oβ = gk and oβ = hk, k < i

would activate a bigger Pi-strategy. As in (1) the only possible true outcomes

turn out to be oβ = hj , j > i, outcomes oβ = w and oβ = fx. But we have seen

that in this case the β does not move any i-markers after stage t.

If n /∈ K then there will be a stage s at which n exits K and after which the

λα(n) remains the same. Hence n /∈ K and Proposition 3.5.2 proves that in this

case α will also stop moving the current marker.

We have reached a contradiction, hence ΘUi,Vi
i 6= E.

Corollary 3.5.1. The Pi-requirements are satisfied.

Proof. If ΘUi,Vi 6= E then Pi is trivially satisfied. Assume ΘUi,Vi = E. Consider the

biggest Pi-node α on the true path. It follows from Proposition 3.5.3 that for all its

elements all its current markers eventually settle down. Hence by Proposition 3.5.2

for any n ∈ K we have that n ∈ ΓUi,A
i if α is constructing Γi and n ∈ ΛVi,A

i if α is

constructing Λi.

If n /∈ K then n /∈ K[t] for all t > s0. If T (α) = (Pi, Γi) then n /∈ ΓUi,A
i [t] at all

α-true expansionary stages t > s0, thus n /∈ ΓUi,A
i . If T (α) = (Pi, Λi) then for each

axiom 〈n, Vn,m〉 ∈ Λi there are infinitely many stages t > s0 at which this axiom is not

valid. Namely for each α-true stage t > s0 with previous α-true stage t− either there

is a stage tn, t− < tn ≤ t at which Vn * Vi[tn] or else at stage t we extract m from A.

Thus n /∈ ΛVi,A
i .
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3.5.3 Satisfaction of the N -requirements

We start by stating two properties of the construction, whose proof is exactly the same

as in section 2.5.3 and will be omitted here.

Propostion 3.5.4. For every node α along the true path lims Rα[s] = ∞.

Proof. See Proposition 2.5.4.

Propostion 3.5.5. Let α ⊂ h be an N -strategy with ins(α) = β. Suppose α ⊃ βˆgj

and α attacks with a witness x̂ at stage t together with an attack of β with x. Then

Attack(x̂)[k] = Attack(x)[k] for all k ≤ j.

Proof. See Proposition 2.5.5.

Next we state a technical property whose proof is essentially the same as the proof

of Preposition 2.5.6. The definition of an applicable axiom is however different in this

construction, so we will give a short proof for completeness.

Propostion 3.5.6. Suppose an Ni-strategy α ⊂ h with active Pj-strategy βj starts

an attack with witness x at stage s. Let y ≤ x, y ∈ E be a number with entry

〈y, Uy,j ,W y,j〉 in Axiomsj [s]. Let n ≥ dj be a number with an α-potentially appli-

cable axiom 〈n,Zn,j , {m}〉 at stage s at βj. Then Zn,j ⊇ Uy,j if βj is a (P, Γ)-strategy

and Zn,j ⊇ W y,j if βj is a (P,Λ)-strategy.

Proof. We consider the case when βj is a (P, Γ)-strategy. During α′s cycle with x, the

strategy completes Initialization at stage s0, say. Let s1 ≥ s0 be the last stage at which

α performs Honestification(k) for k ≤ j. At stage s1 the strategy extracts the markers

of all potentially applicable axioms for n, enumerates them in Oα[s1] and cancels its

marker uj(n). Thus at stages t > s1 the marker uj(n)[t] is defined to be bigger than

u(dj)(n)[s1] ≥ θ(x)[s1] ≥ max(Uy,j). The axiom 〈n, Zn,j , {m}〉 is potentially applicable

at α at stage s, so m /∈ Oα[s] ⊇ Oα[s1]. Thus the axiom is enumerated in Γj at a stage
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s2 > s1 and Zn,j = U [s2] ¹ uj(n)[s2]. As α attacks at stage s, the operator Γj is honest

at stages t with s1 < t ≤ s, in particular it is honest at stage s2, i.e. Uy,j ⊆ U [s2], and

hence Zn,j ⊇ Uy,j .

The main aim now is to prove that if an Ni-strategy α on the true path has outcome

fx for some x then the requirement Ni is satisfied as x ∈ ΨA
i . To ensure this we will

need to establish that the set In(x) that α is trying to restrain in A ends up indeed in

A. Various strategies around α might try to prevent this from being true by extracting

elements from A. We will first prove that a P-strategy that is not active at α cannot

extract any elements that α is trying to restrain in A. Then we shall prove that

neither can any of the other N -strategies. Finally we will establish this for the active

P-strategies at α.

Propostion 3.5.7. Suppose we have an Ni-strategy α = h ¹ n along the true path with

active Pj-strategies βj ⊂ α for j < i and true outcome h(n+1) = gj or hj, where j < i.

Suppose h ¹ (n + 1) is visited at stage s > si(n + 1) with right boundary R[s]. Then

if m < R[s] is an Aβk
-marker, where k ≥ j, and m is extracted at stage t > s by the

active Pk strategy βk then m is extracted from A at all h ¹ (n + 1)-true stages t ≥ s.

Proof. After stage si(n+1) defined in Lemma 3.5.1 α has permanent thresholds dk and

permanent sets Odk
for k ≥ j and Outα[t] ⊇ ⋃

k≤j Odj
∪Oα[s] at all t ≥ s.

Suppose m is extracted by βk, where k ≥ j, at stage t > s. Then m is an Aβk
-

marker of an axiom for an element e /∈ K such that e > dk as otherwise a new element

would enter Odk
contradicting our choice of stage s. If the marker m was defined after

stage s then it is bigger than R[s]. If the marker is defined before stage s then so is the

axiom Axm that it belongs to.

If h(n + 1) = hj then Outα[s] ⊆ Outα[t] for all t > s. At stage s the axiom Axm is

examined by α and if m is not already in Outα then m is enumerated in Outα at stage

s. Hence m ∈ Outα[t] for all t ≥ s.
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If h(n + 1) = gj then Witj [s] ⊆ Witj [t] for all t > s and the current witness x[s]

is in the set Witj . If m /∈ Oα[s] at stage s then it is enumerated in Ox[s],own and

Oα[s] ∪Ox,own[s] ⊆ Outα[t] at all α ĝj-true stages t.

Propostion 3.5.8. Suppose β ⊂ h is visited at stages s1 > si(β) and s2 > s1. Suppose

at stage s1 β attacks and then restrains an element m in A until stage s2. If the active

P-strategies at β do not extract m at stages t s1 < t ≤ s2 then neither do the other

strategies.

Proof. It follows that β is an N -strategy that has outcome fw at all β-true stages t,

s1 < t < s2. The stage of the attack with w is tw ≥ si(β). The set that β restrains in

A is In(w) ⊆ A[tw] ¹ Rβ[tw] and m < Rβ[tw]. Suppose α 6= β extracts m at a stage t,

s1 < t ≤ s2. And let that be the least stage and α be the least strategy. We will prove

that it is an active P-strategy at β by examining the different possible cases for α.

• α <L β is not possible, as α would not be accessible at stage t.

• α >R β, then at stage s1 α is initialized. If α is a P-strategy then all its markers

would be defined after stage s1 and would be greater than Rβ[s1] > Rβ[tw] ≥ m.

If α is an N -strategy then it chooses its thresholds after stage s1 as fresh numbers

whose markers are not yet defined. The only markers m′ < Rβ[s1] that can enter

Outα[t] are the ones that enter α′s parameter Odi and have to be already extracted

from A after stage s1 by a smaller strategy, an active P-strategy at α.

• α ⊃ β, then α extracts markers only on active stages, hence if it is visited after

stage s1 then α ⊇ β f̂w. Then α was initialized on the stage s1. Similarly to the

previous case it cannot be a P-strategy and if m ∈ Outα[t] then it must have

been first extracted by an active P at α after s1 which is smaller than α.

• α ⊂ β. If α is a Pj-strategy different from the active one at α then there is an N -

strategy σ ô ⊂ β with o ∈ {hj , gj} that destroys α. Proposition 3.5.7 proves that
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α does not extract m at stage t as otherwise m < Rβ[tw] ≤ Rσ[tw] is extracted

at all σ ô-true stages after and including tw contradicting m ∈ A[tw].

If α is an Ni-strategy then we have the following cases:

1. β ⊇ αˆw or β ⊇ α f̂x. Then after stage tw ≥ si(β) the strategy α has this

outcome at all true stages, the set Outα is constant. No new elements enter

Oα,dj , j < i, otherwise we initialize β. The sets Witαj , j < i are permanent

as is the current witness. The strategy α does not enumerate more elements

in Oα as it needs to have some hj to do so.

2. β ⊇ αˆhj , then the elements that enter Outα at stages t > tw are markers mk

k ≥ j for axioms from the operators of the active P-strategies at α that are

potentially applicable at stage t for elements bigger than dk, hence markers

defined after stage tw. Indeed all markers defined before stage tw that ever

get extracted by α would already be in Outα[tw] but m ∈ A[tw].

3. β ⊇ α ĝj . Then α had an active outcome gj at the last active stage t−w before

the attack with w at stage tw. The marker m was not extracted by α at stage

t−w and after stage t−w α does not enumerate elements m′ < Rβ[tw] = Rβ[t−w ]

in Oα or in Ox,own for witnesses x defined after stage t−w .

At stage s1 the strategy α attacks again. If α extracts an element m < Rβ[tw]

at a stage t > s1 there are two possibilities. The first one is that m < dk and

m enters Odk
. If k < j then it is first extracted by the active Pk-strategy at

α after stage s1 which is smaller. If k ≥ j then this would initialize β.

The second possibility is that m ∈ Ox,else at stage t for some witness x of α

defined after stage s1 and after stage s′1 at which α had an active g-outcome

after the attack at s1. Then m was extracted from A[s′1] and s1 < s′1 < t,

contradicting our choice of stage t.
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Lemma 3.5.2. Let α = h ¹ n be the last Ni-node along the true path. Then α is

successful.

Proof. Suppose T (α) = (Ni, S0, . . . , Si−1) and let βj , j < i, be the active Pj-nodes at

α, where Pj is undefined if Sj = FMj . We know that no other node can interfere with

α and injure its restraint except for α itself and βj . As α is the last Ni-node on the

true path, it must have outcome w or outcome fx for some x. Every other outcome is

followed by another copy of an Ni-strategy.

If the outcome is w then at all α-true stages t > si(n) defined in Lemma 3.5.1, α

has a permanent witness x and x /∈ ΨA[t] with use(Ψ, A, x)[t] < Rα[t]. By Proposition

3.5.4 the right boundary Rα is unbounded, hence x /∈ ΨA and as α never attacks with

x, we have x ∈ E. Thus the requirement is satisfied.

Suppose the outcome is fx and let Attack(x) = 〈x̄, Ux̄,0Vx̄,0, . . . , Ux̄,i−1, Vx̄,i−1〉.
Then once we visit α f̂x after stage si(n + 1) the strategy α will permanently restraint

In(x) in A. We will prove that the active P-strategies at α do not extract markers

from In(x) after stage si(α f̂x), the last stage of the attack, and by Proposition 3.5.8

no other strategy will, hence x ∈ ΨA.

First we will establish that markers extracted by the active P-strategies after

si(α f̂x) cannot belong to elements n < dj [tx] for all j < i. Here tx is the stage of

the attack with witness x. Let q be the greatest index such that Sq = Γq. Then

x ∈ Witq. After stage si(α) the thresholds di−1, . . . , dq are not cancelled. If an ele-

ment enters Odj or the value of dj is shifted then we initialize α f̂x. Hence this does

not happen after stage si(α f̂x). Now lets look at j < q. Every time we visit α we

start from Result(q), examine all witnesses in Witq and reach x. Note that once we’ve

reached x, then for all w < x we have established one of the two properties that make

us move to the next witness automatically until an active g-outcome is visited, so in

this case forever. And our assumption tells us that we will never establish either of the

two properties for x. For all Γk, k ≤ q there is no Vx̄,k change and for all Sk, k < q
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there is no m ∈ Odk
such that m < L(x) and m ∈ A[tx]. Otherwise we would move to

the left of fx. Hence the only markers restrained in A that might be extracted by the

active P-strategies after si(α f̂x) need to belong to elements greater than dj [tx] for all

j.

If there are no Γk = Sk for any k < i then no thresholds are ever cancelled, if they

are shifted or an elements enters Odj for j < i then fx is initialized. So this does not

happen after stage si(α f̂x).

Thus, suppose βj extracts m < L(x) such that m ∈ In(x) ⊆ A[tx] at stage t >

si(α f̂x). Then m is a marker of an axiom 〈n, Zn, {m}〉 for some n ≥ dj [tx] which is

valid at stage t and was defined at stage t0 < tx. The marker m was in A[tx] hence the

axiom was potentially applicable at stage tx.

If Sj = Γj (T (βj) = (Pj , Γj)) then j ≤ q and by Proposition 3.5.6 we have Zn ⊇
Ux̄,j . Hence Vx̄,j * Vj [t]. But then at the next α-true stage one of the conditions for

the unsuccessfulness of x would be valid and α would have outcome to the left of fx

contradicting our assumptions.

The only case left to consider is Sj = Λj . We shall deal with all Λ-strategies at

once. Suppose that the Λ-strategies at α are Sj0 , Sj1 , . . . , Sjr , with j0 < j1 < · · · < jr.

Then there are strategies α0, . . . , αr such that α0 ĝj0 = βj0 ⊂ · · · ⊂ αr ĝjr = βjr ⊂ α.

Then ins(α) = αr, ins(αr) = αr−1, . . . , ins(α1) = α0.

When α attacks at stage tx, it times its attack with all of the listed strategies:

α0 which attacked with x0, . . . , αr, which attacked with xr. By Proposition 3.5.5

Attack(x)[k] = Attack(x0)[k] for all k < j0, . . . , Attack(x)[k] = Attack(xr)[k] for all

k < jr. At the previous α-active stage t−x the strategy α0 had outcome gj0 , α1 had

outcome gj1 , . . . , αr had outcome gjr . And so Outα[t−x ] ⊆ Oxr,else · · · ⊆ Ox0,else.

We claim that every time αp has outcome gjp after stage txp = tx there is a Vx̄,jp-

change for all p ≤ r. So when we take j = jp, we have a Vx̄,j-change at all βj-true stages

after tx. Now we have that the axiom 〈n,Zn, {m}〉, potentially applicable at stage tx
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has by Proposition 3.5.6 the property that Vx̄,j ⊆ Zn and so βj will not extract m at

any stage after tx.

Suppose the claim is true for k < p and αp has outcome gjp at stage t > txp . One

reason for this outcome would be the desired Vx̄,jp-change. The other possible reasons

for αp to have this outcome are for some k < jp:

• Sk = Γk and there was a change in Vx̄p,k = Vx̄,k since this witness was last

examined, i.e. there is a stage t′ such that t′ is bigger than the stage of the last

attack such that Vx̄,k * Vk[t′]. But then when we visit α at the next α-true stage

after t it would have an outcome to the left of fx, so this reason is not possible.

• A marker mk < L(xp) of an element n < dk,αp [txp ] such that mk ∈ A[txp ] was

enumerated in Odk
of αp.

Recall that the active Pk-strategy at αp and α is the same as k < jp. We already

established that n > dk,α[tx = txp ]. Also the marker mk was defined before stage

tx and even t−x as otherwise it would be greater than L(xp). The marker was not

extracted by α on stage t−x or else it would be in Oxp,else and not in A[txp ]. So

at stage tx the corresponding axiom 〈n,Zn, {mk}〉 was potentially applicable at

α and Zx,k ⊆ Zn. The marker m was extracted by the active Pk-strategy at a

stage t′ after the attack, so Zx,k was a subset of Zk[t′] at an expansionary stage

t′. Now if Sk = Γk this would result in a Vx̄,k-change at stage t′ and α would once

again have an outcome to the left of fx at the next true stage, contradicting our

assumptions. If Sk = Λk this would result in no Vx̄,k = Vx̄p,k-change at a βk-true

stage t′ contradicting the induction hypothesis.

This concludes the proof of the claim, this lemma and the theorem.



Chapter 4

Genericity and Non-bounding in

the Σ0
2 Enumeration Degrees

In this chapter we will investigate a second algebraic property of the Σ0
2 enumeration

degrees, namely the existence of degrees that bound and that do not bound minimal

pairs (see Definition 1.5.2).

Cooper, Li, Sorbi and Yang show in [CLSY05] that every nonzero ∆0
2 enumeration

degree bounds a minimal pair and construct a nonzero Σ0
2 enumeration degree that

does not bound a minimal pair. This non-bounding property can be viewed as the dual

of the non-splitting property of the properly Σ0
2 enumeration degrees proved in Chapter

3. It provides further insight into the structure of the properly Σ0
2 enumeration degrees

within De(≤ 0′e), allowing us to define a different infinite set of enumeration degrees I
consisting entirely of properly Σ0

2 enumeration degrees in De:

I = { a| a > 0e ∧ (∀x, y ≤ a)[0e < x ∧ 0e < y ⇒ (∃d)[d ≤ x ∧ d ≤ y ∧ d 6= 0e]]}.
The set I is downwards closed in the properly Σ0

2 enumeration degrees, thus I ∪ {0e}
is an ideal in De(≤ 0′e).

In the article [CLSY05] the authors state that their construction can be used to

build a 1-generic enumeration degree that does not bound a minimal pair.

107
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We will use lower case Greek letters (especially ρ, τ) for finite binary strings and let

τ ⊆ ρ indicate that τ is an initial segment of ρ. When A is a set we let τ ⊂ A denote

that τ is an initial segment of A′s characteristic function χA considered as an infinite

binary sequence.

Definition 4.0.1. A set A is 1-generic if for every c.e. set X of finite binary strings

(∃τ ⊂ A)[τ ∈ X ∨ (∀ρ ⊇ τ)[ρ /∈ X]].

An enumeration degree is 1-generic if it contains a 1-generic set.

Copestake [Cop88] had already investigated the properties of the n-generic enumer-

ation degrees for every n < ω. She proved that every 2-generic enumeration degree

bounds a minimal pair and announced that there exists a 1-generic enumeration degree

that does not bound a minimal pair. Her proof has not appeared in the academic press.

In this chapter we present a complete proof of this longstanding conjecture following

the basic ideas presented in [CLSY05]. Our proof however introduces some new features,

not present in the construction by Cooper, et al. The enumeration degree that is

constructed is also properly Σ0
2 and generalizes the result from [CLSY05].

Theorem 4.0.1. There exists a 1-generic Σ0
2 enumeration degree a that does not bound

a minimal pair in the semi-lattice of the enumeration degrees.

Let us further note that our result is in contrast with the properties of the 1-generic

Turing degrees. Although there are c.e. Turing degrees that do not bound any minimal

pair in DT (≤ 0′) as proved by Lachlan [Lac79], every 1-generic Turing degrees bounds

a minimal pair. For a proof of this property see [Odi99].

The work presented in this chapter is published in [Sos07], see Appendix A.1.

4.1 Requirements

Once again we will use the priority method and follow the basic steps, outlined in Sec-

tion 1.3. We will construct a set A whose e-degree a will have the intended properties.
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We will have the following list of requirements:

1. The set A should be 1-generic. Let {We}e<ω be a computable enumeration of all

c.e. sets. For every e we shall have a requirement:

Ge : (∃τ ⊆ A)[τ ∈ We ∨ (∀µ ⊇ τ)[µ /∈ We]],

where τ and µ are finite binary strings.

2. A does not bound a minimal pair. Let {(Θ, Ψ)i}i<ω be a computable enumer-

ation of all pairs of enumeration operators. For every i we will have a requirement:

Ri : ΘA
i is c.e. ∨ΨA

i is c.e.∨
∨(∃Di)[Di ≤e ΘA

i ∧Di ≤e ΨA
i ∧Di is not c.e.].

Fix an R-requirement Ri. Let Xi = ΘA
i and Yi = ΨA

i . This requirement is too

complicated to be satisfied at once and we will break it up into subrequirements.

Let {Wj}j<ω be a computable enumeration of all c.e. sets:

Ri : (∃Γi)(∃Λi)(∀j)[Si,j ],

where Si,j is the subrequirement:

Si,j : Xi is c.e. ∨ Yi is c.e. ∨ [ΓXi
i = ΛYi

i = Di ∧Wj 6= Di].

We order all requirements linearly. Every requirement Si,j has lower priority than Ri.

One possible way to order the requirements is:

G0 < R0 < G1 < S0,0 < G2 < R1 < G3 < S0,1 < G4 < S1,0 < . . . .

4.2 Strategies and outcomes

In this section we shall describe the basic strategies for satisfying each requirement.

The construction will again be carried out on a tree of strategies T , which we shall

keep it in mind during our discussions.

The set A will be constructed as Σ0
2 in a similar way to the one used in Chapter

3. At every stage the set shall initially be approximated by the set of natural numbers
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N. Each node (say of length n) visited at stage s will build its own approximation to

the set A, denoted by An[s], enumerating and extracting elements from An−1[s]. The

approximation to the set A at stage s will be A[s] = As[s], the resulting set after all

nodes have completed their actions. The nodes will obey restrictions on A and A that

are set by higher priority strategies. Ultimately A will be the set of all natural numbers

a such that:

(∃s)(∀t > s)[a ∈ A[t]].

We will proceed to describe what general actions the different types of strategies,

corresponding to the different types of requirements, will make. We have three types

of strategies corresponding to the three types of requirements G, R and S. Every

S-strategy β is a substrategy of one particular R-strategy α ⊂ β, which we call its

superstrategy.

Let γ be a G-strategy working with the set W . This strategy is a bit more com-

plicated than our usual FM -strategy, while still maintaining some resemblance to it.

In order to be successful it needs to find a witness τ for the genericity of A regarding

the c.e. set W . A witness τ for γ will be a finite binary string such that τ ⊆ A and

either τ ∈ W or ∀ρ ⊇ τ we have that ρ /∈ W . The strategy γ chooses a finite string τ

according to rules that ensure compatibility with strategies of higher priority. Then it

searches for a string ρ such that τ ρ̂ ∈ W . If it never finds such a string, it will be suc-

cessful as it will have satisfied the second condition for genericity. While it is searching

for such a string it will have outcome w. If it does find such a string eventually then

γ remembers the shortest one, µ, and has outcome f . The witness of γ is extended to

τˆµ. We have the usual order between the two outcomes, f <L w. To ensure that the

witness τ in the first case and the extended witness τˆµ in the second case are initial

segments of the characteristic function of the set A, the strategy γ will restrain some

elements out of A and in A.

Let α be an R-strategy, working with X = ΘA and Y = ΨA. It acts as a mother
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strategy to all its substrategies ensuring that they work correctly. We assume that on

this level the two enumeration operators Γ and Λ are built. They are common to all

substrategies of α. This strategy has only one outcome: e.

Let β be an S-strategy with superstrategy α ⊂ β. The strategy β is automatically

assigned some of the parameters it works with from the superstrategy α. These are the

sets X = ΘA, Y = ΨA and the two operators Γ and Λ constructed at α. Furthermore

it has its own parameter W , the c.e. set it is working with.

The strategy β has three options to satisfy its requirement: it can prove that X is

c.e., it can prove that Y is c.e. or it can prove that ΓX = ΛY = D 6= W . The first

two options are considerably easier than the third, so the strategy tries to prove them

first. Only when both attempts fail, will β switch to the third option. Each failure of

an attempt provides β with some control over the sets X and Y that it will use.

The strategy first tries to prove that the set X is c.e. by building a c.e. set U which

approximates the set X. On each stage it adds elements to U that seem currently in

the set X and then looks if any errors have occurred in the set. While there are no

errors the outcome is ∞X .

If an error occurs then some element, that was assumed to be in the set X = ΘA,

has been extracted from X, i.e an axiom in the current approximation to Θ for some

element has been invalidated by an extraction from the set A. The strategy cannot

fix the error by extracting the corresponding element from U because we want U to

remain c.e. In this case β gives up on its desire to make X c.e. It finds the least error

k ∈ U \X and forms a set Ek which is called an agitator set for k. The agitator contains

an element a for every axiom for k in the current approximation of Θ, say 〈k, Dk〉, such

that a ∈ Dk. So extracting the agitator set from A will ensure that each axiom for k in

Θ will not be valid for ΘA = X, that is it will ensure that k /∈ X. With some additional

actions we will ensure that if the agitator is a subset of A then k ∈ X. And so the

agitator will have the following property which we will refer to as the control property :
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k ∈ X ⇔ Ek ⊆ A.

The strategy now turns its attention to Y . It tries to prove that it is c.e. by

constructing a set Vk, aiming to make it equal to Y . The set Vk is built in a similar

way. Simultaneously the strategy always checks if the agitator Ek for k preserves its

control property. Note that the agitator will lose this property if a new axiom for k is

enumerated in Θ and if so the error in U is corrected, so the strategy can return to its

initial strategy to prove that X is c.e. While there are no errors in Vk and Ek has its

control property, the outcome is 〈∞Y , k〉.
If an error is found in Vk, the strategy chooses the least l ∈ Vk \ Y and forms an

agitator F k
l for l in a similar way. F k

l also has a control property:

l ∈ Y ⇔ F k
l ⊆ A.

The strategy β finally has some control over the sets X and Y , namely using the

agitators it can determine whether or not k ∈ X and l ∈ Y . It adds axioms 〈d, {k}〉 ∈ Γ

and 〈d, {l}〉 ∈ Λ for some witness d, constructing a difference between D and W . If

d ∈ W the outcome is 〈l, k〉 and the agitators are kept out of A. If d /∈ W then the

agitators are enumerated in A, so d ∈ D and the outcome is the symbol d0.

The possible outcomes of an S-strategy are:

∞X <L T0 <L T1 <L · · · <L Tk <L · · · <L d0,

where Tk is the following group of outcomes:

〈∞Y , k〉 <L 〈0, k〉 <L 〈1, k〉 <L · · · <L 〈l, k〉 <L . . .

4.3 The tree of strategies

The tree of strategies is defined in the usual way, as described in Section 1.3. It is a

computable function T with D(T ) ⊆ { w, d, e,∞X , 〈∞Y , k〉, 〈l, k〉, d0| k, l ∈ N}<ω and

R(T ) the set of all requirements. The nodes on every level n of the tree are assigned

to the n-th requirement in our priority listing. Thus nodes on even levels will always

be G-strategies.
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As we already discussed for every subrequirement Si,j assigned to a node β on

the tree, there is a unique node α ⊂ β such that T (α) = Ri. The node α is the

superstrategy of β and β is a substrategy of α. If the strategy β succeeds to prove that

the set Xα = Xβ is c.e. or that the set Yα = Yβ is c.e. then the requirement Ri will

be globally satisfied and no further subrequirements will need a strategy on the tree

to satisfy them. For this reason below outcome ∞X and 〈∞Y , k〉 of an Si,j-strategy

there are no further Si,j′-substrategies of α, where j < j′. In this case we will rearrange

the requirements so that we still have a G-strategy at every node of even length. Let

{Pe}e<ω be some computable listing of all R- and S-requirements such that Ri has

higher priority than Si,j . We shall define the tree inductively. We will make use of

an also inductively defined set of P-requirements at every node α, denoted by Pα,

consisting of the P-requirements that need attention. At the root of the tree this set

consists of all P-requirements.

1. If α is of even length 2e then T (α) = Ge. We define Pαˆo = Pα, where o ∈ {d,w}.

2. If α is of odd length then it is assigned the least P-requirement in Pα.

3. If α is an Ri-strategy then Pαˆe = Pα \ {Ri}.

4. If α is an Si,j-strategy then for o′ ∈ { ∞X , 〈∞Y , k〉| k < ω}, we define Pαˆo′ =

Pα \ { Si,j′ | j′ ≥ j}. For o′′ ∈ { d0, 〈l, k〉| l, k < ω}, we define Pαˆo′′ = Pα \ {Si,j}.

4.4 Interactions between strategies

Before we give the formal construction we shall consider some possible interactions

between different strategies, that will reveal to us some difficulties and the need for

some extra parameters. In order to have any organization whatsoever we make use of

a global parameter, a counter b, whose value will be an upper bound to the numbers

that have appeared in the construction up to the current moment.
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4.4.1 A G-strategy below an S-strategy

Our first concern will be the interactions between a higher priority S-strategy β and a

lower priority G-strategy γ. The interesting cases are when γ ⊇ βˆ∞X and similarly

when γ ⊇ β 〈̂∞Y , k〉. We shall concentrate on the case γ ⊇ βˆ∞X , describing a possible

situation that if repeated infinitely often shall lead to the incorrect work of the strategy

β. We shall then modify the design of the strategies to avoid the described situation.

Suppose β is of length n and is visited at stage s at which it adds an element k to

the set U . Every element that enters the set U is currently in the set X = ΘA. So

there is an axiom 〈k,E′〉 ∈ Θ which is currently valid, i.e. E′ ⊆ An[s], where An[s] is

the approximation to A at substage n of stage s, the substage at which we visit β. The

strategy β will keep a list U of the axioms from Θ that it assumes to be valid when

enumerating new elements in U . At stage s this list shall contain the axioms in Θ for

every element in U of least age, see Definition 1.2.1, and will be updated at β-true

stages. Thus if k ∈ X then the entry in U for k will eventually stop changing.

Now suppose that after the entry of k in U (possibly even at the same stage) γ

chooses a string µγ and extracts a member of E′ from A. If there aren’t any other

axioms for k in the corresponding approximation of Θ and γ is on the true path, then

we shall have an error in U . Fortunately when the strategy β checks for errors in its

set U , it examines all stages and substages since it was last visited. At the next β-true

stage, s1 say, β will therefore find this error, choose an agitator for k and move on to the

right with outcome 〈∞Y , k〉. It is possible that later a new axiom for k is enumerated in

the corresponding approximation to Θ and thus the error in U is corrected. At the next

β-true stage s2, β returns to its initial aim to prove that X is c.e. But then another

G-strategy γ1 ⊇ γ f̂ chooses a string µγ1 and again extracts k from X by extracting an

element that invalidates the new axiom for k. If this situation repeats infinitely often,

ultimately we will claim to have X = U but k will be extracted from X at infinitely

many stages and thus our claim would be wrong. The corresponding S-subrequirement
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will not be satisfied.

β

γ

γ1

∞X
. . . 〈∞Y , k〉 . . . 〈l, k〉 . . .

d0

f w

To avoid this we will have to ensure some sort of stability for the elements that

we put in U , more precisely for the corresponding axioms in U that we assume to be

valid. This is how the idea for applying an axiom arises. We apply an axiom 〈k, E′〉 by

changing the value of the global parameter b so that it is larger than the elements of

the axiom and then by initializing those strategies that might invalidate the axiom.

The first thing that comes to mind is to initialize all strategies δ ⊇ βˆ∞X . This

way we would avoid errors at all. If the set X is infinite though, we would never

give a chance to strategies δ ⊇ βˆ∞X to satisfy their requirements as we will initialize

them infinitely often. This problem is solved with the notion of local priority. Every

G-strategy γ ⊇ βˆ∞X will have a fixed local priority regarding β. This priority is given

by a computable bijection σβ : Gβ → N, where Gβ is the set of all G-strategies in the

subtree of βˆ∞X . If γ ⊂ γ1 then σβ(γ) < σβ(γ1). A strategy γ ⊇ βˆ∞X has local

priority σβ(γ) in relation to β. When we apply the axiom 〈k, E′〉 only strategies γ with

σβ(γ) greater than k will be initialized. Then as the stages grow so do the elements that

enter U and with them grows the number of G-strategies that are preserved. Ultimately

each strategy will get a chance to satisfy its requirement.

We will extend the definition of local priority to all strategies δ ⊇ βˆ∞X . This will
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be a useful way to refer to them in the description of the construction. A strategy

δ ⊃ β which is not a G-strategy is an immediate successor of a G-strategy γ. It will

be give the local priority of γ, i.e. σβ(δ) = σβ(γ). Naturally all strategies extending

β 〈̂∞Y , k〉 for every k < ω shall also be given local priority relative to β, defined in a

similar way.

4.4.2 An S-strategy below an S-strategy

Our second concern is the interaction between two S-strategies β and β′, with corre-

sponding superstrategies α and α′. As every R-strategy has infinitely many substrate-

gies it is possible that β is of lower priority than β′ on the tree, while the corresponding

superstrategies are arranged in the opposite way, namely α is of higher priority than

α′. We shall examine precisely this case, assuming further that β ⊇ β ′̂ ∞X .

α

α′

β′

∞X 〈∞y, k′〉 〈l′, k′〉 d0

β

∞X 〈∞Y , k〉 〈l, k〉 d0

Suppose that at stage s the strategy β chooses its agitators Ek and F k
l and extracts

them from A having outcome 〈l, k〉. This means that β has already modified the

operators Γα and Λα by enumerating the corresponding axioms 〈d, {k}〉 and 〈d, {l}〉 in

them. From this stage on until (if ever) the witness d is cancelled it is important for

the correctness of α to keep either k ∈ X and l ∈ Y or to keep both k /∈ X and l /∈ Y .
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Otherwise we risk ΓX
α (d) 6= ΛY

α (d). To achieve this the two agitators Ek and F k
l need

to be either both entirely extracted from A[t] or subsets of A[t] at every stage t > s.

(If the witness is cancelled we enumerate the axiom 〈d, ∅〉 in both operators, preserving

the equality at d forever.)

Suppose now that at the next β′-true stage s′ > s the strategy β′ decides to build its

own agitators for elements k′ and l′. These new agitators include as a subset β’s agitator

Ek and do not contain any elements from β’s other agitator F k
l , i.e. Ek ⊂ Ek′ ∪ F k′

l′

and F k
l ∩ (Ek′ ∪ F k′

l′ ) = ∅. Then β′ has outcome d0 and enumerates its agitators in

A[s′], causing the anticipated difference between the sets ΓX
α and ΛY

α .

To avoid this β′ will choose its agitators carefully: along with the elements needed

to form the agitator with the requested control property it will add also all elements

of all agitators that were chosen and out of A at the previous β′-true stage s. This

action will ensure that β’s agitators will not be separated as Ek ∪ F k
l ⊂ Ek′ ∪ F k′

l′ and

whatever β decides to do, it will not cause errors in α’s operators.

Unfortunately this will not solve the problem completely. It is possible that at a

later stage a new axiom is enumerated in Θα for k or a new axiom is enumerated in Ψα

for l, causing one of the agitators Ek or F k
l to lose its control property and creating a

difference between the sets ΓX
α and ΛY

α at the element d again. If β is visited again then

it will fix this mistake by cancelling the false witness d. If not, the error will remain

unfixed and the R-strategy α might not satisfy its requirement. To prevent this from

happening we will attach a new parameter to α: a list Watchedα through which α will

keep track of all its S-substrategies. The list will have an entry for every substrategy,

which will contain information about its agitators. If α sees that one of the agitators

has lost its control property then it will go ahead with the actions on discarding the

false witness and correcting the mistake in the operators Γα and Λα in advance. This

action will not interfere with β’s work. In fact if β is ever visited again it will cancel

the witness and give up the agitator that has lost its control property anyway. In this
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sense α is just preempting the actions of β.

4.5 Construction

We will begin the description of the construction by listing again all parameters that are

associated with each strategy. Their purpose was explained intuitively in the previous

two sections. While describing the parameters we will suppress the subscripts that

indicate the strategy to which they belong. These subscripts will appear only when

more than one strategies are involved in a discussion and we need to distinguish between

their parameters.

We have one global parameter b, common to all strategies, which is an upper bound

to all elements that have appeared so far in the construction. Its initial value is 0.

In addition every strategy δ visited at stage s will have two more parameters E[s]

and F [s]. The set E[s] contains all elements restrained out of A at this stage s by

strategies δ′ ⊂ δ. The set F [s] contains all elements that are restrained in A by

strategies of higher priority δ′′ < δ. Note that these elements may have been restrained

at a previous stage.

Each Ge-strategy γ working with the set We will have two parameters: finite binary

strings τ and µ, with initial value the empty string ∅.
Each Ri-strategy α working with the enumeration operators Θi and Ψi is equipped

with a list Watched with entries of the form 〈β : 〈E, Ek, F
k
l 〉, d〉, where β is a substrat-

egy of α, Ek and F k
l are β’s current agitators, the set E contains information needed

to assess if the agitators still have the control property and d is the witness that must

be cancelled in case one of the agitators loses its control property. The initial value of

the list is ∅. Also α has parameters Γ and Λ, the enumeration operators that α and all

its substrategies construct together. Their initial value is ∅ as well.

Each Si,j-strategy β inherits the two parameters Γ and Λ from its superstrategy. In

addition it constructs a c.e. approximation to a set U and c.e. approximations to sets
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Vk for all k, all initially the empty set. Corresponding to these c.e. approximations the

strategy has lists U and Vk, with initial values the empty list. During the construction

β might form agitators Ek for all k and F k
l for all k and l or choose a witness d, but

initially the agitators are empty and the witness is undefined.

At stage s = 0 all nodes of the tree are initialized, b[0] = 0, δ[0] = ∅ and A[0] = N.

At each stage s > 0 we will have A0[s] = N, δ0[s] = ∅ and b0[s] = bs−1[s− 1].

Assume that we have already built δn[s], An[s] and bn[s]. If n = s then we end this

stage, initializing all nodes to the right of δ[s] and move on to the next stage s + 1.

Otherwise n < s the strategy δn[s] will be activated and will choose an outcome o.

Then δn+1[s] = δn[s]̂ o. Let s− be the previous stage at which δn[s] was visited if it has

not been initialized since this stage and s− = s if δ is in initial state. We have three

cases depending on the type of the strategy δn[s]:

(I.) δn[s] = γ is a G-strategy. The actions that γ makes are as follows:

1. If τ = ∅ then define τ to be the binary string of length bn[s] + 1 such that:

τ(a) ' 0 iff a ∈ E[s].

Increase the value of the counter to bn+1[s] = bn[s] + 1 and go to step 2.

2. If µ = ∅ then search for a string µ such that τˆµ ∈ W [s]. If there is no such string

then let An+1[s] = An[s]. All elements for which τ(a) = 1 are restrained by γ in

A and the outcome is o = w. If there is such a string then define µ to be the

least binary string such that τˆµ ∈ W [s] and increase the value of the counter

to bn+1[s] = max(bn+1[s], |τˆµ|+ 1), where |τˆµ| denotes the length of the string

τˆµ. Go to step 3.

3. Restrain in A all numbers a such that τˆµ(a) = 1. Restrain out of A all numbers

a such that a ≥ |τ | and τˆµ(a) = 0. Let

An+1[s] = An[s] \ { a| a is restrained out of A by γ} and let the outcome be o =

f .
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(II.) δn[s] = α is an R-strategy. The strategy α scans all entries in the list Watched[s].

For each entry 〈β : 〈E, Ek, F
k
l 〉, d〉 ∈ Watched[s] it checks if there is an axiom 〈k,E′〉 ∈

Θ such that E′∩(E∪Ek) = ∅ or 〈l, F ′〉 ∈ Ψ such that F ′∩(E∪Ek∪F k
l ) = ∅. If there is

such an axiom then α cancels d by enumerating in both sets Γ and Λ the axiom 〈d, ∅〉.
After all entries have been checked, α sets An+1[s] = An[s] and has outcome o = e.

(III.) δn[s] = β is an S-strategy, a substrategy of α. If β is watched by α then it deletes

the corresponding entry from Watchedα. Unless otherwise specified bn+1[s] = bn[s].

The actions that β makes depend on the outcome o− that the strategy had at the

previous β-true stage s−. If this is the first β-true stage in the construction or if β is

initialized after the last β-true stage then o− = ∞X .

• The outcome o− is ∞X .

1. Choose the least k ∈ X \ U . Here X = ΘAn
[s]. If there is such an element

then there is an axiom 〈k,E′〉 ∈ Θ[s] with E′ ⊆ An[s]. Enumerate k in the

set U . Let 〈k,E′〉 be the axiom of least age a(ΘA[s], E′, s) for k in Θ[s].

Enumerate this axiom in the list U and apply this axiom by initializing all

strategies δ ⊇ βˆ∞X of local β-priority with value greater than k and by

setting bn+1[s] = max(bn[s], E′).

2. Proceed through the elements of U until an element for which there is no

applicable axiom is found or until all elements are scanned. Here we have

a very specific definition of an applicable axiom. For every k let R∞X (k)[s]

be the set of all elements restrained out of A by strategies δ ⊆ δ[s−] that

extend βˆ∞X and have local priority σβ(δ) < k.

Definition 4.5.1. An axiom 〈k,E′〉 ∈ Θ[s] is applicable at stage s if:

i. E′ ∩ Eβ[s] = ∅ and

ii. E′ ∩ R∞X (k)[s] = ∅.
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The intuition behind this definition is that it is plausible that the axiom will

end up valid. The set R∞X (k)[s] contains all elements that are restrained

by strategies with local priority less than k along what seems to be the true

path.

If there is an applicable axiom for k then let 〈k, E′〉 be the applicable axiom

for k of least age a(ΘA[s], E′, s). If the entry for k in U is different, replace

it with 〈k, E′〉. If the axiom 〈k,E′〉 is not yet applied, then apply it.

If all elements k ∈ U are scanned and an applicable axiom is found for each

then let An+1[s] = An[s] and o = ∞X .

If there is no applicable axiom for k then proceed as follows:

– Initialize all strategies δ ⊇ βˆ∞X of local βˆ∞X -priority with value

greater than k.

– Examine all S-strategies β′ in the subtree with root βˆ∞X . If β′ was

visited at stage s−, had outcome 〈l′, k′〉 with witness d′, corresponding

agitators Ek′ , F k′
l′ and was not initialized after stage s− then add to the

list Watchedα′ , where α′ is the superstrategy of β′, an element of the

following structure:

< β′ : 〈Eβ′ [s−], Ek′ , F
k′
l′ 〉, d′ > .

– Finally define the agitator for k as Ek = R∞X (k)[s]\Eβ[s]. All elements

a ∈ Ek are restrained out of A by β. Let An+1[s] = An[s] \ Ek and

o = 〈∞Y , k〉.

• The outcome o− is 〈∞Y , k〉.

1. Check if there is an axiom 〈k,E′〉 ∈ Θ such that E′ ∩ (Eβ[s]∪Ek) = ∅. If so

then act as in step 1. of the case o− = 〈l, k〉, described below.

2. Choose the least element l ∈ Y [s] \ Vk. If there is such an element then let

〈l, F ′〉 ∈ Ψ[s] be the axiom with F ′ ⊆ An[s] \Ek of least age a(ΨA[s], F ′, s).
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Enumerate the element l in Vk and the axiom 〈l, F ′〉 in Vk. Apply this

axiom by initializing all strategies δ ⊇ β 〈̂∞Y , k〉 of local β-priority with

value greater than l and by setting bn+1[s] = max(bn[s], F ′).

3. Proceed through the elements of Vk, searching for an element for which there

is no applicable axiom in Ψ[s]. For every l let R〈∞Y ,k〉(l)[s] be the set of all

elements that are restrained out of A by strategies δ ⊂ δ[s−] that extend

β 〈̂∞Y , k〉 and have local priority less than l.

Definition 4.5.2. An axiom 〈l, F ′〉 ∈ Ψ is applicable if:

i. F ′ ∩ Eβ[s] = ∅;

ii. F ′ ∩ Ek = ∅;

iii. F ′ ∩ R〈∞Y ,k〉(l)[s] = ∅.

If there is an applicable axiom for l then let 〈l, F ′〉 be the one with least age

a(ΨA[s], F ′, s). If the entry for l in Vk is different, replace it with 〈l, F ′〉. If

the axiom 〈l, F ′〉 is not yet applied, apply it.

If all elements l ∈ Vk are scanned and an applicable axiom is found for each

then let An+1[s] = An[s] \ Ek and o = 〈∞Y , k〉.

If there is no applicable axiom for l then proceed as follows:

– Initialize all strategies δ ⊇ β 〈̂∞Y , k〉 of local β-priority with value

greater than l.

– Examine all S-strategies extending β 〈̂∞Y , k〉. If β′ was visited at stage

s−, had outcome 〈l′, k′〉 with witness d′, corresponding agitator Ek′ , F k′
l′

and was not initialized after stage s− then add to the list Watchedα′ ,

where α′ is the superstrategy of β′, an element of the following structure:

< β′ : 〈Eβ′ [s−], Ek′ , F
k′
l′ 〉, d >.

– The agitator for l is F k
l = R〈∞Y ,k〉(l)[s] \ (Eβ[s] ∪ Ek). All elements

a ∈ (Ek ∪ F k
l ) are restrained in A by β.
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– Finally find the least element d that has not been used in the definition

of Γ yet. This will be a witness for β. Enumerate the axiom 〈d, {k}〉 in

Γ and the axiom 〈d, {l}〉 in Λ. Let An+1[s] = An[s] and o = d0.

• The outcome o− is d0.

1. If d /∈ W [s] then let An+1[s] = An[s] and o = d0.

2. If d ∈ W [s] then β restrains all elements a ∈ (Ek ∪ F k
l ) out of A. Let

An+1[s] = An[s] \ (Ek ∪ F k
l ) and o = 〈l, k〉.

• The outcome o− is 〈l, k〉. Then the agitators Ek and F k
l and the witness d are

defined.

1. If there is an axiom 〈k, E′〉 ∈ Θ[s] such that E′ ∩ (Eβ[s] ∪ Ek) = ∅, i.e. Ek

has lost its control property, then cancel d and let Vk = Vk = Ek = F k
l = ∅.

Update the entry for k in U with 〈k, E′〉. Apply the axiom 〈k,E′〉. The

strategy β stops restraining elements a ∈ Ek ∪F k
l . Let An+1[s] = An[s] and

o = ∞X .

2. If there is an axiom 〈l, F ′〉 ∈ Ψ such that F ′ ∩ (Eβ[s] ∪ Ek ∪ F k
l ) = ∅ then

cancel d and let F k
l = ∅. Update the entry for l in Vk with 〈l, F ′〉. Apply

the axiom 〈l, F ′〉. The strategy β stops restraining elements a ∈ F k
l . Let

An+1[s] = An[s] \ Ek and o = 〈∞Y , k〉.

3. If neither of the above two conditions hold, and hence both agitators still

have their control property, then let An+1[s] = An[s]\(Ek∪F k
l ) and o = 〈l, k〉.

4.6 Proof

The proof of the theorem is divided into four groups of lemmas. The first group

concerns the relationships between the various restrictions that strategies impose at

different stages. The second group of lemmas concentrates on the properties of the
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agitator sets. Then follows the group dedicated to the existence of the true path. Each

of these groups provide us with essential properties of the construction. These are then

collectively used to prove that all requirements are indeed satisfied in the last group of

lemmas.

4.6.1 Restriction lemmas

The construction involves various restrictions of elements in and out of the set A. We

start our analysis of the construction by establishing some fundamental rules about

these restriction. This will help us later to determine properties of the characteristic

function of A. We start off with a simple property of the agitator sets that will be

helpful for the rest of the restriction lemmas.

Propostion 4.6.1. Let β be an S-strategy that is visited and chooses an agitator Ag

at stage s. Let s′ < s be the greatest stage at which β is initialized. The elements of

the agitator Ag are restrained out of A by some G-strategy γ ⊃ β at a stage s0 such

that s′ < s0 < s.

Proof. The proof is by induction on s. Suppose the statement is true for all strategies

visited at stages t < s and let β be visited at stage s. Assume β chooses its agitator

Ek and let a ∈ Ek (the case when β chooses F k
l is proved similarly). Then a ∈

R∞X (k)[s] and hence is restrained out of A at stage s− by some strategy extending

βˆ∞X . Obviously s− > s′, otherwise R∞X (k)[s] = ∅ because all strategies that extend

β would also be initialized and would not restrain any elements out of A.

If a is restrained out of A by a G-strategy then we have established the statement

for this element a. Suppose a is restrained by an S-strategy, say β′ ⊇ βˆ∞X . Then

a is in an agitator Agβ′ of β′. This agitator was defined by β′ on a previous β′-true

stage, say t, such that s′ < t < s. Applying the induction hypothesis for t we obtain

the required statement for a in this case as well.
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Strategies δ on the tree work under the assumption that the set Eδ approximates

correctly the elements that their predecessors extract from A. The next lemma will

prove in a sense that this assumption is correct.

Lemma 4.6.1. Let s1 and s2 be two consecutive δ-true stages. If δ is not initialized

at any intermediate stage t such that s1 < t ≤ s2 then Eδ[s1] = Eδ[s2].

Proof. We will prove the lemma by induction on the length of δ. If |δ| = 0 then δ = ∅
and Eδ[s1] = Eδ[s2] = ∅. So let us assume that the statement is true for strategies of

length n and let δ be a strategy with |δ| = n. We will prove that the statement holds

for δ ô, an arbitrary immediate successor of δ.

Suppose δ′ = δ ô is visited at stages s1 and s2 and not initialized at stages t such

that s1 < t ≤ s2. Then δ is also visited at stages s1 and s2 and is not initialized at any

stage t such that s1 < t ≤ s2. The induction hypothesis gives us Eδ[s1] = Eδ[s2]. We

only need to prove that the elements that δ restrains at stages s1 and s2 are the same.

We will examine the different cases depending on the type of δ and the outcome o:

1. If δ is an R-strategy, a G-strategy with o = w or an S-strategy with o = ∞X or

o = d0 then δ does not restrain any elements at stages s1 and s2.

2. Suppose δ is a G-strategy with outcome o = f . Then the value of δ’s parameters τ

and µ are the same at stages s1 and s2, as they can change only after initialization.

Therefore the elements that δ restrains at both stages s1 and s2 are the same as

well, namely the elements a > |τ | such that τˆµ(a) = 0.

3. Suppose δ is an S-strategy with outcome o = 〈∞Y , k〉. Then the elements that

δ restrains out of A at stages s1 and s2 are the ones in its agitators Ek[s1] and

Ek[s2] respectively. If we assume that Ek[s1] 6= Ek[s2] then at some stage t such

that s1 < t ≤ s2, the strategy δ would have had outcome o′ = ∞X . Indeed δ can

only choose a new value for its agitator Ek at a stage t′ if it had outcome ∞X
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at the previous true stage t. But ∞X <L 〈∞Y , k〉 and δ′ would be initialized at

stage t contrary to our assumption.

4. Suppose δ is an S-strategy with outcome o = 〈l, k〉. Then the elements that δ

restrains at stages s1 and s2 are the ones in Ek[s1] ∪ F k
l [s1] and Ek[s2] ∪ F k

l [s2]

respectively. If we assume that Ek[s1] 6= Ek[s2] or F k
l [s1] 6= F k

l [s2] then at some

stage t such that s1 < t ≤ s2 the strategy δ would have had an outcome o′ = ∞X

or o′ = 〈∞Y , k〉 to the left of o and δ′ would again be initialized at stage t contrary

to our assumption.

Propostion 4.6.2. If s is a δ-true stage and a ∈ Eδ[s] then δ cannot restrain a (in or

out of A) at stage s.

Proof. Let s0 ≤ s be the least δ-true stage such that δ is not initialized at stages t with

s0 < t ≤ s. According to Lemma 4.6.1, Eδ[s0] = Eδ[s] and therefore a ∈ Eδ[s0]. Only

G- and S-strategies restrain elements in or out of A. We treat the two cases separately:

1. Let δ be a G-strategy. The value of δ’s parameter τ is chosen at stage s0 and

remains the same at all stages t such that s0 < t ≤ s. Then a < |τ | and τ(a) = 0,

hence δ does not restrain a at stage s.

2. Let δ be an S-strategy. Then δ restrains only elements in its agitators. Any agi-

tator that δ chooses at stages t ≥ s0 does not intersect Eδ[t] = Eδ[s0]. Therefore

δ does not restrain a.

We next consider the properties of the parameters Fδ for strategies δ. We will show

that for every strategy δ the elements that it restrains in A will remain in A unless the

strategy is initialized. First we prove that strategies of lower priority than δ obey these
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restrictions. Then we prove that higher priority strategies always initialize δ, should

they decide to injure its restrictions. These two properties clarify which elements will

end up in the constructed set A.

Lemma 4.6.2. If s is a δ-true stage and a ∈ Fδ[s] then δ does not restrain a out of A

at stage s.

Proof. Assume that a is restrained in A by δ1 < δ at stage s1 ≤ s. Note that a ∈ Fδ[s]

until δ1 is initialized or is visited and stops restraining a in A. Hence δ1 is not initialized

at stages t such that s1 < t ≤ s. Let s2 ≥ s1 be the first δ-true stage after the imposition

of the restraint at stage s2 by δ1. We will prove that at stage s2 the strategy δ is in

initial state. We have the following cases:

1. δ1 <L δ . Then δ is initialized at stage s1.

2. δ1 ⊂ δ.

a. δ1 is a G-strategy. Then at stage s1 the strategy δ1 picks a new value for

one of its parameters τ or µ after its last initialization at a stage t < s1. At

stage t the strategy δ was also initialized. If δ1 chooses τ at stage s1 then

at stage s1 the strategy δ1 is in initial state, i.e. s1 is the first δ1-true stage

after stage t. As any δ-true stage is a δ1-true stage, it follows that s2 is the

first δ-true stage after δ’s initialization at stage t. If on the other hand δ1

chooses a new value for the parameter µ at stage s1 then it has outcome f at

this stage for the first time after its initialization at stage t. The strategy δ1

will have outcome f at all stages until its next initialization, in particular at

stage s. We can conclude that δ ⊇ δ1 f̂ and thus is not accessible at stages

t′ with t ≤ t′ < s1.

b. δ1 is an S-strategy. Then at stage s1 it has outcome d0. This is the only case

when an S-strategy restrains elements in A. Furthermore δ1 had outcome
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〈∞Y , k〉 at its previous visit at stage s−1 and has outcome d0 at each visit

after s1 while it is restraining the element in A. In particular it has outcome

d0 at stage s. Hence δ ⊇ δ1 d̂0 and δ was initialized at stage s−1 , when δ1

had outcome 〈∞Y , k〉.

So, if γ ⊇ δ is a G-strategy then for any τγ that γ chooses at stages after stage s1

we have a < |τγ | and γ does not restrain a out of A.

If δ is an S-strategy and we assume that δ restrains a out of A then a is included

in some agitator Ag. By Proposition 4.6.1 any element that enters the agitator has

been restrained out of A by some G-strategy γ ⊃ δ after δ′s last initialization. But

we just established in the paragraph above that no such γ restrains a out of A. Hence

a /∈ Ag.

Lemma 4.6.3. Suppose that at stage s we visit δ1. Suppose that δ1 restrains out of

A an element a that is currently restrained in A by a lower priority strategy δ2 ⊃ δ1.

Then δ2 is initialized at stage s.

Proof. The proof is by induction on the distance d(δ1, δ2) = |δ2| − |δ1|. Assume that

the statement is true for all pairs of strategies with distance d < n.

Let d(δ1, δ2) = n. Suppose that δ2 restrains an element a in A at stage s0 < s.

This element remains restrained until stage s, thus both strategies δ1 and δ2 are not

initialized at stages t with s0 < t < s1. By proposition 4.6.2 the element a is not

restrained out of A by δ1 at stage s0. So at stage s the elements that δ1 restrains out

of A are different from the ones it restrained at stage s0.

If δ1 is a G-strategy, this could only happen if it had outcome w at stage s0 and out-

come f at stage s, restraining new elements included in the definition of its parameter

µ. As s0 is a δ2-true stage it follows that δ2 ⊇ δ1ˆw and is initialized at stage s.

If δ1 is an S-strategy then a is included in some agitator Ag. This agitator is chosen

at a stage t ≤ s. It is extracted from A at stage s, but was not extracted from A at
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stage s0.

It follows from the construction that once δ1 chooses its agitator Ag, the agitator is

extracted from A at all stages at which this agitator is valid unless δ1 has outcome d0.

Thus if t ≤ s0 then the only possibility is δ2 ⊇ δ1 d̂0. Then at stage s, δ1 has outcome

〈l, k〉 and initializes δ2.

The other possibility is that t > s0. If the agitator Ag = Ek for some k, then at

stage t− ≥ s0 the strategy δ1 has outcome ∞X . Then δ2 would be initialized at stage

t− unless δ2 ⊆ δ1ˆ∞X .

By the construction the element a was restrained out of A by some σ ⊃ δ1 at stage

t− ≥ s0. By Lemma 4.6.2 we have that σ < δ2 and by the assumption that δ2 is not

initialized at stages t′ > s0 it follows that σ ≮L δ2. Thus σ ⊂ δ2. Furthermore by

Proposition 4.6.2 the stage t− cannot be equal to s0 as otherwise δ2 would not be able

to restrain a at stage s0. Now by applying the induction hypothesis for the strategies

σ and δ2 we obtain again a contradiction with our assumptions, namely that δ2 is

initialized at stage t− < s.

The case when Ag = F k
l is treated similarly.

4.6.2 Lemmas about the agitators

Using the established properties of the restrictions we can now obtain a simpler def-

inition of the agitators. Suppose β is an S-strategy that chooses an agitator for the

element m at stage s. We have two similar cases depending on β’s previous outcome

o− . If o− = ∞X then Ag = R∞X (m)[s] \ Eβ[s]. By Lemma 4.6.1 we have that

Eβ[s] = Eβ[s−]. By Proposition 4.6.2 these elements cannot be restrained by strategies

extending β, thus R∞X (m)[s] ∩ Eβ[s] = ∅. Thus the agitator has a simpler definition

Ag = R∞X (m)[s]. If o− = 〈∞Y , k〉 then we have a similar situation. In addition

R〈∞Y ,k〉(m)[s] ∩ Ek = ∅ and we get Ag = R〈∞Y ,k〉(m)[s].

Furthermore suppose β′ ⊃ β is an S-strategy visited at stage s− with outcome
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〈l′, k′〉. Let Eβ′−β = Eβ′ [s−] \ Eβ[s−], the elements that are restrained out of A by

strategies below β, but above β′. If β′ is not initialized at stage s then Eβ′−β∪Ek′∪F k′
l′ ⊂

Ag.

Similarly if β′ ⊃ β is an S-strategy and at stage s− it was visited and had outcome

〈∞y, k
′〉. If β′ is not initialized at stage s then Eβ′−β ∪ Ek′ ⊂ Ag.

In this section we shall prove two more properties of the agitators. The first lemma

establishes that the agitators have the control property discussed in Section 4.2. The

second lemma guarantees that the choice of agitators does indeed prevent the undesir-

able situation described in Section 4.4.2.

Lemma 4.6.4. Let β be an Si,j-strategy visited at stage t0. Denote by X the set ΘA
i

and by Y the set ΨA
i .

1. Suppose β chooses an agitator Ek for k at stage t0. If the node βˆ∞X is not

initialized or visited at any stage t > t0 and Ek ⊆ A then k ∈ X.

2. Suppose β chooses an agitator F k
l for l at stage t0. If the node β 〈̂∞Y , k〉 is not

initialized or visited at any stage t > t0 and F k
l ⊆ A then l ∈ Y .

Proof. We will concentrate on the first part of the lemma; the second part is proved

similarly. To prove that k ∈ X = ΘA
i we need to find an axiom 〈k, E′〉 ∈ Θi with

E′ ⊂ A.

Consider the axiom 〈k, E′〉 for k listed in U[t0]. We will prove that it has this

property. Assume for a contradiction that an element a ∈ E′ is extracted from A at

infinitely many stages. This axiom was applied not later than at stage t0. Furthermore

it was valid when it entered U hence E′ ∩ Eβ[t0] = ∅ according to Lemma 4.6.1.

The strategy β chooses an agitator for k at stage t0. We initialize all strategies δ

such that β <L δ. Furthermore o[t−0 ] = ∞X , hence at stage t−0 we have initialized all

strategies δ′ such that βˆ∞X <L δ′. These are not visited again before stage t0.
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Therefore all nodes δ such that βˆ∞X <L δ do not restrain a out of A at any stage

t ≥ t0. The only strategy that can extract a out of A at stage t0 is β. This follows

from Proposition 4.6.1, the fact that G-strategies restrain out of A only elements larger

than the length of their current parameter τ and that if a G-strategy is in initial state

at stage t ≥ t0 it will choose a new value for its parameter τ of length greater than a.

As βˆ∞X is not visited at stages t > t0 and Ek ⊂ A by the same Proposition 4.6.1,

β does not extract the element a at infinitely many stages. Elements that enter F k
l for

any l must be first extracted by a G-strategy extending β 〈̂∞Y , k〉.
We only need to further consider strategies δ ⊂ β. Let t1 > t0 be the first stage at

which a /∈ A[t1] and δ be the strategy that extracts it. We treat G- and S-strategies

separately.

If δ is a G-strategy that extracts a at stage t1 > t0 then it has outcome f at stage

t1. As β is not initialized at stage t1, δ f̂ ⊆ β and δ f̂ is not initialized at stages t such

that t0 < t ≤ t1. Thus by Lemma 4.6.1 we have a ∈ Eβ[t0] contradicting a ∈ E′.

If δ is an S-strategy then a is included in some agitator Ag which is taken out of A

at stage t1. As in the proof of Lemma 4.6.3 if Ag is chosen before or at stage s0 then

β ⊇ δ d̂0 and is initialized at stage t1. Thus the agitator is chosen at stage t > t0, and

as usual a was extracted from A at the previous δ-true stage t− by one of the strategies

extending δ. Our choice of t1 as the first stage after t0 at which a is extracted from

A guarantees that t− = t0. But we know that the only strategy that can extract a at

stage t0 is β, hence a ∈ Ek ⊂ A.

Lemma 4.6.5. Let β 〈̂l, k〉 be visited at stage t0. If β is not initialized or visited at

stages t > t0 and (Ek ∪ F k
l ) 6⊂ A then (Ek ∪ F k

l ∪ Eβ[t0]) ∩A = ∅.

Proof. Let (Ek∪F k
l ) 6⊂ A. First we will prove that (Ek∪F k

l )∩A = ∅. Let a ∈ Ek∪F k
l .

Then a is restrained out of A by some G-strategy γ ⊃ β at some stage t′ < t0 after

β′s last initialization as we established in Proposition 4.6.1. As β is not initialized or
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visited anymore, no other G-strategy can restrain the element a out of A. Indeed G-

strategies of higher priority than β would initialize β if they restrained a new element.

The ones to the right of β are initialized at stage t′ and choose their parameter τ to

be of length greater than a. So if a /∈ A[t] then a is restrained out of A by some

S-strategy δ ⊂ β. We can even say that δˆ∞X ⊆ β, if a is included in some agitator

Ek′ , and δ 〈̂∞Y , k′〉 ⊆ β, if a is included in some agitator F k′
l′ , again using the result

from Proposition 4.6.1. Moreover the agitator is chosen at stage t1 > t0, as after the

strategy δ chooses its agitator it has outcomes to the right of β until the agitator is

cancelled.

Suppose a is extracted from A at stage t > t0 by β1 ⊂ β. Then a is included in the

agitator Ag1 of β1, chosen at stage t1 > t0. So a /∈ A[t−1 ] and t−1 ≥ t0. If t−1 = t0 then

Ek ∪F k
l ⊆ Ag1. If t−1 > t0 then there is another strategy β2 such that β1 ⊂ β2 ⊂ β and

a is included in one of its agitators Ag2. With a similar argument we get a monotone

decreasing sequence of stages t1 > t2 > . . . bounded by t0, hence finite.

Therefore always when a /∈ A[t], we have a finite sequence of S-strategies:

β1 ⊂ β2 ⊂ · · · ⊂ β

and a corresponding monotone sequence of their agitators:

Ag1 ⊃ Ag2 ⊃ · · · ⊃ (Ek ∪ F k
l )

such that Ag1 is restrained out of A at stage t. If a /∈ A[t] and t > t0 then

(Ek ∪ F k
l ) ∩A[t] = ∅ and ultimately (Ek ∪ F k

l ) ∩A = ∅.

Let us assume now that b ∈ Eβ[t0] ∩ A 6= ∅. Then there is a stage tb such that

b ∈ A[t] for all t > tb. Let t′ be a stage at which (Ek ∪ F k
l ) ∩ A[t] = ∅ and t′ > tb.

By the argument above there is a series of S strategies β1 ⊂ β2 ⊂ · · · ⊂ βn ⊂ β

and a corresponding series of their agitators Ag1 ⊃ Ag2 ⊇ · · · ⊇ (Ek ∪ F k
l ) and Ag1 is

restrained out of A at stage t′. These agitators are chosen at stages t1 > t2 · · · > tn > t0

respectively. We can express Eβ[t0] in the following way:

Eβ[t0] = Eβ1 [t0] ∪ Eβ2−β1 [t0] ∪ · · · ∪Eβ−βn [t0].
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Now using Lemma 4.6.1 we can modify this expression to:

Eβ[t0] = Eβ1 [t1] ∪ Eβ2−β1 [t2] ∪ · · · ∪ Eβ−βn [t0].

If b ∈ Eβ2−β1 [t2]∪ · · · ∪Eβ−βn [t0] then b ∈ Ag1. If b ∈ Eβ1 [t1] then by Lemma 4.6.1

we have b ∈ Eβ1 [t
′]. Thus in both cases b /∈ A[t′] contradicting the choice of t′ > tb.

Therefore Eβ[t0] ∩A = ∅.

4.6.3 The true path

This section proves the existence of the true path. It will be defined as usual as the

leftmost path of nodes visited at infinitely many stages. As in Chapter 3, the tree

of strategies is infinitely branching and we must start with a formal proof that the

so defined true path is of infinite length. A much harder task will be to prove that

the strategies along this path are initialized only finitely often. The difficulty comes

from the introduced local priority and frequent initialization performed by S-strategies

during the application of axioms. We will prove separately that S-strategies along the

true path initialize every lower priority strategy along the true path only finitely often.

Using these two results we can finally establish the existence of a true path with all

required properties as defined in Section 1.3.

Lemma 4.6.6. There exists an infinite path h in the tree of strategies T with the

following properties:

1. (∀n)(∃∞s)[ h ¹ n ⊆ δ[s] ].

2. (∀n)(∃sl(n))(∀s > sl(n))[δ[s] 6<L h ¹ n].

Proof. We will define h inductively and simultaneously prove that it has the desired

properties. First h ¹ 0 = ∅ obviously has both properties. It is visited at every stage

and sl(0) = 0. Now let’s assume we have defined h ¹ n with the desired properties. We

will define h ¹ (n + 1) = (h ¹ n)̂ o, where o is the true outcome of the strategy h ¹ n.

If h ¹ n is an R-strategy then o = e. We always visit h ¹ (n + 1) when we visit

h ¹ n, hence infinitely often and sl(n + 1) = sl(n) .
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If h ¹ n is a G-strategy then let o ∈ { f, w} be the leftmost outcome visited at

infinitely many h ¹ n-true stages. If o = f then sl(n + 1) = sl(n). Otherwise there

is a stage s1 such that (∀t > s1)[h ¹ n ⊆ δ[t] ⇒ (h ¹ n)̂ w ⊆ δ[t]]. Then sl(n + 1) =

max(sl(n), s1).

If h ¹ n is an S-strategy then we have several cases to consider:

1. If the outcome∞X is visited at infinitely many stages then o = ∞X and sl(n + 1) =

sl(n). Otherwise there is a least h ¹ n-true stage s1 such that (h ¹ n)̂ ∞X 6⊆ δ[t]

at all h ¹ n-true stages t ≥ s1. At stage s1 the strategy h ¹ n chooses an agitator

Ek for some fixed number k and has outcome 〈∞Y , k〉. At all stages greater than

s1 the possible outcomes for h ¹ n are 〈∞Y , k〉, { 〈l, k〉| l ∈ N} and d0.

2. If the outcome 〈∞Y , k〉 is visited at infinitely many stages then o = 〈∞Y , k〉 and

sl(n + 1) = max(sl(n), s1). Otherwise there is a least h ¹ n-true stage s2 > s1

such that (h ¹ n)̂ 〈∞Y , k〉 6⊆ δ[t] at all h ¹ n-true stages t ≥ s2. At stage s2 the

strategy h ¹ n chooses a second agitator F k
l for some fixed l and has outcome d0.

At all stages t > s2 the possible outcomes are d0 and 〈l, k〉.

3. If at some stage s3 > s2 the strategy has outcome 〈l, k〉 then at all stages t ≥ s3

the strategy has this outcome, as in order to return from outcome 〈l, k〉 back to

d0, the strategy needs to have outcomes 〈∞Y , k〉 or ∞X at an intermediate stage.

Thus in this case o = 〈l, k〉 and sl(n + 1) = max(sl(n), s3).

Otherwise at all stages t > s2 the strategy has outcome d0 and o = d0, sl(n+1) =

max(sl(n), s2).

Lemma 4.6.7. For every S-strategy β working with the operators Θ and Ψ and with

parameters U and Vk, for k < ω the following statement is true:

1. If βˆ∞X ⊆ h then for every k ∈ U there exists an axiom 〈k, E′〉 ∈ Θ and a stage
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sk such that if t > sk and β is visited at stage t with o− = ∞X then 〈k,E′〉 is applicable

for k. Furthermore E′ ⊆ A.

2. If β 〈̂∞Y , k〉 ⊆ h then for every l ∈ Vk there exists an axiom 〈l, F ′〉 ∈ Ψ and

a stage sl such that if t > sl and β is visited at t with o− = 〈∞Y , k〉 then 〈l, F ′〉 is

applicable for l. Furthermore F ′ ⊆ A.

Proof. Assume that this is not the case and choose β ⊆ h as the least strategy for which

the proposition is false. Suppose βˆ∞X ⊆ h. The case β 〈̂∞Y , k〉 ⊆ h is similar. Let

k ∈ U be the least number for which there is no applicable axiom at infinitely many

β-true stages.

Let G = { γ ⊇ βˆ∞X | γ is a G-strategy with local priority less than k }.
We choose a stage s so big that:

a. S-strategies β′ ⊂ β do not initialize any strategy γ ∈ G at stages t ≥ s. Our

choice of β as the least strategy for which the proposition is not true guarantees

that this choice of t is satisfiable.

b. For all elements m ∈ U such that m ≤ k we have m ∈ U [s].

c. For each element m < k, m ∈ U there is an axiom in Θ[s] that is applicable at

every stage t ≥ s which is furthermore valid at all stages t ≥ s.

d. Let M = max { |γ| | γ ∈ G} + 2 and let s > sl(M), where sl(M) is defined in

Lemma 4.6.6.

Our choice of s, precisely conditions a, b and d, guarantees that for all t > s, β does

not get initialized at stage t. Then Lemma 4.6.1 gives us that Eβ[t] is the same at all

β-true stages t > s. We can therefore omit the index t in further discussions and refer

to this set as Eβ.

Let s1 > s be a stage at which h ¹ M is visited. At the next β-true stage s+
1 the

outcome o− = o[s1] is ∞X . We scan the elements of U and change their corresponding
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entries in U if needed. The elements m < k will not require any actions but it is still

possible that k does.

If there is an applicable axiom for k in Θ[s+
1 ] then it will be recorded in U[s+

1 ],

applied and will have the following properties:

1. E′ ∩ Eβ = ∅,

2. E′ ∩ R∞X (k)[s+
1 ] = ∅.

If there is no applicable axiom then we define an agitator Ek = R∞X (k)[s+
1 ] and move

to the right of the true path. Let s2 be the next stage at which βˆ∞X is visited. At

this stage we must have found an axiom 〈k, E′′〉, applied it and enumerated in U for

which again:

1. E′′ ∩ Eβ = ∅,

2. E′′ ∩ R∞X (k)[s+
1 ] = ∅.

In both cases we have an axiom 〈k, E0〉 for which the two conditions hold. Let s3 > s1

be a h ¹ M -true stage by which this axiom is applied, i.e. s3 ≤ s+
1 in the first case and

s3 ≤ s2 in the second case. We will prove that no strategy extracts elements from E0

at stages t > s3. Hence this axiom will be the one we are searching for.

First note that at stages after the axiom is applied, once a strategy is initialized,

it will not restrain elements from E0 out of A at any further stage. The actions that

we make when applying the axiom include the initialization of strategies extending

h ¹ M . Strategies to the right of h ¹ M are initialized at stage s1. In the first case the

axiom 〈k, E0〉 is applied at stage s+
1 . Strategies to the left of β are initialized again

and strategies extending β are not accessible before this event. In the second case the

axiom is applied at stage s2. Strategies to the left βˆ∞X are initialized again at stage

s2 and strategies extending βˆ∞X are not accessible after their initialization at stage

s1 until the event of the application of the axiom. Strategies to the left of h ¹ M are
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not accessible after stage s > sl(M), thus will also not extract any elements from A at

stages t > s.

The only danger is that a strategy δ along h ¹ M restrains an element a ∈ E0 out

of A at a stage t > s3. We will prove that this also does not happen.

First of all if δ is a G-strategy then by stage s1, which is an h ¹ M -true stage, its

outcome is final and so are all elements that it restrains out of A. These elements are

in Eβ if δ ⊂ β or in R∞X (k)[s+
1 ] if δ ⊃ β.

If δ is an S-strategy the elements it restrains out of A are the ones in its agitators.

At stages s1 and s3 the strategy has its true outcome o. If this is o = d0 then δ does

not restrain any elements at any stage t ≥ s1. If o = 〈l, k〉 for some l and k then again

the elements that δ restrains out of A are the same at all further stages and are in Eβ

if δ ⊂ β or in R∞X (k)[s+
1 ] if δ ⊃ β hence do not contain elements from E0.

The other two possibilities are o = ∞X , in which case there is no defined agitator

at stage s3 and every agitator that δ chooses is eventually cancelled, or o = 〈∞Y , k〉
for some fixed k. In the latter case δ has a permanent agitator Ek already extracted at

stage s1, it has no defined agitator F k
l at stage s3 and can only choose values for the

agitators F k
l , for elements l < ω, all of which are eventually cancelled.

We will prove that agitators formed after stage s3 cannot contain elements from E0.

It is convenient to consider each S-strategy δ ⊂ h ¹ M in order of its length, starting

from the longest. The reason is that strategies of lower priority determine the elements

that enter agitators of higher priority strategies.

Let δ be the longest S-strategy along h ¹ M . Suppose δ chooses an agitator Ag

at stage t′ > s3. All of Ag’s elements were restrained by strategies extending δ at the

previous δ-true stage t− ≤ s3. These are either strategies that were initialized when the

axiom 〈k, E0〉 was applied and hence cannot restrain elements from E0, or G-strategies

γ ⊂ h ¹ M which as we already proved do not restrain elements from E0.

By induction we can prove the same for the shorter S-strategies.
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Corollary 4.6.1. For every n there is an h ¹ n-true stage si(n) such that h ¹ n does

not get initialized after stage si(n).

Proof. The proof is by induction on n. The case n = 0 is trivial because h ¹ 0 = ∅ is

never initialized and is visited at every stage, so si(0) = 0.

Assume that the statement is true for h ¹ n. If h ¹ (n + 1) is not a G-strategy then

h ¹ n is a G-strategy and it does not initialize any strategies that extend it. So we can

simply define si(n+1) to be the least h ¹ (n+1)-true stage after max(si(n), sl(n+1)),

where sl(n + 1) is defined in Lemma4.6.6.

If h ¹ (n+1) is a G-strategy then we choose si(n+1) to be the least h ¹ (n+1)-true

stage with the following properties:

1. si(n + 1) ≥ si(n).

2. si(n + 1) > sl(n + 1).

3. Let β be an S-strategy with βˆ∞X ⊆ h ¹ (n + 1) and k ∈ Uβ be an number less

than the local β-priority of h ¹ (n+1). By Lemma 4.6.7 there is a stage sk and an

axiom 〈k, E0〉 ∈ Θβ such that E0 ⊆ A and the axiom is applicable at every stage

t > sk. This axiom has limit age a(A, E0). There are only finitely many axioms

in Θβ whose age is of lesser value at any stage t ≥ s, as any axiom enumerated

after the age of this axiom has reached this limit value will have greater age. We

choose si(n + 1) to be a stage by which all these finitely many axioms have been

applied if they ever get applied.

4. Similarly if β is an S-strategy with β 〈̂∞Y , k〉 ⊆ h ¹ (n + 1) and l ∈ V β
k is a

number less than the local β-priority of h ¹ (n + 1), using the result from Lemma

4.6.7 we can choose si(n + 1) to be a stage by which no more axioms for l in Ψβ

ever get applied.
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4.6.4 Satisfaction of the requirements

Lemma 4.6.8. Every R-requirement is satisfied.

Proof. Fix anRi-requirement. Let α be the correspondingR-strategy on the true path.

We will prove that ΘA
i = X and ΨA

i = Y do not form a minimal pair. The proof is

divided into three cases depending on the true outcomes of the S-substrategies of α

along the true path:

1. For all S strategies β ⊂ h, substrategies of α,

(∃k)(∃l)[β 〈̂l, k〉 ⊂ h] ∨ β d̂0 ⊂ h.

First we will prove that ΓX = ΛY . Now the properties of the agitators proved in

Section 4.6.2 will play an important role as the operators Γ and Λ are constructed

by all of α’s substrategies, not only the ones along the true path. So we have

to prove that ΓX(dβ) = ΛY (dβ), for every witness dβ that any substrategy β has

ever used.

We automatically have this equality for any witness dβ that is cancelled. Can-

celling the witness includes enumerating the axiom 〈dβ, ∅〉 in both operators. So

ΓX(dβ) = ΛY (dβ) = 1.

This means that substrategies to the right of the true path will not cause problems.

Substrategies to the left of and on the true path may have witnesses that are never

cancelled. So let β be a substrategy of α and d be a witness chosen at stage s0

that is never cancelled. Then β has outcome d0 at stage s0. After stage s0 the

strategy β is not initialized and does not have outcomes ∞X or 〈∞Y , k〉, as in

those cases we would cancel β’s witness d. Let the corresponding agitators for

d be Ek and F k
l , so we have axioms 〈d, {k}〉 ∈ Γ and 〈d, {l}〉 ∈ Λ. We have the

following three possibilities:

(a) β <L h. Then let s ≥ s0 be the last stage at which β is visited. If β 〈̂l, k〉 ⊆
δ[s] then the conditions of Lemma 4.6.5 are true. Therefore if (Ek∪F k

l ) 6⊆ A
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then (Ek ∪F k
l ∪Eβ[t])∩A = ∅. If (Ek ∪F k

l ) ⊆ A then according to Lemma

4.6.4 we have k ∈ X and l ∈ Y and therefore ΓX(d) = ΛY (d) = 1 .

If (Ek∪F k
l ∪Eβ[t])∩A = ∅ then from the proof of Lemma 4.6.5 it follows that

Ek∪F k
l are included in an agitator of a higher priority strategy β′ visited at

stage s1 > s. By construction that there is an entry 〈β : 〈E[s], Ek, F
k
l 〉, d〉 ∈

Watchedα. In this case we claim ΓX(d) = ΛY (d) = 0. Suppose for a

contradiction that this is not true, say ΓX(d) = 1. Then the only axiom in

Γ for d is true, so k ∈ X = ΘA
i . Therefore there is an axiom 〈k,E′〉 ∈ Θi

such that E′ ⊆ A and hence E′ ∩ (Ek ∪ Eβ[s]) = ∅. It appears in Θi[t] at

some stage t. The strategy α ⊂ h will be visited after stage t, as it is visited

infinitely often. It shall then spot this axiom while examining the entry for

β in Watched and cancel d. Similarly we may prove that ΛY (d) = 0.

If β d̂0 ⊆ δ[s], as β is not initialized at stages t > s, we have that Ek ∪F k
l is

restrained in A by β. From Lemmas 4.6.2 and 4.6.3 it follows that Ek ∪ F k
l

is a subset of A. Lemma 4.6.4 gives us k ∈ X and l ∈ Y . Hence ΓX(d) =

ΛY (d) = 1.

(b) Suppose β d̂0 ⊆ h. Then s0 = si(|β|). Here as well by Lemmas 4.6.2 and

4.6.3 we have Ek ∪ F k
l ⊂ A. Lemma 4.6.4 gives us k ∈ X and l ∈ Y . Hence

ΓX(d) = ΛY (d) = 1.

(c) If β 〈̂l, k〉 ⊆ h then by Lemma 4.6.6 there is a stage s1 > s0 such that at

β-true stages t > s1 the strategy β always has this outcome and Ek ∪ F k
l

is extracted from A[t]. Also by Lemma 4.6.1 Eβ[t] = Eβ[s1] for all β-true

stages t > s1 and we will refer to this set as Eβ. As β is visited at infinitely

many stages (Ek ∪F k
l ∪Eβ)∩A = ∅. In this case ΓX(d) = ΛY (d) = 0. If we

assume otherwise then there would be an axiom in Θi for k or in Ψi for l,

which does not intersect Ek∪F k
l ∪Eβ and by the actions in the construction

β would spot this axiom at one of its true stages and cancel the witness d.
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This gives us a set D = ΓX = ΛY . Now it follows quite easily from the construc-

tion that D is not c.e. Let Wj be any c.e. set and consider the Si,j-substrategy

β along the true path. Let n = |β|. After stage sl(n + 1) from Lemma 4.6.6 β

always has its true outcome whenever it is visited and a permanent witness d

which is never cancelled. If β 〈̂l, k〉 ⊂ h then Wj(d) = 1 and as we just proved

D(d) = 0. If β d̂0 ⊂ h then Wj(d) = 0 and again as we just saw D(d) = 1.

2. There is a strategy β, substrategy of α, with βˆ∞X ⊆ h. Let n = |β|. Let

Uβ =
⋃

t≥si(n+1) Uβ[t]. We will prove that Uβ = X and so X is c.e. Assume for a

contradiction that this is not true.

If there is an element k ∈ X \ Uβ then choose the least one. As k ∈ X = ΘA
i ,

there is an axiom 〈k, E′〉 ∈ Θi such that E′ ⊂ A. By Lemma 4.6.1 we have that

Eβ[s] = Eβ[si(n + 1)] at all β-true stages t > si(n + 1). It follows that Eβ[s] ⊂ A

for every stage s and hence E′ ∩Eβ[s] = ∅. Let s > si(n + 1) be a stage at which

the axiom 〈k, E′〉 is already enumerated in Θi, the set E′ has reached its limit

age a(A,E′) and all numbers less than k that ever enter Uβ are already in Uβ.

Then k will enter Uβ at the next β-true stage at which o− = ∞X , if not before.

By Lemma 4.6.7 for every k ∈ Uβ there is an axiom 〈k,E′〉 ∈ Θi for which E′ ⊆ A,

therefore k ∈ X and Uβ ⊆ X. Ultimately we get X = Uβ.

3. There is an S-strategy β which is a substrategy of α with β 〈̂∞Y , k〉 ⊂ h for some

k. Let Vk,β =
⋃

t≥si(n+1) Vk,β [t]. We show in this case that Vk,β = Y and therefore

Y is c.e. The proof is similar to part 2.

Lemma 4.6.9. Every G requirement is satisfied.

Proof. Fix a c.e. set We and consider the Ge-strategy γ ⊂ h. Let n = |γ|. Let

τ and µ denote the values of γ’s parameters at stage si(n + 1) defined in Corollary
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4.6.1. It follows from the construction that these values remain the same at further

stages. Indeed τ changes value only after initialization and µ changes value only when

γ switches to outcome f . By construction we have that τˆµ ∈ We if the true outcome

of γ is f . If the true outcome is w then for every extension ρ ⊇ τˆµ we have ρ /∈ We.

Thus we only need to further prove that τˆµ ⊂ A.

By Lemma 4.6.1 the value of the set Eγ [t] does not change at γ-true stages t > si(n)

and we will refer to it as Eγ . Finally γ always has its true outcome at true stages

t > si(n + 1).

If τˆµ(a) = 1 then a is restrained in A by γ and by Lemmas 4.6.2 and 4.6.3 a ∈ A.

If τˆµ(a) = 0 and a < |τ | then a ∈ Eγ ⊂ A so A(a) = 0. If τˆµ(a) = 0 and a ≥ |τ | then

a is extracted at every γ-true stage t ≥ si(n + 1) and A(a) = 0. Therefore τˆµ ⊂ A.

This concludes the proof of the lemma and the theorem.



Chapter 5

Cupping and Non-cupping in the

∆0
2 Enumeration Degrees

In the previous two chapters we investigated the structure of the properly Σ0
2 enumer-

ation degrees. Both splitting/non-splitting and bounding/non-bounding turned out

to be properties that distinguish the ∆0
2 enumeration degrees from the properly Σ0

2

enumeration degrees. One more property of this sort is cupping/non-cupping, see Def-

inition 1.5.1. Cooper, Sorbi and Yi [CSY96] prove that every nonzero ∆0
2 enumeration

degree can be cupped by a total incomplete ∆0
2 enumeration degree and that there

exists a nonzero Σ0
2 enumeration degree that cannot be cupped by any incomplete Σ0

2

enumeration degree.

In this chapter we shall complement the first result by proving that every nonzero

∆0
2 enumeration degree can be cupped by a partial ∆0

2 enumeration degree. We shall

once again use genericity to establish this property, see Definition 4.0.1. In Section

1.1 we already mentioned the existence of partial ∆0
2 enumeration degrees, obtained as

quasi-minimal degrees, see Definition 1.1.3. Copestake [Cop88] proves that there is a

strong connection between these two notions as every 1-generic enumeration degree is

quasi-minimal. Furthermore Copestake [Cop90] proves that a 1-generic enumeration

143
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degree is low, see Definition 1.1.5, if and only if it is ∆0
2. Thus by constructing a

∆0
2 1-generic cupping partner for every nonzero ∆0

2 enumeration degree we obtain the

following result.

Theorem 5.0.1. Every nonzero ∆0
2 enumeration degree can be cupped by a partial low

∆0
2 enumeration degree.

This result, together with the original result by Cooper, Sorbi and Yui, shows

that we have some flexibility when searching for cupping partners for ∆0
2 enumeration

degrees. On the other hand it shows that we can limit our search for a cupping partner

to a small subclass of the ∆0
2 enumeration degrees.

0′e

Π0
1∆0

2 ∆0
2Σ0

2 Σ0
2

Tot

0e

Low

Partial
a

b

c

It would be natural to ask whether or not we can narrow this class even further,

perhaps there is a finite set that contains a cupping partner for every nonzero ∆0
2

enumeration degree. Lewis [Lew04] proves that this is not true for the ∆0
2 Turing

degrees in DT (≤ 0′). Our second result in this chapter shows that the ∆0
2 enumeration

degrees are not any different in this respect. In fact we will prove that one cannot even

computably enumerate a sequence of ∆0
2 enumeration degrees, which contains within

its members a cupping partner for every nonzero ∆0
2 enumeration degree. The notion

of a ∆0
2-computably enumerable sequence of enumeration degrees is defined in 1.2.2.
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Theorem 5.0.2. Let {ai}i<ω be a ∆0
2-computably enumerable sequence of enumeration

degrees. There exists a nonzero ∆0
2 enumeration degree b such that for every i < ω if

ai is incomplete then ai ∨ b 6= 0′e.

Theorem 5.0.1 is joint work with Guohua Wu, published in [SW07], see Appendix

A.2. Both theorems are proved by modifying the constructions suggested in [CSY96].

5.1 Cupping by a partial enumeration degree

In this section we shall give a proof of Theorem 5.0.1. Let A be a nonzero ∆0
2 set

with ∆0
2 approximating sequence {A[s]}s<ω. We shall construct a ∆0

2 1-generic set B

whose enumeration degree cups the degree of A. As usual we start by formalizing the

requirements:

1. We have a global requirement which guarantees that the degree of B cups the

degree of A. We shall construct an enumeration operator Γ so that:

S : ΓA,B = K.

Here K denotes as usual any Π0
1 representative of the degree 0′e.

2. The set B must be 1-generic. Let {Wi}i<ω be a computable enumeration of all

c.e. sets. For every i < ω we have a requirement:

Gi : (∃τ ⊂ B)[τ ∈ Wi ∨ (∀µ ⊇ τ)[µ /∈ Wi]],

where τ and µ denote finite binary strings.

The degree 0′e is total, hence constructing B as a 1-generic set ensures that the

degree of B is not complete.

5.1.1 Basic strategies

To satisfy the global requirement S we will construct an enumeration operator Γ,

following the basic ideas for the design of the (P, Γ)-strategy from Chapter 2 and
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Chapter 3. In this case though we will have a much simpler strategy. At every stage s

we shall examine all elements n < s, ensuring that ΓA,B[s](n) = K[s](n). For elements

n ∈ K[s] we shall have a current axiom of the form 〈n,A[s] ¹ a(n) + 1, B[s] ¹ b(n) + 1〉,
where a(n) and b(n) are markers defined by us. If n /∈ K then we can rectify Γ by

extracting the marker b(n) from B.

The basic strategy for satisfying a Gi requirement is the same as the one used in

Chapter 4. We select a witness τ following some basic rules imposed by higher priority

strategies that ensure τ ⊂ B. At every stage we check if there is an extension µ ⊇ τ so

that µ ∈ Wi. If there is such an extension, we select the least one µ and make sure that

it is an initial segment of the characteristic function of B by extracting or enumerating

elements n < |µ| + 1, where |µ| denotes the length of the binary string µ. Then we

restrain B ¹ |µ|+ 1.

When looking at all strategies collectively we notice a conflict between the global S-

strategy and each G-strategy, similar to the conflict we observed in Chapter 2 between

a P-strategy and an N -strategy below it, see Section 2.1.1. The need for Γ-rectification

might injure the restraint imposed by a G-strategy on the set B. To avoid this we shall

modify the G-strategy. It will again select a threshold d, whose B-marker will determine

the length of the witness τ . Before the imposition of the restraint the G-strategy shall

try to ensure that all B-markers for elements n ≥ d are above this restraint. An

extraction from the set A below the A-marker of the threshold a(d) will facilitate this.

To force such an extraction the G-strategy shall construct a c.e. set U , approximating

the given set A and threatening to prove that A is c.e. The G-strategy shall then run

in cycles, preforming many attempts to satisfy its requirement. Each new cycle k shall

have a new witness τk and shall search for an extension µk ⊇ τk in the set Wi. If this

extension is found the strategy shall end the k-th cycle by approximating a larger initial

segment of the set A up to ak(d), where ak(d) is the current marker of the threshold

during the k-th cycle. Then it shall perform capricious destruction on the operator Γ
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by extracting the B-marker for the threshold which is current during the k-th cycle,

bk(d), thereby moving the action of the S-strategy and the next cycle of this strategy

to elements larger than the required restraint on the set B, |µk|. Thus the only number

that will conflict the restraint on B for this cycle will be the marker bk(d).

The following pictures is meant to show the progress of a G-strategy during its work

on the k-th cycle.

τk µk
B

AU1 U2 Uk

b1(d)

a1(d)

τ1 µ1

b2(d)

τ2 µ2

bk(d)

a2(d) ak(d)

As the set A is not c.e. the approximation of A shall be unsuccessful and we shall

eventually be able to locate a permanent extraction from the set A, an extraction useful

to the last cycle k. Using this extraction we can restore the set B by enumerating the

marker bk(d) back in the set B, making µk an initial segment of the characteristic

function of B and preserve the restraint |µk| on B at further stages.

5.1.2 Construction

The construction will be carried out in stages. We will not use a tree of strategies,

instead we order the requirements linearly:

S < G0 < G1 . . .

and assign a strategy to every requirement. At the beginning of each stage we shall

activate the S-strategy. Then we shall activate the least G-strategy that requires atten-
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tion, defined below. We will still use small Greek letters α, β to denote G-strategies. At

every stage only one G-strategy shall be activated and all G-strategies of lower priority

will be initialized.

We shall construct a ∆0
2 approximation to the set B. Initially it will be the empty

set: B[0] = ∅. The approximation to the set B at stage s shall be obtained from B[s−1]

by allowing the two active strategies at stage s to enumerate or extract numbers from

it.

The S-strategy

The global S-strategy shall have a parameter Γ, the enumeration operator that it will

be constructing. To every element n the strategy shall assign current A- and B-markers,

a(n) and b(n), and a current axiom of the form 〈n,A ¹ a(n) + 1, B ¹ b(n) + 1〉. Initially

Γ = ∅ and all markers and axioms are undefined. At stage s the S-strategy operates

as follows:

For very element n < s perform the following actions:

• If n /∈ K[s] then find all valid axioms in Γ for n, 〈n,An, Bn〉, and extract the

greatest element of Bn from B[s].

• If n ∈ K[s] and the current axiom for n is valid then skip to the next element. If

the current axiom for n is not defined or is not valid then:

1. If a(n)[s] ↑, define a(n)[s] = a(n− 1)[s] + 1. (if n= 0, define a(n) = 1).

2. If b(n)[s] ↓ then extract it from B and cancel all markers b(n′)[s] for n′ > n.

3. Define b(n)[s] as a fresh number greater than any number mentioned in the

construction so far. Enumerate b(n)[s] in B[s].

4. Define the current axiom for n at stage s to be

〈n,A[s] ¹ a(n) + 1, B[s] ¹ b(n) + 1〉 and enumerate it in Γ[s].
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Activating the G-strategy α.

Denote by Wα the c.e. set that α is working with. The strategy α is equipped with a

threshold d and a current witness τ , initially undefined. The strategy has furthermore

a parameter, which we shall call the current guess, denoted by G and it shall have the

following structure: 〈U, µ, b, t〉, where U is α’s current approximation to the set A, µ

is the binary string that α would like to make an initial segment of the set B, b is a

marker whose enumeration in the set B will facilitate this and finally t is the stage at

which this guess was made. This parameter has initial value 〈∅, ∅, ↑, ↑〉.
The strategy α at stage s has threshold d, witness τ and guess G = 〈U, µ, b, t〉 all

possibly undefined. We list the cases in which it requires attention and the actions it

makes. Every time we choose the first case which applies at stage s.

1. The threshold d is not defined.

Action: Define the threshold d ∈ K[s] as a fresh number.

2. The threshold d is defined but d /∈ K[s].

Action: Shift the value of the threshold to the next element in K[s]. Cancel

the current witness τ . If the marker b of the current guess G[s] is defined then

extract it from B and cancel the current guess.

3. A B-marker of an element n < d has been extracted from B at stage s.

Action: Cancel the current witness τ . If the marker b of the current guess G[s]

is defined then extract it from B and cancel the current guess.

4. U ⊆ A[s] and b ↓∈ B[s].

Action: Extract b from the set B[s]. For every element n such that b < n < |µ|+1

set B[s](n) = µ(n). Cancel the current B-marker for every n ≥ d and extract

b(d) from B[s].
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5. U * A[s] and b ↓/∈ B[s].

Action: Enumerate b in the set B[s].

6. The witness τ is not defined or is not an initial segment of B[s].

Action: If the current marker b(d) is defined then set τ = χB[s] ¹ b(d) + 1.

7. b ↑ or b ↓/∈ B[s], and U ⊆ A[s] and there is an extension µ ⊇ τ such that

µ ∈ Wα[s].

Action: Define a new value for the current guess G to be 〈Ad, µ, b(d), s〉, where

〈d,Ad, Bd〉 is the current axiom for d in Γ[s]. Extract b(d) from B[s]. For every

element n such that b(d) < n < |µ| + 1 set B(n)[s] = µ(n). Cancel all A- and

B-markers for elements n ≥ d and cancel the witness τ . Define a fresh value of

the marker a(d).

5.1.3 Proof

We will prove that this is a finite injury construction, i.e. that every G-strategy even-

tually stops requiring attention and satisfies its requirement. Before we can do this we

will prove two properties of the construction. The first one concerns the axioms used

in the construction of the operator Γ.

Propostion 5.1.1. 1. At every stage s if n < m, n,m ∈ K[s] and the current axioms

for n and m at stage s are 〈n, An, Bn〉 and 〈m,Am, Bm〉 then An ⊆ Am and Bn ⊂ Bm.

2. If α is a G-strategy not initialized at stage s then there is at most one valid axiom

in Γ[s] for its threshold d different from the current one. This axiom is associated with

α’s current guess G[s].

Proof. 1. This fact follows directly from the construction of Γ. At every stage if n < m

then a(n) < a(m) and b(n) < b(m) as whenever we cancel the value for one of n’s

markers we also cancel the value for m’s corresponding marker. By induction suppose
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the statement is true for stages t < s. If the current axiom for n is not valid at stage s

then it is redefined to A[s] ¹ a(n)+1 and the B-marker for m is cancelled. Thus at the

same stage a new current axiom is defined for m, with the required properties. If the

current axiom for n is valid but the one for m is not, then it will be redefined at stage

s and will have again the required properties. Finally if both current axioms are valid

at stage s then they were defined at a previous stage t < s for which the induction

hypothesis is true.

2. As d is α’s threshold at stage s, d ∈ K[s]. If α is in initial state at stage s then

there is no axiom for d in Γ[s].

Otherwise any axiom for d that the S-strategy has cancelled at a previous stage is

invalid. The S-strategy always extracts the current B-marker before it enumerates a

new axiom in Γ. This marker can never be reenumerated in the set B.

Any axiom for d that was used for a previous guess G[t] at a stage t < s is not valid.

Whenever α changes the value of the guess it executes the actions under step 7 and the

marker recorded in its previous value is not in the approximation to B. If α cancels G

at stage t during steps 2 or 3 then the marker recorded in the guess is extracted from

B, so the axiom associated with the old value of this guess remains invalid forever.

Whenever α cancels the current B-marker of the threshold at step 4 it extracts it from

B invalidating the axiom associated with it.

Thus the only axioms for d that can be valid at stage s are the current one and the

one used in the current guess G[s].

Our next concern is to establish that the current guess of a G-strategy approximates

a c.e. set.

Propostion 5.1.2. Let α be a G-strategy. Suppose the value of α’s current guess G is

not cancelled at stages t > s. Denote by U [t] the value of the first component of G[t].

Then {U [t]}t>s is a c.e. approximation to the set U =
⋃

t>s U [t].
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Proof. The strategy α is not initialized at stages t > s as otherwise its guess would

be cancelled. Whenever it requires attention it receives it. It is enough to prove that

U [t] ⊆ U [t+1] for all t > s. If U [t] 6= U [t+1] then α receives attention at stage t+1 and

executes step 7. The current guess at the beginning of stage t + 1 is G = 〈U [t], µ, b, t0〉
and U [t] ⊆ A[t], b /∈ B[t]. The current axiom at stage t+1 for the threshold d is defined

after stage t0 as at t0 the strategy α executes step 7 and cancels the current markers of

its threshold. The A-marker of the threshold d is has a fresh value and thus is greater

then maxU [t]. Suppose that the current axiom for d at stage t + 1 is defined at stage

t1, t0 < t1 ≤ t + 1. It is enough to prove that U [t] ⊆ A[t1].

Suppose for a contradiction that U [t] * A[t1]. If b ∈ B[t1] then it will remain in

B[t1] at stage t1. If b /∈ B[t1] at the beginning of stage t1 then α requires attention under

step 5 at stage t1 and enumerates the marker b in B[t1]. Thus at the end of stage t1 we

will have b ∈ B[t1]. As b /∈ B[t+1], there must be a stage t2 such that t1 < t2 < t+1 at

which α extracts b again from the set B[t2]. This can only happen if step 4 is executed,

but then α cancels the current marker for the threshold d, contradicting the fact the

axiom discussed is current at stage t + 1.

Lemma 5.1.1. 1. Every strategy requires attention only at finitely many stages.

2. Every G-requirement is satisfied.

Proof. We prove both parts of this lemma with simultaneous induction: Suppose that

the statement is true for strategies of higher priority than α and let s1 be the least stage

such that at stages t ≥ s1 strategies of higher priority than α do not require attention.

First let us note once and for all that every time α receives attention, all lower

priority strategies are initialized, their thresholds are cancelled and later redefined as

fresh numbers. As every time B[t] ¹ b(d)[t]+1 changes the strategy α requires attention

under step 6, it follows that at stages t > s0 only S and α can modify the approximation

to B[t] ¹ b(d)[t] + 1.
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At stages t ≥ s1 the strategy α is not initialized. Hence stage s1 is the last stage at

which α requires attention under step 1. It selects a threshold d. Every time it requires

attention under step 2, the threshold d is shifted to the next available element in the

approximation of K. The set K is infinite hence this shifting process will eventually

lead α to an element d ∈ K. There is a least stage s2 ≥ s1 after which α does not

execute step 2. The A-markers for elements n < d do not change after stage s2. As the

set A is ∆0
2, the approximation to A ¹ maxn<d a(n) + 1 will stabilize and hence there

is a least stage s3 ≥ s2 such that A[t] ¹ maxn<d a(n) + 1 = A ¹ maxn<d a(n) + 1 and

the S-strategy will not extract from the set B any markers of elements n < d at stages

t > s3. So s3 is the last stage at which α executes step 3. After stage s3 the value of

α’s guess will not be cancelled. By Proposition 5.1.2 the set U =
⋃

t>s3
U [t] is a c.e.

set. As A is not, A 6= U.

Suppose that there is an element n ∈ U \ A, and let s be the least stage such that

n ∈ U [t] and n /∈ A[t] for all t ≥ s. Then at stages t ≥ s we always have U [t] * A[t]

and steps 4 and 7 will never again be executed. Thus after stage s the current markers

of the threshold will not be modified by α. Let s7 > s3 be the last stage at which step

7 is executed. Then at stage s7 the final value of the guess G = 〈U, µ, b, s7〉 is recorded

and µ ∈ Wα[s7]. Let µ̂ be the string µ with position b set to 0. At all stages t ≥ s7

either µ̂ is an initial segment of B[t] or µ is an initial segment of B[t]. As s7 > s3 and

d ∈ K the S-strategy does not modify B ¹ b + 1. If it modifies B below |µ| + 1 at

stage t > s7 then it extracts an old marker of an element n > d for a valid axiom in

Γ[t]. By Proposition 5.1.1 there is an axiom for the threshold d which is also valid at

stage t and this is the one associated with the guess G. Thus U ⊆ A[t], b ∈ B[t] and α

executes step 4, restoring µ̂ as an initial segment of B[t]. As this does not happen after

stage s, the S-strategy does not modify B below |µ|+ 1 at stages t ≥ s. At stage s the

strategy α enumerates the marker b back in the set B[s] executing step 5 for the last

time and ensuring that µ ⊆ χB[s]. Thus after stage s the strategy α can only require
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attention under step 6. Furthermore B[t] ¹ |µ| + 1 is not modified at all t > s and

thus the requirement associated with α is satisfied by µ ⊆ χB and µ ∈ Wα. As the

current markers of the threshold d are not modified by α after stage s, there will be a

least stage s6 > s at which the S-strategy will modify the current axiom for d and the

approximation to B ¹ b(d) + 1 for the last time, after A ¹ a(d) + 1 has stabilized. Then

at stage s6 the strategy α will execute step 6 for the last time and will never require

attention at further stages.

Suppose that U ⊆ A. Then let n be a number such that n ∈ A \ U. If we assume

that α requires attention under step 7 at infinitely many stages then the marker a(d)

will grow unboundedly. Then let s′ be a stage such that n ∈ A[t] and a(d)[t] > n

at all t > s′. The number n would be enumerated in every current axiom for d and

will eventually enter the set U. Let s7 > s3 be the least stage after which α does not

execute step 7. The final value of the guess is G = 〈U, µ, b, s7〉 or G = 〈∅, ∅, ↑, ↑〉 if the

strategy does not execute the actions at step 7 after stage s3. Let s > s7 be the least

stage such that U ⊆ A[t] at all stages t ≥ s. Then α can execute step 4 for the last

time at stage s. After this b /∈ B[t] or b ↑ and α can only require attention under step

6. The current markers of the threshold d are not changed after stage s by α. As in

the previous case there is a least stage s6 > s at which α executes step 6 for the last

time and at stages t ≥ s6 the witness has a permanent value such that τ ⊆ χB. As α

does not execute step 7 after stage s6 > s7 there is no extension of τ in the set Wα[t]

at all t > s6. Thus the requirement is satisfied by τ ⊆ χB and (∀µ ⊇ τ)[µ /∈ Wα]. The

strategy does not require attention at stages t > s6.

Corollary 5.1.1. The S-requirement is satisfied.

Proof. Let m be any element. Let α be a G-strategy with permanent threshold d > m.

By Lemma 5.1.1 every G-strategy has a permanent threshold and by construction every

G-strategy chooses a threshold of value greater than any chosen before, thus this choice

of α is satisfiable. There is a stage s such that α does not require attention at stages
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t ≥ s. At stage s the S-strategy ensures that ΓA,B[t](m) = K(m). If at a later stage

t > s this equality is injured then S would extract a marker b(m) from the set B. If

m ∈ K[t] then the current marker for m would be extracted, otherwise a marker of the

valid axiom for m in Γ at stage t would be extracted. In both cases α would require

attention under step 3 contradicting our choice of s. Thus the equality is preserved at

all stages t > s. If m /∈ K then there is no valid axiom for m in Γ at any stage t > s.

If m ∈ K then the current axiom for m at stage s is valid at all stages t > s.

Corollary 5.1.2. The set B is ∆0
2.

Proof. We use the same trick as in the proof of the previous lemma. Let m be any

element and let α be a G-strategy along the true path with permanent threshold d > m.

If m is extracted from B[t] then m is a marker of an element n < d and is extracted

by the S-strategy or by a strategy of higher priority than α. Then α requires attention

at stage t under step 3 in the first case or is initialized in the second case. By Lemma

5.1.1 there is a stage s after which α is not initialized and does not require attention

and hence m is extracted at finitely many stages from B.

5.2 No computably enumerable cupping sequence

In this section we prove Theorem 5.0.2. Given a ∆0
2-computable sequence of enumera-

tion degrees {ai}i<ω, we shall construct a ∆0
2 set B whose enumeration degree is nonzero

and is not cupped by any incomplete member of the sequence. As usual we start by

formalizing the requirements.

For every i let Ai be a representative of the given ∆0
2 enumeration degree ai. Let

{Ai[s]}s<ω be a good ∆0
2 approximation to Ai, obtained from the given one using the

method described in Section 1.4.1. The requirements that the constructed set B needs

to satisfy are:
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1. The set B is not c.e. Let {We}e<ω be a computable enumeration of all c.e. sets.

For every natural number e we have a requirement:

Ne : We 6= B.

2. The degree of the set B is not cupped by any incomplete member of the sequence.

Let {Θj}j<ω be a computable enumeration of all enumeration operators. For ev-

ery i and every j we will have a requirement:

Pi,j : ΘAi,B
j = K ⇒ (∃Γi,j)[ΓAi

i,j = K].

5.2.1 Basic strategies

We shall describe the basic strategies with the context of the tree in mind.

A P-strategy

Consider a P-strategy α working on the requirement Pi,j . We shall denote Θj by Θα,

Ai by Aα and Γi,j by Γα. The basic goal of α is to construct the operator Γα so that

ΓAα
α = K. It shall have two outcomes i <L w.

The strategy will perform cycles k of increasing length, examining each element

n < k on each cycle. The cycles do not necessarily correspond to the stages at which α

is active. In fact α can take any number of stages to complete one of its cycles. When

examining a particular element n, the strategy α shall try to rectify the operator Γα

at this element n, using information from the current approximation of the set ΘAα,B
α .

The strategy will act differently depending on whether or not the element is in the

current approximation of the set K. If n ∈ K then the strategy will try to find an

axiom to enumerate in Γα which is valid at almost all stages s. Candidates for such an

axiom come from the axioms currently enumerated in Θα. The strategy α shall select

the axiom 〈n,An, Bn〉 that has been valid the longest (i.e. of least age) including at all

stages since the strategy last examined the element n during the previous cycle. If there

is such an axiom then α will record it as its current guess in a special parameter Axα(n)
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and enumerate a corresponding axiom 〈n,An〉 in the operator Γα. Then during the same

stage it will move on to examine the next element in the cycle. If the current guess

recorded in Axα(n) has not been valid at some stage since the last time n was examined

or if there is no appropriate axiom valid long enough in the current approximation of

the operator Θα then the strategy shall indicate that it has been unsuccessful to rectify

Γα at n via the outcome i, ending its actions for this particular stage. When α is active

again it will move on to examine the next element in the cycle. Thus if the outcome

i is visited infinitely often in relation to a particular element n, this yields that Θα is

unable to supply α with an axiom for n that is valid at all but finitely many stages and

hence n /∈ ΘAα,B
α .

If n /∈ K, then to rectify Γα the strategy should ensure that all previously enumer-

ated axioms for n in Γα are invalid. It is enough to ensure that there are infinitely

many stages s at which n /∈ ΓAα
α . Thus the strategy first searches for such a stage

since the last time that n was examined. If such a stage is found, α assumes that the

operator will be rectified eventually and moves on to the next element, without any

further actions related to n. If α is not able to spot a stage at which n /∈ ΓAα
α , then

it shall enumerate the element n back in the set ΘAα,B
α by enumerating back in B the

B-part, Bn, of each axiom that is used as an axiom for n in Γα and we shall say that

α is restraining these elements in B. The strategy will indicate that it has been unsuc-

cessful to rectify Γα at n via the outcome w. It shall next concentrate its attention on

this element at further stages not moving on to the next element in the cycle, until it

observes a stage at which the operator is rectified. Thus if α has outcome w at all but

finitely many stages then the strategy is never able rectify Γα at some element n. From

the properties of a good approximation we can deduce that in this case n ∈ ΘAα,B \K.

To sum up we have three possibilities for the outcomes of a P-strategy α:

1. The strategy α has outcome w at all but finitely many stages. Then α performs

finitely many cycles, reaching an element n ∈ ΘAα,B
α \K.
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2. The strategy α has outcome i related to a particular element n at infinitely many

stages. Then α performs infinitely many cycles and for this element n we have

that n ∈ K \ΘAα,B
α .

3. The strategy α has outcome i at infinitely many stages, but for every element

n the outcome i is related to n only at finitely many stages. In this case the

construction of Γα is successful, i.e. ΓAα
α = K.

An N -strategy

Let β be an N -node working on the requirement Ne. We shall denote We by Wβ. This

strategy attempts to prove that B 6= Wβ. It uses a strategy even simpler than the

basic Friedberg-Muĉnik strategy: First it selects a fresh witness xβ, one that has not

appeared in the construction so far. While xβ /∈ Wβ the strategy will keep xβ in B and

indicate this via a rightmost outcome w. If xβ enters Wβ then every time the strategy

β is visited it will extract xβ from B and indicate this by a leftmost outcome d.

5.2.2 Interactions between strategies

The strategies are designed so that they do not interfere with each other. Every N -

strategy β is responsible for its unique witness xβ, which will never be extracted unless

β decides to extract it. If it is extracted then β will extract it at every true stage. A

P-strategy is most of the time only an observer, it does not modify the approximation

to B except in one case, when it restrains elements in B. In this case it has outcome

w and we make sure that all strategies extending this outcome are in initial state.

Thus lower priority strategies will not injure this restraint. Higher priority strategies

initialize α if they injure this restraint.

The only risk we face is that the set B can turn out to be properly Σ0
2 as an element

n might be extracted and enumerated back in B infinitely often. Consider a P-strategy

α and an N -strategy β ⊇ α î. The strategy β has a witness xβ which is extracted from
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B. The strategy α has used in the definition of its operator Γα an axiom 〈n,An, Bn〉
such that xβ ∈ Bn. At stage s α examines the element n, which is not in K[s] and

enumerates the marker xβ back in the set B. Before the strategy β is visited again,

α moves on to a new element n′, enumerates a new axiom for it using 〈n′, An′ , Bn′〉
and again xβ ∈ Bn′ . Then β is visited and extracts xβ again. If this situation repeats

infinitely often with elements n′, n′′, . . . , the number xβ will be extracted at infinitely

many stages from B.

α

i

β : xβ /∈ B

w : xβ ∈ B

To avoid this risk we shall require that a P-strategy α always restores the set B in

its initial state after it has observed a rectifying stage. In this way after α is done with

the element n it extracts the witness xβ, preempting β’s actions, before it enumerates

a new axiom for n′. Thus the new axiom used for n′ will not contain the marker xβ in

its B-part. This action makes the P-strategies a bit more aggressive as now they will

extract numbers from B as well. This turns out not to provoke further conflicts and is

dealt with in detail in Section 5.2.5.

5.2.3 Parameters and the tree of strategies

A P-strategy α will have a parameter Γα, the enumeration operator that it will con-

struct when visited. At initialization Γα is set to the empty set. It will have also
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parameters kα denoting the current cycle of the strategy and nα ≤ kα denoting the

current element of the cycle that α is working with. At initialization the values of the

parameters are set to kα = 0 and nα = 0. For every n it will have a parameter Axα(n)

denoting the axiom in Θα for n which is currently assumed to be permanently valid.

Finally it will keep track in a set Outα of all witnesses that the strategy has currently

re-enumerated back in B. At initialization α will give up any restraints.

An N -strategy β shall have a parameter xβ, which will be undefined if β is initial-

ized. At initialization β will give up any restraints.

The requirements will be ordered linearly as follows:

P0,0 < N0 < P0,1 < N1 . . .

The tree of strategies is defined as usual. Its domain is a subset of {w, d, i}<ω and:

1. T (∅) = P0,0.

2. Let α be a P-node in the domain of T . Then α ô, where o ∈ {i, w}, is also in the

domain of T and T (α ô) = N|α|/2, the least N -requirement in the priority listing

which is not yet assigned to any node..

3. Let β be an N -node in the domain of T . Then β ô, where o ∈ {d,w}, is in

the domain of T and T (β ô) = Pi,j , where Pi,j is the least P-requirement in the

priority listing which is not yet assigned to any node.

5.2.4 Construction

We shall perform the construction in stages. At each stage s we shall construct a

string δ[s] of length s through the domain of T . The set B shall be approximated by

a sequence of cofinite sets with B[0] = N and every set B[s] obtained from B[s − 1]

by allowing the active strategies at stage s to enumerate or extract numbers from it.

A traditional ∆0
2 approximation {B̂[s]}s<ω to the set B can be obtained by setting

B̂[s] = B[s] ¹ s.
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At stage 0 all nodes are initialized. Suppose we have constructed δ[t] for t < s. We

construct δ[s](n) with an inductive definition. We always start at the root of the tree:

δ[s](0) = ∅. Suppose that we have constructed δ[s] ¹ n. If n = s, we end this stage

and move on to s + 1, initializing all nodes σ > δ[s]. Otherwise we visit the strategy

δ[s] ¹ n and let it determine its outcome o. We define δ[s](n + 1) = o. We have two

cases depending on the type of strategy associated with δ[s] ¹ n:

(I.) δ[s] ¹ n = α is a P-node:

Let s− be the previous α-true stage, if α has not been initialized since, and s− = s

otherwise. The strategy α will inherit the values of its parameters from stage s− and

during its actions it can change their values several times. Thus we will omit the

subscript indicating the stage when we discuss α’s parameters.

If the current element nα does not need further actions we shall move on to the next

element. As this is a subroutine which is frequently performed in the construction, we

define it here once and for all, and we refer to it with the phrase reset the parameters.

Denote the current values of nα by n and of kα by k. We reset the parameters by

performing the following actions: Initialize the strategies extending αˆw. If Outα is not

empty then extract Outα from B and set Outα = ∅. Remove any restraint imposed by

α. If n < k then set nα := n + 1. Otherwise n = k and we set kα := k + 1, nα := 0 and

end this sub-stage with outcome i.

1. Let k = kα and n = nα. Let s−n be the previous stage when n was examined, if α

has not been initialized since, s−n = s otherwise.

2. If n ∈ K[s] and n ∈ ΓAα
α [t] for all stages t with s−n < t ≤ s then reset the

parameters and go to step 1.

3. If n ∈ K[s], but n /∈ ΓAα
α [t] at some stage t with s−n < t ≤ s then:

a. If Axα(n) ↑ then define it as the axiom that has been valid longest including
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at all stages s−n < t ≤ s and move on to step c. If there is no such axiom

then let the outcome be i and reset the parameters.

b. If Axα(n) is defined but was not valid at some stage t with s−n < t ≤ s,

then cancel its value (make it undefined) and let the outcome be i, reset the

parameters.

c. If Axα(n) = 〈n,An, Bn〉 is defined and has been valid at all stages t with

s−n < t ≤ s then enumerate in Γα the axiom 〈n,An〉. Reset the parameters

and go back to step 1.

4. If n /∈ K[s] and n /∈ ΓAα
α [t] at some stage t: s−n < t ≤ s reset the parameters and

go back to step 1.

5. Suppose n /∈ K[s] but n ∈ ΓAα
α [t] at all t such that s−n < t ≤ s. For each axiom

〈n,An〉 ∈ Γα[s], consider the corresponding B-part Bn of the axiom 〈n,An, Bn〉 ∈
Θα. If Bn * B[s] then enumerate all elements from Bn that are not in B[s] back

in the set B. Out of these elements enumerate in the set Outα the ones that are

currently restrained out of B. Restrain the elements of Bn in B.

Let the outcome be w. Note that we will not reset the parameters at this point,

thus the construction will keep going through this step while there is no change

in Aα. If later on there is a change in Aα then the strategy will move on to the

next element in the cycle but only after it has restored the set B to its original

state by extracting Outα from B.

(II.) δ[s] ¹ n = β is an N -node:

Let s− be the previous β-true stage if β has not been initialized since. The strategy

β inherits the values of its parameters from stage s− and goes to the step indicated at

stage s−. Otherwise s− = s and the strategies starts from step 1.
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1. Define xβ as a fresh number - one that has not appeared in the construction so

far. Go to the next step.

2. If xβ /∈ Wβ[s] then let the outcome be w, return to this step at the next stage.

Otherwise go to the next step.

3. If xβ ∈ B[s], then extract xβ from B[s] and restrain it out of B. Let the outcome

be d, come back to this step at the next stage.

This completes the construction.

5.2.5 Proof

We define the true path h as usual to be the leftmost infinite path in the tree of

strategies of nodes visited at infinitely many stages.

1. (∀n)(∃∞s)[h ¹ n ⊆ δ[s]];

2. (∀n)(∃sl(n))(∀s > sl(n))[δ[s] 6<L h ¹ n].

The true path exists as the tree is finitely branching. We shall prove that the

strategies along the true path do not get initialized infinitely often.

Propostion 5.2.1. For all n there exists a stage si(n) such that h ¹ n does not get

initialized at stages t ≥ si(n).

Proof. We prove this proposition with induction on n. The case n = 0 is trivial as h ¹ 0

does not get initialized at any stage t > 0, thus si(0) = 1.

Suppose that we have proved the statement for n. Then h ¹ (n + 1) does not get

initialized at any stage t ≥ max(si(n), sl(n+1)) unless it is initialized by h ¹ n. The only

case when this is possible is when h ¹ n is a P-strategy and h ¹ (n + 1) = (h ¹ n)̂ w. It

follows from the construction that h ¹ n performs only finitely many cycles, the actions

on resetting the parameters ensure that every time the strategy starts a new cycle it
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has outcome i. Thus after a certain stage si(n + 1) the strategy h ¹ n will not reset its

parameters and hence will not initialize strategies below outcome w.

The next lemma shows that the only elements that are ever extracted from the set

B are the witnesses that are extracted by an N -strategy.

Propostion 5.2.2. 1. Let xβ be a witness of an N -strategy β. If β does not extract

xβ at any stage, then xβ ∈ B[s] for all s.

2. If x is not a witness to an N -strategy, then x ∈ B[s] for all s.

Proof. 1. It follows that the witness xβ will never be restrained out of B. From the

choice of a witness in step II.1 of the construction it follows that xβ is not a witness

to any other N -strategy. On the other hand it cannot be extracted by a P-strategy α

as in order to be extracted by α it must first enter the set Outα and elements in this

set are necessarily restrained out of B.

2. Part two is proved by a similar argument as part (1).

This is all we need to prove that the N -requirements are satisfied.

Lemma 5.2.1. The set B is not c.e.

Proof. For every i there is a strategy β along the true path working with Ni. This

strategy is visited infinitely often and not initialized at any stage t ≥ si(|β|), where

si(|β|) is defined in Proposition 5.2.1. Let x = xβ[si(|β|)] be β′s permanent witness at

stages t ≥ si|β|. If βˆw ⊂ h then x is never enumerated in Wi and Proposition 5.2.2

yields x ∈ B, hence x ∈ B \Wi. If β d̂ ⊂ h then there is a stage sx such that x ∈ Wi[t]

at all t ≥ sx. At every β-true stage t ≥ sx the strategy β ensures x /∈ B[t], hence

x ∈ Wi \B.

We shall turn our attention to the P-strategies. Before we can prove that they are

successful we will show that the restraints that they impose on B are respected.
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Lemma 5.2.2. Let α be a P-strategy. If α restrains an element n in B at stage s then

n ∈ B[t] at all stages t > s until α removes the restraint.

Proof. Suppose for a contradiction that a strategy γ extracts n from B at stage s1 ≥ s

strictly before α has removed the restraint. And let s1 be the least such stage and γ

be the least such strategy. We have to consider different cases depending on the type

and priority of the strategy γ.

1. γ <L α. Then γ is visited at stage s1 and hence α is initialized at stage s1 and

removes its restraints.

2. α <L γ. Then γ is initialized at stage s. If γ is an N -strategy then γ chooses its

witness after stage s hence bigger than n. If γ is a P-strategy then γ will extract

only elements from B that enter Outγ at a stage t such that s < t < s1. Elements

that enter the set Outγ [t] are not in B[t]. By our choice of stage s1 as the least

stage greater than s at which n /∈ B, we have that n ∈ B[t] and hence does not

enter Outγ .

3. α ⊂ γ. The only strategies that are accessible while α is restraining elements

in B are the strategies extending outcome w. By the actions in Resetting the

parameters these strategies are in initial state at stage s. Thus the argument in

2 is valid for these strategies as well.

4. γ ⊂ α and γ is an N -strategy. Then n is the witness of γ. If γˆw ⊆ α then at

stage s1 the strategy γ has outcome d and initializes α, forcing it to drop any

restraints. If γ d̂ ⊆ α then the element n is extracted by γ at every α-true stage

since the last initialization of α. Thus no axiom 〈m,Am, Bm〉 with n ∈ Bm is

valid at an α-true stage after the last initialization of α and hence no such axiom

will be used by α in the construction of Γα. This contradicts the fact that α

restrains n at stage s.
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5. γ ⊂ α and γ is an P-strategy. Then n ∈ Outγ [s1]. Suppose n enters the set Outγ

at stage t < s1. Then n /∈ B[t] and by the choice of s1 it must be that t ≤ s.

Then at stage s the element n is in Outγ and by the construction γ has outcome

w at stage s, as whenever it has outcome i the set Outγ is empty. As α is visited

at stage s, γˆw ⊆ α. By the actions of Resetting the parameters when the set

Outγ is extracted from B, γ initializes α at stage s1.

We are ready to prove that every P-requirement is satisfied.

Lemma 5.2.3. For every i if Ai 6≡e K then Ai ⊕B 6≡e K.

Proof. Suppose that Ai is incomplete and for each j consider the strategy α ⊂ h along

the true path labelled by the requirement Pi,j . Then Θj = Θα and Ai = Aα. We will

prove that ΘAα,B
α 6= K. By Proposition 5.2.1 after stage si(|α|) the strategy α is not

initialized. Let Γα =
⋃

t>si(|α|) Γα[t]. Then by assumption ΓAα
α 6= K.

Suppose there is an m ∈ ΓAα \ K. Then there is a valid axiom 〈m,Am〉 in Γα

for m. Let s > si(|α|) be the stage at which this axiom is enumerated in Γα. As

Am ⊆ Aα, Aα is a ∆0
2 set and K is a Π1 set, there is a stage s1 > s such that

(∀t ≥ s1)[Am ⊆ Aα[t] ∧m /∈ K[t]]. If after stage s1 the strategy α considers m then

by I.5 of the construction α will never again move on to a different element and have

outcome w forever. Thus α will perform finitely many cycles.

If α performs finitely many cycles then let n be the last element it considers and

let s2 be the least stage such that nα[t] = n for all t ≥ s2. Then again by I.5 of

the construction n /∈ K[t] and n ∈ ΓAα
α [t] at all t ≥ s2 or else I.4 of the construction

would be valid at an α-true stage and α would move on to the next element. The good

approximation that we have chosen for Aα and Proposition 1.4.1 guarantee that in this

case n ∈ ΓAα
α and hence there is a valid axiom 〈n,An〉 in Γα. By the actions that α

performs at stage s2 under I.5 each axiom for n including 〈n,An, Bn〉 is restored, i.e.
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Bn ⊆ B[s2] and α restrains Bn in B at all stages t ≥ s2. By Lemma 5.2.2 Bn ⊂ B.

Thus n ∈ ΘAα,B
α .

Suppose now that ΓAα
α ⊆ K and that α performs infinitely many cycles. Let n be

the least element such that n ∈ K \ ΓAα
α . We will prove that in this case n /∈ ΘAα,B

α .

Suppose not. Then there is a valid axiom in Θα. Consider the oldest valid axiom

〈n, An, Bn〉 in Θα, i.e. the one with least limit age a(Aα ⊕B,An ⊕Bn).

By assumption the strategy will perform infinitely many cycles and hence at in-

finitely many stages it will examine n. As n /∈ ΓAα
α and we have chosen a good approx-

imation to Aα there will be infinitely many stages at which n /∈ ΓAα
α [t]. Let s0 be the

first stage at which α examines n and at which the axiom has reached its limit age, i.e.

a(Aα ⊕B, An ⊕ Bn, t) = a(Aα ⊕B, An ⊕ Bn) at all t ≥ s0 and all other axioms for n

enumerated in Θ[s0] have greater age.

Let t0 be the least stage after s0 such that n /∈ ΓAα
α [t0]. Consider the least stage

s1 > t0 at which n is again considered by α. Then step I.3 of the construction will be

executed. If Axα(n) is currently undefined then α will select 〈n, An, Bn〉 as the new

value of Axα(n) and enumerate it in Γα. If Axα(n) does have a value then it will be

cancelled as the corresponding axiom is already enumerated in Γα and was not valid

at stage t0. Let t1 be the next stage at which n /∈ ΓAα
α [t1] and s2 be the next stage at

which α considers n. Finally I.3.a and I.3.c will be executed and the axiom 〈n,An〉
will be enumerated in Γα. By assumption this axiom is valid at all stages t > s0 hence

n ∈ ΓAα
α and we have finally reached the desired contradiction.

Finally to complete the proof we need to show that the constructed set B is in fact

a ∆0
2 set. We will do this in two steps.

Lemma 5.2.4. Suppose α is a strategy visited at stages s1 and s2. Suppose x is a

witness of a higher priority strategy β < α. If B(x)[s1] = 1 and B(x)[s2] = 0 then α is

initialized at a stage t, with s1 < t ≤ s2.
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Proof. First note that in order for B(x)[s2] = 0 then β must extract the witness x at

stage sx ≤ s2 by Proposition 5.2.2. If s1 < sx then β is visited at stage sx and has

outcome d. Then if β <L α or βˆw ⊆ α, the strategy α is initialized at stage sx. If

β d̂ ⊆ α then as at stage s1 the witness x ∈ B[s1], β must have a different witness at

stage s1 and must have been initialized together with all its successors including α at

a stage t such that s1 < t ≤ sx ≤ s2.

Suppose sx < s1. As all strategies of lower priority than β are in initial state at

stage sx, the element x must be enumerated back in B before or at stage s1 by a P-

strategy γ of higher priority than β. By construction at this stage γ executes step I.5

of the construction with outcome w and restrains x in B. This restraint is still valid

at stage s1 hence α ≥ γˆw. By Lemma 5.2.2 γ gives up its restraint at a stage t ≤ s2

as otherwise x ∈ B[s2]. By construction when γ gives up its restraint, it initializes all

strategies of lower priority than γˆw, hence α is initialized at stage t.

Lemma 5.2.5. The set B is ∆0
2.

Proof. We will prove that for every number n the value of B(n) changes only finitely

often. By Proposition 5.2.2 this is true for numbers that are not witnesses to any N -

strategy and for numbers that are witnesses to an N -strategy and are never extracted

by it.

Suppose that n is the witness xβ to the N -strategy β extracted for the first time

at stage sx. No other N -strategy will affect B(xβ) as the sets of witnesses to each

N -strategy are disjoint. If β is initialized at stage s > sx then β gives up its restraint

on xβ and will not extract xβ at any further stage. Furthermore xβ cannot enter the set

Outα[t] for any t > s and any P-strategy α. At stage s the element xβ can belong to

finitely many sets Outα for finitely many strategies α. Each such strategy can extract

the element xβ only once, when emptying the set Outα. Altogether B(xβ) changes

finitely often.



Chapter 5. Cupping and Non-cupping in the ∆0
2 Enumeration Degrees 169

Suppose that β is not initialized after stage sx. Then the element xβ has a perma-

nent restraint out of B and no strategy α <L β is visited after stage sx.

First we note that by Lemma 5.2.4 P-strategies of lower priority than β will not

change the value of B(xβ) as in order to do this they must be visited at a stage s1 at

which B(xβ)[s1] = 1 to include an axiom that uses xβ and then again at a stage s2 at

which B(xβ)[s1] = 0 to enumerate xβ back in B, without being initialized in between.

Thus we only need to prove that the finitely many P-strategies α ⊂ β do not change

the value of the B(xβ) infinitely often. Assume for a contradiction that this is not true

and let α ⊂ β be the largest strategy that changes the value of xβ infinitely often. It

follows that α is visited infinitely often, not initialized and performs infinitely many

cycles. Let s > sx be a stage after which no lower priority P-strategy ever changes the

value of B(xβ). Let s0 > s be the least stage at which B(xβ) = 0.

At any stage t > s0 if α is visited and chooses a new axiom to enumerate in Γα then

B(xβ)[t] = 0. Indeed higher priority strategies α′̂ i ⊂ α always have empty Outα′ when

they have outcome i. Higher priority strategies α′′̂ w do not enumerate any further

elements after stage s0 or else α and hence β are initialized. If α enumerates the

element xβ in B at stage t0 it executes step I.5 and does not define new axioms in Γα.

The element xβ is permanently restrained out of B and hence enters the set Outα[t0].

If α chooses a new axiom at stage t > t0 its set Outα is empty and Outα[t0] is extracted

from B, hence xβ /∈ B[t].

Thus α will use only finitely many axioms whose B-part contains xβ in the definition

of Γα. These are axioms for finitely many numbers, only part of which are not elements

of the set K. For each such element n /∈ K there will be finitely many axioms Axn

enumerated in Γα. Let sn be a stage after which the approximation of the ∆0
2 set Aα

does not change on the A-parts of the axioms Axn. After stage sn the value of ΓAα
α (n)

does not change. If ΓAα
α (n) = 1 then when α examines n after stage sn it will restrain

xβ in B forever and never move on to a different element contrary to the assumption
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that α performs infinitely many cycles. If ΓAα
α (n) = 0 then whenever α examines n

at stages after sn, step I.4 of the construction will be valid and α will not enumerate

xβ back in B. This proves that our assumption is wrong and hence B(xβ) changes its

value only at finitely many stages.



Chapter 6

Cupping and Non-cupping in the

ω-c.e. Enumeration Degrees

In this chapter we will continue the theme of cupping/non-cupping, but this time with

respect to the subclasses of the ∆0
2 enumeration degrees that arise from the Ershov hi-

erarchy. In Section 1.1 we define these subclasses and mention some of their properties.

For every n, 3 ≤ n ≤ ω we have a proper subclass consisting of all n-c.e. enumeration

degrees, see Definition 1.1.4.

In Chapter 5 we proved that we cannot computably enumerate a sequence of ∆0
2

enumeration degrees that contains a cupping partner for every nonzero ∆0
2 enumeration

degree and in Section 1.2 we saw that the class of n-c.e. degrees for every n ≤ ω can be

computably enumerated. An immediate corollary of these two results is the following:

Corollary 6.0.1. There exists a nonzero ∆0
2 enumeration degree that cannot be cupped

by any incomplete ω-c.e. degree.

Our next result shows that this ∆0
2 enumeration degree degree cannot be ω-c.e.

Theorem 6.0.1. For every nonzero ω-c.e. enumeration degree a there exists an in-

complete 3-c.e. enumeration degree b such that a ∨ b = 0′e.

171
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Cooper and Yates, see [Coo73], prove the existence of a non-cuppable nonzero c.e.

Turing degree. This result is transferred into the Π0
1 enumeration degrees via the

standard embedding ι of DT into De. Using the fact that the class of 2-c.e. enumeration

degrees coincides with the class of Π0
1 enumeration degrees, see [Coo90], we can restate

this result as follows: There exists a nonzero ω-c.e. enumeration degree which cannot

be cupped by any incomplete 2-c.e. enumeration degree. Thus Theorem 6.0.1 claims

the strongest possible result in this respect.

We face again the question of how much further we can limit our search for cupping

partners when we restrict our attention to the smaller subclass of all ω-c.e. enumeration

degrees. In contrast to the ∆0
2 enumeration degrees, we can computably enumerate a

sequence of ω-c.e. degrees which contains a cupping partner for every nonzero ω-c.e.

degrees. Can we further limit this to a finite set? Cooper, Seetapun and (independently)

Li prove that there exists a single incomplete ∆0
2 Turing degree that cups every nonzero

c.e. degree. When we transfer this statement into the enumeration degrees we obtain a

single incomplete ∆0
2 enumeration degree that cups all nonzero Π0

1 enumeration degrees.

Our next result shows that any other attempt at a result of this kind is doomed to

failure as for every incomplete Σ0
2 enumeration degree a there exists a nonzero member

of the second class, a nonzero 3-c.e. enumeration degree b, such that b is not cupped

by a. This provides a partial answer to the suggested question: If there is a finite

set containing cupping partners for every nonzero ω-c.e. enumeration degree then it

cannot be of cardinality 1.

Theorem 6.0.2. Let a be an incomplete Σ0
2 enumeration degree. There exists a nonzero

3-c.e. enumeration degree b such that a ∨ b 6= 0′e.

Theorem 6.0.1 is joint work with Guohua Wu, published in [SW07], see Appendix

A.2. Theorem 6.0.2 will be published in [Sos08b].
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6.1 Cupping by a 3-c.e. enumeration degree

In this section we give a proof of Theorem 6.0.1. Let A be a nonzero ω-c.e. set with

ω-c.e. approximation {A[s]}s<ω bounded by the total computable function g. We shall

construct an incomplete 3-c.e. set B whose enumeration degree cups the degree of A.

The set B shall satisfy the following group of requirements:

1. We have a global requirement which guarantees that the degree of B cups the

degree of A. We shall construct an enumeration operator Γ so that:

S : ΓA,B = K.

Here K denotes as usual any Π0
1 representative of the degree 0′e.

2. The set B must be incomplete. We shall construct an auxiliary Π0
1 set E to wit-

ness the incompleteness of B. Let {Φi}i<ω be a computable enumeration of all

enumeration operators. For every i < ω we have a requirement:

Ni : ΦB
i 6= E.

6.1.1 Basic strategies

This construction repeats almost exactly the construction described in Section 5.1. To

satisfy the global S-requirement we will construct an enumeration operator Γ rectifying

it at every stage and using axioms of the form 〈n, A ¹ a(n) + 1, B ¹ b(n) + 1〉, where

a(n) and b(n) are markers defined by us.

To satisfy an Ni-requirement we shall use a strategy very similar to the G-strategy,

but it will be based on the simple Friedberg-Muĉhnik strategy instead of the strategy

for constructing a generic set. It shall select a threshold d and attempt to secure its

restraint on the set B by moving the B-markers of elements n ≥ d above it. To do this

it shall construct a c.e. set U approximating the given set A and threatening to prove

that A is c.e. The N -strategy shall then run in cycles, preforming many attempts to

satisfy its requirement. Each new cycle k shall have a new witness xk and shall search
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for a valid axiom 〈xk, Dk〉 in Φi, so that xk ∈ ΦB
i . If this axiom is found the strategy

shall end the k-th cycle by extracting the witness xk from the set E and approximating

a larger initial segment of the set A up to ak(d), where ak(d) is the current marker of

the threshold during the k-th cycle. Then it shall perform capricious destruction on

the operator Γ by extracting the B-marker for the threshold which is current during

the k-th cycle, bk(d), thereby moving the action of the S-strategy and the next cycle

of this strategy to elements larger than the required restraint, rk = max Dk, on the set

B. Thus the only number that will conflict the restraint on B for this cycle will be the

marker bk(d).

rk
B

AU1 U2 Uk

b1(d)

a1(d)

r1

b2(d)

r2

bk(d)

a2(d) ak(d)

As the set A is not c.e. the approximation of A shall be unsuccessful and we shall

eventually be able to locate a permanent extraction from the set A, an extraction useful

to the last cycle k. Using this extraction we can restore the set B by enumerating the

marker bk(d) back in the set B, making 〈xk, Dk〉 a valid axiom that enumerates the

witness xk back in ΦB
i , and preserve the restraint rk on B at further stages.

This strategy would work well if we were constructing a ∆0
2 set. In this case how-

ever we are required to construct a 3-c.e. set and thus are only allowed to extract a

marker from the set B once. The strategy that we just described might require us to

extract the same marker bk(d) many times. Suppose during cycle k + 1 we see a useful
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extraction in the approximation to A. We assume that this is a permanent extraction

and reenumerate the marker bk(d). If our assumption turns out to be wrong, we will

need to extract the marker bk(d) a second time before we carry on with cycle k + 1.

And this can be repeated many times.

On first sight this conflict seems to be of insurmountable difficulty. On closer

inspection we notice that the number of times that this situation can arise is bounded

and we can compute this bound. Every time we see a useful change in the approximation

to A it is below a fixed number ak(d). As the set A is ω-c.e. the number of times that

the approximation to A ¹ ak(d)+1 can change is bounded by
∑

x<ak(d)+1 g(x). We will

modify the form of the B-markers. For every element n with A-marker a(n) we will

define a finite set of B-markers M(n) of size
∑

x<a(n)+1 g(x)+1. The current axioms in

the operator Γ will have the form 〈n,A ¹ a(n) + 1, B ¹ M(n) + 1〉, where B ¹ M(n) + 1

just denotes B ¹ maxM(n) + 1. Every time we are required to extract the B-marker

of an element n, we will extract the least element from the set M(n) that has not been

extracted from B yet.

6.1.2 Construction

The construction will be designed similarly to the one in Section 5.1. We order the

requirements linearly:

S < G0 < G1 . . .

and assign a strategy to every requirement.

At the beginning of each stage we shall run the S-strategy. Then we shall activate

the least N -strategy that requires attention, defined below.

We shall construct a 3-c.e. approximation to the set B. Initially it will be the

empty set: B[0] = ∅. The approximation to the set B at stage s shall be obtained

from B[s− 1] by allowing the two active strategies at stage s to enumerate or extract

numbers from it. Every element n will be extracted at most once from the set B and
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it will thus automatically be 3-c.e. The set E is constructed as a Π0
1 set: E[0] = N and

E[s] is obtained from E[s − 1] after a possible extraction by the active N -strategy at

stage s.

The S-strategy

The global S-strategy constructs an enumeration operator Γ. To every element n the

strategy shall assign current A- and B-markers, a(n) and M(n), and a current axiom

of the form 〈n,A ¹ a(n)+1, B ¹ M(n)+1〉. Initially Γ = ∅ and all markers and axioms

are undefined. At stage s the S-strategy operates as follows:

For very element n < s perform the following actions:

• If n /∈ K[s] then find all valid axioms in Γ for n, 〈n,An, Bn〉. The finite set Bn

ends in a B-marker M(n) defined at a previous stage. Extract the least element

of M(n) that has never been extracted before from B[s], if there is one available.

• If n ∈ K[s] and the current axiom for n is valid then skip to the next element. If

the current axiom for n is not defined or is not valid then:

1. If a(n)[s] ↑, define a(n)[s] = a(n− 1)[s] + 1. (if n= 0, define a(n) = 1).

2. If M(n)[s] ↓ and there is an element in M(n) that has never been extracted

then extract from B[s] the least such element and cancel all markers M(n′)[s]

for n′ > n and go to step 3.

3. Define M(n)[s] as a fresh set of size
∑

x<a(n)+1 g(x) + 1 consisting entirely

of numbers greater than any number mentioned in the construction so far.

Enumerate M(n)[s] in B[s], go to step 4.

4. Define the current axiom for n at stage s to be

〈n,A[s] ¹ a(n) + 1, B[s] ¹ M(n) + 1〉 and enumerate it in Γ[s].
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Activating the N -strategy α.

Denote by Φα the operator that α is working with. The strategy α is equipped with a

threshold d and a current witness x, initially undefined. The strategy has furthermore

a parameter, which we shall call the current guess, denoted by G and it shall have

the following structure: 〈U,Ax, M, t〉, where U is α’s current approximation to the

set A, Ax is the axiom in Φα that α would like make valid, M is a B-marker whose

enumeration in the set B will facilitate this and finally t is the stage at which this guess

was made. This parameter has initial value 〈∅, ↑, ↑, ↑〉.
The strategy α at stage s has threshold d, witness x and guess G = 〈U, 〈y, D〉,M, t〉

all possibly undefined. We list the cases in which it requires attention. Some cases

are followed by a check -statement which needs to be valid in order for α to make the

actions described. Every time we choose the first case which applies at stage s.

1. The threshold d is not defined.

Action: Define the threshold d ∈ K[s] as a fresh number.

2. The threshold d is defined but d /∈ K[s].

Check: If the guess is defined then M * B[s] or there is a member of M that

has not yet been extracted.

Action: Shift the value of the threshold to the next element in K[s]. Cancel the

current witness x. If M ↓⊆ B[s] then extract from B the least member of M that

has never been extracted. Cancel the current guess.

3. A member of a B-marker for an element n < d has been extracted from B at

stage s.

Check: If the guess is defined then M * B[s] or there is a member of M that

has not yet been extracted.
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Action: Cancel the current witness x. If M ↓⊆ B[s] then extract from B the

least member of M that has never been extracted. Cancel the current guess.

4. U ⊆ A[s] and M ↓⊆ B[s].

Check: There are members of M and M(d) that have not yet been extracted.

Action: Extract from the set B[s] the least member of each M and M(d) that

has not yet been extracted. Enumerate D \M in the set B[s]. Cancel the current

B-marker for every n ≥ d.

5. U * A[s] and M ↓* B[s].

Action: Enumerate M in the set B[s].

6. The witness x is not defined or the current marker of the threshold M(d) is defined

and B ¹ M(d) + 1 has been modified at stage s.

Action: Define the witness x as a fresh number.

7. M ↑ or M ↓* B[s], and U ⊆ A[s] and x ∈ ΦB
α [s].

Check: There is a member of the current B-marker M(d) that has not yet been

extracted.

Action: Let 〈x,Dx〉 be an axiom in Φα[s] valid at stage s. Define a new value for

the current guess G to be 〈Ad, 〈x,Dx〉,M(d), s〉, where 〈d,Ad, Bd〉 is the current

axiom for d in Γ[s]. Extract from B[s] the least member of M(d) that has not

yet been extracted. Cancel all A- and B-markers for elements n ≥ d. Extract x

from E[s] and then cancel x. Define a fresh value of the marker a(d).

8. α was not allowed to execute its actions at a previous stage due to an invalid

check.

Actions: No actions are executed.
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6.1.3 Proof

We will follow the structure of the proof described in Section 5.1.3. In some cases to

obtain a proof of a statement we only need to adapt the notation used in a proof from

5.1.3. We will not repeat such proofs but instead refer to the appropriate statement

from Section 5.1.3.

One significant difficulty that distinguishes this construction from the one described

in Section 5.1 is that in order to prove that every N -strategy requires attention at

finitely many stages we need to show that the check-clauses are always valid. Before

we can do this we will examine the properties of the axioms used in Γ.

Propostion 6.1.1. 1. At every stage s if n < m and n,m ∈ K[s] and the current

axioms for n and m at stage s are 〈n, An, Bn〉 and 〈m,Am, Bm〉 then An ⊆ Am and

Bn ⊂ Bm.

2. If M(n) is the current marker for n at stage s then no member of M(n) has been

extracted from B.

3. If α is an N -strategy not initialized at stage s then there is at most one valid

axiom in Γ[s] for its threshold d different from the current one. This axiom is associated

with α’s current guess G[s].

Proof. 1. See the proof of Proposition 5.1.1 part (1).

2. The current marker is always defined as a fresh set of size ≥ 1 and its members

have never been extracted from the set B. If a strategy extracts a member of M(n) at

stage s then it cancels this marker and it ceases to be current.

3. As d is α’s threshold at stage s, d ∈ K[s]. If α is in initial state at stage s then

there is no axiom for d in Γ[s].

Otherwise any axiom for d that the S-strategy has cancelled at a previous stage is

invalid. The S-strategy always attempts to extract a member of the current B-marker

before it is cancelled and by part (2) of this proposition it is always allowed to do this.
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This member can never be reenumerated in the set B.

Any axiom for d that was used for a previous guess G[t] at a stage t < s is not valid.

Whenever α changes the value of the guess it executes the actions under step 7 and the

marker recorded in its previous value is not in the approximation to B. If α cancels

the guess during steps 2 or 3 then it is allowed to do so and the marker recorded in it

is either not a subset of B or one of its members is extracted from B. This marker will

never be reenumerated in B and the axiom associated with the old value of the guess

remains invalid forever. Whenever α cancels the current B-marker of the threshold at

step 4 it extracts a member of it it from B invalidating the axiom associated with it.

Thus the only axioms for d that can be valid at stage s are the current one and the

one used in the current guess G[s].

Now we can prove the desired statement.

Lemma 6.1.1. Let n be any number. Let a(n) and M(n) be the current markers of

the element n defined at stage s0. If a strategy wishes to extract a member of M(n) at

any further stage then it is allowed to.

Proof. The set M(n) is of size
∑

x<a(n) g(x) + 1. We will show that if a member of the

set m ∈ M(n) is extracted at stage s1 ≥ s0 and a strategy requires to extract a different

member of the set at stage s2 ≥ s1 then there is a stage t such that s1 ≤ t < s2 and

A ¹ a(n)[t] 6= A ¹ a(n)[t + 1]. Thus there is a member of M(n) available for extraction

at stage s2.

Assume inductively that the statement is true for elements k < n and their axioms

defined up until stage s0. At the end of stage s1 the marker M(n) is not current for n

by 6.1.1, part (2). Thus in order for a strategy to require to extract a member of M(n)

at stage t there is a stage s such that s1 < s < s2 at which m is reenumerated in the

set B[s]. We have to consider different cases depending on which strategy extracts m

at stage s1.
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If m is extracted at stage s1 by an N -strategy α, then n is α’s threshold at stage

s1. We have the following cases:

• α executes step 2 or 3. Then α extracts m invalidating the guess. This member

will never be reenumerated in the set B.

• α executes step 4 or step 7 and M(n) is the marker enumerated in the current

guess. Then 〈n,An, Bn〉 is the axiom associated with the current guess and

An ⊆ A[s1]. At stage s the strategy α enumerates m back in B[s] executing step

5 hence An * A[s].

• α extracts m cancelling the current marker for the threshold at step 4 then m

will never be reenumerated in the set B.

If at stage s1 the marker m is extracted by the S-strategy then we have two cases:

• n ∈ K[s1]. Then M(n) is the current marker for n at stage s1 and the S-strategy

cancels it. The member m will never be reenumerated in B.

• n /∈ K[s1]. Then at stage s1 we have An ⊆ A[s1] and Bn ⊆ B[s1]. Note that n

is not the threshold to any strategy at stage s2, thus at stage s2 the S-strategy

requires to extract a new member of M(n). At stage s2 we have again An ⊆ B[s2]

and Bn ⊆ B[s2].

The marker m is reenumerated in B at stage s < s2 by an N -strategy α. This

strategy is not initialized at stages t, s1 ≤ t ≤ s and always allowed to perform its

actions. If d ≥ n then α would execute step 2 or step 3 cancelling the value of the

guess G and will never be able to reenumerate m in the set B. Thus d < n and

by Proposition 6.1.1 there is an axiom for d valid at stage t, the axiom 〈d,Ad, Bd〉
with Ad ⊆ An and Bd ⊂ Bn. Furthermore the member m is enumerated back

in the set B at stage s. The only elements that α can enumerate in the set B

at stage s, which do not belong to markers of its threshold are the ones in the
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set D, where 〈y,D〉 is recorded in the current guess G[s]. It follows that the

guess is made at a stage t < s1 before m is extracted from B. Then at stage t

the strategy α cancelled the current B-markers for all elements k ≥ d. Thus the

axiom 〈d,Ad, Bd〉 is not the current axiom for d at stage s1 and by Proposition

6.1.1 it is the one associated with the guess G[s1] = 〈Ad, 〈y, D〉,M, t〉. At stage

s1 the strategy α will therefore require attention under step 4. It will enumerate

m back in the set B (so s1 = s) and it will extract a member of M from the

set B. Note that M ⊆ Bn and thus there is a further stage s∗ < s2 at which

M is reenumerated in the set B. This can only be done by α under step 5 if

Ad * A[s∗]. Thus An ⊆ A[s1] and An * A[s∗].

We have established that the check-clauses for any strategy at any stage are always

valid and no strategy will ever require attention under step 8. We can safely carry on

with our proof.

Propostion 6.1.2. Let α be an N -strategy not initialized after stage s. Suppose the

value of the current guess G is not cancelled at stages t > s. Denote by U [t] the

value of the first component of the current guess at stage t. Then {U [t]}t>s is a c.e.

approximation to the set U =
⋃

t>s U [t].

Proof. See the proof of Proposition 5.1.2.

Lemma 6.1.2. 1. Every strategy requires attention only at finitely many stages.

2. Every N -requirement is satisfied.

Proof. We prove both parts of this lemma with simultaneous induction: Suppose that

the statement is true for strategies of higher priority than α and let s1 be the least stage

such that at stages t ≥ s1 strategies of higher priority than α do not require attention.
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We note as in the proof of Lemma 5.1.1 that at stages t > s0 only S and α can

modify the approximation to B[t] ¹ b(d)[t] + 1.

At stages t ≥ s1 the strategy α is not initialized. Hence stage s1 is the last stage

at which α requires attention under step 1. The set K is infinite hence this there is

a stage s2 ≥ s1 after which α does not execute step 2. The value of the threshold d

and the A-markers for elements n < d do not change after stage s2. As the set A is

∆0
2, the approximation to A ¹ maxn<d a(n) + 1 will stabilize and hence there is a least

stage s3 ≥ s2 such that the S-strategy does not extract from the set B any members of

markers for elements n < d at stages t > s3. So after stage s3 the strategy α does not

execute step 3 and the value of α’s guess will not be cancelled. By Proposition 6.1.2

the set U =
⋃

t>s3
U [t] is a c.e. set. As A is not, A 6= U.

Suppose that there is an element n ∈ U \ A, and let s be the least stage such that

n ∈ U [t] and n /∈ A[t] for all t ≥ s. Then at stages t ≥ s we always have U [t] * A[t] and

steps 4 and 7 will never again be executed. Let s7 > s3 be the last stage at which step

7 is executed. Then at stage s7 the final value of the guess G = 〈U, 〈y, D〉, M, s7〉 is

recorded, 〈y, D〉 ∈ Φα[s7] is valid at stage s7 and y is extracted from E[s7]. At all stages

t ≥ s7 we have D \M ⊆ B[t]. As s7 > s3 and d ∈ K the S-strategy does not modify

B ¹ M + 1. If it modifies B below maxD at stage t > s7 then it extracts a member

of an old marker of an element n > d for a valid axiom in Γ[t]. By Proposition 5.1.1

there is an axiom for the threshold d which is also valid at stage t and this is the one

associated with the guess G. Thus U ⊆ A[t], M ∈ B[t] and α executes step 4, restoring

D \M ⊆ B[t]. As this does not happen after stage s, the S-strategy does not modify

B below maxD at stages t ≥ s. At stage s the strategy α enumerates the marker M

back in the set B[s] executing step 5 for the last time and ensuring that D ⊆ B[s].

Thus after stage s the strategy α can only require attention under step 6. Furthermore

B[t] ¹ maxD + 1 is not modified at all t > s and thus the requirement associated with

α is satisfied by y ∈ ΦB
α and y /∈ E. As the current markers of the threshold d are not
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modified by α after stage s, there will be a least stage s6 > s at which the S-strategy

will modify the current axiom for d and the approximation to B ¹ b(d) + 1 for the last

time, after A ¹ a(d) + 1 has stabilized. Then stage s6 is the last stage at which α can

execute step 6. The strategy will not require attention at further stages.

Suppose that U ⊆ A. Then let n be a number such that n ∈ A\U. If we assume that

α requires attention under step 7 at infinitely many stages we will reach a contradiction

as the number n would eventually be enumerated in the set U. Let s7 be the last stage

at which α executes step 7, s7 = s3 if α never executes step 7. The final value of the

guess is G = 〈U, 〈y, D〉,M, s7〉 or 〈U = ∅, ↑, ↑, ↑〉. Let s be the least stage such that

U ⊆ A[t] at all stages t ≥ s. Then α can execute step 4 for the last time at stage s.

After this M * B[t] or M ↑ and α can only require attention under step 6. The current

markers of the threshold d are not changed after stage s by α. As in the previous case

there is a least stage s6 > s after which α does not execute step 6. At stages t ≥ s6

the witness x has a permanent value. As α does not execute step 7 after stage s6 we

have that x /∈ ΦB
α [t] at all t > s6. Thus the requirement is satisfied by x ∈ E \ΦB

α . The

strategy does not require attention at stages t > s6.

Corollary 6.1.1. The S-requirement is satisfied.

Proof. Let m be any element. Let α be anN -strategy with permanent threshold d > m.

By Lemma 6.1.2 everyN -strategy has a permanent threshold and by construction every

N -strategy chooses a threshold of value greater than any chosen before, thus this choice

of α is satisfiable. There is a stage s such that α does not require attention at stages

t > s. At stage s the S-strategy ensures that ΓA,B[s](m) = K(m). If at a later stage

t > s this equality is injured then S would extract a member of a marker M(m) from

the set B. If m ∈ K[t] then a member of the current marker for m would be extracted,

otherwise a member of a marker of the valid axiom for m in Γ at stage t would be

extracted. In both cases α would require attention under step 3 contradicting our
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choice of s. If m /∈ K then there is no valid axiom for m in Γ at any stage t > s. If

m ∈ K then the current axiom for m at stage s is valid at all stages t > s.

6.2 Non-cupping by a 3-c.e. enumeration degree

In this section we give a proof of Theorem 6.0.2. Given an incomplete Σ0
2 enumeration

degree a we will construct a nonzero 3-c.e. enumeration degree b which is not cupped

by a.

Let A be a representative of the given Σ0
2 enumeration degree. Let {A[s]}s<ω be a

good Σ0
2 approximation to A, see Definition 1.4.1. We shall construct two 3-c.e. sets X

and Y , so that ultimately the degree of one of them will have the requested properties.

Consider the following requirements:

1. Let {Θi}i<ω and {Ψi}i<ω be computable enumerations of all enumeration opera-

tors. For every i we will have a pair of requirements:

P0
i : ΘA,X

i 6= K and P1
i : ΨA,Y

i 6= K.

2. Let {We}e<ω be a computable enumeration of all c.e. sets. For every natural

number e we have a requirement:

Ne : We 6= X ∧We 6= Y.

We shall construct the sets X and Y so that for all e the requirement Ne is satisfied,

thus both X and Y have nonzero e-degree, and if Pj
i is not satisfied for some i then

for all i′ the requirement P1−j
i′ is satisfied, thus the degree of at least one of the sets

A⊕X or A⊕ Y is incomplete.

6.2.1 Basic strategies

We shall describe the basic strategies as usual with the context of the tree in mind.

The tree of strategies shall be designed so that each node shall be assigned either an

N -requirement or a pair of a P0- and a P1-requirement.
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A P-strategy

A P-strategy α is associated with a pair of requirements, P0
α and P1

α. It will attempt

at proving that at least one of them is satisfied. To do this the strategy constructs

an e-operator Γα, threatening to prove that A ≥e K. The outcomes of the strategy

will be divided into two groups, finitary, i.e. requiring a finite number of actions, and

infinitary outcomes, requiring an infinite number of actions. There will be infinitely

many infinitary outcomes - two for each number n arranged from left to right by the

order of the natural numbers: 〈X, 0〉 <L 〈Y, 0〉 < 〈X, 1〉 . . . Then there will be two

finitary rightmost outcomes 〈X,w〉 <L 〈Y, w〉. Thus all the outcomes of a P-node are

arranged as follows:

〈X, 0〉 <L 〈Y, 0〉 <L · · · <L 〈X, n〉 <L 〈Y, n〉 · · · <L 〈X, w〉 <L 〈Y, w〉.

For each outcome the first element of the pair indicates which requirement has

been satisfied. The next P-strategy below outcomes 〈X,−〉 shall be associated with

a new P0-requirement and the same P1-requirement. Similarly the next P-strategy

below outcomes 〈Y,−〉 will be associated with the same P0-requirement and a different

P1-requirement. Thus if Pj
i never gets satisfied for some i then all P1−j

i′ must be.

Similarly to the P-strategy described in Section 5.2 the strategy α performs cycles

of increasing length. On the k-th cycle it examines all elements n = 0, 1, . . . , k in

turn. While it examines an element n the strategy can choose to end its actions for

the particular stage by selecting an outcome or move on to the next element in the

cycle, possibly even starting a new cycle. Suppose α is examining the element n. If the

element n currently belongs to K then the only possible outcomes that it can choose

for this element are the infinitary 〈X,n〉 or 〈Y, n〉. If the element n is in both sets

ΘA,X
α and ΨA,Y

α and has been there at all stages since α last looked at n then it will

enumerate an axiom for n in Γα which comprises the A-parts of the two axioms for n

in Θα and in Ψα that have been valid the longest, i.e. have least age defined in 1.2.1,

and move on to the next element. Otherwise α will select the appropriate outcome
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corresponding to the set that has failed to provide a valid axiom and end its actions

for this stage. When α is active again, it will start working with the next element of

the cycle.

If the element n has left the approximation of K then for each axiom in Γα for this

element the strategy shall restore one of the axioms in either Θα or Ψα by enumerating

the corresponding X-part back in X or Y -part back in Y and have the corresponding

finitary outcome 〈X, w〉 or 〈Y,w〉. The strategy shall then wait until it has observed a

change in A that rectifies the operator Γα, i.e. it will not move on to the next element in

the cycle until (if ever) this happens and it will keep having the same finitary outcome.

Note that α will not only consider stages at which it is active, instead every time it is

visited it will check if ΓA
α (n)[s] = 0 at any stage s since the last stage at which α was

active.

As A is incomplete the strategy will eventually include in its cycles an element n such

that ΓA
α (n) 6= K(n). If there is an element n such that n ∈ ΓA

α\K then n ∈ ΓA
α [s]\K[s]

at all but finitely many stages s. Thus eventually ΓA
α (n) will not be rectified by any

change in A and α will have a finitary outcome proving the successful diagonalization.

Otherwise α will have infinitely many cycles and each element n will be examined

infinitely often. Consider the least n such that n ∈ K\ΓA
α . By the properties of a

good approximation we have that at infinitely many stages s, in fact at all good stages,

n /∈ ΓA
α [s]. Thus infinitely often α will discover that at least one of the operators Θα

or Ψα has failed to provide it with an axiom that is permanently valid, i.e. infinitely

often α will have proof that ΘA,X
α (n) = 0 or ΨA,Y

α (n) = 0 and have outcome 〈X, n〉 or

〈Y, n〉 respectively.

An N -strategy

An N -strategy β working on Wβ would like to prove that Wβ 6= X and Wβ 6= Y . The

obvious strategy for β would be the one described in Section 5.2. It will select a witness
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xβ and wait until xβ ∈ Wβ. The sets X and Y will initially be approximated by N,

then during the construction the strategies extract or enumerate back elements in the

sets. Thus if xβ never enters Wβ the strategy will be successful and will have outcome

w. If the element does enter Wβ then the strategy will extract xβ from both sets X

and Y , have outcome d, where d <L w, and again will have proved a difference. This

strategy is unfortunately incomplete as we shall see in the next section.

6.2.2 Elaborating the N -strategy to avoid conflicts

The naive N -strategy described in the previous section is in conflict with the need of

higher priority P-strategies to restore axioms by enumerating elements back in one of

the sets X or Y , constructed as 3-c.e. sets. Therefore the strategy for an N -node β will

have to be more elaborate. This conflict justifies the introduction of nonuniformity.

The elaborated strategy will start off as the original strategy: select a witness xβ

as a fresh number and wait until xβ ∈ Wβ. If this never happens then the requirement

will be satisfied with outcome w. Otherwise it will extract xβ from both sets X and Y .

Suppose a higher priority strategy α requires that xβ be enumerated back in X or Y .

α

〈X, 0〉 〈Y, 0〉 . . . 〈Y, n〉 . . . 〈X, w〉
xβ ∈ X

〈Y, w〉
xβ ∈ Y

β

d

xβ /∈ X, Y

w

〈X, n〉

In this case β shall initialize all lower priority strategies, choose a new witness yβ that

has not been used in any axiom so far, restrain X on xβ and let xβ be enumerated back
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in Y . From this point on any axiom that appears in the construction shall necessarily

have xβ /∈ X, thus xβ and yβ cannot appear in the same axiom. The strategy β will

wait again with outcome w until yβ enters Wβ and then extract it from Y with outcome

d . Should a higher priority α require that yβ be enumerated back in one of the sets

then β will only give permission to enumerate back in X.

This will resolve the central conflict between strategies. Note that as the only

actions that the P-strategies ever take is enumerating certain elements back in the sets

X and Y , the P-strategies are not in conflict with each other.

Possible conflicts between N -strategies are resolved via initialization. Whenever a

higher priority N -strategy β decides to extract a number n from X or Y all strategies

below outcome w are initialized and all strategies below outcome d are in initial state.

Thus lower priority strategies will operate at further stages under the assumption that

n is extracted, the axioms used by P-strategies of lower priority will not include this

element and the witnesses used by N -strategies will be chosen as big numbers that do

not appear in any axiom seen so far, thus cannot appear in an axiom that includes the

element n.

6.2.3 Parameters and the tree of strategies

A P-strategy α will have a parameter Γα, the e-operator that it will construct when

visited. At initialization Γα is set to the empty set. The strategy will also have

parameters kα denoting the current cycle of the strategy and nα ≤ kα denoting the

current element of the cycle that α is working with. On initialization the values of

the parameters are set to kα = 0 and nα = 0. Furthermore for each element n < ω

the strategy α shall have one more parameter Dα(n), a list of all pairs of X- and Y -

parts of axioms from Θα and Ψα respectively, for which the A-parts are used in axioms

for n in Γα. Initially the values of all such lists will be ∅. Finally it will have two

parameters Axθ
α(n) and Axψ

α(n) denoting axioms in Θα and Ψα respectively which will
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be candidates for the construction of a new axiom in Γα, initially undefined.

An N -strategy β shall have parameters xβ, yβ, initially undefined. Furthermore on

initialization β will give up any restraint it has imposed so far.

Let OP denote the set of all possible outcomes of a P-strategy and ON = {d, w}.
Let O = OP ∪ ON be the collection of all possible outcomes and R the collection

of all requirements. The tree of strategies is a computable function T with domain

a downwards closed subset of O<ω and range a subset of R2 ∪ R with the following

inductive definition:

1. T (∅) = 〈P0
0 ,P1

0 〉.

2. Let α be in the domain of T and α be a 〈P0
i ,P1

j 〉-node. Then α ô, where o ∈ OP ,

is also in the domain of T and T (α ô) = N|α|/2.

3. Let β be an N -node in the domain of T . Then β = α ô, where α is a 〈P0
i ,P1

j 〉-
node for some i and j. Then β ô′, where o′ ∈ ON , is in the domain of T . If

o = 〈X, n〉 for some n ∈ ω∪{w} then T (β ô′) = 〈P0
i+1,P1

j 〉. If o = 〈Y, n〉 for some

n ∈ ω ∪ {w} then T (β ô′) = 〈P0
i ,P1

j+1〉.

6.2.4 Construction

We shall perform the construction in stages. At each stage s we shall approximate

the sets X and Y by constructing cofinite sets X[s] and Y [s]. We shall also construct

a string δ[s] of length s through the domain of T . At true stages strategies will be

allowed to modify their parameters and choose an outcome. At the end of stage s we

shall initialize all nodes to the right of δ[s].

At stage 0 all nodes are initialized and X[0] = Y [0] = N, δ[0] = ∅.
Suppose we have constructed δ[t], X[t] and Y [t] for t < s. The sets X[s] and Y [s]

shall be obtained by allowing the strategies visited at stage s to modify the approxima-

tions X[s− 1], Y [s− 1] obtained at the previous stage. We construct δ[s](n) with an
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inductive definition. Define δ[s](0) = ∅. Suppose that we have constructed δ[s] ¹ n. If

n = s, we end this stage and move on to s + 1. Otherwise we visit the strategy δ[s] ¹ n

and let it determine its outcome o. Then δ[s](n+1) = o. We have two cases depending

on the type of the node δ[s] ¹ n.

(I.) If δ[s] ¹ n = α is a P-node, we perform the following actions:

Let s− be the previous α-true stage if α has not been initialized since and s− = s

otherwise. The strategy α will inherit the values of its parameters from stage s− and

during its actions it can change their values several times. Thus we will omit the

subscript indicating the stage when we discuss α’s parameters. If the current element

nα does not need further actions we shall move on to the next element. As this is a

subroutine which is frequently performed in the construction, we define it here once

and for all, and we refer to it with the phrase reset the parameters. Denote the

current values of nα by n and of kα by k. We reset the parameters by changing the

values of the parameters as follows: nα := n + 1 if n < k, otherwise n = k and we set

kα := k + 1, nα := 0. In both cases we initialize the strategies extending α 〈̂X,w〉 and

α 〈̂Y,w〉.

1. Let k = kα and n = nα. Let s−n be the previous stage when n was examined, if α

has not been initialized since, s−n = s otherwise.

2. If n ∈ K[s] and n ∈ ΓA
α [t] for all stages t with s−n < t ≤ s then reset the parameters

and go to step 1.

3. If n ∈ K[s], but n /∈ ΓA
α [t] at some stage t with s−n < t ≤ s then:

a.X If Axθ
α(n) is not defined, then define it as the axiom 〈n,Aθ, Xθ〉 with least

age a(A[s]⊕X[s], Aθ ⊕Xθ, s) ≤ s−n and move on to step a.Y . If there is no

such axiom then let the outcome be 〈X,n〉 and reset the parameters.

b.X If Axθ
α(n) is defined but was not valid at some stage t with s−n < t ≤ s then
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cancel its value (make it undefined) and let the outcome be 〈X, n〉, reset the

parameters. Otherwise go to step a.Y .

a.Y If Axψ
α(n) is not defined, then define it as the axiom 〈n,Aψ, Yψ〉 with least

age a(A[s] ⊕ Y [s], Aψ ⊕ Yψ, s) ≤ s−n and move on to step c. If there is no

such axiom then let the outcome be 〈Y, n〉 and reset the parameters.

b.Y If Axθ
α(n) is defined but was not valid at some stage t with s−n < t ≤ s then

cancel its value (make it undefined) and let the outcome be 〈Y, n〉, reset the

parameters. Otherwise go to step c.

c. If both Axθ
α(n) = 〈n,Aθ, Xθ〉 and Axψ

α(n) = 〈n,Aψ, Yψ〉 are defined and

have been valid at all stages t with s−n < t ≤ s then enumerate in Γα the

axiom 〈n,Aθ ∪ Aψ〉. Enumerate 〈Xθ, Yψ〉 in Dα(n). Reset the parameters

and go back to step 1.

4. If n /∈ K[s] and n /∈ ΓA
α [t] at some stage t: s−n < t ≤ s reset the parameters and

go back to step 1.

5. Suppose n /∈ K[s] but n ∈ ΓA
α [t] at all t such that s−n < t ≤ s. For every pair

〈Xθ, Yψ〉 ∈ Dα(n) find the highest priority N -strategy β ⊃ α that has perma-

nently restrained an element x ∈ Xθ out of X or y ∈ Yψ out of Y . If there is such

a strategy β and it has a permanent restraint on X, enumerate Yψ in Y [s]; if it

has a permanent restraint on Y , enumerate Xθ back in X[s]. Otherwise if there

is no such strategy enumerate Yψ back in Y [s]. Choose the axiom 〈n,Aθ ∪ Aψ〉
in ΓA

α with least age a(A[s], Aθ ∪Aψ, s). Let Xθ and Yψ be the corresponding X

and Y parts of the axioms 〈n,Aθ, Xθ〉 ∈ Θα and 〈n,Aψ, Yψ〉 ∈ Ψα.

a. If Xθ ⊆ X[s] then this will ensure that n ∈ ΘA,X
α [s]. Let the outcome be

〈X,w〉. Note that we will not reset the parameters at this point, thus the

construction will keep going through this step while there is no change in A.
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b. If Xθ * X[s] then Yψ ⊆ Y [s] and this will ensure that n ∈ ΨA,Y
α [s]. Let the

outcome be 〈Y, w〉.

(II.) If δ[s] ¹ n = β is an N -node, we perform the following actions:

Let s− be the previous β-true stage if β has not been initialized since, go to the

step indicated at stage s−. Otherwise s− = s and go to step 1.

1. Define xβ as a fresh number, one that has not appeared in the construction so

far and is bigger than s. Go to the next step.

2. If xβ /∈ Wβ[s] then let the outcome be w, return to this step at the next stage.

Otherwise go to the next step.

3. Extract xβ from X[s] and Y [s]. Restrain permanently xβ out of X. Let the

outcome be d, go to the next step at the next stage.

4. If xβ ∈ Y [s] then define yβ as a fresh number, initialize all strategies of lower

priority than β and go to the next step. Otherwise the outcome is d, return to

this step at the next stage.

5. If yβ /∈ Wβ then let the outcome be w. Return to this step at the next stage.

Otherwise go to the next step.

6. If yβ is not yet restrained then restrain yβ permanently out of Y and extract yβ

from Y [s]. Let the outcome be d, return to this step at the next stage.

This completes the construction.

6.2.5 Proof

The tree is infinitely branching and therefore there is a risk that there might not be

a path in the tree that is visited infinitely often. However we shall start the proof by

establishing some basic facts about the relationship between strategies.
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For clarity we shall define one more notation. Let α be a P-strategy. To every axiom

Ax = 〈n,Aθ ∪ Aψ〉 ∈ Γα we shall associate a corresponding entry 〈n,Aθ, Xθ, Aψ, Yψ〉
so that 〈n,Aθ, Xθ〉 ∈ Θα and 〈n, Aψ, Yψ〉 ∈ Ψα are the corresponding axioms used to

construct Ax.

Lemma 6.2.1. Let β be an N -strategy, initialized for the last time at stage si. If β

has a witness xβ that is extracted by β at stage sx > si then xβ /∈ X[t] at all t ≥ sx.

If β has a witness yβ that is extracted from Y at stage sy > sx then yβ /∈ Y [t] at all

t ≥ sy.

Proof. There are only finitely many N -strategies of higher priority than β that are ever

visited in the construction as after stage si no strategy to the left of β is visited. Every

higher priority strategy β′ < β that is ever visited is not initialized after stage si, as

otherwise β would be initialized after stage si contrary to our assumption. We can

inductively assume that the statement is valid for every higher priority strategy β′.

Suppose β chooses the witness xβ at stage s1 > si. We can furthermore prove the

following:

Claim: Any witness which is permanently extracted by a higher priority strategy

β′ is extracted before or at stage s1.

Indeed, suppose that β′ permanently extracts a new witness at stage s2 > s1. Then

at stage s2 the strategy β′ has outcome d. Thus if β >L β′ or β ⊇ β ′̂ w then β would be

initialized at stage s2 contrary to assumption. This leaves us with the only possibility

that β ⊇ β ′̂ d. Then at stage s1, as β was visited, β′ was visited and had outcome d.

As β′ is not initialized after stage s1 and permanently extracts a new witness at stage

s2 it must be the case that β′ permanently extracts a witness yβ′ from Y and xβ′ was

already extracted before or at stage s1. It follows that between stages s1 and s2, β′ has

selected this new witness yβ′ passing through II.4 of the construction and initializing

all lower priority strategies including β. This leads again to a contradiction with the

assumption that β is not initialized after stage s1 and hence the claim is correct.
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Thus at stage s1 all witnesses of higher priority strategies that are ever permanently

restrained out of either set X or Y are already permanently restrained out of X or Y .

At stage s1 the strategy β selects xβ as a fresh number, i.e. one that has not appeared

in the construction so far. And at stage sx the witness xβ is permanently restrained

out of X.

Now we will prove again inductively but this time on the stage t, that xβ /∈ X[t] at

all stages t ≥ sx.

So suppose this is true for t < s3 and that at stage s3 > sx a P-strategy α is visited

and reaches point I.5 of the construction. Suppose α wants to enumerate Xθ or Yψ

back in X or Y respectively for the axiom 〈n,Aθ ∪Aψ〉 in Γα with corresponding entry

〈n, Aθ, Xθ, Aψ, Yψ〉. We have the following cases to consider:

1. Suppose α > β. If α >L β d̂ then α is initialized at stage sx. If α ⊂ β d̂, then α

was initialized at stage si and was not accessible before stage sx. Thus in both

cases the axiom 〈n,Aθ∪Aψ〉 was enumerated in Γα at stage t with sx ≤ t < s3, at

which both 〈n,Aθ, Xθ〉 and 〈n,Aψ, Yψ〉 were valid i.e. Xθ ⊆ X[t] and Yψ ⊆ Y [t].

By induction xβ /∈ X[t] hence xβ /∈ Xθ and thus α does not enumerate xβ back

in X.

2. Suppose α < β. If α <L β then β would be initialized at stage s3, hence α ⊂ β.

Suppose the axiom 〈n,Aθ ∪Aψ〉 was enumerated in Γα at stage t. If t ≤ s1 then

by the choice of xβ as a fresh number at stage s1 we have that xβ /∈ Xθ. If t > s1

then both 〈n,Aθ, Xθ〉 and 〈n,Aψ, Yψ〉 were valid at stage t i.e. Xθ ⊆ X[t] and

Yψ ⊆ Y [t]. By I.5 of the construction α will consider all N -strategies that extend

it and select the one with highest priority that has permanently restrained an

element out of either set X or Y .

Consider any β′ < β. By our Claim any witness xβ′ or yβ′ of β′ that is ever

permanently restrained out of X or Y is already restrained out at stage s1 and
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by induction at all stages s ≥ s1 including at stage t. Thus Xθ does not contain

xβ′ and Yψ does not contain yβ′ . As this is true for an arbitrary strategy β′ of

higher priority than β that is ever visited, if xβ ∈ Xθ then β will be the strategy

selected by α and α will choose to enumerate Yψ back in Y . Thus again α does

not enumerate xβ back in X.

To prove the second part of the lemma suppose yβ is selected at stage s4 and

extracted at stage sy. Because s1 < s4 and all strategies of lower priority than β are

initialized at stage s4 the interactions between β and other strategies are dealt with in

the same way as in the case when we were considering xβ. The only thing left for us

to establish is that β does not come into conflict with itself. So suppose that at stage

s5 > sy a P-strategy α is visited and reaches point I.5 of the construction. Suppose α

wants to enumerate Xθ or Yψ back in X or Y respectively for the axiom 〈n,Aθ ∪ Aψ〉
in Γα with corresponding entry 〈n, Aθ, Xθ, Aψ, Yψ〉. We will prove that if xβ ∈ Xθ then

yβ /∈ Yψ. Let t be the stage at which the axiom 〈n,Aθ ∪Aψ〉 was enumerated in Γα. If

t < s4 then yβ /∈ Yψ by the choice of yβ at stage s4 as a fresh number. If t ≥ s4 > sx

then we have already proved that xβ /∈ X[t]. The axiom 〈n,Aθ, Xθ〉 was valid at stage

t, thus Xθ ⊆ X[t], and hence xβ /∈ Xθ.

This completes the induction step and the proof of the lemma.

Lemma 6.2.2. Let α be a P-strategy, visited infinitely often and not initialized after

stage si. If α performs finitely many cycles then:

1. There is a stage sn ≥ si after which the value of nα does not change.

2. At all α-true stages t > sn, α has either outcome 〈X,w〉 or outcome 〈Y,w〉.
3. There is a stage sd ≥ sn such that at all α-true stages t > sd, α has a fixed

outcome o .

4. If o = 〈X, w〉 then ΘA,X
α 6= K and if o = 〈Y, w〉 then ΨA,Y

α 6= K.

Proof. It follows from the construction and the definition of the action reset the param-
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eters that if the value of nα changes infinitely often, then there will be infinitely many

cycles. Thus part (1) of the lemma is true. Let sn be the stage after which the value

of nα does not change. The only case when the value of the parameter nα = n is not

reset is when n /∈ K and n ∈ ΓA
α [t] at all stages t since the last time n was examined

at stage s−n , thus α will have only outcomes 〈X, w〉 or 〈Y, w〉 at all stages after sn and

part (2) is true. It follows from step I.5 of the construction and the fact that nα does

not change any longer that at all stage t > sn, n ∈ ΓA
α [t]. By the properties of a good

approximation and under these circumstances n ∈ ΓA
α . Then there will be an axiom

〈n, Aθ ∪Aψ〉 ∈ Γα which is valid at all but finitely many stages. Select the axiom with

least limit age. This axiom has corresponding entry 〈n,Aθ, Xθ, Aψ, Yψ〉. The strategy

α will eventually be able to spot this precise axiom, after possibly finitely many wrong

guesses. So after a stage sd ≥ sn the strategy α will consider this axiom to select its

outcome.

At stage sn either Xθ ⊂ X[sn] or Yψ ⊂ Y [sn]. As we initialize all strategies below

outcomes 〈X,w〉 and 〈Y,w〉 whenever we reset the parameters, we can be sure that N -

strategies visited at stages t > sn of lower priority than α will not extract any elements

of Xθ ∪ Yψ from X or Y . Higher priority N -strategies will not extract any elements at

all, otherwise α would be initialized. Thus if Xθ ⊆ X[sn] then for all stages t ≥ sn we

have Xθ ⊆ X[t] and similarly if Yψ ⊆ Y [sn] then for all stages t ≥ sn we have Yψ ⊆ Y [t].

Suppose Xθ ⊆ X[sn]. Then at stages t ≥ sd the strategy α will always have outcome

〈X,w〉. The axiom 〈n, Aθ, Xθ〉 ∈ Θα will be valid at all stages t ≥ sd, thus n ∈ ΘA,X ,

and n /∈ K.

If Xθ * X[sn] then there is a strategy β ⊃ α which is permanently restraining some

element x ∈ Xθ out of X at stage sn. Then β <L α 〈̂X, w〉 as strategies extending

α 〈̂X, w〉 or to the right of it are in initial state at stage sn and do not have any

restraints. This strategy β will not be initialized at stages t ≥ sn according to part (2)

of this lemma and the choice of sn > si. By Lemma 6.2.1 x /∈ X[t] at all t ≥ sn. Hence
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case I.5.b of the construction is valid at all t ≥ sd. Thus α will have outcome 〈Y, w〉 at

all stages t ≥ sd and n ∈ ΨA,Y . This proves parts (3) and (4) of the lemma.

Propostion 6.2.1. Let α be a P-strategy, visited infinitely often and not initialized

after stage si. If v is an element such that ΓA
α (v) = K(v) then there is a stage sv after

which the outcomes 〈X, v〉 and 〈Y, v〉 are not accessible any longer.

Proof. If α has finitely many cycles then by Lemma 6.2.2 there will be a stage sn after

which 〈X, v〉 and 〈Y, v〉 are not accessible. Suppose there are infinitely many cycles.

If v /∈ K then there is a stage sv at which v exits K. Then after stage sv the

outcomes 〈X, v〉 and 〈Y, v〉 are not accessible.

If v ∈ ΓA
α then there is an axiom in Γα that is valid at all but finitely many stages,

say at all stages t ≥ s′v. If α is on its k-th cycle during stage s′v then let sv be the

beginning of the (k + 2)-nd cycle. Then after stage sv, whenever α considers v, part

I.2 of the construction holds and hence α will never have outcome 〈X, v〉 or 〈Y, v〉.

Lemma 6.2.3. Let α be a P-strategy, visited infinitely often and not initialized after

stage si. If α performs infinitely many cycles, then there is leftmost outcome o <L

〈X,w〉 that α has at infinitely many stages and

1. If o = 〈X, u〉 then ΘA,X
α (u) 6= K(u).

2. If o = 〈Y, u〉 then ΨA,Y
α (u) 6= K(u).

Proof. The set A is not complete by assumption, hence ΓA
α 6= K. Let u be the least

difference between the sets. By Proposition 6.2.1 for every v < u the outcomes 〈X, v〉
and 〈Y, v〉 are not visited at stages t > sv. Let s0 be a stage bigger than maxv<u(sv).

As α has infinitely many cycles there will be infinitely many stages t > s0 at which

nα[t] = u. If u /∈ K and u ∈ ΓA
α then there is a stage s1 > s such that at all stages

t > s1 we have u ∈ ΓA
α [t] and u /∈ K[t] and when α considers u at the first stage after

s1, it will never move on to the next element, and α would have finitely many cycles.

Hence u ∈ K and u /∈ ΓA
α .
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1. If u /∈ ΘA,X
α then all axioms for u in Θα are invalid at infinitely many stages. Let

t be any stage greater than or equal to s0. We will prove that there is a stage t′ ≥ t

at which α has outcome 〈X,u〉. As u /∈ ΓA
α and {A[s]}s<ω is a good approximation

to A there are infinitely many stages s at which u /∈ ΓA
α [s] and hence part I.3 of the

construction holds at infinitely many stages at which we consider u. Let t1 ≥ t at which

nα[t1] = u and part I.3 of the construction is true. If Axθ
α(u) is not defined and we are

not able to define it as there is no appropriate axiom in Θα valid for long enough then α

will have outcome 〈X, u〉 at stage t1, hence t′ = t1 proves the claim. Otherwise Axθ
α(u)

is defined at stage t1 and by assumption there are infinitely many stages t ≥ t1 at which

it is invalid. Let t2 > t1 be the next stage when Axθ
α(u) is invalid and let t′ ≥ t2 be the

first stage after t2 at which again nα[t′] = u and part I.3 of the construction is true.

By I.3.b.X of the construction α will have outcome 〈X,u〉 at stage t′.

2. Now assume that u ∈ ΘA,X
α . Then there is an axiom 〈u,Aθ, Xθ〉 ∈ Θα valid at all

but finitely many stages. Select the axiom, say Ax, with least limit age. Then Axθ
α(u)

will have a permanent value Ax after a certain stage s1. It follows that u /∈ ΨA,Y
α as

otherwise we would be able to find an axiom in ΨA,Y
α valid at all but finitely many

stages, and construct an axiom in Γα valid at all but finitely many stages. Now a

similar argument as the one used in part (1) of this lemma proves that α will have

outcome 〈Y, u〉 at infinitely many stages.

As an immediate corollary from Lemmas 6.2.2 and 6.2.3 we obtain the existence of

the true path:

Corollary 6.2.1. There exists an infinite path through the tree of strategies with the

following properties:

1. (∀n)(∃∞s)[h ¹ n ⊆ δ[s]];

2. (∀n)(∃sl(n))(∀t > sl(n))[δ[t] ≮L h ¹ n];

3. (∀n)(∃si(n))(∀t > si(n))[h ¹ n is not initialized at stage t].
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Proof. We will define the true path with induction on n and prove that it has the

properties needed. The case n = 0 is trivial: h ¹ 0 = ∅ is visited at every stage of the

construction and is never initialized, sl(0) = si(0) = 0. Suppose we have constructed

h ¹ n with the required properties. We shall define h ¹ (n + 1).

If h ¹ n = β is an N -strategy then let o ∈ {d,w} be the leftmost outcome that β

has at infinitely many stages. The design of the strategy ensures that there is a stage

so > si(n) such that β ô ⊆ δ[t] at all t ≥ so. If β does not define yβ after stage si(n)

then so is the first stage after si(n) at which β has outcome o. If β defines yβ at stage sy

then so is the first stage after sy at which β has outcome o. We define h ¹ (n+1) = β ô

and si(n + 1) = so.

Suppose h ¹ n = α is a P-strategy. If α performs finitely many cycles then by

Lemma 6.2.2 there is a stage so > si(n) after which α does not reset the parameters

and has the same fixed outcome o. We define h ¹ (n + 1) = α ô and si(n + 1) = so.

If α performs infinitely many cycles then by Lemma 6.2.3 there is a leftmost outcome

o <L 〈X, w〉 that α has at infinitely many stages. Let so > si(n) be a stage such that

at stages t > so the strategy α does not have outcomes o′ <L o. Then h ¹ (n+1) = α ô

and si(n + 1) = so.

Corollary 6.2.2. X and Y are not c.e.

Proof. For every requirement Ne there is an Ne-strategy β along the true path, visited

infinitely often and not initialized at any stage t > si. Let xβ and yβ be the final values

of β’s witnesses. If βˆw ⊂ h then there is an element u ∈ {xβ, yβ} that never enters

We. The way each Ne-strategy chooses its witnesses ensures that only β can extract u

from either of the sets X or Y . The construction and the definition of the true path

ensure that β does not extract u from X and Y at any stage. Hence u ∈ X ∩ Y and

u /∈ We.

If β d̂ ⊂ h then xβ ∈ We and there is a β-true stage sx at which β extracts xβ from

X and Y . By Lemma 6.2.1 xβ /∈ X[t] at all stages t ≥ sx. If at any stage t ≥ sx we
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have that xβ ∈ Y [t] then β selects yβ at its next true stage. As the true outcome is d,

yβ ∈ We[t′] at some stage t′ ≥ t. Then at the next β-true stage sy ≥ t′ the strategy β

will permanently restrain yβ out of Y and by Lemma 6.2.1, we have that yβ /∈ Y .

Corollary 6.2.3. A⊕X 6≡e K or A⊕ Y 6≡e K.

Proof. Consider the P-nodes on the true path. From the definition of the tree it follows

that either for every P0
e -requirement there is a node on the tree α which is associated

with P0
e or there is a fixed requirement P0

e associated with all but finitely many nodes.

In the latter case there is a node on the true path for every P1
e -requirement.

Suppose there is a node on the tree for each P0
e -requirement. We can show that

A ⊕ X 6≡e K. Assume for a contradiction ΘA,X
e = K and let α ⊂ h be the last node

associated with P0
e . Then α has true outcome 〈X, u〉 for some u ∈ ω ∪ {w}. It follows

from Lemma 6.2.2 and Lemma 6.2.3 that ΘA,X
e 6= K.

The case when there is a node for every P1
e -requirement yields by a similar argument

that A⊕ Y 6≡e K.

Lemma 6.2.4. The sets X and Y are 3-c.e.

Proof. We can easily obtain a 3-c.e. approximation of each of the sets X and Y from

the one constructed. Define X̂[s] = X[s] ¹ s and Ŷ [s] = Y [s] ¹ s.

It follows from the construction that elements extracted from X and Y are nec-

essarily witnesses of N -strategies. Suppose therefore that n is the witness xβ for an

N -strategy β. Then n appears in the defined approximations {X̂[s]}s<ω and {Ŷ [s]}s<ω

at stage n + 1. If β never extracts xβ then we are done - as no other strategy can

extract it. If β extracts xβ then it does so only once at stage sx when it goes through

II.3 and moves on to II.4 at the next stage. In order for β to return to step II.3

of the construction it will have to be initialized and will select new witnesses. Thus

after its extraction at stage sx from both X̂[sx] and Ŷ [sx], the number xβ can only
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be enumerated back in either set and hence |{ s| X̂[s− 1](xβ) 6= X̂[s](xβ)}| ≤ 3 and

|{ s| Ŷ [s− 1](xβ) 6= Ŷ [s](xβ)}| ≤ 3.

If n is the witness yβ then it will never be extracted from X. If it is ever extracted

from Y it is extracted only once by β at the first stage it reaches step II.6. After that

yβ is already restrained by β and whenever β executes step II.6 it will ignore the first

sentence of the instruction and just have outcome o = d. Thus again

|{ s| Ŷ [s− 1](yβ) 6= Ŷ [s](yβ)}| ≤ 3.

This concludes the proof of the lemma and of the theorem.



Chapter 7

A Non-splitting Theorem for the

3-c.e. Enumeration Degrees

The final chapter of this thesis returns us to the non-splitting theme which was the

main topic of Chapter 2 and Chapter 3. Lachlan [Lac75] shows the existence of pairs of

c.e. Turing degrees a > b such that a cannot be split by a pair of c.e. degrees above b.

The significance of Lachlan’s non-splitting theorem for the disclosure of the complexity

of the c.e. Turing degrees is enough motivation to search for an analog of this result in

the enumeration degrees. We have already seen that the Σ0
2 enumeration degrees have

an even stronger property, an analog of Harrington’s non-splitting theorem, [Har80].

In Theorem 3.0.1 we showed that there is an incomplete Σ0
2 enumeration degree a such

that 0′e cannot be split by any pair of Σ0
2 enumeration degrees above a. On the other

hand we have Ahmad and Lachlan’s [AL98] proof of the existence of a nonzero ∆0
2

enumeration degree a that is not the least upper bound of any pair of enumeration

degrees below it. Thus we have a stronger analog of Lachlan’s non-splitting theorem

for the ∆0
2 enumeration degrees in the other extreme: the second element in the pair

can be taken to be 0e.

Our classification of the ∆0
2 enumeration degrees based on Ershov’s hierarchy de-

203
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mands investigation of the non-splitting properties for every class of n-c.e. enumeration

degrees, where n ≤ ω. Transferring the relativized version of Sack’s splitting theorem

[Sac63] we see that every Π0
1 enumeration degree has a ∆0

2-splitting above each lesser Π0
1

enumeration degree, thus non-splitting fails for the class of the Π0
1 enumeration degrees.

We shall therefore consider the second class of enumeration degrees in our hierarchy

- the class of all 3-c.e. enumeration degree. Arslanov and Sorbi [AS99] show that we

cannot prove an analog of Harrington’s result for any subclass of the ∆0
2 enumeration

degrees as there is a ∆0
2 splitting of 0′e above every incomplete ∆0

2 enumeration degree.

Kalimullin [Kal02] shows that every nonzero n-c.e. degree has a non-trivial splitting.

Thus we cannot have a strong non-splitting property for the class of 3-c.e. enumeration

degrees in either extreme. In this chapter we prove that we nevertheless have an analog

of Lachlan’s non-splitting theorem for the 3-c.e. enumeration degrees.

Theorem 7.0.1. There exists a pair of a Π0
1 enumeration degree a and a 3-c.e. enu-

meration degree b < a such that a cannot be split by a pair of enumeration degrees

above b.

Kent has pointed out (in a private conversation) that his construction, [Ken05], of

a nonzero degree that is not the least upper bound of any two lesser degrees actually

gives an ω-c.e. enumeration degree. Thus the strong version of Lachlan’s theorem,

where the second element of the pair is 0e, is valid for the ω-c.e. enumeration degrees.

The work presented in this chapter is joint with Marat Arslanov, S. Barry Cooper

and Iskander Kalimullin. An extended abstract of Theorem 7.0.1 is published in

[ACKS08], see Appendix A.3.

7.1 Requirements and strategies

Recall that Cooper [Coo90] showed that the class of the Π0
1 enumeration degrees coin-

cides with the class of the 2-c.e. enumeration degrees. We shall therefore construct a
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2-c.e. set A and 3-c.e. set B satisfying the following list of requirements:

1. We have a global requirement which ensures that B ≤e A via an enumeration

operator Ω constructed by us:

S : B = ΩA.

2. To ensure the non-splitting property of the degree of A consider a computable

enumeration of all triples of enumeration operators {(Ξ, Ψ, Θ)i}i<ω. We denote

the members of the i-th triple by Ξi, Ψi and Θi. For every i we shall have a

requirement:

Pi : A = ΞΨA
i ,ΘA

i
i ⇒ (∃Γi, Λi)[A = ΓΨA

i ,B
i ∨A = ΛΘA

i ,B
i ].

3. Finally we need to ensure that the degree of A is strictly greater than the degree

of B. Let {Φe}e<ω be a computable enumeration of all enumeration operators.

For every e we shall have a requirement:

Ne : A 6= ΦB
e .

The requirements shall as usual be given a priority ordering:

S < P0 < N0 < P1 < N2 < . . .

In the course of the construction whenever we enumerate an element in the set

B, we will enumerate a corresponding axiom in the set Ω. Whenever we extract an

element from B, we invalidate the corresponding axiom by extracting an element from

A. Thus the global requirement S shall be satisfied without an explicit strategy on

the tree ensuring this. More precisely every element n that enters B will be assigned

a marker ω(n) in A and an axiom 〈n, {ω(n)}〉 in Ω. If n is extracted from B then we

extract ω(n) from A. This can happen only once as we will be constructing a 3-c.e.

approximation to the set B. If n is later re-enumerated in B, it will remain in B forever

and we can just enumerate the axiom 〈n, ∅〉 in Ω.

To satisfy a P-requirement working with the triple (Ξ, Ψ, Θ) we will initially attempt

to reduce A to the set ΨA ⊕B by constructing an e-operator Γ to witness this. In this
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case as well the enumeration of elements in A is always accompanied by an enumeration

of axioms in Γ, and extraction of elements from A can be rectified via B-extractions.

The N -strategies follow a variant of the Friedberg-Muĉnik strategy while at the

same time respecting the rectification of the operators constructed by higher priority

strategies. We shall use labels for N -strategies which clarify with respect to which

constructed operators they work. An N -strategy working with respect to the initial

P-strategy, for example, shall be denoted by (N , Γ). The (N ,Γ)-strategy working with

the operator Φ shall choose a witness x, enumerate it in A and then wait until x ∈ ΦB.

If this happens it shall extract the element x from A while restraining B ¹ use(Φ, B, x)

in B, see Definition 1.3.1.

The need to rectify Γ after the extraction of the witness x from A can be in conflict

with the restraint on B. To resolve this conflict we try to obtain a change in the set

ΨA which would enable us to rectify Γ without any extraction from the set B. We

introduce an explicit P-strategy on the tree whose only job will be to monitor the

length of agreement l(ΞΨA,ΘA
, A)[s], see Definition 2.1.1, at every stage s. The (N , Γ)-

strategy will proceed with actions directed at a particular witness once it is below the

length of agreement. This ensures that the extraction of x from A will have one of the

following consequences.

1. The length of agreement will never return to its previous value as long as at

least one of the axioms that ensure x ∈ ΞΨA,ΘA
remains valid. In this case the

P-requirement is satisfied and we can use the simple FM -strategy for N .

2. The length of agreement returns and there is a useful extraction from the set

ΨA rectifying Γ. The P-strategy remains intact while the (N , Γ)-strategy is

successful.

3. The length of agreement returns and there is an extraction from the set ΘA.
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We will initially assume that the third consequence is true and commence a backup

strategy (N , Λ) which is devoted to building an enumeration operator Λ attempting to

reduce A to ΘA ⊕ B. This strategy will work with the same witness which it receives

from (N , Γ). It will use the change in ΘA in order to satisfy its own requirement. Only

when we are provided with evidence that our assumption is wrong will we return to

the initial strategy (N , Γ)-strategy.

7.2 Simple cases

To provide the reader with more intuition about the construction we shall discuss

a few simpler cases before we proceed with the general construction. We start off

with the simplest case of just one N -requirement below one P-requirement. Then we

shall explain how we can deal with all N -requirements below a single P-requirement.

Finally we will discuss how to handle an N -requirement working with respect to two

P-requirements.

7.2.1 One N -requirement below one P-requirement

Consider a P-requirement associated with the triple (Ξ, Ψ, Θ) and an N -requirement

associated with the enumeration operator Φ. We describe the strategies associated

with each requirement and at the same time define the first few levels of the tree of

strategies.

The (P,Γ)-strategy

The root of the tree is associated with the (P, Γ)-strategy. We will denote it by α. It

will have two outcomes e <L l. At stage s the strategy α will monitor all elements

x /∈ A[s]. If there is an element x /∈ A[s] such that x ∈ ΓΨA,B[s] then the operator

Γ cannot be rectified. We shall later see that this yields x ∈ ΞΨA,ΘA
[s] and the P-

requirement is satisfied. The strategy α shall have outcome l in this case. Strategies
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working below this outcome will follow the simple FM -strategy described in Section

1.3. If for every element x /∈ A ⇒ x ∈ ΓΨA,B the strategy shall have outcome e and the

(N , Γ)-strategy shall be activated.

At stage s the strategy α acts as follows:

1. Scan all witnesses x /∈ A[s] defined at stages t ≤ s.

2. If x ∈ ΓΨA,B[s], then let the outcome be o = l.

3. If all witnesses are scanned and none has produced an outcome o = l, then let

the outcome be o = e.

The (N , Γ)-strategy

The N -requirement below outcome e will be assigned to an (N , Γ)-strategy denoted by

β. It will have four outcomes: three finitary outcomes, f , w and l, and one infinitary

outcome g, arranged in the following way: g <L f <L w <L l.

The strategy first defines a witness x, enumerates it in the set A and then waits

for this witness to enter the set ΞΨA,ΘA
. While it waits the outcome is l indicating a

global win for the P-requirement as A(x) 6= ΞΨA,ΘA
(x).

If the witness x enters the set ΞΨA,ΘA
then there is a valid axiom of the form

〈x,G(x) ⊕ H(x)〉 ∈ Ξ with G(x) ⊆ ΨA and H(x) ⊆ ΘA. The strategy β shall then

define a B-marker for x, γ(x) and enumerate it in the set B. This is accompanied by

enumerating a corresponding axiom for γ(x) in Ω. Then it shall define a new axiom for

x in Γ of the form 〈x,G(x)⊕(B ¹ γ(x)+1)〉. The strategy is now finally ready to execute

the FM -strategy: while x /∈ ΦB it has outcome w. Finally if x ∈ ΦB the strategy shall

perform capricious destruction on the operator Γ by extracting the marker γ(x) from

B. Then instead of extracting the witness x from the set A, it shall send the witness x

to a backup (N , Λ)-strategy which will be described in detail later and have outcome

g. After this β starts a new cycle with a new witness x1. As the old witness x is still
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in the set A but has no valid axiom in the operator Γ, the strategy shall rectify the

operator Γ at x, using the axiom that will be defined for the new witness x1. If the

old witness x is later returned by the backup strategy then it was extracted from the

set A with no useful extraction from the set H(x). Thus if x /∈ ΞΨA,ΘA
then there is a

useful extraction in G(x). The strategy β shall then restore the set B by reenumerating

the marker γ(x). If at the next stage the (P,Γ)-strategy α does not see a global win

for its requirement then G(x) * ΨA, the operator Γ is rectified and β can successfully

preserve x ∈ ΦB \A at further stages. It will have outcome f in this case.

Every witness or marker that we define shall be selected as a fresh number, one

that has not yet appeared in the construction so far under any form.

At stage s the strategy β will initially start its work at Setup and then later from

the step of the module indicated at the previous stage.

• Setup:

1. Choose a new current witness x as a fresh number. Enumerate x in A[s].

2. If x /∈ ΞΨA,ΘA
[s] then let the outcome be l and return to this step at the

next stage. Otherwise define G(x) and H(x) to be finite sets such that

x ∈ ΞG(x),H(x)[s], G(x) ⊆ ΨA[s], H(x) ⊆ ΘA[s]. Go to the next step.

3. Define the B-marker γ(x), along with its A-marker ω(γ(x)), as fresh num-

bers. Enumerate γ(x) in B[s] and ω(γ(x)) in A[s]. Enumerate a new axiom

〈γ(x), {ω(γ(x))}〉 in Ω[s].

Enumerate each 〈z, Gx ⊕ (B ¹ γ(x) + 1)〉 in Γ, where z ∈ A[s] is either x, or

ω(γ(x)), or a witness from a previous cycle of the strategy for which there

is no valid axiom in Γ. This axiom for x shall be called the main axiom for

x in Γ. Let the outcome be o = w. Go to Waiting at the next stage.

• Waiting: If x ∈ ΦB[s] then go to Attack. Otherwise let the outcome be o = w

and return to Waiting at the next stage.
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• Attack:

1. Check if any previously sent witness has been returned. If so go to Result.

Otherwise go to the next step.

2. Define λ(x) = max(use(Φ, B, x)[s], γ(x) + 1) and R[s] = γ(x). Extract γ(x)

from B[s] and ω(γ(x)) from A[s]. Note that the extraction of ω(γ(x)) does

not injure x ∈ ΞΨA,ΘA
[s] as the marker is defined as a fresh number larger

than max(use(Ψ, A, G(x)), use(Θ, A,H(x))).

Send x. Let the outcome be o = g. At the next stage start from Setup,

choosing a new current witness. The strategy working below outcome g will

work under the assumption that B does not change below the right boundary

R[s].

• Result: Let the returned witness be x. Enumerate γ(x) back in B[s] and 〈γ(x), ∅〉
in Ω[s]. Cancel each witness z ∈ A[s] of this strategy by enumerating the axiom

〈z, ∅〉 in Γ[s]. Let the outcome be o = f . Return to Result at the next stage.

The backup strategies

We have two backup strategies: a (P, Λ)-strategy α̂ and an (N , Λ)-strategy β̂.

The (P, Λ)-strategy α̂ will only monitor the status of the sent witnesses. If it spots

a witness that is ready to be sent back it will do so ending the stage prematurely. It

has only one outcome e. At stage s it operates as follows:

1. Scan all sent witnesses x /∈ A[s].

2. If x ∈ ΛΘA,B[s] then return x. End this stage.

3. If all witnesses are scanned and none are returned then let the outcome be e.

The (N , Λ)-strategy β̂ shall wait for an available witness x to be sent by β. It shall

enumerate the axiom 〈x, H(x) ⊕ (B ¹ λ(x))〉 in the operator Λ and carry on with the
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usual FM -strategy: wait for x ∈ ΦB with outcome w, then extract x from A. If this

does not entail a useful extraction from the set H(x) then α̂ shall send the witness x

back and β̂ shall not be accessible at further stages. If β̂ is visited again then it shall

have outcome f . At stage s the (N , Λ)-strategy β̂ operates as follows:

• Setup: Let x ∈ A[s] be a new witness which was sent by the (N ,Γ)-strategy.

Now x becomes the witness of the (N , Λ)-strategy. Enumerate

〈x,H(x) ⊕ (B[s] ¹ λ(x) + 1)〉 in Λ[s]. This is the main axiom for x in Λ. Go to

Waiting.

• Waiting: If x ∈ ΦB[s] and use(Φ, B, x)[s] < R[s] then go to Attack. Otherwise

the outcome is o = w, return to Waiting at the next stage.

• Attack: Extract x from A[s]. Go to Result.

• Result: Let the outcome be o = f . Return to Result at the next stage.

The next picture shows the first few levels of the tree of strategies:

(P0, Γ0)
e l

(N0, FM0)

(N0, Γ0)

g f w l

(N0, FM0)
e

(P0, Λ0)

(N0, Λ0)

f w

When we inspect the tree in detail we notice that we might visit an (N , FM)-

strategy on several occasions, allow it to enumerate its own witness in the set A and

then initialize it. In the design of the operators Γ and Λ we have neglected to enumerate
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axioms for such elements. If the (N , FM)-strategy manages to extract from A its

witness before it is initialized then this will not cause any errors in the constructed

operators. If the element is still in A then we could have a problem. To avoid this

every time we initialize an (N , FM)-strategy we will enumerate axioms 〈x, ∅〉 in both

Γ and Λ for every witness x of this strategy which is not extracted from the set A. This

extra action will keep Γ and Λ always rectified.

7.2.2 Many N -strategies below one P-strategy

To incorporate a further N -strategy in the construction described in the previous sec-

tion we use the same basic ideas. The second N -requirement N1 shall be assigned to

an (N1, FM)-strategy below the l-outcomes of both α and β. Below β’s outcomes w

and f we have (N1,Γ)-strategies βˆw and β f̂ which operate just like the strategy β

described in Section 7.2.1. Similarly below the outcome f and w of the backup strategy

β̂ we have (N1, Λ)-strategies β̂ˆw and β̂ f̂ which operate just like the strategy β̂.

(P0,Γ0)

e l
(N0, FM0)

f w

(N1, FM0)

(N0, FM0)

f w

(N1, FM0)

(N0,Γ0)

g f w l

(N1,Γ0) (N1, Γ0)

(P0, Λ0)

e
(N0, Λ0)

f w

(N1, Λ0) (N1,Λ0)

We only need to take extra care to keep the constructed operators Γ and Λ rectified

at elements enumerated in A by strategies that are later initialized. Firstly we will

use the initialization rule inspired by the (N , FM)-strategy described in the previous
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section. Whenever we initialize an N -strategy α we will enumerate axioms 〈x, ∅〉 in

all operators constructed by higher priority strategies β < α for every witness x of α

which is not extracted from the set A.

This action is sufficient if the initialized strategy does not enumerate axioms in

any of the constructed operators. An (N , Γ)-strategy such as βˆw or β̂ˆw however

enumerates axioms in the operator Γ. When it is initialized it will stop monitoring the

correctness of Γ at its witnesses. We will therefore enumerate an axiom 〈z, ∅〉 in Γ if

z ∈ A is a witness of the initialized strategy or an Ω-marker defined by this strategy.

If a witness of the initialized strategy is already extracted from the set A we need

to ensure that there are no valid axioms for it in Γ. We will modify the axioms a bit

to ensure this. We will transfer the responsibility for the rectification of an operator at

witnesses of initialized strategies to the strategy which initializes them. We notice that

an N -strategy such as β initializes the (N ,Γ)-strategies below its outcome w only when

it invalidates an axiom for its witness. The axiom for this witness will continue to be

invalid at all further stages at which β is visited. So whenever we define an axiom for a

witness x of a strategy extending βˆw it shall have the form 〈x,G(x)⊕(B ¹ γ(x)+1)∪U〉,
where U is the union of all sets D such that 〈v, D〉 is a valid axiom in Γ and v ∈ A is a

witness of a higher priority (N , Γ) strategy constructing the same operator Γ. Thus if

β with current witness v initializes the strategies extending βˆw which had enumerated

an axiom for a witness x, then this axiom contains an axiom for v which will be invalid

at further stages, making the axiom for x invalid as well.

Similarly the axioms enumerated in Λ shall have the form 〈x, (H(x)⊕B ¹ λ(x))∪U〉,
where U is the union of all finite sets D such that 〈v, D〉 ∈ Λ and v ∈ A is a witness of

a higher priority (N ,Λ)-strategy, constructing the same operator Λ.
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7.2.3 One N -requirement below two P-requirements

Before we present the full construction we shall discuss the design of an N -strategy

working with respect to two P-requirements. Each new Pi-requirement is initially

assigned a (Pi, Γi)-strategy as described in Section 7.2.1. Suppose we have two such

successive strategies α0 and α1 working on the requirements P0 and P1 and with the op-

erators Γ0 and Γ1, respectively. The most general of the strategies for anN -requirement

below P0 and P1 is the one placed below both e-outcomes, denote it by β. This is an

(N , Γ0, Γ1)-strategy which now needs to respect the rectification of both constructed

operators Γ0 and Γ1.

(P0, Γ0)
e l(P1, Γ1)

e l
(N , Γ0,Γ1)

g f w l1 l0 (P1, Γ1)

e l

(N , FM0, Γ1) (N , FM0, FM1)

The strategy β selects a witness x which is enumerated in A. Before x can start

its journey along the tree β needs to setup its axioms in both operators Γ0 and Γ1.

The setup module comes in two copies, one for each operator. The rectification of the

operator Γ0 has higher priority, so β first tries to find a valid axiom for x in ΞΨA
0 ,ΘA

0
0 .

If the strategy is unsuccessful it has true outcome l0 and P0 is globally satisfied. The

operator Γ1 will remain unrectified at this point and therefore we need to restart the P1-

strategy below outcome l0. Once the sets G0(x) and H0(x) are successfully defined the

strategy defines the markers γ0(x) and ω(γ0(x)) and enumerates the necessary axioms

in the operators Γ0 and Ω. The strategy β then proceeds to search for a valid axiom
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for x in ΞΨA
1 ,ΘA

1
1 . If it cannot find such an axiom the outcome is l1, P1 is satisfied and

the operator Γ0 is correct. After β has successfully defined the sets G1(x) and H1(x)

as well it defines markers γ1(x) and ω(γ1(x)) and enumerates the necessary axioms in

the operators Γ1 and Ω for x and for both markers ω(γ1(x)) and ω(γ0(x)). Finally we

need to enumerate an axiom in Γ0 for the newly defined ω(γ1(x)). The marker ω(γ1(x))

belongs to A if and only if the marker γ1(x) belongs to B and x belongs to A. Thus

we enumerate an axiom which reflects this - constructed from the axiom enumerated

in Γ0 for x by adding the marker γ1(x).

The strategy β then waits for x to enter ΦB with outcome w while x /∈ ΦB. Once x

enters the set ΦB the strategy β needs to ensure useful extractions from both sets G0(x)

and G1(x). Of course the extraction of x from A might cause changes in any of the

combinations [G0(x), G1(x)], [G0(x),H1(x)], [H0(x), G1(x)], [H0(x),H1(x)]. Therefore

we will need a backup strategy for each of these combinations.

β

g f w l1 l0α̂1

β′

g f wα̂0

α′1

β′′

g f w l1α̂′1

β′′

f w

β : (N ,Γ0, Γ1)
α̂1 : (P1, Λ1)
β′ : (N , Γ0, Λ1)
α̂0 : (P0, Λ0)
α′1 : (P1, Γ′1)
β′′ : (N ,Λ0, Γ′1)
α̂′1 : (P1, Λ′1)
β′′′ : (N , Λ0, Λ′1)

The strategy β performs capricious destruction only on the operator Γ1 by extract-

ing the marker γ1(x) from B and correspondingly ω(γ1(x)) from A. Note that this

action does not injure x ∈ ΞΨA
0 ,ΘA

0
0 as the marker ω(γ1(x)) is defined as fresh number

after the definition of G0(x) and H0(x). The strategy then sends the witness x to the
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first backup strategy β′, an (N , Γ0, Λ1)-strategy which constructs the same operator

Γ0 and uses the set H1(x) to enumerate an axiom for x in the new operator Λ1. This

strategy requires for success the second combination of useful changes [G0(x),H1(x))].

If the witness x reappears in ΦB the strategy β′ performs capricious destruction on the

operator Γ0 and sends the witness further to a second backup strategy β′′. Before the

second backup strategy is activated we need to restart the P-strategy on a node α′1, as

the original operator Λ1 might be destroyed: β′ extracts the marker ω(γ0(x)), possibly

injuring H1(x) ⊆ Θ1(A). The second backup strategy has the form (N ,Λ0,Γ′1) and

constructs two new operators: Λ0 using the set H0(x) to define an axiom for x and Γ′1

for which the setup process is repeated and new finite sets G′
1(x) and H ′

1(x) are defined

if possible. Finally if x enters the set ΦB again it is sent to the last backup strategy

β′′′, which is of the form (N , Λ0,Λ′1). It is the strategy that will extract x from A if it

reenters ΦB for the third time.

Depending on the changes that this extraction causes we have the following cases:

• H0(x) * A \ {x}: If there is no change in either G′
1(x) or H ′

1(x), then P1 is

satisfied and α′1 will have outcome l forever. Otherwise the N -requirement will

be satisfied by β′′′ or β′′.

• H0(x) ⊆ A \ {x}: The witness x will be sent back to β′ and the axiom for x in

Γ0 will be restored. If G0(x) ⊆ A \ {x} then the requirement P0 will be satisfied

and α0 will have outcome l. If G0(x) * A \ {x} then either H1(x) * A \ {x}
and β′ is successful or the witness x is sent back to β and the axiom for x in Γ1

is restored. If G1(x) ⊆ A \ {x} then P1 is satisfied and α1 will have outcome l

forever, otherwise G1(x) * A \ {x} and β is successful.

Thus in every case we have made progress on the satisfaction of requirements as at

least one of the considered strategies α0, α1, β, β′, α′1, β′′ or β′′′ is successful.

We shall put all these ideas in techniques together to define the general construction.
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7.3 All Requirements

As in Chapters 2 and 3, for every requirement we have different possible strategies

along the tree. For every P-requirement Pi we have two different strategies: (Pi,Γi)

with outcomes e <L l and (Pi, Λi) with one outcome e. For every N -requirement Ni

we have strategies of the form (Ni, S0, . . . , Si), where Sj ∈ {Γj , Λj , FMj}. We will call

Sj the j-method of this strategy. The possible outcomes of an (Ni, S0, . . . , Si)-strategy

are

g <L f <L w <L l0 · · · <L li,

although not every strategy shall have all of these outcomes. Before we can make the

outcomes precise we shall introduce the notion of dependence between N -strategies:

Definition 7.3.1. If α is a node in the tree of strategies labelled by an (Ni, S0, . . . , Si)-

strategy then let β be the largest node in the tree with βˆg ⊂ α. If there is no such node

then we say that α is independent. Otherwise we say that α depends on β. We denote

β by ins(α) and call it the instigator of α.

A dependent strategy α will receive its witnesses from its instigator. The strategy

ins(α)̂ g will be a (P, Λk)-strategy for some k ≤ i. We shall introduce a further

parameter related to α, k(α) and its value will be the index of the requirement that

ins(α)̂ g is working on. In this case k(α) = k. If α is independent then k(α) = −1.

The methods that α works with will be divided into the following groups:

• If Sj = FMj we shall call it an invisible method.

• If Sj 6= FMj and j < k then it is an old visible method.

• If Sj 6= FMj and j ≥ k then it is a new visible method.

The strategy α shall then have outcome g only if there is some j ≤ i such that

Sj = Γj and an outcome lj for every new visible method Sj = Γj . Let O be the set of

all possible outcomes and S be the set of all possible strategies.
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7.3.1 The tree of strategies

The tree of strategies is a computable function T : D(T ) ⊂ O<ω → S which has the

following properties:

1. If T (α) = S and OS is the set of outcomes for the strategy S then for every

o ∈ OS , α ô ∈ D(T ).

2. The root of the tree is labelled by (P0, Γ0). The node e is labelled by (N0,Γ0)

and the node l is labelled by (N0, FM0).

3. If T (α) = (Ni, S0, S1, . . . , Si).

Below outcome g: T (α ĝ) = (Pk, Λk), where k ≤ i is the largest index such that

Sk = Γk. The next levels of the subtree with root α ĝ are assigned to (Pj , Γj)-strategies

for every j, k < j ≤ i such that Sj is visible. After this follows a level of N -strategies

β = α ĝ ê . . . ôj . . . ôi, where j > k and oj = ∅ if Sj = FMj , with the structure

(Ni, S0, . . . ,Λk, S
′
k+1 . . . S′i). For j > k if Sj = FMj or oj = l then S′j = FMj and

otherwise S′j = Γj .

Below outcomes f ,w: T (α ô) = (Pi+1, Γi+1), where o ∈ {f, w}. T (α ô̂ e) =

(Ni, S0, S1, . . . , Si,Γi+1) and T (α ô̂ l) = (Ni, S0, S1, . . . , Si, FMi+1)

Below outcome lk: The first levels of the subtree with root α l̂k are assigned to

(Pj , Γj)-strategies for every j, k < j ≤ i such that Sj is visible. After this follows

a level of N -strategies β = α l̂k . . . ôj . . . ôi, where j > k and oj = ∅ if Sj = FMj ,

with the structure (Ni, S0, . . . ,Λk, S
′
k, . . . , S

′
i). For j > k if Sj = FMj or oj = l then

S′j = FMj and otherwise S′j = Γj .

7.3.2 Construction

At each stage s we shall construct a finite path through the tree of outcomes δ[s] of

length s starting from the root. The nodes that are visited at stage s shall perform

activities as described below and modify their parameters. Each N -node α shall have

a right boundary Rα which will also be defined below. At all stages s the N -strategies
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on the first level of the tree have Rl[s] = Re[s] = ∞. After the stage is completed

all σ > δ[s] will be initialized, their parameters including all their witnesses will be

cancelled or set to their initial value ∅. Whenever we cancel a witness x ∈ A[s] of a

strategy σ we additionally enumerate an axiom 〈x, ∅〉 in every operator constructed by

strategies δ ≤ σ. If ω(γj(x)) ∈ A[s] for any j then we will also enumerate the axiom

〈ω(γj(x)), ∅〉 in these operators.

Suppose we have constructed δ[s] ¹ n = α. If n = s then the stage is finished and

we move on to stage s + 1. If n < s then α is visited and the actions that α performs

are as follows:

(I.) T (α) = (Pi, Γi).

1. Scan all witnesses x /∈ A[s] for which there is an axiom in Γi starting from the

least.

2. If x ∈ ΓΨA
i ,B

i [s] then let the outcome be o = l.

3. If all witnesses are scanned and none has produced an outcome o = l then let the

outcome be o = e.

(II.) T (α) = (Pi,Λi).

1. Scan all sent witnesses x /∈ A[s] for which there is an axiom in Λi starting from

the least.

2. If x ∈ ΛΘA
i ,B

i [s] with least valid axiom 〈x, Tx⊕Bx〉 then define Li(x) = use(Θi, A, Tx)[s].

Restrain A on Li(x) and return x. End this stage.

3. If all witnesses are scanned and none are returned then let the outcome be e.

(III.) T (α) = (Ni, S0, . . . , Si) with defined k(α), right boundary Rα[s] and possibly

undefined ins(α). We will denote by s− the previous α-true stage. If α has been
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initialized since its previous true stage or if it has never before been visited then s− = s.

The strategy starts at Setup if s− = s, otherwise it goes to the step indicated at s−.

Unless otherwise stated Rαˆo[s] = Rα[s].

• Setup: If ins(α) ↓ then wait for a witness x together with its marker λk(α)(x)

to be assigned by ins(α). End this stage if there is no assigned witness and

return to this step at the next stage. If ins(α) ↑ choose a new witness x as a

fresh number and enumerate it into A[s]. Once the witness is defined, for every

j ≥ max(k(α), 0) such that Sj is visible perform Setup(j) starting from the least

such j. Note that if k(α) ≥ 0 then Sk(α) = Λk(α) and if j > k(α) then Sj = Γj .

Setup(j) for j = k(α) ≥ 0:

Enumerate in Λj [s] an axiom 〈z, Hj(x)⊕ (B[s] ¹ λj(x) + 1) ∪ U〉, where

– z ∈ A[s], there is no valid axiom for z in Λj [s] and z is x or a witness from

a previous cycle of the strategy or z is a marker ω(γl(z′)) for which there is

no valid axiom in Λj and z′ is x or a previous witness of the strategy.

– U is the union of all finite sets D such that 〈n,D〉 ∈ Λj [s] is a valid axiom

at stage s and n < x is an uncancelled witness in A[s].

The axiom enumerated for x shall be called the main axiom for x in Λj . If j < i

go to Setup(j + 1). Otherwise let the outcome be o = w and go to Waiting at

the next stage.

Setup(j) for j > k(α):

1. If x /∈ Ξ
ΨA

j ,ΘA
j

j [s] then let the outcome be o = lj and return to this step at

the next stage. Otherwise go to the next step.

2. Define Gj(x), Hj(x) as finite sets such that Gj(x) ⊆ ΨA
j [s], Hj(x) ⊆ ΘA

j [s]

and x ∈ ΞHj(x)⊕Gj(x)
j [s]. Define γj(x) and ω(γj(x)) as fresh numbers. Enu-

merate γj(x) in B[s] and ω(γj(x)) in A[s]. Define a new axiom
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〈γj(x), {ω(γj(x))}〉 in Ω[s].

Enumerate in Γj [s] an axiom 〈z,Gj(x)⊕ (B[s] ¹ γj(x) + 1) ∪ U〉, where

– z ∈ A[s], there is no valid axiom for z in Γj [s] and z is either x, or a

witness from a previous cycle of the strategy or ω(γl(z′)), where z′ = x

or z′ is previous witness of the strategy.

– U is the collection of all finite sets D such that 〈n,D〉 ∈ Γj [s] is a valid

axiom at stage s and n < x is an uncancelled witness in A[s].

The axiom enumerated for x shall be called the main axiom for x in Γj .

3. For all operators Sl, where l < j with current axiom for x, say 〈x,Dl〉,
enumerate the axiom 〈ω(γj(x)), Dl ∪ ∅ ⊕ {γj(x)}〉.

If j < i then go to Setup(j + 1). Otherwise let the outcome be w and go to

Waiting.

• Waiting: If x ∈ ΦB
i [s] and the computation has use u(Φi, B, x)[s] < Rα[s] then

go to Attack. Otherwise let the outcome be o = w and return to Waiting at the

next stage.

• Attack:

1. If α does not have an outcome g then extract x from A[s]. Go to Result 2.

Otherwise let j be the largest index such that Γj = Sj and go to the next

step.

2. If there is a returned witness from a previous cycle x̄ then go to Result.

Otherwise go to the next step.

3. Define Rαˆg[s] = γj(x). Extract γj(x) from B[s] and ω(γj(x)) from A[s].

Define λj(x) = max(γj(x), use(Φi, B, x)[s]). Let s−a be the previous stage

when α sent a witness. Send x assigning it to the least strategy β such that

α ĝ ⊂ β ⊆ δ[s−a ] which requires a witness. If this is the first witness then
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assign it to the least strategy β ⊃ α ĝ which requires a witness. Let the

outcome be o = g. At the next stage start from Setup.

• Result:

1. Enumerate γj(x̄) back in B[s] and 〈ω(γj(x̄)), ∅〉 in Ω. Cancel all witnesses

z ∈ A[s] of the strategy α. Restrain A on Lj(x̄) defined by α ĝ. Go to the

next step.

2. Let the outcome be o = f , return to this step at the next stage.

7.4 Proof

We start the proof with some of the more easier properties of the construction. We

note that the sets A and B are constructed as a 2-c.e. and a 3-c.e. set respectively. It

is straightforward to prove also that B ≤e A.

Lemma 7.4.1. The set B is enumeration reducible to the set A.

Proof. We shall prove that ΩA = B. Fix any number n. If n is not a B-marker of

a witness then n /∈ B and there is no axiom in Ω for n, so n /∈ ΩA. Suppose n is a

marker of a witness x defined by a strategy α at stage s then α enumerates n ∈ B[s],

ω(n) ∈ A[s] and an axiom 〈n, {ω(n)}〉 in Ω[s]. If n is not extracted from B at any

stage then neither is ω(n) and hence the axiom is valid n ∈ B ∩ ΩA. If n is extracted

at stage s1 then so is ω(n) and the axiom will remain invalid at all further stages. If n

is not reenumerated in B then no further axioms for n are enumerated in Ω and hence

n /∈ B∪ΩA. Otherwise n is reenumerated in B at stage s2 at which the axiom 〈ω(n), ∅〉
is enumerated in Ω. As n does not get extracted more than once, n ∈ B ∩ ΩA.

Another quite easy statement about the tree of strategies is that along each path

there are finitely many Pi- and Ni-strategies for every i. We saw that this is the case

for i = 0, 1 in sections 7.2.1 and 7.2.3. The rest of the statement follows with an easy
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induction using the fact that the method for Pi can be restarted only if the method for

Pj , where j < i changes, and after that it can change at most once to Λi or to FMi.

The Ni-strategy is restarted only if one of the Pj methods for j ≤ i changes.

The rest of the properties of the construction are quite harder to prove. The main

difficulty will be to examine the construction of a certain operator as now many strate-

gies define a single operator in contrast to most previous constructions. Furthermore

the axioms for a witness in a fixed operator are related to the axioms of previous wit-

nesses. We shall have to study in detail the interactions between strategies before we

can prove that the construction is successful.

7.4.1 Properties of the witnesses

We will first try to establish some properties of the witnesses and the axioms defined for

them. The first one is that every witness travels a finite path in the tree of strategies.

Propostion 7.4.1. Each witness can be assigned to finitely many strategies.

Proof. Suppose x is a witness defined by the (Ni, S0, . . . , Si)-strategy β. Then β is an

independent strategy. Suppose that x is β’s first witness. If it is sent by β at stage

s then it will be assigned to the first N -strategy β1 extending β ĝ. This is also an

Ni-strategy and x will also be β1’s first witness. As there are only finitely many Ni-

strategies along each path in the tree, the witness x will be assigned to finitely many

strategies.

Suppose that x is β’s n-th witness. Consider the sequence{(βk, ik, nk)}, where βk

is the k-th strategy to which x is assigned, ik denotes the index of the N -requirement

that βk works with and nk denotes that x is βk’s nk-th witness. We know already that

the sequence is finite if for some k we have nk = 1. We will prove that:

Claim: If ik+1 = ik then nk+1 ≤ nk and if ik+1 > ik then nk+1 < nk.

Thus for almost all k we have ik = ik+1 and as there are only finitely manyNi-strategies

for every i, the sequence is finite and the statement follows.
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The first part of the claim is quite obvious. The strategy βk+1 receives all its

witnesses from βk so nk+1 ≤ nk. Suppose that ik+1 > ik. From the definition of the

tree it follows that there is an Nik -strategy σ such that βk ⊂ σ ⊂ βk+1. Then before

the first witness is assigned to βk+1 one of βk’s witnesses must be assigned to σ, thus

nk+1 < nk.

Propostion 7.4.2. Suppose β is an N -strategy.

1. If β sends its witness at stage s then the next witness assigned to β is defined

after stage s.

2. If β is initialized at stage si and β is not independent then the next witness that

β works with will be defined after the next β-true stage s > si.

3. Suppose β is not initialized after stage si and visited at infinitely many stages.

If at stage s > si the strategy does not have an assigned witness then it will eventually

be assigned a witness.

Proof. 1. This is obviously true for independent strategies. Let β0 ĝ ⊂ β1 ĝ . . . βk +1 =

β be the strategies such that β0 is independent and ins(βi+1) = βi for i < k. Every

witness assigned to β is defined by β0.

Suppose that β sends its witness at stage s. Then at stage s all of these strategies

have outcome g and send their witnesses. Thus the next witness that β0 uses is defined

after stage s. At stage s + 1 each strategy βi+1 does not have a defined witness. It will

receive its witness from βi at the next stage t ≥ s + 1 at which βi has outcome g and

sends its witness.

2. If β is initialized at stage si then a strategy σ ⊂ β has outcome o such that

σ ô <L β. If at stage si a witness is assigned to β then it is cancelled at stage si.

Before the next witness is assigned to β there must be a stage s at which β is visited.

Then at stage s the instigator ins(β) sends its witness and by step 1. of this proposition

its next witness will be defined after stage s.



Chapter 7. A Non-splitting Theorem for the 3-c.e. Enumeration Degrees 225

3. This is again obviously true for independent strategies. Let ins(β) = δ. Then

δ ĝ is visited infinitely often and not initialized after stage s. There are finitely many

strategies α such that δ ĝ ⊂ α ô ⊆ β and for every such strategy o 6= g. Suppose at

stage s the strategy α is the least such strategy that also has no witness. The strategy

β is visited at stage s1 ≥ s. At the next δ ĝ-true stage s2 > s1 if α still has no witness

then the witness that δ sends at stage s2 will be assigned to α. As β is not initialized

at stages t ≥ si this will remain α’s permanent witness. As there are finitely many

such strategies α they will each be assigned a permanent witness eventually. After this

a witness will finally be assigned to β.

These two properties have a very important consequence which tells us a bit about

the true path. It shows that the outcomes e and l of a P-strategy are finitary. Thus

the only infinitary outcome in this construction is the outcome g.

Corollary 7.4.1. Let α be a (Pi,Γi)-strategy initialized at stage s1 and not initialized

at stages t such that s1 < t < s2. If α has outcome l at a least stage s such that

s1 ≤ s < s2 then α has outcome l at all true stages t, s < t < s2.

Proof. Suppose this is true for higher priority strategies than α. Any strategy σ ⊂ α

has outcome g at stage s or does not change its outcome at stages t, s < t < s2. This

follows from the induction hypothesis for P-strategies. For N -strategies with outcome

o 6= g it follows from the construction: σ is not initialized at stages s < t < s2 so

if it changes its outcome to o′ at stage t then o′ <L o and α would be initialized.

Furthermore all of these strategies have a permanent witness for which they do not act

by extracting elements at stages t, s < t < s2. Strategies that have outcome g send

their witnesses at stage s. A witness sent by σ is assigned to a strategy which was

visited during σ’s previous attack, thus is not assigned to a strategy extending α l̂. At

stages t, s < t < s2 accessible strategies have witnesses defined after stage s. This

follows from Proposition 7.4.2 and the fact that all strategies δ ≥ α l̂ are in initial state
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at stage s. These witnesses together with their A- and B-markers are therefore larger

then any number that has appeared in the construction until and including at stage s.

At stage s the strategy α sees a valid axiom in Γi for a witness x /∈ A[s]. This axiom

remains valid at all further stages t < s2 and whenever α is visited it will have outcome

l.

The next two properties will give us rules about the cancellation of a witness.

Propostion 7.4.3. Suppose x is a witness that is defined at stage s0 and sent or

extracted at sub-stage s. If z is defined at substage t0 with s0 < t0 < s it is cancelled at

the latest at stage s.

Proof. Note that x is not cancelled until and at substage s. Let β0 denote the strategy

which defines x and δ0 the strategy which defines z.

If β0 < δ0 then β0 f̂ <L δ0 as strategies below outcome β0 ĝ do not define witnesses,

rather they receive them from β0 and strategies below outcome f are not accessible until

x is extracted. Then δ0 together with all its successors is initialized at stage s. The

witness z, if not already cancelled, is assigned at stage s to a strategy extending δ0 and

hence is cancelled.

If δ0 < β0 then similarly δ0 ĝ <L β0. The witness z is defined at stage t0 > s0 so δ0

is either in initial state at stage t0 or at the previous δ0-true stage t, s0 < t < t0, the

strategy δ0 sends its previous witness having outcome g. In all cases the strategy β0 is

in initial state at stage t0 and x is cancelled contrary to assumption.

Finally suppose that δ0 = β0. Let β0, . . . , βk be all strategies to which x is assigned

until stage s at stages s0 < s1 < · · · < sk ≤ s respectively. Then t0 > s1. At stage

s ≥ t0 the witness x is extracted or sent by βk thus every strategy βi, i < k has outcome

g at stage s. It follows that z is sent by β at stage t1 such that s1 < t0 < t1 ≤ s and

assigned to a strategy δ1.

Again we have three cases. If β1 < δ1 then δ1 is initialized at stage s, z is cancelled.
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If δ1 <L β1 then β1 is in initial state at stage t1 and x cancelled contrary to assumption.

The final case is β1 = δ1. Then s2 < t1. The same argument for i = 1, 2, . . . , k − 1

proves that βi ≤ δi and if δi 6= βi then z is cancelled at stage s, where δi denotes the

i-th strategy to which z is assigned. If δi = βi then ti > si+1, where ti denotes the

stage at which z is assigned to βi. Now as βk extracts or sends x at stage s the witness

z is sent by βk−1 at a stage tk such that sk < tk ≤ s. At stage tk the strategy βk does

not require a witness. Thus if z is not cancelled already by stage s it is assigned to a

strategy δk >L βk f̂ and hence z is cancelled at stage s at which βk has outcome f or

g.

Propostion 7.4.4. If x is a witness with marker mj(x), where mj is either γj or λj,

defined at stage s0 and a marker γl(z) < mj(x) of a different witness z 6= x is extracted

from B at stage s > s0 then x is cancelled.

Proof. Any B-marker defined after stage s0 is greater than mj(x). Suppose that the

marker γl(z) is defined at stage t0 ≤ s0 and extracted by δ at stage s. Suppose that x

is assigned to β at stage s.

If δ ĝ <L β then β is initialized at stage s and x is cancelled.

If β <L δ then δ is initialized at the last β-true stage t < s. The marker mj(x)

must be defined before stage t, hence s0 < t otherwise it will be defined after stage s.

The witness z must be defined after stage t by Proposition 7.4.2 hence t < t0. Thus

s0 < t < t0 contradicting the assumptions.

If β ô ⊂ δ we shall examine the different possibilities for o. If o = g then at stage

s the strategy β has outcome g, sends its witness and does not have a witness when δ

is visited. In all other cases δ is in initial state when x is assigned to β. The marker

mj(x) must be defined before the next δ-true stage t. Then the witness z is defined at

t0 > t if δ is not independent by Proposition 7.4.2 or at stage t0 ≥ t if δ is independent.

Thus the marker mj(x) is defined before the marker γl(z) contrary to assumption.
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Finally suppose δ ĝ ⊂ β. Any witness assigned to β must first be sent by δ. It

follows that z > x and δ has already sent the witness x at a previous stage δ ĝ-true

stage. By Proposition 7.4.2 the witness z is defined after the last δ ĝ-true stage t < s

and this is the last stage when strategies to which x is assigned might be accessible to

define the markers of x. Thus s0 ≤ t < t0.

7.4.2 Properties of the axioms

This section reveals some properties of the axioms in the constructed operators. Our

main goal will be to prove that if a P-strategy has outcome l at all but finitely many

stages then the corresponding P-requirement is satisfied. We shall need to investigate

the axioms that are enumerated in an operator for elements x which are extracted from

A. We shall prove three properties for the axioms. First we will show a connection

between a witness x and a witness z such that an axiom for x is enumerated in an

operator using the main axiom for z. This rather technical property will enable us to

prove that the only axiom that can be valid for a witness x /∈ A[s] at an operator Si is

the main axiom for x in Si. Finally we shall show that if the main axiom for a witness

x /∈ A[s] is valid in Si then ΞΨA
i ,ΘA

i
i 6= A.

Propostion 7.4.5. Let α be a (Pi, Si)-strategy and x be a witness which is not cancelled

until stage s and for which there is an axiom in the operator constructed by α. Suppose

that δ invalidates the main axiom for x. Then every further axiom for x related to

a different witness z remains valid at all stages t ≤ s or is invalidated by the same

strategy δ, to which z is sent eventually.

Proof. Suppose x is assigned to strategies β0 ⊂ β1 ⊂ βk at stages s0 < s1 < · · · < sk ≤
s, where β0 is the strategy which enumerates the main axiom for x in Si at stage s0.

At stage s0 all strategies σ >L β0 ĝ are in initial state and will work with witnesses

defined after stage s0. Strategies below β0 ĝ are not accessible until stage s1. At stage

si the witness x is assigned to βi strategies σ such that βi−1 ⊂ σ ⊂ βi+1 have a defined
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witness which does not change and do not extract any numbers from A or B at stages

si ≤ t ≤ sk or else x would be cancelled before stage sk. Strategies σ >L βi are in

initial state at stage si and work with witnesses defined after stage si. Thus the only

strategies that can invalidate the axiom for x are among β0, . . . , βk.

If δ = βk then it must extract x as otherwise x would be sent to a further strategy.

Thus no new axioms will be enumerated in Si.

Suppose δ = βi, i < k. Then δ has outcome g extracting a B-marker of x at stage

t0. At the next β0-true stage t1 the strategy β0 defines a new axiom for x using its

new current witness z. If this witness is never sent then the axiom remains valid at

all stages t ≤ s as the only accessible strategies are in initial state at stage t1. If this

witness is sent it is assigned to the least strategy visited at stage t0 which requires a

witness. By the argument above this must be β1. If β1 does not send z then the axiom

for z remains valid at all further stages otherwise β1 sends z and it is assigned to β2.

Thus eventually z will reach δ at stage t2 with a valid main axiom in Si. At all

stages t with t1 < t ≤ t2 there is a valid axiom for x in Si - the one that uses main

axiom for z, thus β0 does not enumerate any further axioms for x. If the axiom for z

is not invalidated by δ or it is invalidated at the same stage at which x extracted then

no more axioms will be enumerated in Si for x. Otherwise δ invalidates the axiom for

z at stage t3 and at the next β0-true we have a very similar situation as at stage t1: at

stage t3 all strategies β0, . . . , δ ĝ were visited and there is no valid axiom for x. The

strategy β0 will define a witness z′ and enumerate an axiom for x and z in Si using the

main axiom for z′. If this axiom is invalidated then the witness z′ must be sent to δ

and δ invalidates it.

Corollary 7.4.2. Let x be any witness extracted from A at stage s and α be a (Pi, Si)-

strategy such that there is an axiom for x in Si. The only axiom in Si that can be valid

at a further stage t > s is the main axiom for x.

Proof. Suppose that there is a different axiom for x valid at stage t > s and it uses the
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main axiom for z > x defined before stage s. It follows from the proof of proposition

7.4.5 that this witness z is sent to the same strategy δ that invalidates the main axiom

for x. Otherwise x could not be extracted at stage s. This strategy has greatest

Γ-method with index k ≤ i and always extracts a B-marker γk(y) when it sends its

witness y. Before x is extracted it must send z at stage s1 invalidating the axiom for

z. If this axiom is valid at stage t > s then z must be returned by δ ĝ, constructing

the operator Λk after stage s. We will prove that this is impossible.

At stage s1 the witness z is assigned to the least strategy which requires a witness.

Suppose δ1 is the strategy to which x was assigned after it was sent by δ. Consider a

strategy σ such that δ ⊂ σ ô ⊆ δ1. Then o 6= g as otherwise x would be assigned to σ.

Furthermore σ works with the same operator Λk as this method can change only below

a further g-outcome. Until x is extracted σ has the same outcome o or else x would be

cancelled. Thus z is assigned to a strategy δ′1 ⊇ δ1. And by the same argument both

δ1 and δ′1 construct the same operator Λk.

If δ′1 6= δ1 then at stage s1 the strategy δ1 has outcome o 6= g, f and it has this

outcome until δ′1 is cancelled. At all such stages there is a valid axiom for x in Λk

defined by δ1 which does not change and it is included in any axiom for z that δ′1

defines. The element z is cancelled at stage s at which δ1 has outcome g or f .

If δ′1 = δ1 then both x and z are witnesses for of δ1. Every axiom enumerated in

Λk for z either includes an axiom for x or otherwise the same axiom is enumerated for

x and all axioms for z are enumerated before stage s as z is cancelled at stage s by

Proposition 7.4.3.

Thus in both cases if z can be returned by δ ĝ at stage sz then there is a valid

axiom for both x and z in Λk. If we assume that sz ≤ s then x could not be extracted

at stage s as δ ĝ ends stage sz prematurely and δ would have outcome f at all stages

t > sz until it is initialized. Thus s < sz, the witness x is already extracted from A[sz]

and δ ĝ will return x instead of z.
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Propostion 7.4.6. Let α be a (Pi, Γi)-strategy and let β ⊇ α ê be a strategy such that

Si = Γi and this is the largest Γ-method at β. Suppose a witness x is returned to β

at stage s and β restrains A on Li(x). If this restraint is injured at stage s1 > s then

there is no valid axiom for x in Γi at all stages t > s1 or else ΞΨA
i ,ΘA

i
i 6= A.

Proof. Suppose the lemma is true inductively for witnesses z < x.

If α is initialized at stage s1 then there will be no valid axiom for x in Γi at any

further stage. Suppose that α is not initialized at stages t, s ≤ t ≤ s1.

Any strategy that at stage s is in initial state or does not have an assigned witness

will not injure the restraint by Proposition 7.4.2. The restraint is therefore injured by

a strategy δ1 ⊇ α ê such that δ1 ≤ β. In order for this strategy to be accessible there

must be a strategy δ ⊇ δ1 such that α ê ⊂ δ ô ⊂ β, o 6= g, and which has outcome g at

stage s1.

The strategy δ has the same witness y < x and the same outcome o at all stages

at which it is visited from the stage s0 at which x is assigned to β until and including

at stage s. Furthermore it works with the same operator Γi and the main axiom for

y is not yet invalidated. The main axiom for x includes a valid axiom for every one

of δ’s witnesses z ≤ y and every B-marker defined for such a witness before stage s0.

Any further B-marker for a witness of δ is defined after stage s and the corresponding

A-marker respects the restraint.

At stage s1 the strategy δ1 injures the restraint on A. Therefore it must extract

from A a witness z ≤ y defined before stage s0 or an A-marker ω(γl(z)) together with

γl(z) for a witness z ≤ y both defined before stage s0. If z ∈ A then δ1 extracts γl(z)

which invalidates all axioms for x and this marker is never reenumerated in B.

If z /∈ A and there is a valid axiom for z in Γi then by Proposition 7.4.2 this is the

main axiom for z and by the induction hypothesis Hi(z) ⊆ Θi(A) hence z ∈ ΞΨA
i ,ΘA

i
i .

Otherwise there is no valid axiom for z and hence no valid axiom for x.
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7.4.3 Satisfaction of the requirements

As usual we define the true path h to be the leftmost path in the tree such that

the strategies along it are visited at infinitely many stages. As in two cases of the

construction a strategy can end a stage prematurely we will need to prove that the so

defined path is infinite. Once we have established that this is true we can prove that

all N - and P-requirements are satisfied.

Lemma 7.4.2. There is an infinite path h in the tree of strategies with the following

properties:

1. (∀n)(∃∞s)[h ¹ n ⊆ δ[s]].

2. (∀n)(∃sl(n))(∀s > sl(n))[δ[s] ≥ h ¹ n], i.e. h ¹ n is not initialized after stage

sl(n).

Proof. We prove the statement with induction on n. The case n = 0 is trivial: h ¹ 0 = ∅
is visited at every stage of the construction and is never initialized, sl(0) = 0.

Suppose the statement is true for h ¹ n = α. If α is a (Pi,Γi)-strategy by Corollary

7.4.1 either α has outcome e at every α-true stage in which case h(n + 1) = e and

sl(n + 1) = sl(n), or there is a stage s > sl(n) such that α has outcome l at every true

stage t > s, so h(n + 1) = l and sl(n + 1) = s.

If α = β ĝ is a (Pi,Λi)-strategy then α does not returns a witness after stage sl(n).

Otherwise β will have outcome f at almost all true stages contradicting the assumption

that α is visited at infinitely many stages. Thus α has outcome e at every true stage

t ≥ sl(n) and h(n + 1) = e, sl(n + 1) = sl(n).

If α is an (Ni, S0, . . . , Si) then we have the following cases:

• α has outcome g at infinitely many stages. Then h(n + 1) = g, sl(n + 1) = sl(n).

• There is a stage s > sl(n) at which α receives back a witness. Then α has outcome

f at all further stages, h(n + 1) = f , sl(n + 1) = s.
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• There is a stage s at which α attacks for the last time. By Proposition 7.4.2 α will

be assigned a new witness x at a stage s1 > s. If α enters Setup(j) at stage s2 > s

and never completes it then α has outcome lj at all stages t > s2, h(n + 1) = lj ,

sl(n + 1) = s. Otherwise there is a stage s3 at which α enters Waiting and then

α has outcome w at all stages t > s3, h(n + 1) = w, sl(n + 1) = s.

Lemma 7.4.3. Every N -requirement is satisfied.

Proof. Let β be the last Ni-strategy along the true path. Then βˆw ⊂ h or β f̂ ⊂ h as

along all paths below every other outcome of β there is another Ni-strategy. By Lemma

7.4.2 the strategy β has a permanent witness x at stages t ≥ sl(|β|+1). If βˆw ⊂ h then

x ∈ A and at every true stage t > sl(|β|+ 1) if x ∈ ΦB
i [t] then use(Φi, B, x)[t] > Rβ[t].

If β is independent then Rβ[t] = ∞. Otherwise at every stage t the right boundary is

defined by ins(β) = α. If α has witness z at stage t then Rβ[t] = γk(β)(z). The next

witness that α uses is defined after stage t and its B-markers are of value greater than

Rβ[t]. Thus limt Rβ[t] = ∞ and x /∈ ΦB
i .

Suppose β f̂ ⊂ h. If β has an outcome g the witness x is returned by β ĝ = α which

is a (Pj , Λj)-strategy at stage s = sl(|β|+ 1). When β sent this witness at stage s0 < s

we had x ∈ ΦB
i [s0]. The strategy then defined the marker λj(x) ≥ use(Φi, B, x)[s0].

As x is not cancelled at any stage by Proposition 7.4.4 no B-marker b < λj(x) for a

different witness z 6= x is extracted at any stage t ≥ s0.

At stage s0 the main axiom for x, say 〈x,Ax⊕Bx〉 is enumerated in the operator Λj

constructed at α and B[s0] ¹ λj(x) \ {γj(x)} ⊆ Bx. The strategy α returns this witness

at stage s as it is the least x ∈ Λ
ΘA

j ,B

j \ A[s]. By Corollary 7.4.2 the only axiom that

can be valid at stage s is the main axiom for x in Λj . So B[s0] ¹ λj(x)\{γj(x)} ⊆ B[s],

no more markers for x are extracted at any stage t > s, and at stage sl(|β| + 1) the

strategy β enumerates γj(x) back in the set B. So x ∈ ΦB
i [t] at all stages t ≥ sl(|β|+1)
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and hence x ∈ ΦB
i \A.

Suppose β does not have an outcome g. Then at stage sl(n + 1) = s the strategy

sees x ∈ ΦB
i [s] and extracts x from the set A. Let u = use(Φi, B, x)[s]. Strategies

σ ô ⊂ β with o 6= g do not extract any markers from the set B. Strategies σ ĝ ⊂ β

have just sent their witness and by Proposition 7.4.2 will not extract any markers that

are less than u. Strategies δ ≥ β f̂ are in initial state at stage s and by the same

proposition will not extract markers of value less than u. Thus B[s] ¹ u ⊆ B[t] at all

t ≥ s and hence x ∈ ΦB
i \A.

Lemma 7.4.4. Every P-requirement is satisfied.

Proof. Let α be the last (Pi, Si)-strategy along the true path.

If α l̂ ⊆ h then α is a (Pi, Γi)-strategy. Let x /∈ A be the witness such that

x ∈ ΓΨA,B
i . There is a least strategy β ⊇ α ê such that x is assigned to and whose

greatest Γ-method is Γi. Before x is extracted from A the marker γi(x) is extracted

from B. As x ∈ ΓΨA,B
i then by Corollary 7.4.2 the main axiom for x in Γi is valid and

hence γi(x) is enumerated back in B by β on a stage s at which β restrained Hi(x) in

ΘA
i . By Proposition 7.4.6 if this restraint is injured then ΞΨA

i ,ΘA
i

i 6= A. If this restraint

is not injured then Gi(x)⊕Hi(x) ⊂ ΨA
i ⊕ΘA

i and again ΞΨA
i ,ΘA

i
i 6= A as x ∈ ΞΨA

i ,ΘA
i

i \A.

Suppose α is a (Pi, Γi)-strategy such that there is anN -strategy β working with i-th

method Γi and β l̂i ⊂ h. Then β has a permanent witness x such that x ∈ A\ΞΨA
i ,ΘA

i
i [t]

at all β-true stages t > sl(|β|+ 1). The requirement is satisfied by A 6= ΞΨA
i ,ΘA

i
i .

For all other cases denote by U the set ΨA
i if Si = Γi and ΘA

i if Si = Λi. We will

prove that for all elements n enumerated in A at stages t > sl(n) we have SU,B
i (n) =

A(n). Thus A ≤e U ⊕B and the requirement Pi is satisfied.

Let n /∈ A be a witness. If n is extraccted at stage sn then at all α-true stages

t > max(sl(n), sn) we have n /∈ SU,B
i [t]. Otherwise if Si = Γi then by Corollary 7.4.1

the strategy α would have true outcome l and if Si = Λi the witness n would be returned

by α which is impossible as we saw in the proof of Lemma 7.4.2. Thus n /∈ SU,B
i .
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Let n /∈ A be an A-marker ω(γl(z)). Every axiom for n in Si is of the form

〈n, D ∪ {γl(z)}〉 and there is similar axiom 〈z, D〉 for z in Si. As n /∈ A the marker

γl(z) is extracted from B. If an axiom for n is valid at a further stage then γl(z) is

reenumerated in B and hence z /∈ A. By the argument above there is no valid axiom

for z and hence for n in Si at any α-true stage.

If n ∈ A and n is cancelled then there is valid axiom 〈n, ∅〉 ∈ Si. Thus A(n) =

SU,B
i (n). Suppose n is a witness that is never cancelled. We will prove that there is

a valid axiom for n in Si. Let β0, . . . , βk be all strategies to which n gets assigned in

the course of the construction. As n is not cancelled h ≮L βk. Furthermore βk ⊇ α ê.

Otherwise βk would not be visited after stage sl(|α|) and hence the witness x must be

assigned to βk before or at this stage. We are however dealing with witnesses that are

defined after stage sl(|α|).

Consider the least strategy βj ⊇ α ê. First we observe that βj ⊂ h. If we assume

otherwise then there is a strategy σ such that α ê ⊂ σ ô1 ⊂ h and βj ⊇ σ ô2 and

o2 <L o1. Then o2 = g or else βj is initialized before stage sl(|σ|) and not accessible

after this stage and x is cancelled. But if o2 = g then βj receives n from σ, so σ = βj−1

and this contradicts our choice of βj as the least strategy below α ê.

The i-method of βj is hence new and is Si, as no strategy σ along the true path has

outcome li and there is no strategy between α and βj has outcome g, the only cases

when the i-method changes. Thus βj will enumerate axioms for n at all βj-true stages

at which there is no valid axiom in Si.

If the main axiom 〈n,D〉 for n enumerated by βj is never invalidated then n ∈ SU,B
i .

For every A-marker of n that is never extracted and is defined by stage sl(|βj |), the

strategy βj enumerates an axiom in Si using the current axiom for n. If a further

A-marker m = ω(γk(n)) for n is defined after this stage by a strategy β then β ⊇ βj

and β has the same method Sl as βj for l ≤ i otherwise the main axiom for n would be

invalidated. As β can define a marker only for a new method, k > i and β enumerates
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a new axiom for m of the form 〈m,D ∪ ∅ ⊕ {γk}〉 in Si. If m ∈ A then γk(n) ∈ B and

this axiom is valid at all further stages.

Suppose that the main axiom for n in Si is invalidated by δ at stage s0 > sl(|βj |).
By Proposition 7.4.5 this is done by a strategy βl, l > j. At the next true stage βj

enumerates an axiom for x using the main axiom for its current witness z. If this

axiom is invalidated at all, it is invalidated by βl. Now as βl extracts a B-marker for a

method with index less than i. It follows that βl ĝ is not on the true path, as otherwise

there would be a further Pi-strategy along the true path. Let s be the last βl ĝ-true

stage. Then the axiom for n enumerated at the first βj-true stage after s will remain

valid forever. Any A-marker of n, m = ω(γl(n)) ∈ A must be defined before stage s.

Then if there is no valid axiom for m at the first β-true stage after s then an axiom

is enumerated for m during Setup(i). The axiom for m in Si valid at this stage will

remains valid forever.

This concludes the proof of the lemma and the theorem.
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LNCS, 5028.

[SC07] M. I. Soskova and S. B. Cooper, 2007: How enumeration reducibility yields ex-

tended Harrington non-splitting, to appear in J. Symbolic Logic.

[SW07] M. Soskova and G. Wu, 2007: Cupping ∆0
2 enumeration degrees to 0′, Computation

and Logic in the Real World, S. Cooper, B. Löwe and A. Sorbi, LNCS, 4497, 727–
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Introduction

In contrast to the Turing case where every 1-generic degree bounds a minimal pair as proved in
[5] we construct a 1-generic set whose e-degree does not bound a minimal pair in the semi-lattice
of the enumeration degrees.

In her paper [1] Copestake examines the n-generic degrees for every n < ω. She proves that
every 2-generic enumeration degree bounds a minimal pair and states that there is a 1-generic
enumeration degree that does not bound a minimal pair. Her proof of the statement does not
appear in the academic press. Later Cooper, Li, Sorbi and Yang show in [2] that every ∆0
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enumeration degree bounds a minimal pair and construct a Σ0
2 enumeration degree that does

not bound a minimal pair. In the same paper the authors state that their construction can be
used to build a 1-generic degree that does not bound a minimal pair. Initially the goal of this
paper was to build a 1-generic enumeration degree with the needed properties by following the
construction from [2]. In the working process it turned out that significant modifications of
the construction had to be made in order to get the desired 1-generic degree. The enumeration
degree that is constructed is also Σ0

2 and generalizes the result from [2].

Constructing a 1-generic degree that does not bound a minimal pair

Definition A.1.1. A set A is enumeration reducible to a set B if there is a c.e. set Φ such
that:

n ∈ A ⇔ ∃u(〈n, u〉 ∈ Φ ∧Du ⊂ B)
where Du denotes the finite set with code u under the standard coding of finite sets. The c.e.
set Φ is an enumeration operator and its elements will be called axioms. We will write A ≤e B

to denote that A is enumeration reducible to B and A = Φ(B) to denote the fact that A is
enumeration reducible to B via the enumeration operator Φ.

We will denote enumeration operators by capital Greek letters Φ,Θ . . . .
As with Turing reducibility, enumeration reducibility gives rise to a degree structure. Note

that all c.e. sets have degree 0, the least enumeration degree.
We will use lower case Greek letters (especially ρ, τ) for finite binary strings and let τ ⊆ ρ

indicate that τ is an initial segment of ρ. When A is a set τ ⊂ A means that τ is an initial
segment of A′s characteristic function χA considered as an infinite binary sequence.

Definition A.1.2. A set A is 1-generic if for every c.e. set X of finite binary strings
∃τ ⊂ A(τ ∈ X ∨ ∀ρ ⊇ τ(ρ /∈ X)).

An enumeration degree is 1-generic if it contains a 1-generic set.

Definition A.1.3. A pair of enumeration degrees a and b form a minimal pair in the semi-
lattice of the enumeration degrees if:

1. a > 0 and b > 0.

2. For every enumeration degree c (c ≤ a ∧ c ≤ b → c = 0).

Theorem A.1.1. There exists a 1-generic enumeration degree a that does not bound a minimal
pair in the semi-lattice of the enumeration degrees.

We will use the priority method with infinite injury to build a set A whose e-degree will
have the intended properties. The construction involves a priority tree of strategies. For
further definitions of both computability theoretic and tree notations and terminology we refer
the reader to [3] and [4].
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The Requirements

We will construct a set A satisfying the following requirements:

1. A is generic. Therefore for all c.e. sets W we have a requirement:
GW : ∃τ ⊆ A(τ ∈ W ∨ ∀µ ⊇ τ(µ /∈ W )),

where τ and µ are finite binary strings.

Let ReqG be the set of all GW requirements.

2. A does not bound a minimal pair. For each pair of enumeration operators Θ0 and Θ1 we
will have a requirement:

RΘ0Θ1 : Θ0(A) is c.e. ∨Θ1(A) is c.e.∨
∨∃D(D ≤e Θ0(A) ∧D ≤e Θ1(A) ∧D is not c.e.).

Let ReqR be the set of all RΘ0Θ1 requirements.

Fix a requirement RΘ0Θ1 . Let X = Θ0(A) and Y = Θ1(A). This requirement is too
complicated to be satisfied at once and we will break it up into subrequirements:

RΘ0Θ1 : (∃Φ0)(∃Φ1)(∀c.e. sets W )[SW ]

where SW is the subrequirement:
SW : X is c.e. ∨ Y is c.e. ∨ [Φ0(X) = Φ1(Y ) = D ∧ ∃d(W (d) 6= D(d))].

Let ReqS
RΘ0Θ1 be the set of all SW subrequirements of RΘ0Θ1 .

Let Req = ReqG ∪ReqR ∪ (
⋃

R∈ReqR
ReqS

R).

Priority Tree of Strategies

The set Req is linearly ordered with order type ω and requirements in earlier positions have
higher priority. Each particular requirement can be satisfied in more than one way. We connect
to each such way an outcome. The choice of the correct way to satisfy a certain requirement
depends on the outcomes of higher priority requirements. Therefore we represent the set of all
possible sequences of outcomes as a tree of strategies. Each node α on the tree is labelled by
a requirement P ∈ Req and the node α will be referred to as a P -strategy. The children of α

correspond to each of α’s possible outcomes. So, although each of those nodes will be labelled
by the same requirement, each may have a different approach to satisfying its requirement
depending on what it “believes” to be the outcome of α.

The set of all possible outcomes for each requirement will be linearly ordered (<L, defined
below) and the nodes of the tree of strategies will be ordered by the induced lexicographical
ordering ≤. The construction is by stages; in each stage s we construct a set As approximating
A and a string δs of length s in the tree of strategies. The initial segments δ ⊆ δs are the nodes
of the tree visited during stage s of the construction; they are the strategies that might act
to satisfy their requirements. The intent is that there will be a true path, a leftmost path of
nodes visited infinitely often, such that all nodes along the true path are able to satisfy their
requirements. If the node β is visited on stage s, we say that s is a β-true stage.
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Each node (say of length n) will build its own approximation An
s , so As = As

s; nodes will
obey restrictions on A and A set by higher priority requirements. Ultimately A will be the set
of all natural numbers a such that

(∃ta)(∀t > ta)[a ∈ At].
At the end of stage s we initialize all strategies δ > δs by setting all parameters to their initial
values and cancelling any witnesses.

We will proceed to describe what general actions the different types of strategies, corre-
sponding to the different types of requirements, will make.

1. Let γ be a GW -strategy. The actions that γ makes when visited are the following:

(a) γ chooses a finite string λγ according to rules that ensure compatibility with strate-
gies of higher priority.

(b) Then it searches for a string µ such that λγˆµ ∈ W . If it finds such a string then γ

remembers the shortest one, µγ , and has outcome 0. If not then µγ = ∅ and the
outcome is 1. The order between the two outcomes is 0 <L 1. The strategy will be
successful if λγˆµγ ⊆ A. γ will restrain some elements out of and in A to ensure
this.

2. Let α be a RΘ0Θ1 -strategy. It acts as a mother strategy to all its substrategies ensuring
that they work correctly. We assume that on this level the two enumeration operators
Φ0 and Φ1 are built. They are common to all substrategies of α. This strategy has only
one outcome: 0.

3. Let β be a SW -strategy. It is a substrategy of one fixed RΘ0Θ1 -strategy α ⊂ β. The
actions that β makes are the following:

(a) First it tries to prove that the set X is c.e. by building a c.e. set U which should
turn out to be equal to X. On each stage it adds elements to U and then looks if
any errors have occurred in the set. While there are no errors the outcome is ∞X .

(b) If an error occurs then some element that was assumed to be in the set X has been
extracted from X. The strategy can not fix the error by extracting the element from
U because we want U to remain c.e. In this case β gives up on its desire to make X

c.e. It finds the smallest error k ∈ U\X and forms a set Ek which is called an agita-
tor set for k. The agitator contains an element a for every axiom for k in the current
approximation of Θ0, say 〈k,Dk〉, such that a ∈ Dk. So extracting the agitator set
from A will make sure that each axiom for k in Θ0 will not be valid for Θ0(A) = X,
that is will make sure that k /∈ X. On the other hand with some additional actions
we will make sure that if the agitator is a subset of A then k ∈ X. And so the ag-
itator will have the following property which we will refer to as the control property:

k ∈ X ⇔ Ek ⊆ A.

The strategy now turns its attention to Y . It tries to prove that it is c.e. by
constructing a similar set Vk that would turn out to be equal to Y . It makes similar
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actions, checking at the same time if the agitator for k preserves its control property.
Note that the agitator will lose this property if a new axiom for k is enumerated in
Θ0. While there are no errors in Vk the outcome is 〈∞Y , k〉.

(c) If an error is found in Vk, the strategy chooses the least l ∈ Vk\Y and forms an
agitator F k

l for l in a similar way. F k
l now has the control property:

l ∈ Y ⇔ F k
l ⊆ A.

Now β has some control over the sets X and Y , namely using the agitators it can
determine whether or not k ∈ X and l ∈ Y . It adds axioms 〈d, {k}〉 ∈ Φ0 and
〈d, {l}〉 ∈ Φ1 for some witness d, constructing a difference between D and W . If
d ∈ W the outcome is 〈l, k〉 and the agitators are kept out of A. If d /∈ W then the
agitators are enumerated back in A, so d ∈ D and the outcome is the symbol d0.

The possible outcomes of a SW -strategy are:
∞X <L T0 <L T1 <L · · · <L Tk <L · · · <L d0

where Tk is the following group of outcomes:
〈∞Y , k〉 <L 〈0, k〉 <L 〈1, k〉 <L · · · <L 〈l, k〉 <L . . .

The priority tree of strategies is a computable function T with Dom(T ) ⊆ {0, 1,∞X ,

〈∞Y , k〉, 〈l, k〉, d0|k, l ∈ N}<ω and Range(T ) = Req for which the following properties hold:

1. If α ∈ Dom(T ) and T (α) ∈ ReqR then α 0̂ ∈ Dom(T ).

2. If γ ∈ Dom(T ) and T (γ) ∈ ReqG then γ ô ∈ Dom(T ) where o ∈ {0, 1}.
3. If β ∈ Dom(T ) and T (β) ∈ ReqS

R then β ô ∈ Dom(T ) where
o ∈ {∞X , 〈∞Y , k〉, 〈k, l〉, d0|k, l ∈ N}.

4. For all δ ∈ Dom(T ) such that the length lh(δ) is even T (δ) ∈ ReqG.

5. If α ∈ Dom(T ) is a R-strategy then for each subrequirement SW there is a SW -strategy
β ∈ Dom(T ), a substrategy of α, such that α ⊂ β.

6. If β is a SW -strategy, a substrategy of α, then α ⊆ β and under βˆ∞X and β 〈̂∞Y , k〉
there aren’t any other substrategies of α.

7. For each infinite path h in T and each R- or G-requirement there is a node h ¹ n along the
path which is a R- or G-strategy respectively. For every SW -requirement, subrequirement
of R, there is also a node h ¹ n which is an SW -strategy, unless there is already a higher
priority SW -strategy h ¹ m belonging to the same requirement R and h(m + 1) = ∞X

or h(m + 1) = 〈∞Y , k〉.

Interaction between strategies

In order to have any organization whatsoever we make use of a global parameter, a counter b,
whose value will be an upper bound to the numbers that have appeared in the construction up
to the current moment.
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1. First we will examine the interaction between an SW -strategy β and a GW -strategy γ.
The interesting cases are when γ ⊇ βˆ∞X and similarly when γ ⊇ β 〈̂∞Y , k〉.
Let γ ⊇ βˆ∞X and suppose β is of length n. Suppose β is visited on stage s > n and
adds an element k to the set U . There is an axiom 〈k, E′〉 ∈ Θ0 which is currently valid,
i.e. E′ ⊆ An

s . The strategy β will keep a list U of the axioms from Θ0 that it assumes
to be valid when enumerating new elements in U . It is possible that later (even on the
same stage) γ chooses a string µγ and extracts a member of E′ from A. If there aren’t
any other axioms for k in the corresponding approximation of Θ0, we have an error in
U . On the next β-true stage, s1 say, β will find this error, choose an agitator for k and
move on to the right with outcome 〈∞Y , k〉. It is possible that later a new axiom for
k is enumerated in the corresponding approximation of Θ0 and thus the error in U is
corrected. On the next β-true stage s2, β returns to its initial aim to prove that X is c.e.
But then another GW -strategy γ1 ⊇ γ chooses a string µγ1 and again takes k out of U

by extracting an element that invalidates the new axiom for k. If this situation appears
infinitely many times, ultimately we will claim to have X = U but k will be taken out of
X infinitely many times and thus our claim would be wrong. Then this SW requirement
will not be satisfied. This is why we will have to ensure some sort of stability for the
elements that we put in U , more precisely for the corresponding axioms in U that we
assume to be valid. This is how the idea for applying an axiom arises. We apply an
axiom 〈k, E′〉 by changing the value of the global parameter b so that it is larger than
the elements of the axiom and then by initializing those strategies that might take k out
of X.

The first thing that comes to mind is to initialize all strategies δ ⊇ βˆ∞X . This way we
would avoid errors at all. If the set X is infinite though, we would never give a chance to
strategies δ ⊇ βˆ∞X to satisfy their requirements. This problem is solved with the notion
of local priority. Every GW -strategy γ ⊇ βˆ∞X will have a fixed local priority regarding
β. This priority is given by a computable bijection σβ : Γ → N where Γ is the set of
all GW -strategies in the subtree of βˆ∞X . If γ ⊂ γ1 then σβ(γ) < σβ(γ1). A strategy
γ ⊇ βˆ∞X has local priority σβ(γ) in relation to β. When we apply the axiom 〈k, E′〉
only strategies γ with σβ(γ) greater than k will be initialized. Then as the stages grow
so do the elements that we put into U and with them grows the number of GW -strategies
that we preserve. Ultimately all strategies will get a chance to satisfy their requirements.

2. Now let us examine the interactions between two SW -strategies β and β1. The interesting
case is β ⊇ β1ˆ∞X and α ⊂ α1 where α and α1 are the corresponding mother strategies.
Suppose that on stage s1 the strategy β chooses its agitators Ek and F k

l and takes them
out of A. Note that it is important to keep both agitators in A or both agitators out of
A to preserve the equality in the sets Φα

0 (X) and Φα
1 (Y ) constructed at level α. Suppose

now that on the next β1-true stage s2 the strategy β1 decides to build its own agitators
and in them it includes members from only one of the agitators that β selected at stage
s1, causing a difference in the sets Φα

0 (X) and Φα
1 (Y ). To avoid this β1 will choose
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its agitators carefully: along with the elements needed to form the agitator with the
requested control property it will add also all elements of all agitators that were chosen
and out of A on the previous β1-true stage s1. Thus the two agitators of β will not be
separated and will not cause an error such as d /∈ Φα

0 (X) and d ∈ Φα
1 (Y ).

Unfortunately this will not solve the problem completely. It is possible that on a later
stage s3 a new axiom is enumerated in Θ0 for k or a new axiom is enumerated in Θ1 for l,
causing one of the agitators to lose its control property and creating a difference between
the sets Φα

0 (X) and Φα
1 (Y ) at the element d. If β is visited again then it would fix this

mistake by discarding the false witness d. If not, the error would stay unfixed and the
R-strategy α might not satisfy its requirement. Therefore we will attach a new parameter
to α: a list Watchedα through which α will keep track of all its SW -substrategies. The
list will contain entries for all substrategies including information on what their agitators
are. If α sees that one of the agitators loses its control property then it will go ahead with
the actions on discarding the false witness and correcting the mistake in the operators
Φ0 and Φ1 in advance. This action will not interfere with β’s work. In fact if β is ever
visited again it will cancel the witness and give up the agitator that has lost its control
property. In that sense α is just pre-empting the actions of β.

The Construction

We will begin the description of the construction by listing again all parameters that are con-
nected with each strategy. Their purpose was explained intuitively in the previous two sections.
While describing the parameters we will suppress the superscripts that indicate the strategy
to which they belong. The superscripts will appear only when more than one strategies are
involved in a discussion and we need to distinguish between their parameters.

We have one global parameter b, common to all strategies, which is an upper bound to all
elements that have appeared so far in the construction. Its initial value is 0.

In addition every strategy δ visited on stage s will have two more parameters Es and Fs.
The set Es contains all elements restrained out of A on this stage s by strategies δ′ ⊂ δ. The
set Fs contains all elements that are restrained in A by strategies of higher priority δ′′ < δ.
Note that these elements may have been restrained on a previous stage.

Each GW -strategy γ will have two parameters: finite binary strings λ and µ, with initial
value the empty string ∅.

Each R-strategy α has a list Watched with entries of the form
〈β : 〈E,Ek, F k

l 〉, d〉 where β is a substrategy of α, Ek and F k
l are β’s current agitators, the set

E contains information needed to assess if the agitators still have the control property and d is
the witness that must be cancelled in case one of the agitators loses its control property. The
initial value of the list is ∅. Also α has the parameters Φ0 and Φ1, the enumeration operators
that α and all its substrategies β construct together. Their initial value is ∅ as well.

Each S-strategy β inherits the two parameters Φ0 and Φ1 from its mother strategy. In
addition it has c.e. sets U and Vk for all k, initially all empty. Then corresponding to them lists
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U and Vk, with initial values the empty list. During the construction β might form agitators
Ek for all k and F k

l for all k and l or choose a witness d, but initially the agitators are empty
and the witness is undefined.

On stage s = 0 all nodes of the tree are initialized, b0 = 0, δ0 = ∅ and A0 = N.
On each stage s > 0 we will have A0

s = N, δ0
s = ∅ and b0

s = bs−1
s−1.

Let’s assume that we have already built δn
s , An

s and bn
s . If n = s then go on to the next

stage s + 1. Otherwise n < s the strategy δn
s makes some actions as described below and has

an outcome o. Then δn+1
s = δn

s ô.

I. δn
s is a GW -strategy γ.

(a) If λ = ∅ then define λ to be the binary string of length bn
s + 1 such that

λ(a) ' 0 iff a ∈ Es

and increase the value of the counter to bn+1
s = bn

s + 1.

(b) If µ = ∅ then ask if ∃µ( λˆµ ∈ W ). If the answer is No then An+1
s = An

s . All
elements for which λ(a) = 1 are restrained by γ in A and the outcome is o = 1. If
the answer is Yes then let µ be the least such binary string so that λˆµ ∈ W and
increase the value of the counter to
bn+1
s = max(bn+1

s , lh(λˆµ) + 1).

Now µ is defined and λˆµ ∈ W . All a such that λˆµ(a) = 1 are restrained in A by
γ. All a such that a ≥ lh(λ) and λˆµ(a) = 0 are restrained out of A by γ. Let
An+1

s = An
s \ {a|a is restrained out of A by γ} and the outcome be o = 0.

II. δn
s is a R-strategy α.

Then scan all entries in the list Watchedα. For each 〈β : 〈E, Ek, F k
l 〉, d〉 ∈ Watched

check if there is an axiom 〈k,E′〉 ∈ Θ0 such that E′ ∩ (E ∪ Ek) = ∅ or 〈l, F ′〉 ∈ Θ1 such
that F ′ ∩ (E ∪Ek ∪F k

l ) = ∅. If there is such an axiom then cancel d by enumerating in
both sets Φ0 and Φ1 the axiom 〈d, ∅〉. An+1

s = An
s and o = 0.

III. δn
s is a SW -strategy β, a substrategy of α .

First check if β is watched by α and delete the corresponding entry from Watchedα if
there is one. Unless otherwise specified bn+1

s = bn
s . The actions that β makes depend on

the outcome o− that it had on the previous β-true stage s−. If this is the first β-true
stage in the construction, let o− = ∞X

(a) The outcome o− is ∞X .

1. Choose the least k ∈ X\U . Here X = Θs
0(A

n
s ). If there is such an element

then there is an axiom 〈k,E′〉 ∈ Θs
0 with E′ ⊆ An

s . Enumerate k in the set U

and its relevant axiom 〈k,E′〉 in the list U. Apply this axiom by initializing
all strategies δ ⊇ βˆ∞X such that there is a GW -strategy γ ⊆ δ of local βˆ∞X -
priority with value greater than k and by setting bn+1

s = max(bn
s , E′).
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2. Proceed through the elements of U until an element draws attention or until
all elements are scanned. An element k ∈ U draws attention if there isn’t an
applicable axiom for it.

Definition A.1.4. An axiom 〈k,E′〉 ∈ Θ0 is applicable if:
1. E′ ∩ Eβ

s = ∅,
2. E′ ∩ Out1s = ∅ where Out1s is the set of all elements restrained out of A

by some strategy δ ⊇ βˆ∞X such that:

i. δ ⊆ δs− ,

ii. All GW -strategies γ ⊆ δ have local βˆ∞X-priority with value less than k

(the ones that cannot be initialized when applying an axiom for k).

The intuition behind this definition is that it is plausible that the axiom will
end up valid. Note that the set Out1 includes all elements that are restrained
by GW strategies with local priority less than k along what seems to be the true
path. When we find a valid axiom that has not been applied, we will apply it
thereby initializing all strategies below the first GW -strategy with local priority
greater than k along each path. We will not however initialize SW -strategies
above some GW -strategy with local priority less than k. These SW -strategies
may have already chosen an agitator that may remain permanent. Therefore
we must respect their choice and ask that an applicable axiom does not include
any such elements.
For each element k ∈ U act as follows:

• If k doesn’t draw attention, find an applicable axiom 〈k, E′〉 for k that has
minimal code. If the entry for k in U is different, replace it with 〈k,E′〉.
If the axiom 〈k, E′〉 is not yet applied, apply it.
If there aren’t any elements k that draw attention then let An+1

s = An
s and

o = ∞X .

• If k draws attention:

A. Initialize all strategies δ ⊇ βˆ∞X such there is a GW -strategy γ ⊆ δ of
local βˆ∞X -priority with value greater than k.

B. Examine all strategies in the subtree with root βˆ∞X . If β′ was visited
on stage s−, had outcome 〈l′, k′〉 and was not initialized after stage s−

then add to the list Watchedα′ where α′ is the mother strategy of β′ an
element of the following structure:
< β′ : 〈Eβ′

s− , Eβ′

k′ , F
k′,β′

l′ 〉, dβ′ > .

Then define the agitator for k as Ek = Out1s\Eβ
s . All elements a ∈ Ek

are restrained out of A by β. Let An+1
s = An

s \Ek and o = 〈∞Y , k〉.
(b) The outcome o− is 〈∞Y , k〉.

1. Check if there is an axiom 〈k, E′〉 ∈ Θ0 such that E′ ∩ (Eβ
s ∪ Ek) = ∅. If so

then act as in d.1.
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2. Choose the least element l ∈ Y \Vk. If there is such an element then there is
〈l, F ′〉 ∈ Θs

1 with F ′ ⊆ An
s \Ek. Enumerate the element l in Vk and its corre-

sponding axiom 〈l, F ′〉 in Vk. Apply this axiom by initializing all strategies
δ ⊇ β 〈̂∞Y , k〉 such there is a GW -strategy γ ⊆ δ of local β 〈̂∞Y , k〉-priority
with value greater than l and by setting bn+1

s = max(bn
s , F ′).

3. Proceed through the elements of Vk until all are scanned or until an element
draws attention. An axiom 〈l, F ′〉 ∈ Θ1 is defined to be applicable similarly to
case a.2:

Definition A.1.5. An axiom 〈l, F ′〉 ∈ Θ1 is applicable if:
1. F ′ ∩ Eβ

s = ∅,
2. F ′ ∩ Out2s = ∅ where Out2s is the set of all elements restrained out of A

by some strategy δ ⊇ β 〈̂∞Y , k〉 such that:

i. δ ⊆ δs− ,

ii. All GW -strategies γ ⊆ δ have local β 〈̂∞Y , k〉-priority with value less than
l,

3. F ′ ∩ Ek = ∅.
For each element l ∈ Vk act as follows

• If l doesn’t draw attention, find an applicable axiom with minimal code
〈l, F ′〉. If the entry for l in Vk is different, replace it with 〈l, F ′〉. If the
axiom 〈l, F ′〉 is not yet applied, apply it.
If none of the elements draw attention then let An+1

s = An
s \Ek and o =

〈∞Y , k〉.
• If l draws attention:

A. Initialize all strategies δ ⊇ β 〈̂∞Y , k〉 such that there is a GW -strategy
γ ⊆ δ of local β 〈̂∞Y , k〉-priority with value greater than l.

B. Examine all strategies in the subtree with root β 〈̂∞Y , k〉. If β′ was vis-
ited on stage s−, had outcome 〈l′, k′〉 and was not initialized after stage
s− then add to the list Watchedα′ where α′ is the mother strategy of β′

an element of the following structure: < β′ : 〈Eβ′

s− , Eβ′

k′ , F
k′,β′

l′ 〉, dβ′ >.
The agitator for l is F k

l = Out2s\(Eβ
s ∪Ek). All elements a ∈ (Ek∪F k

l )
are restrained in A by β.
Find the least element d that has not been used in the definition of Φ0

yet. This will be a witness β. Enumerate the axiom 〈d, {k}〉 in Φ0 and
the axiom 〈d, {l}〉 in Φ1. Let An+1

s = An
s and o = d0.

(c) The outcome o− is d0. Check if the witness d has been enumerated in the c.e. set
W . That is, check if d ∈ Ws.

If the answer is Yes then β restrains all elements a ∈ (Ek ∪ F k
l ) out of A. Let

An+1
s = An

s \(Ek ∪ F k
l ) and o = 〈l, k〉.

If the answer is No then let An+1
s = An

s and o = d0.
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(d) The outcome o− is 〈l, k〉. Then the agitators Ek and F k
l and the witness d are

defined.

1. Check for an axiom 〈k,E′〉 ∈ Θ0 such that E′ ∩ (Eβ
s ∪Ek) = ∅, that is Ek has

lost its control property. If there is one then cancel d and let Vk = Vk = Ek =
F k

l = ∅. Replace the entry for k in U with 〈k, E′〉. Apply the axiom 〈k,E′〉.
The strategy β stops restraining elements a ∈ Ek ∪ F k

l . Let An+1
s = An

s and
o = βˆ∞X .

2. Check for an axiom 〈l, F ′〉 ∈ Θ1 such that F ′ ∩ (Eβ
s ∪Ek ∪F k

l ) = ∅. If there is
one then cancel d and let F k

l = ∅. Replace the entry for l in Vk with 〈l, F ′〉.
Apply the axiom 〈l, F ′〉. The strategy β stops restraining elements a ∈ F k

l .
Let An+1

s = An
s \Ek and o = β 〈̂∞Y , k〉.

3. If neither of the above two cases hold, hence both agitators still have their
control property, then let An+1

s = An
s \(Ek ∪ F k

l ) and o = 〈l, k〉.

Proof

The proof of the theorem is divided into four groups of lemmas. The first group is about the
restrictions. It gives a clear idea about which elements are restrained at different stages. The
second group of lemmas is about the agitator sets. Its purpose is to prove that the agitators
have the intended control properties that we claim. Then follows the group of lemmas about
the true path. Finally we prove that the requirements are indeed satisfied.

Restriction Lemmas

The restriction lemmas are basic tools for the rest of the proof. We will establish some
basic rules about the restriction that will help us later determine properties of the characteristic
function of A. Note that, since the tree is infinitely branching, we could have infinite activity
to the right of the true path. The following lemmas ensure that this activity does not have any
undesired effect on A.

We start off with a simple property of the agitator sets that will be helpful for the rest of
the restriction lemmas.

Propostion A.1.1. Let β be a strategy that is visited and chooses an agitator Ag on stage s.
Then the elements of the agitator Ag were restrained out of A by some GW -strategy γ ⊃ β on
some previous stage s0 < s after β was last initialized.

Proof. The proof is by induction on s. Suppose the lemma is true for all strategies visited on
stages t < s and let β be visited on stage s. Assume β chooses its agitator and let a be an
element from this agitator. Finally let s′ be the stage on which β was last initialized before
stage s. We will concentrate on the case when β chooses Ek; the case when it chooses F k

l is
similar. Then a ∈ Out1s and hence is restrained out of A on stage s− by some strategy in the
subtree with root βˆ∞X . Obviously s− > s′, otherwise Out1s = ∅ because all strategies that
extend β would also be initialized and would not restrain any elements out of A.
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If a was restrained out of A by a GW -strategy on stage s− the lemma is proved. Suppose
a was restrained by a SW -strategy β′ ⊇ βˆ∞X . Then a is in the agitator Agβ′ of β′. This
agitator was chosen on some stage t ≤ s− and β′ was not initialized on stages between t and
s− as otherwise the agitator would be cancelled. So if we assume that β′ was cancelled for the
last time before stage s on stage t′, we have s′ ≤ t′ < t ≤ s−.

Then according to our induction hypothesis for t we have that a was restrained by a GW -
strategy on stage t0 such that t′ < t0 < t. In particular s′ < t0 < s. This concludes the
induction and the proof of the lemma.

Lemma A.1.1 (Preserving the Restrictions Lemma). Let s1 and s2 be two consecutive δ-true
stages. If δ is not initialized on any intermediate stage t such that s1 < t ≤ s2 then Eδ

s1
= Eδ

s2
.

Proof. We will prove the lemma by induction on the length of δ. If δ is of length 0 then δ = ∅
and Eδ

s1
= Eδ

s2
= ∅. So let us assume that the statement is true for strategies δ of length n.

We will prove that it holds for δ ô.
Suppose δ1 = δ ô is visited on stages s1 and s2 and not initialized on stages t such that

s1 < t ≤ s2. Then δ is also visited on stages s1 and s2 and is not initialized on any stage t such
that s1 < t ≤ s2. The induction hypothesis gives us Eδ

s1
= Eδ

s2
. So we only need to prove that

the elements that δ restrains on stages s1 and s2 are the same. Indeed on each stage the set
Eδ1 is obtained from Eδ by adding the elements that δ restrains out of A on that stage.

We will examine the different cases:

Case 1. If δ is a R-strategy, a GW -strategy with o = 1 or a SW -strategy with o = ∞X or o = d0

then δ does not restrain any elements on stages s1 and s2.

Case 2. Suppose δ is a GW -strategy with outcome o = 0. Then the value of δ’s parameters λ and
µ are the same on stages s1 and s2, as they can change only after initialization. Therefore
the elements that δ restrains on both stages s1 and s2 are the same as well, namely the
elements a > lh(λδ) such that λδˆµδ(a) = 0.

Case 3. Suppose δ is a SW -strategy with outcome o = 〈∞Y , k〉. Then the elements that δ restrains
out of A on stages s1 and s2 are the ones in (Ek)s1 and (Ek)s2 respectively. If we assume
that (Ek)s1 6= (Ek)s2 then on some stage t such that s1 < t ≤ s2 we would have had an
outcome o = ∞X . Indeed δ can only choose a value for its agitator Ek if it had outcome
∞X on the previous true stage. Once the value is chosen it can only be changed if the
strategy is initialized or if the agitator loses its control property. In the latter case δ

would have outcome ∞X . But ∞X <L 〈∞Y , k〉 and therefore δ1 would be initialized on
stage t.

Case 4. Suppose δ is a SW -strategy with outcome o = 〈l, k〉. Then the elements that δ restrains
on stages s1 and s2 are the ones in (Ek)s1 ∪ (F k

l )s1 and (Ek)s2 ∪ (F k
l )s2 respectively.

If we assume that (Ek)s1 6= (Ek)s2 or (F k
l )s1 6= (F k

l )s2 then on some stage t such that
s1 < t ≤ s2 we would have had an outcome o′ = ∞X or o′ = 〈∞Y , k〉 to the left of o and
δ1 would be initialized on stage t.
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Propostion A.1.2. If s is a δ-true stage and a ∈ Eδ
s then δ cannot restrain a (in or out of A)

on this stage.

Proof. 1. Let δ be a GW -strategy. Let s0 ≤ s be the earliest stage on which δ is visited such
that δ is not initialized between stages s0 and s. According to Lemma A.1.1, Eδ

s0
= Eδ

s and
therefore a ∈ Eδ

s0
. The value of the parameter λδ is chosen on stage s0 and remains the same

until stage s. Then a < lh(λδ) and λδ(a) = 0, hence δ does not restrain a on stage s.
2. Let δ be a SW -strategy. Then δ restrains only elements in its agitators. Let s0 ≤ s

be the stage on which δ is visited and chooses an agitator Ag. According to Lemma A.1.1
Eδ

s0
= Eδ

s and therefore a ∈ Eδ
s0

. According to the construction Ag∩Eδ
s0

= ∅. Therefore δ does
not restrain a.

Lemma A.1.2. If s is a δ-true stage and a ∈ F δ
s then δ can not restrain a out of A on stage

s.

Proof. Assume that a is restrained in A by δ1 < δ on stage s1 ≤ s. Note that a ∈ F δ
s until δ1

is initialized or is visited and stops restraining a in A. Hence δ1 is not initialized until stage s.
Let s2 ≥ s1 be the first stage after the imposition of the restraint on which δ is visited. We will
prove that s2 is the first visit of δ after an initialization.

Case 1. δ1 <L δ . Then δ is initialized on stage s1.

Case 2. δ1 ⊂ δ.

a. δ1 is a GW -strategy. Then s1 is the earliest stage after δ1’s last initialization, say
on stage t, on which it picks a value for one of it parameters λ or µ.

If δ1 chooses λδ1 on stage s1 then s1 is the first stage after the initialization on
stage t on which δ1 is visited. But δ was also initialized on stage t. If δ1 chooses µδ1

on stage s1 then it has outcome 0 and will have outcome 0 on each visit until it is
initialized again (if ever). As δ is visited on stage s we can conclude that δ ⊇ δ1 0̂.
On the other hand the nodes that extend δ1 0̂ are visited for the first time after δ1’s
last initialization on stage t not sooner than on stage s1.

b. δ1 is a SW -strategy then on stage s1 it has outcome d0. This is the only case when
a SW -strategy restrains elements in A. Furthermore δ1 had outcome 〈∞Y , k〉 on
its previous visit on stage s−1 and has outcome d0 on each visit after s1 while it is
restraining the element in A. In particular it has this outcome on stage s. Hence
δ ⊇ δ1 d̂0 and was initialized on stage s−1 , when δ1 had outcome 〈∞Y , k〉.

So, if γ ⊇ δ is a GW -strategy then for any λγ that γ chooses on stages after stage s1 we
have a < lh(λγ) and γ cannot restrain a out of A.

If δ is a SW -strategy and we assume that δ restrains a out of A then a is included in some
agitator Ag. As we proved in Proposition 1, any element of the agitator has been restrained
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out of A by some GW -strategy γ ⊃ δ after δ′s last initialization. But we just proved that no
such γ restrains a out of A. Hence a /∈ Ag.

Lemma A.1.3. Suppose that on stage s we visit δ1. Suppose that δ1 restrains out of A an
element a that is currently restrained in A by a lower priority strategy δ2 ⊃ δ1. Then δ2 is
initialized on stage s.

Proof. We will make the proof by induction on the distance d(δ1, δ2) = lh(δ2) − lh(δ1). We
know that d > 0. Let us assume that the statement is true for all pairs of strategies with
distance d < n. Let d(δ1, δ2) = n.

On stage s0 we have visited δ2 which restrained a in A. Then from stage s0 up until
the substage on which we visit δ1, the element is still restrained in A, hence δ2 has not been
initialized since stage s0. Then neither is the strategy δ1.

It follows from Proposition A.1.2 that a was not restrained out of A by δ1 on stage s0. So
on stage s the elements that δ1 restrains out of A are different from the ones it restrained on
stage s0.

If δ1 is a GW -strategy, this could only happen if it had outcome 1 on stage s0 and outcome
0 on stage s. The parameter λδ1 does not change value between stages s0 and s, as δ1 is not
initialized. So only if the parameter µ changed value, could δ1 restrain new elements out of A.
But this means that δ2 ⊇ δ1 1̂ and is initialized on stage s.

If δ1 is a SW -strategy then a is included in some agitator Ag. This agitator was chosen on
stage t ≤ s and is extracted from A on stage s, but was not extracted from A on stage s0.

The easy case is δ2 ⊇ δ1 d̂0. Then on stage s, δ1 has outcome 〈l, k〉 and initializes δ2.
Whenever δ1 has outcome 〈l, k〉 both agitators are extracted from A. In particular if this

is the outcome on s0, as the elements extracted by δ1 on stages s0 and s are different, δ1 must
have had outcome ∞X or 〈∞Y , k〉 on an intermediate stage when it changed the values of at
least one of the agitators. On that stage δ2 would be initialized.

This leaves us with δ2 ⊇ δ1ˆ∞X or δ2 ⊇ δ1 〈̂∞Y , k〉. In the first case Ag = Ek, as elements
that enter F k

l are restrained by GW -strategies below δ1 〈̂∞Y , k〉 by Proposition 1. These are
initialized on stage s0 and can not restrain a out of A by Lemma A.1.2. In the second case
Ag = F k

l as Ek is already extracted from A on stage s0 and does not change until stage s, or
δ1 would have outcome ∞X on an intermediate stage and δ2 would be initialized.

In both cases the agitator is chosen on stage t > s0 and after that δ1 has outcome to the
right. Then by the definition of an agitator the element a was restrained out of A by some
σ ⊃ δ1 on stage t− ≥ s0. We claim that σ ⊂ δ2 and s0 < t− so by the induction hypothesis δ2

would be initialized on stage t−, contradicting our assumptions.
Indeed σ <L δ2 would initialize δ2 on stage t− and δ2 < σ would not allow σ to restrain a

out of A. So σ ⊂ δ2 and furthermore s0 6= t− or by Proposition A.1.2 δ2 cannot restrain a at
all on stage s0.

Corollary A.1.1. ∀s∀δ(Eδ
s ∩ F δ

s = ∅).
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Proof. Assume for a contradiction that ∃s∃δ(Eδ
s ∩ F δ

s 6= ∅). Let s be the least stage and δ be
the least strategy for which our assumption holds. Let a ∈ Eδ

s ∩F δ
s . Then when we visit δ, a is

restrained out of A by δ1 ⊂ δ and a is restrained in A by δ2 < δ. We will examine the possible
positions of δ1 and δ2:

1. δ1 > δ2. But then a ∈ F δ1
s and δ1 cannot restrain a out of A.

2. δ1 < δ2. Then δ1 ⊂ δ2. We know that δ1 restrains a on stage s. According to Lemma
A.1.3 δ2 is initialized on stage s. But then it stops restraining elements and a is not
restrained by δ2 when we visit δ. This contradicts our choice of δ2.

Lemmas about the Agitators

Let’s take a closer look at the agitators. Suppose β chooses an agitator at stage s. Then
o− = ∞X , in which case Ag = Out1s\Eβ

s , or o− = 〈∞Y , k〉, in which case Ag = Out2s\(Ek ∪
Eβ

s ). It follows from Lemma A.1.1 that Eβ
s = Eβ

s− . Any element a in Out1 or Out2 was
restrained on stage s− by a strategy δ ⊃ β and hence Eδ

s− ⊇ Eβ
s− . So Out1s∩Eβ

s = Out2s∩Eβ
s =

∅. Also in the second case Eδ
s− ⊇ Ek, so Out2s ∩ Ek = ∅. Hence the agitators have a simpler

definition, namely Ag = Out1s in the first case and Ag = Out2s in the second case.
Suppose β′ ⊃ β is a SW -strategy and on stage s− it was visited and had outcome 〈l′, k′〉.

Then let Eβ′ = Eβ
β′ ∪Ek′ ∪ F k′

l′ where Eβ
β′ = Eβ′

s−\Eβ
s− : the elements that are restrained out of

A by strategies below β, but above β′. If β′ is not initialized on stage s then Eβ′ ⊂ Ag.
Similarly if β′ ⊃ β is a SW -strategy and on stage s− it was visited and had outcome

〈∞y, k′〉 then let Eβ′ = Eβ
β′ ∪Ek′ where Eβ

β′ = Eβ′

s−\Eβ
s− . If β′ is not initialized on stage s then

Eβ′ ⊂ Ag.
Now that we have established these basic facts about the agitators we can proceed with

the proof of some of their more complicated properties. Note that every SW -strategy may have
influence on the operators Φ0 and Φ1 that it helps construct, even if it is visited finitely many
times. The following lemmas give us information on what that influence might be.

Lemma A.1.4. 1. Let β be a strategy that is visited on stage t0 and chooses an agitator Ek

for k. If the node βˆ∞X is never again initialized or visited on any stage t > t0 and Ek ⊆ A

then k ∈ X.
2. Let β be a strategy that is visited on stage t0 and chooses an agitator F k

l for l. If the
node β 〈̂∞Y , k〉 is not initialized or visited on any stage t > t0 and F k

l ⊆ A then l ∈ Y .

Proof. We will prove the first clause of the lemma; the second clause is proved similarly. To
prove that k ∈ X = Θ0(A) we need to find an axiom 〈k,E′〉 ∈ Θ0 with E′ ⊂ A.

Consider the axiom 〈k, E′〉 for k listed in U on stage t0. We will prove that it has that
property. It was applied not later than on stage t0. Furthermore it was valid when it entered
U hence E′ ∩ Eβ

t0 = ∅ according to Lemma A.1.1.
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The strategy β chooses an agitator for k on stage t0. Hence we initialize all strategies δ

such that β <L δ. Furthermore ot−0
= ∞X , hence on stage t−0 we have initialized all strategies

δ′ such that βˆ∞X <L δ′. The strategies δ′ ⊃ β such that βˆ∞X <L δ′ are initialized on stage
t−0 and are not visited again before stage t0.

Therefore all nodes δ such that βˆ∞X <L δ cannot restrain elements from E′ out of A.
And the only strategy that can extract elements from E′ out of A on stage t0 is β.

For a contradiction assume that an element a ∈ E′ is extracted from A on infinitely many
stages t. Let t1 be the first stage after t0 on which a /∈ At1 . Let δ restrain a out of A on stage
t1. We know that βˆ∞X ≮L δ. Also our assumptions on β, namely that βˆ∞X is never again
visited or initialized, give us that δ + βˆ∞X and δ ≮L βˆ∞X . This leaves us with the following
two possibilities:

a. δ = β. If β itself extracts the element a out of A, then a must be an element of one
of β’s agitators. The F k

l agitators are all empty at stage t0, and when they are defined at
later stages they will contain elements restrained out of A by strategies extending β 〈̂∞Y , k〉.
We have already established that such elements cannot be from the set E′, so a must be in
some version of Ek defined at or after stage t0. However, Ek will not change its value after t0,
because otherwise we will have a βˆ∞X -true stage, contradicting our assumption. As we have
also assumed Ek ⊂ A, we have reached the desired contradiction.

b. δ ⊂ β. We treat GW and SW -strategies separately.
If δ is a GW -strategy then in order to restrain elements out of A on stage t1 it must have

outcome o = 0. It cannot be that β ⊇ δ 1̂ or β would be initialized on stage t1. Hence δ 0̂ ⊆ β

and δ is not initialized on stages t such that t0 < t ≤ t1. Therefore a ∈ Eβ
t0 and a /∈ E′.

If δ is a SW -strategy then a is included in some agitator Ag which is taken out of A on
stage t1. Whenever a SW -strategy chooses an agitator it moves on to the right. If the agitator
is formed on stage t ≤ t0 then, since on stage t0 the strategy β is visited and sees a in A, we
can conclude that β ⊇ δ d̂0, but then on stage t1 it must be initialized.

Suppose Ag is formed on stage t > t0. Then a was extracted from A on the previous δ-true
stage t− by one of the strategies extending δ. Our choice of t1 as the first stage after t0 on
which a is extracted from A guarantees that t− = t0. But we know that the only strategy that
can extract a on stage t0 is β, hence a ∈ Ek ⊂ A.

Lemma A.1.5. Let β 〈̂l, k〉 be visited on stage t0. If β is not initialized or visited on stages
t > t0 and (Ek ∪ F k

l ) 6⊂ A then (Ek ∪ F k
l ∪ Eβ

t0) ∩A = ∅.

Proof. Let (Ek ∪ F k
l ) 6⊂ A. First we will prove that (Ek ∪ F k

l ) ∩ A = ∅. Let a ∈ Ek ∪ F k
l .

Then a is restrained out of A by some GW -strategy γ ⊃ β on some stage t′ < t0 after β′s last
initialization as we established in Proposition A.1.1. As β is not initialized or visited anymore,
no other GW -strategy can restrain the element a out of A. Indeed GW -strategies of higher
priority than β would initialize β if they restrained a new element. The ones to the right of
β are initialized on stage t′ and choose their parameter λ to be of length greater than a. So
if a /∈ At then a is restrained out of A by some SW -strategy δ ⊂ β. We can even say that
δˆ∞X ⊆ β, if a is included in some agitator Ek′ , and δ 〈̂∞Y , k〉 ⊆ β, if a is included in some
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agitator F k′
l′ , again using the result from Proposition A.1.1. Moreover the agitator is chosen on

stage t1 > t0, as after the strategy δ chooses its agitator it has outcomes to the right of β until
the agitator is cancelled.

Suppose a is taken out of A on stage t > t0 by β1 ⊂ β. Then a is included in the agitator
Ag1 of β1, chosen on stage t1 > t0. So a /∈ At−1

and t−1 ≥ t0. If t−1 = t0 then Ek ∪ F k
l ⊆ Ag1.

If t−1 > t0 then there is another strategy β2 such that β1 ⊂ β2 ⊂ β and a is included in one of
its agitators Ag2. With a similar argument we get a monotone decreasing sequence of stages
t1 > t2 > . . . bounded by t0, hence finite.

Therefore always when a /∈ At, we have a finite sequence of SW -strategies β1 ⊂ β2 ⊂ · · · ⊂ β

and a corresponding monotone sequence of their agitators Ag1 ⊃ Ag2 ⊃ · · · ⊃ (Ek ∪ F k
l ) such

that Ag1 is restrained out of A on stage t. If a /∈ At and t > t0 then (Ek ∪ F k
l ) ∩ At = ∅ and

ultimately (Ek ∪ F k
l ) ∩A = ∅.

Let us assume now that b ∈ Eβ
t0 ∩ A 6= ∅. Then there is a stage tb such that b ∈ At

for all t > tb. Let t′ be a stage for which (Ek ∪ F k
l ) ∩ At = ∅ and t′ > tb. Then there is a

series of SW strategies β1 ⊂ β2 ⊂ · · · ⊂ βn ⊂ β and a corresponding series of their agitators
Ag1 ⊃ Ag2 ⊃ · · · ⊃ (Ek ∪F k

l ). According to Lemma A.1.1, we can express Eβ
t0 in the following

way:
Eβ

t0 = E
βt′
t1 ∪ (Eβ1

β2
)t2 ∪ · · · ∪ (Eβn

β )t0 .
If b ∈ (Eβ1

β2
)t2 ∪ · · · ∪ (Eβn

β )t0 then b ∈ Ag1 and therefore b /∈ At′ contradicting the choice of
t′ > tb. Therefore Eβ

t0 ∩A = ∅.

The True Path

The true path will ultimately be the path along which each strategy satisfies its requirement.
It will be as usual the leftmost path visited infinitely often. It is not obvious that such a path
exists, as our tree of strategies is infinitely branching. Fortunately we can prove the following:

Lemma A.1.6. There exists an infinite path f in T with the following properties:

1. ∀n∃∞t(f ¹ n ⊆ δt) - the infinite property,

2. ∀n∃tn∀t > tn(f ¹ n ≮L δt) - the leftmost property.

Proof. We will define f by induction on n and simultaneously prove that it has the desired
properties. First f ¹ 0 = ∅ obviously has both properties. It is visited on every stage and
t0 = 0. Now let’s assume we have defined f ¹ n with the desired properties. We will define
f ¹ n+1 = (f ¹ n)̂ o where o is an outcome of the strategy f ¹ n. We will refer to this outcome
as the true outcome.

I. If f ¹ n is a R-strategy then o = 0. We always visit f ¹ (n+1) when we visit f ¹ n, hence
infinitely often and tn+1 = tn .

II. If f ¹ n is a GW -strategy then the possible outcomes are 0 and 1. As we visit f ¹ n in-
finitely many times, at least one of the two outcomes will also be visited infinitely many
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times. If
∃∞t[(f ¹ n)̂ 0 ⊆ δt]

then o = 0. As this is the leftmost possible outcome tn+1 = tn.

Otherwise (f ¹ n)̂ 0 is visited only finitely many times and there exists a stage t1 such
that ∀t > t1[f ¹ n ⊆ δt ⇒ (f ¹ n)̂ 1 ⊆ δt]. Then o = 1 and tn+1 = max(tn, t1).

III. If f ¹ n is a SW -strategy then:

(a) If
∃∞t[(f ¹ n)̂ ∞X ⊆ δt]

then o = ∞X and tn+1 = tn.

Otherwise there exists a least f ¹ n-true stage t1 such that
∀t ≥ t1[f ¹ n ⊆ δt ⇒ (f ¹ n)̂ ∞X 6⊆ δt].

On stage t1 the strategy f ¹ n chooses an agitator Ek and has outcome 〈∞Y , k〉.
Then for all stages greater than t1 the possible outcomes are 〈∞Y , k〉, {〈l, k〉|l ∈ N}
and d0.

(b) If
∃∞t[(f ¹ n)̂ 〈∞Y , k〉 ⊆ δt]

then o = 〈∞Y , k〉 and tn+1 = max(tn, t1).

Otherwise there exists a least f ¹ n-true stage t2 ≥ t1 such that
∀t ≥ t2[f ¹ n ⊆ δt ⇒ (f ¹ n)̂ ∞X 6⊆ δt ∧ (f ¹ n)̂ 〈∞Y , k〉 6⊆ δt].

Then on stage t2 the strategy f ¹ n chooses a second agitator F k
l and has outcome

d0. For all stages t > t2 the possible outcomes are d0 and 〈l, k〉.
If on some stage t3 > t2 we have an outcome 〈l, k〉 then on all stages t ≥ t3 we
would have this outcome, because you can’t return from outcome 〈l, k〉 back to d0

without passing through 〈∞Y , k〉 or ∞X .

(c) If the outcome 〈l, k〉 never occurs, that is
∀t ≥ t2[f ¹ n ⊆ δt ⇒ (f ¹ n)̂ d0 ⊆ δt],

then o = d0 and tn+1 = max(tn, t2).

(d) Otherwise there is a stage t3 such that
∀t ≥ t3[f ¹ n ⊆ δt ⇒ (f ¹ n)̂ 〈l, k〉 ⊆ δt].

Then o = 〈l, k〉 and tn+1 = max(tn, t3).

Unfortunately the leftmost property does not guarantee that the strategies along the true
path will be initialized only finitely many times and will be able to satisfy their requirements
eventually. This is due to the second case of initialization. That is why we need to prove this
separately.
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Lemma A.1.7 (Stability Lemma). For every SW -strategy β the following statement is true:
1. If βˆ∞X ⊆ f then for every k ∈ U there exists an axiom 〈k, E′〉 ∈ Θ0 and a stage tk

such that if t > tk and β is visited on t with o− = ∞X then 〈k,E′〉 is applicable for k and
therefore k does not draw attention. Furthermore E′ ⊆ A.

2. If β 〈̂∞Y , k〉 ⊆ f then for every l ∈ Vk there exists an axiom 〈l, F ′〉 ∈ Θ1 and a stage tl

such that if t > tl and β is visited on t with o− = 〈∞Y , k〉 then 〈l, F ′〉 is applicable for l and
therefore l does not draw attention. Furthermore F ′ ⊆ A.

Proof. Assume that this is not the case and choose β ⊆ f as the least strategy for which the
proposition is false. Suppose βˆ∞X ⊆ f . The case β 〈̂∞Y , k〉 ⊆ f is similar. Let k ∈ Uβ be
the least element such that k draws attention infinitely many times.

Let Γ = {γ ⊇ βˆ∞X |γ is a GW -strategy with local priority less than k }.
We choose a stage t so big that:

a. If β′ ⊂ β is a SW -strategy such that β′ˆ∞X ⊆ β then the elements of Uβ′ which are less
than or equal to the local β′-priority of any γ ∈ Γ are already in Uβ′ and do not draw
attention any more. For these elements there is an applicable axiom and let all axioms
with a smaller code that get applied at some stage be already applied. According to our
choice of β as the least strategy for which the proposition is not true, this choice of t is
satisfiable.

b. Similarly if β′ ⊂ β is a SW -strategy such that β′ 〈̂∞y, k′〉 ⊆ β then the elements of V β′

k′

which are less than or equal than the local β′-priority of any γ ∈ Γ are already in V β′

k′ ,
do not draw attention anymore and do not apply any new axioms.

c. For all elements m ∈ U such that m ≤ k we have m ∈ Ut.

d. All elements m < k do not draw attention on stages s > t and do not apply any axioms.

e. Let M = max {lh(γ)|γ ∈ Γ} + 2. Let tM be the stage for which ∀s > tM (δs ≮L f ¹ M)
from the leftmost property of f . Then t > tM .

According to our choice of t, precisely conditions a, b and e, it is true that for all s > t,
β does not get initialized on stage s. Then Lemma A.1.1 gives us that Eβ

s is the same on all
β-true stages s > t. We can therefore omit the index s in further discussions and refer to this
set as Eβ .

Let t1 > t be a stage on which f ¹ M is visited. On the next β-true stage t+1 the previous
outcome is ∞X . We scan the elements of U and change their corresponding elements in U if
needed. The elements m < k do not draw attention anymore, but it is still possible that k

draws attention.

1. If k does not draw attention then for the axiom 〈k, E′〉 in U we have that:

(a) E′ ∩ Eβ = ∅,
(b) E′ ∩Out1t+1

= ∅.
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2. If k does draw attention on stage t+1 then we define an agitator Ek = Out1t+1
and move

to the right of the true path. Let t2 be the next stage on which βˆ∞X is visited. On this
stage we must have found an axiom 〈k, E′′〉 for which again:

(a) E′′ ∩ Eβ = ∅,
(b) E′′ ∩Out1t+1

= ∅.

In both cases we have an axiom 〈k,E0〉 for which the two conditions hold. Let t3 > t1 be
a f ¹ M -true stage by which this strategy is applied. We will prove that no strategy extracts
elements from E0 on stages s > t3. Hence this axiom will be the one we are searching for.

Note that after this axiom has been applied, none of the strategies that have been initialized
during or after this application can ever restrain any elements of E0 out of A, including all
strategies below f ¹ M . At stage t1 all axioms to the right of f ¹ M have been initialized.
In the first case the axiom is applied not later than on stage t+1 . The strategies to the right
of βˆ∞X are initialized on that stage and the strategies below βˆ∞X that are to the right of
f ¹ M are not visited after their initialization until t+1 .

In the second case the axiom is applied on stage t2 and again strategies to the right of βˆ∞X

are initialized on that stage and the strategies below βˆ∞X that are to the right of f ¹ M are
not visited after their initialization until t2.

Strategies to the left of f ¹ M are not visited after stage t1 < t3 and can not restrain
elements from E0 out of A at any later stage.

The only danger is that a strategy δ along f ¹ M restrains an element from E0 out of A on
stage s > t3. We will prove that this also does not happen.

First of all if δ is a GW -strategy, by stage t1 its outcome is final and so are all elements that
it restrains out of A. These elements are in Eβ if δ ⊂ β or in Out1t+1

if δ ⊃ β. In particular a

is not restrained by δ out of A on any stage s > t3.
If δ is an SW -strategy then the elements it restrains out of A are the ones in its agitators.

We need to consider the possible ways that such agitators might be constructed. So suppose
that δ has an agitator Ag that it extracts on stage s > t3.

Notice first that our approximation of the true path δs never goes left of f ¹ M after stage
t1. Thus δ does not have outcomes to the left of the outcome it had on stage t1.

Suppose that δ had already chosen this agitator Ag by stage t1, that is Ag has already
a value on stage t1 and does not change its value until stage s on which it is out of A. If
Ag ⊂ At1 then δ has outcome d0 on stage t1. This is the rightmost outcome and as δ does not
have outcomes to the left of it on further stages it will not extract Ag on stage s. Thus Ag is
restrained out of A on stage t1. Hence Ag ⊂ Eβ ∪Out1β

t+1
and does not contain elements from

E0.
We are left with the case when δ chooses Ag after stage t1. This limits the possibilities for

the true outcome of δ. We can have δˆ∞X ⊂ f in which case each agitator that δ ever chooses
is eventually cancelled. We can also have δ 〈̂∞Y , k〉 ⊂ f in which case the agitator Ek is chosen
before stage t1 and does not contain elements from A, as we have just established, and each
agitator F k

l is eventually cancelled.
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We will prove that agitators formed after stage t3 cannot contain elements from E0. This
will show that the elements from E0 can be extracted from A only finitely many times and
hence E0 ⊂ A.

It is convenient to consider each SW -strategy δ ⊂ f ¹ M in order of its length, starting
from the longest. The reason is that strategies of lower priority determine the elements that
enter agitators of higher priority strategies.

Let δ be the longest SW -strategy along f ¹ M . Suppose δ chooses an agitator Ag on stage
s > t3. All of Ag’s elements were restrained by strategies extending δ on the previous δ-true
stage s− ≤ t3. These are either strategies that were initialized when the axiom 〈k, E0〉 was
applied and hence cannot restrain elements from E0, or GW -strategies γ ⊂ f ¹ M which as we
already proved do not restrain elements from E0.

By induction we can prove the same for the shorter SW -strategies.

Corollary A.1.2. Every strategy along the true path is eventually not initialized.

Proof. We will prove by induction on n that there is a f ¹ n-true stage t∗n such that f ¹ n is
not initialized on any stage t > t∗n. We will refer to this stage t∗n in the rest of the proof.

The case n = 0 is trivial because f ¹ 0 = ∅ is never initialized and is visited on every stage,
so t∗0 = 0.

Assume that f ¹ n is visited on stage t∗n and not initialized on stages t > t∗n. If f ¹ (n+1) is a
R- or SW -strategy then f ¹ n is a GW -strategy and it does not initialize strategies in its subtree
at all. So let t∗n+1 be the first stage on which f ¹ (n + 1) is visited after max {t∗n, tn+1} where
tn+1 is the stage from the leftmost property of the true path (second property of LemmaA.1.6).
Then f ¹ (n + 1) is not initialized on stages t > t∗n+1.

If f ¹ (n + 1) is a GW -strategy then we choose t∗n+1 so that the following conditions hold

1. t∗n+1 > t∗n.

2. t∗n+1 > tn+1 where tn+1 is the stage from the leftmost property of the true path.

3. For every SW -strategy β with βˆ∞X ⊆ f ¹ (n + 1) and every k ∈ Uβ less than the local
β-priority of f ¹ (n+1), we have an applicable axiom 〈k, E0〉 which is applicable on every
stage after tk. There are finitely many axioms with a code that is less than that of E0.
Let t∗n+1 be so big that all axioms with a code that is smaller than the code of E0 and
that get applied at some point are already applied.

4. For every SW -strategy β with β 〈̂∞Y , k〉 ⊆ f ¹ (n + 1) and every l ∈ V β
k less than the

local β-priority of f ¹ (n + 1), we have an applicable axiom 〈l, F0〉 which is applicable on
every stage after tl. There are finitely many axioms with a code that is less than that of
F0. Let t∗n+1 be so big that all axioms with a code that is smaller than the code of F0

and that get applied at some stage are already applied.

5. f ¹ (n + 1) is visited on stage t∗n+1.
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It follows from Lemmas A.1.6 and A.1.7 that this choice of t∗n+1 is satisfiable. Clause 2
ensures that f ¹ (n + 1) will not be initialized by strategies to the left. Clause 1 ensures that
it won’t initialized due to the initialization of GW -strategies that f ¹ (n + 1) extends and
finally clauses 3 and 4 ensure that f ¹ (n + 1) won’t be initialized due to SW -strategies that it
extends.

Satisfaction of The Requirements

Lemma A.1.8. Every R requirement is satisfied.

Proof. Fix a R-requirement. Let α be the corresponding R-strategy on the true path. We will
prove that Θ0(A) = X and Θ1(A) = Y do not form a minimal pair. The proof is divided into
the following three cases depending on the true outcomes of the SW -substrategies of α along
the true path:

1. All SW -strategies β̂ ⊂ f , substrategies of α, have true outcomes d0 or 〈l, k〉. Then we
will prove that Φ0(X) = Φ1(Y ) = D and D is not c.e.

2. There is a SW -strategy β̂ ⊂ f , substrategy of α, with true outcome ∞X . Then X will
be c.e.

3. There is a SW -strategy β̂ ⊂ f , substrategy of α, with true outcome 〈∞Y , k〉. Then Y

will be c.e.

We will treat each case separately.

1. For all SW strategies β̂ ⊂ f , substrategies of α,
∃k∃l(β̂ 〈̂l, k〉 ⊂ f) ∨ β̂ d̂0 ⊂ f.

We start by proving that Φα
0 (X) = Φα

1 (Y ). Now the properties of the agitators proved
in Section 2.6 will play an important role as the operators Φ0 and Φ1 are constructed by
all of α’s substrategies, not only the ones along the true path. So we have to prove that
Φ0(X)(dβ) = Φ1(Y )(dβ), for every witness dβ that any substrategy β has ever used.

We automatically have this equality for any witness dβ that is cancelled. Cancelling
the witness involves enumerating the axiom 〈dβ , ∅〉 in both operators. So Φ0(X)(dβ) =
Φ1(Y )(dβ) = 1.

This means that strategies β to the right of the true path will not cause problems.
Strategies to the left of and on the true path may have witnesses that are never cancelled.
So let β be a substrategy of α and dβ be a witness chosen on stage t0 that is never
cancelled. Then β has outcome d0 on stage t0. After stage t0 the strategy β is not
initialized and does not have outcomes ∞X or 〈∞Y , k〉, as in those cases we would cancel
β’s witness d. Let the corresponding agitators for d be Ek and F k

l , so we have axioms
〈d, {k}〉 ∈ Φ0 and 〈d, {l}〉 ∈ Φ1. Also note that the length of the node β is necessarily less
than t0, as according to the construction a strategy acts only on stages s greater than its
length.
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We have the following three possibilities:

(a) β <L f . Then let t ≥ t0 be the last stage on which β is visited.

If β 〈̂l, k〉 ⊆ δt then the conditions of Lemma A.1.5 are true. Therefore if (Ek∪F k
l ) 6⊆

A then (Ek ∪ F k
l ∪Eβ

t ) ∩A = ∅. If (Ek ∪ F k
l ) ⊆ A then according to Lemma A.1.4

we have k ∈ X and l ∈ Y and therefore Φ0(X)(d) = Φ1(Y )(d) = 1 .

If (Ek ∪ F k
l ∪ Eβ

t ) ∩ A = ∅ then from the proof of Lemma A.1.5 we can conclude
that there is an entry 〈β : 〈Et, Ek, F k

l 〉, d〉 ∈ Watchedα. In this case we claim
Φ0(X)(d) = Φ1(Y )(d) = 0. Suppose for a contradiction that this is not true, say
Φ0(X)(d) = 1. Then the only axiom in Φ1 for d is true, so k ∈ X = Θ0(A).
Therefore there is an axiom 〈k,E′〉 ∈ Θ0 such that E′ ⊆ A and hence E′ ∩ (Ek ∪
Eβ

t ) = ∅. It appears in Θs
0 on some stage s. The strategy α ⊂ f is visited on

some stage s′ > s. According to the construction α will spot this axiom while
examining the entry for β in Watched and cancel d. Similarly we may prove that
Φ1(Y )(d) = 0.

If β d̂0 ⊆ δt, as β is not initialized on stages s′ > t, we have that Ek ∪ F k
l is

restrained in A by β. From Lemmas A.1.2 and A.1.3 it follows that Ek ∪ F k
l ⊂ A.

Lemma A.1.4 gives us k ∈ X and l ∈ Y . Hence Φ0(X)(d) = Φ1(Y )(d) = 1.

(b) Suppose β d̂0 ⊆ f . By Lemma A.1.6 and the fact that d is not cancelled whenever
we visit β outcome d0 from stage t0 on. Therefore by Lemmas A.1.2 and A.1.3
Ek ∪ F k

l ⊂ A. Lemma A.1.4 gives us k ∈ X and l ∈ Y . Hence Φ0(X)(d) =
Φ1(Y )(d) = 1.

(c) If β 〈̂l, k〉 ⊆ f then by Lemma A.1.6 there is a stage t1 > t0 such that on β-true
stages t > t1 the strategy β always has this outcome and Ek ∪F k

l is extracted from
At. Also by Lemma A.1.1 Eβ

t = Eβ
t1 for all β-true stages t > t1 and we will refer to

this set as Eβ . As β is visited on infinitely many stages (Ek ∪ F k
l ∪ Eβ) ∩ A = ∅.

We claim that in this case Φ0(X)(d) = Φ1(Y )(d) = 0.

Assume for a contradiction that this is not true, say Φ0(X)(d) = 1. Then there
is an axiom 〈k, E′〉 ∈ Θ0 with E′ ⊆ A and therefore E′ ∩ (Ek ∪ F k

l ∪ Eβ) = ∅.
The axiom appears in Θs1

0 on some stage s1 . Let s be a β-true stage such that
s > max(s1, t1). According to the construction on stage s the strategy β will have
outcome ∞X contradicting the choice of t1. Similarly we may prove that Φ1(Y )(d)
cannot equal 1.

This gives us a set D = Φ0(X) = Φ1(Y ). To prove that D is not c.e. let W be any
c.e. set and consider the SW -substrategy β̂ along the true path. Let n = lh(β̂). After
stage tn+1 from Lemma A.1.6 β̂ always has its true outcome whenever it is visited and a
permanent witness d̂. This witness will prove W 6= D.

If β̂ 〈̂l, k〉 ⊂ f then W (d̂) = 1. The witness d̂ is not cancelled by α. Indeed if α cancels
the witness at stage t due to some axiom 〈k, E′〉 ∈ Θ0 or 〈l, F ′〉 ∈ Θ1 then when we
visit β̂ on stage t1 ≥ max(t, tn+1) the strategy β̂ would see this axiom and have outcome
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∞X or 〈∞Y , k〉 contradicting our choice of stage t1. We just proved that in this case
D(d̂) = 0. Therefore D 6= W .

If β̂ d̂0 ⊂ f . Then the witness will not be cancelled by α as there will not be an entry for
it in the list Watchedα. We proved that D(d̂) = 1. It follows that W (d̂) = 0 as otherwise
there would be a stage s > tlh(n)+1 on which d̂ ∈ Ws. Then on the next β̂-true stage we
would have an outcome 〈l, k〉 <L d0. Therefore D 6= W .

2. There is a strategy β̂, substrategy of α, with β̂ˆ∞X ⊆ f . Let n = lh(β̂). We will prove
that Uβ̂ = X and so X is c.e. Assume for a contradiction that there is an element
k ∈ X\U and choose the least one. Then there is an axiom 〈k,E′〉 ∈ Θ0 such that
E′ ⊂ A. Note that on all β̂-true stages s > t∗n+1 by Lemma A.1.1 Eβ̂

s = Eβ̂
t∗n+1

and

Eβ̂
s ⊂ A. So E′ ∩ Eβ̂

s = ∅. Let t > t∗n+1 be a stage on which all elements smaller than
k that ever enter U are already in U and all elements that are in E′ are not taken out
of A anymore. Then k will enter U on the next β̂-true stage on which o− = ∞X , if not
before.

According to Lemma A.1.7 for every k ∈ U there is an axiom 〈k, E′〉 ∈ Θ0 for which
E′ ⊆ A, therefore k ∈ X and U ⊆ X. Ultimately we get X = U .

3. There is a SW -strategy β̂ which is a substrategy of α with β̂ 〈̂∞Y , k〉 ⊂ f for some k.
We show in this case that V β̂

k = Y and therefore Y is c.e. The proof is similar to part 2.

Lemma A.1.9. Every GW requirement is satisfied.

Proof. Fix a c.e. set W and consider the GW -strategy γ ⊂ f . Let n = lh(γ). Let λ and µ

denote the values of γ’s parameters on stage t∗n+1 from Corollary A.1.2. It follows from the
construction that these values remain the same on further stages. Indeed λ changes value only
after initialization and µ changes value only when γ switches to outcome 0. We will prove
that λˆµ ⊂ A and that λˆµ ∈ W or for every extension τ ⊇ λˆµ we have τ /∈ W and so the
requirement GW is satisfied.

By Lemma A.1.1 the value of the set Eγ
t does not change on γ-true stages t > t∗n+1 and we

will refer to it as Eγ . Finally γ has always its true outcome on true stages t > t∗n+1.

If λˆµ(a) = 1 then a is restrained in A by γ and by Lemmas A.1.2 and A.1.3 a ∈ A. If
λˆµ(a) = 0 and a < lh(λ) then a ∈ Eγ ⊂ A so A(a) = 0. If λˆµ(a) = 0 and a ≥ lh(λ) then a is
extracted on every γ-true stage t ≥ t∗n+1 and A(a) = 0. Therefore λˆµ ⊂ A.

If γ 0̂ ⊂ f then this outcome was visited after we saw that λˆµ ∈ Wt∗n+1
⊂ W . If γ 1̂ ⊂ f

then µ = ∅ and for all extensions τ ⊇ λ we have τ /∈ W . Indeed if there were an extension
of λ, τ ∈ W , then it would appear in the approximation of W on some finite stage and on the
next γ-true stage we would have outcome 0 contradicting the choice of t∗n+1.

This concludes the proof of the lemma and the theorem.
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Abstract: In this paper we prove that every nonzero ∆0
2 e-degree is cuppable to 0′e by a 1-

generic ∆0
2 e-degree (so low and nontotal) and that every nonzero ω-c.e. e-degree is cuppable

to 0′e by an incomplete 3-c.e. e-degree.

Introduction

Intuitively, we say that a set A is enumeration reducible to a set B, denoted as A ≤e B, if there
is an effective procedure to enumerate A, given any enumeration of B. More formally, A ≤e B

if there is a computably enumerable set W such that
A = {x : (∃u)[〈x, u〉 ∈ W & Du ⊆ B]}

where Du is the finite set with canonical index u.
Let ≡e denote the equivalence relation generated by ≤e and let [A]e be the equivalence

class of A — the enumeration degree (e-degree) of A. The degree structure 〈De,≤〉 is defined by
settingDe = {[A]e : A ⊆ ω} and setting [A]e ≤ [B]e if and only if A ≤e B. The operation of least
upper bound is given by [A]e ∨ [B]e = [A⊕B]e where A⊕B = {2x : x ∈ A}∪{2x+1 : x ∈ B}.
The structure De is an upper semilattice with least element 0e, the collection of computably
enumerable sets. Gutteridge [9] proved that De does not have minimal degrees (see Cooper [1]).

An important substructure of De is given by the Σ0
2 e-degrees i.e. the e-degrees of Σ0

2 sets.
Cooper [2] proved that Σ0

2 e-degrees are the e-degrees below 0′e, the e-degree of K. An e-degree
is ∆0

2 if it contains a ∆0
2 set, a set A with a computable approximation f such that for every

element x, f(x, 0) = 0 and lims f(x, s) exists and equals to A(x). Cooper and Copestake [5]
proved that below 0′e there are e-degrees that are not ∆0

2. These e-degrees are called properly
Σ0

2 e-degrees.
In this paper we are mainly concerned with the cupping property of ∆0

2 e-degrees. An
e-degree a is cuppable if there is an incomplete e-degree c such that a∪ c = 0′e. In [6], Cooper,
Sorbi and Yi proved that all nonzero ∆0

2 e-degrees are cuppable and that there are noncuppable
Σ0

2 e-degrees.

Theorem A.2.1. (Cooper, Sorbi and Yi [6]) Given a nonzero ∆0
2 e-degree a, there is a total

∆0
2 e-degree c such that a∪ c = 0′e, where an e-degree is total if it contains the graph of a total

function. Meanwhile, noncuppable e-degrees exist.

In this paper we first prove that each nonzero ∆0
2 e-degree a is cuppable to 0′e by a non-total

∆0
2 e-degree.
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Theorem A.2.2. Given a nonzero ∆0
2 e-degree a, there is a 1-generic ∆0

2 e-degree b such that
a∪ b = 0′e. Since 1-generic e-degrees are quasi-minimal and 1-generic ∆0

2 e-degrees are low, b
is nontotal and low.

Here a set A is 1-generic if for every computably enumerable set S of {0, 1}-valued strings
there is some initial segment σ of A such that either S contains σ or S contains no extension
of σ. An enumeration degree is 1-generic if it contains a 1-generic set. Obviously, no nonzero
e-degree below a 1-generic e-degree contains a total function and hence 1-generic e-degrees are
quasi-minimal. Copestake proved that a 1-generic e-degree is low if and only if it is ∆0

2 (see
[7]).

Our second result is concerned with cupping ω-c.e. e-degrees to 0′e. A set A is n-c.e. if there
is an effective function f such that for each x, f(x, 0) = 0, |{s + 1 | f(x, s) 6= f(x, s + 1)}| ≤ n

and A(x) = lims f(x, s). A is is ω-c.e. if there are two computable functions f(x, s), g(x) such
that for all x, f(x, 0) = 0, |{s + 1 | f(x, s) 6= f(x, s + 1)}| ≤ g(x) and lims f(x, s) ↓= A(x).

An enumeration degree is n-c.e. (ω-c.e.) if it contains an n-c.e. (ω-c.e.) set. It’s easy to see
that the 2-c.e. e-degrees are all total and coincide with the Π1 e-degrees, see [3]. Cooper also
proved the existence of a 3-c.e. nontotal e-degree. As the construction presented in [6] actually
proves that any nonzero n-c.e. e-degree can be cupped to 0′e by an (n + 1)-c.e. e-degree, we
will prove that any nonzero ω-c.e. e-degree is cuppable to 0′e by a 3-c.e. e-degree.

Theorem A.2.3. Given a nonzero ω-c.e. e-degree a, there is a 3-c.e. e-degree b such that
a ∪ b = 0′e.

This is the strongest possible result. We explain it as follows. Consider the standard
embedding ι of DT to De given by: ι(degT (A)) = dege(χA) where χA denotes the graph of the
characteristic function of A. It is well-known that ι is an order-preserving mapping and that
the Π1 enumeration degrees are exactly the images of the Turing c.e degrees under ι. Consider
a noncuppable c.e. degree a. ι(a) is Π1, hence ω-c.e., and ι(a) is not cuppable by any Π1

e-degree, as ι preserves the least upper bounds. Therefore, no 2-c.e. e-degree cups ι(a) to 0′e.
We use standard notation, see [4] and [10].

Basic ideas of Cooper-Sorbi-Yi’s cupping

In this section we describe the basic ideas of Cooper-Sorbi-Yi’s construction given in [6]. Let
{As}s<ω be a ∆0

2 approximation of the given ∆0
2 set A which is assumed to be not computably

enumerable. We will construct two ∆0
2 sets B and E (auxiliary) and an enumeration operator

Γ such that the following requirements are satisfied:

S : ΓA,B = K

NΦ : E 6= ΦB

The first requirement is the global cupping requirement and it guarantees that the least
upper bound of the degrees of A and B is 0′e. Here ΓA,B denotes an enumeration operation
relative to the enumerations of A and B.
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The second group of requirements NΦ, where Φ ranges over all enumeration operators,
guarantees that the degree of B is not complete. Indeed, we have a witness — the degree of E

is not below that of B.

To satisfy the global requirement S we will construct by stages an enumeration operator Γ
such that K = ΓA,B . That is, at stage s we find all x < s such that x ∈ Ks but x 6∈ ΓA,B [s], the
approximation of ΓA,B at stage s, we define two markers ax (bound of the A-part) and bx (bound
of the B-part and bx ∈ B) and enumerate x into ΓA,B via the axiom 〈x,As ¹ ax +1, Bs ¹ bx +1〉.
If x leaves K later, we can make this axiom invalid by extracting bx from B or by a change
(from 1 to 0) of A on As ¹ ax + 1. Intuitively we must use A-changes in the definition of Γ
since otherwise B would be complete, contradicting the N -requirements. Since A is not in our
control, if A does not provide such changes then we have to extract bx out of B. We call this
process the rectification of Γ at x.

Note that after stage s, at stage t > s say, if x ∈ Kt but At ¹ ax+1 6⊆ At or Bs ¹ bx+1 6⊆ Bt

then we need to put x into ΓA,B by enumerating a new axiom into Γ. If this happens infinitely
often then x is not in ΓA,B and we cannot ensure that ΓA,B(x) = K(x). To avoid this at
stage t, when we re-enumerate x into ΓA,B , we keep ax the same as before, but let bx be a
bigger number. We put bx[t] into B and extract bx[s] from B ( we want only one valid axiom
enumerating x into ΓA,B ). Assuming that the G-strategies also do not change ax after a certain
stage, as A is ∆0

2 there can be only finitely many changes in A ¹ ax and hence we will eventually
stop enumerating axioms for x in Γ.

Now we consider how to satisfy a NΦ-requirement. We use variant of the Friedberg-Muchnik
strategy. Namely, we select x as a witness, enumerate it into E and wait for x ∈ ΦB . If x never
enters ΦB then NΦ is satisfied. Otherwise we will extract x from E, preserving B ¹ φ(x) where
φ(x) denotes the use function of the computation ΦB(x) = 1.

The need to preserve B ¹ φ(x) conflicts with the need to rectify Γ. To avoid this before
choosing x the NΦ-strategy will first choose a (big) number k as its threshold and try to achieve
bn > φ(x) for all n ≥ k. For elements n < k, S will be allowed to rectify Γ at its will. Whenever
K changes below k +1 we reset this NΦ-strategy by cancelling all associated parameters except
for this k. Since k is fixed such a resetting process can happen at most k + 1 many times, so
we can assume that after a stage large enough this NΦ-strategy will never be reset anymore.

If k enters K, the threshold is moved automatically to the next number in K. Since K is
infinite, eventually, the threshold will stop changing its value. This threshold will be the real
threshold of the corresponding NΦ-strategy.

In order to be able to preserve some initial segment of B for the diagonalization, NΦ will
first try to move all markers bn for elements n ≥ k above the restraint. A useful A-change
will facilitate this. In the event that no such useful change appears we will be able to argue
that A is c.e. contrary to hypothesis. To do this we will have an extra parameter U , aimed to
construct a c.e. set approximating A.

The NΦ-strategy works as follows at stage s:
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Setup: Define a threshold k to be a big number. Choose a witness x > k and enumerate it in
E.
K-Check: If a marker bn for an element n ≤ k has been extracted from B during Γ-rectification
then restart the attack.
Attack:

1. If x ∈ ΦB go to step 2. Otherwise return to step 1 at the next stage.

2. Approximate A by As ¹ ak at stage s. Extract bk[s] from B. Cancel all markers an and
bn for n ≥ k. Define ak new, bigger than any element seen so far in the construction. Go
to step 3.

3. Initialize all strategies of lower priority. If a previous approximation of A defined at stage
t < s is not true then enumerate bk[t] back in B, extract x from E and go to step 4,
otherwise go back to step 1.

4. While the observed change in A is still apparent, do nothing. Otherwise enumerate x

back in E and extract bk[t] from B, go back to step 3.

If after a large enough stage the strategy waits at 1 or 4 forever then the NΦ-requirement
is obviously satisfied. In the latter case ΦB(x) = 1 6= 0 = E(x) and the construction of Γ will
never change the enumeration of ΦB(x) = 1 since all γ-markers are lifted to bigger values by the
changes of A below ak[s]+1. This strategy will not go from 1 or 4 back to 3 infinitely often and
hence the NΦ-requirement is satisfied. Otherwise as A is ∆0

2 it would pass through 2 infinitely
often. Let t1 < t2 < · · · < tn < · · · be the stages at which this strategy passes through 2. Then
for each i, Ati ¹ ak[ti] + 1 ⊂ A. By this property we argue that A is computably enumerable as
follows: for each x, x is in A if and only if x is in Ati for some i, or

x ∈ A ⇔ ∃i(x ∈ Ati).
This contradicts our assumption on A.

Cupping by 1-generic degrees

In this section we give a proof of Theorem A.2.2. That is, given an non-c.e. ∆0
2 set A, we will

construct a ∆0
2 1-generic B satisfying the following requirements:

S : ΓA,B = K;

Gi : (∃λ ⊂ B)[λ ∈ Wi ∨ (∀µ ⊇ λ)[µ /∈ Wi]].

If all requirements Gi together with the global requirement S are satisfied then B will have
the intended properties. It is well known that the degree of a 1-generic set can not be complete.

Definition A.2.1. The tree of outcomes will be a perfect binary tree T . Each node α ∈ T of
length i will be labelled by the requirement Gi. We will say that α is a Gi-strategy.

At stage 0 B = ∅, Γ = ∅, Uα = ∅ for all α and all thresholds and witnesses will be undefined.
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At stage s we start by rectifying Γ and then construct a path through the tree δs of length
s visiting all nodes α ⊂ δs and performing actions as stated in the construction.

The Γ-rectification module for satisfying the global S requirement is as follows:

Γ-rectification module.

Scan all elements n < s and perform the following actions for the elements n such that
ΓA,B(n) 6= K(n):

• n ∈ K.

1. If an ↑, define an = an−1 +1(if n= 0, define an = 1). Note that this is the only case
when the Γ-module changes the value of an. Once defined an can only be redefined
due to a G-strategy. The idea is that eventually G-strategies will stop cancelling
an, so that we can approximate A ¹ an correctly and obtain a true axiom for n.

2. If bn ↓ then extract it from B and cancel all markers bn′ for n′ > n.

3. Define bn to be big, i.e a number greater than any number mentioned in the con-
struction so far, and enumerate it in B.

4. Enumerate in Γ the axiom 〈n,A ¹ an + 1, {bm|m ≤ n}〉.

• n /∈ K

Then find all valid axioms in Γ for n – 〈n, A ¹ a+1,Mn〉 and extract the greatest element
of Mn from B.

Construction of δs.

We will define δs(n) for all n < s by induction on n. Suppose we have already defined
δs ¹ i = α working on requirement GW . We will perform the actions assigned to α and choose
its outcome o ∈ {0, 1}. Then δs(i) = o.

α will be equipped with a threshold k and a witness λ, a finite binary string. When α is
visited for the first time after initialization it starts from Setup. At further stages it always
performs Check first. If the Check does not empty Uα then it continues with the Attack module
from where it was directed to at the previous α-true stage. Otherwise it continues with the
Setup to define λ again and then proceeds to step 1 of Attack.

Setup: If a threshold has not been defined or is cancelled then define k to be big – bigger than
any element appeared so far in the construction. If a witness has not yet been defined choose
a binary string λ of length bk + 1 so that λ = B ¹ bk + 1.

Check: If a marker bn for an element n ≤ k has been extracted from B during Γ-rectification
at a stage t such that s− < t ≤ s where s− is the previous α-true stage then initialize the
subtree below α, empty U .
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If k /∈ K then define k to be the least k′ > k such that k′ ∈ K. I nitialize the subtree below
α, empty U .

If bk has changed since the last α-true stage and λ * B then define λ to be B ¹ bk. Do not
empty U.

Attack:

1. Check if there is a finite binary string µ ⊇ λ in W . If not then the outcome is o = 1.
Return to step 1 at the next stage. If there is such a µ then remember the least one and
go to step 2.

2. Enumerate in the guess list U a new entry 〈As ¹ ak, µ, bk〉. Extract bk from B. Let µ̂ be
the string µ but with position bk = 0. For all elements n > |λ| such that µ̂(n) is defined
let B(n) = µ̂(n). Cancel all markers an and bn for n ≥ k. Define ak to be bigger. Note
that µ̂ ⊂ B and at the next stage Check will define a new value of λ to be B ¹ bk + 1 so
that λ ⊇ µ̂. Go to step 3.

3. Initialize all strategies below α. Scan the guess list U for errors. The entries in the guess
list will be of the following form 〈Ut, µt, bt〉 where Ut is a guess of A and bt is the marker
that was extracted from B when this guess was made at stage t. Note that to make
µt ⊂ B we only need to enumerate bt in B. If there is an error in the guess list, i.e. some
Ut * As, then enumerate bt in B and go to step 4 with current guess G = 〈Ut, µt, bt〉
where t is the least index of an error in U . If all elements are scanned and no errors are
found go back to step 1.

4. If the current guess G = 〈Ut, µ, bt〉 has the property Ut * As then let the outcome be
o = 0. Come back to step 4 at the next stage. Otherwise extract bt from B. If the
Γ-rectification module has extracted a marker m for an axiom that includes bt in its
B−part since the last stage on which this strategy was visited then enumerate m back
in B. Go back to step 3.

The Proof.

Define the true path f ⊂ T to be the leftmost path through the tree that is visited infinitely
many times, i.e. ∀n∃∞t(f ¹ n ⊆ δt) and ∀n∃tn∀t > tn(δt 6<L f ¹ n).

Lemma A.2.1. For each strategy f ¹ n the following is true:

1. There is a stage t1(n) > tn such that at all f ¹ n-true stages t > t1(n) Check does not
empty U .

2. There is a stage t2(n) > t1(n) such that at all f ¹ n-true stages t > t2(n) the Attack
module never passes through step 3 and hence the strategies below f ¹ n are not initialized
anymore, B is not modified by f ¹ n, and the markers an for any elements n are not
moved by f ¹ n
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Proof. Suppose the two conditions are true for m < n. Let f ¹ n = α. Let t0 be an α-true
stage bigger than t2(m) for all m < n and tn.

Then after stage t0 α will not be initialized anymore.
After stage t0 all elements n < k have permanent markers an. Indeed none of the strategies

above α modify them anymore according to the induction hypothesis, strategies to the left are
not accessible anymore and strategies to the right are initialized on stage t0, hence the next
time they are accessed they will have new thresholds greater than k.

The threshold k will stop shifting its value as K is infinite and we will eventually find the
true threshold k ∈ K.

As A is ∆0
2, eventually all A ¹ an for element n < k will have their final value and so will

K ¹ k. Hence there is a stage t1(n) > t0 after which no markers bn for elements n ≤ k will be
extracted from B by the Γ-rectification and the Check module at α will never empty U again.

To prove the second clause suppose that the module passes through step 3 infinitely many
times and consider the set V =

⋃
L(U) where L(U) denotes the left part of entries in the guess

list U , that is the actual guesses at the approximation of A. By assumption A is not c.e. hence
A 6= V .

If V * A then there is a least stage t′ and element p such that p ∈ Ut′\A and all Ut for
t < t′ are subsets of A. Let tp > t2 be a stage such that the ∆0

2 approximation of A settles
down on p, i.e. for all t > tp, At(p) = A(p) = 0. Then when we pass through step 3 after stage
tp we will spot this error, go to step 4 and never again return to step 3.

If V ⊂ A, let p be the least element such that p ∈ A\V . Every guess in U is eventually
correct and returns to step 1. To access step 3 again we pass through step 2, i.e. we pass
through step 2 infinitely often. As a result ak grows unboundedly and will eventually reach a
value greater than p. As on all but finitely many stages t, p ∈ At, p will enter V .

Corollary A.2.1. Every Gi-requirement is satisfied.

Proof. Consider the Gi-strategy α = f ¹ i. Choose a stage t3 > t2(i) from Lemma A.2.1, after
which the Attack module is stuck at step 1 or step 4, we have a permanent value for ak and
A ¹ ak remains unchanged. Then so will the marker bk and we will never modify λ again and
λ ⊆ Bt at all t > t3.

If the module is stuck at step 1 we have found a string λ such that λ ⊂ B and no string
µ ⊃ λ is in the set Wi.

If the module is stuck at step 4 we have found a string µ from the guess G = 〈Ut, µ, bt〉
which is in Wi. It follows from the construction that µ ⊂ B. The current markers bn, for n ≥ k

at stage t were cancelled and bk[t] = bt was extracted from B. Any axiom defined after stage
t has b-marker greater than |µ|. Hence the Γ-rectifying procedure will not extract any element
below the restraint B ¹ |µ| from B. It does not extract markers of elements n < k. If n ≥ k

and n ∈ K then its current marker is greater than |µ|. If n > k and n /∈ K then any axiom
defined before stage t is invalid, because its b-marker is already extracted from B at a previous
stage t0 < t or else it has an A-component that contains as a subset Ut * A.
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Lemma A.2.2. The S-requirement is satisfied.

Proof. At each stage s we make sure that Γ is rectified. For elements n < s, we have
ΓA,B(n)[s] = K(n)[s]. This is enough to prove that n /∈ K ⇒ n /∈ ΓA,B . Indeed if we as-
sume that n ∈ ΓA,B then there is an axiom 〈n,An,Mn〉 ∈ Γ and An ⊆ A, Mn ⊂ B. Hence this
axiom is valid on all but finitely many stages. But according to our construction we will ensure
Mn * B on infinitely many stages, a contradiction.

To prove the other direction, n ∈ K ⇒ n ∈ ΓA,B , we have to establish that the N -strategies
will stop modifying the markers an and bn eventually. Indeed the markers can be modified only
by N -strategies with thresholds k < n. The way we choose each threshold guarantees that
there will be only finitely many nodes on the tree with this property. The nodes to the left
of the true path will eventually not be accessible anymore and the nodes to the right will be
cancelled and will choose new thresholds, bigger then n. Lemma A.2.1 proves that every node
along the true path will eventually stop moving an and bn by property 2.

Suppose the markers are not modified after stage t1. After stage t1, an has a constant value.
As A is ∆0

2 there will be a stage t2 > t1 such that for all t > t2 A ¹ an[t] = A ¹ an. At stage
t2 + 1 we rectify Γ. If n ∈ ΓA,B then there is an axiom 〈n, An,Mn〉 in Γ such that An ⊂ A ¹ an

and at all further stages this axiom will remain valid, so the Γ-rectifying procedure will not
modify it again. Otherwise it will extract a b-marker for the last time and enumerate an axiom
〈n,A ¹ an,M ′

n〉 that will be valid at all further stages. In both cases we have found an axiom
for n that is valid on all but finitely many stages, hence n ∈ ΓA,B .

Lemma A.2.3. B is ∆0
2.

Proof. We need to show that for each n, n can be put in and moved out from B at most finitely
times. To see this fix n and consider the Gi-strategy along the true path that has a threshold
ki > n. As we have already established in Corollary A.2.1 there is a stage t3 > t2(i), after which
we will never modify λi again and λ ⊆ Bt on all t > t3. As n < |λi| then Bt(n) will remain
constant on all stages t > t3. This means that B(n) changes at most t3 many times.

Cupping the ω-c.e. degrees

In this section we give a proof of Theorem A.2.3. Suppose we are given an ω-c.e. set A with
bounding function g. We will modify the construction of the set B so that it will turn out to
be 3− c.e.. The requirements are:

S : ΓA,B = K

NΦ : E 6= ΦB

The structure of the axioms enumerated in Γ will be more complex. Again we will have an
a-marker an for each element n, but instead of just one marker bn we will have a set of b-markers
Bn of size gn + 1 where gn =

∑
x<an

g(x) together with a counter cn that will tell us which
element we should extract if we need to. Every time A ¹ an changes we will extract from B a
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different element – the cn-th element bn ∈ Bn and then add 1 to cn to ensure that each element
in B will be extracted only once. If we need to restore a computation due to the N -strategies
we will enumerate the extracted marker back in B, hence B is 3− c.e.. Note that if a restored
computation has to be destroyed again, we will need to extract a different marker from B. This
could destroy further computations. That is why will always try to restore the last computation
ΦB(x).

Γ-rectification module.

Scan all elements n < s and perform the following actions for the elements n such that
ΓA,B(n) 6= K(n):

• n ∈ K.

1. If an ↑ then define an = an−1 + 1(if n = 0, define an = 1).

2. If Bn ↓. Extract the cn-th member of Bn. Move the counter cn to the next position
cn + 1. Cancel all Bn′ for n′ > n.

3. If Bn ↑ then define a set of new markers Bn of size gn + 1 where gn =
∑

x<an
g(x)

and a new counter cn = 1 and enumerate Bn in B.

4. Enumerate in Γ the axiom 〈n, As ¹ an + 1,
⋃ {Bn′(cn′)|n′ ≤ n}〉 where Bn′(cn′) is

the set of all elements in Bn′ with positions greater than or equal to cn′ .

• n /∈ K

Then find all valid axioms in Γ for n – 〈n,At ¹ a + 1,Mn〉 where Mn =
⋃ {Bn′ |n′ ≤ n}

and extract the least member of Bn that has not yet been extracted from B. Increment
the counter cn that corresponds to the set of markers Bn.

Construction of δs.

Setup: If a threshold has not been defined or is cancelled then define k to be big, bigger than
any element appeared so far in the construction. If a witness has not yet been defined choose
x > k and enumerate it in E.

Check: If a marker from Bn for an element n < k has been extracted from B during Γ-
rectification at a stage t, s− < t ≤ s where s− is the previous α-true stage, then initialize the
subtree below α, empty U .

If k /∈ K then shift it to the next possible value and redefine x to be bigger. Again initialize
the subtree below α and empty U .

Attack:

1. Check if x ∈ ΦB . If not then the outcome is o = 1, return to step 1 at the next stage. If
x ∈ ΦB go to step 2.
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2. Initialize all strategies below α. Scan the guess list U for errors. If there is an error
then take the last entry in the guess list, say the one with index t: 〈Ut, Bt, ct〉 ∈ U and
Ut * As. Enumerate the (ct − 1)-th member of Bt back in B. Extract x from E and go
to step 4 with current guess G = 〈Ut, Bt, ct〉. If all elements are scanned and no errors
are found go to step 3.

3. Enumerate in the guess list U a new entry 〈As ¹ ak, Bk, ck〉. Extract the ck-th member
of Bk from B and move ck to the next position ck + 1. Cancel all markers an and Bn for
n ≥ k. Define ak new, bigger than any element seen so far in the construction. Go to
back to step 1.

Note that this ensures that our guesses at the approximation of A are monotone. Hence
if there is an error in the approximation, this error will be apparent in the last guess.
This allows us to always use the computation corresponding to the last guess. We will
always be able to restore it.

4. If the current guess G = 〈Ut, Bt, ct〉 has the property Ut * As then let the outcome be
o = 0. Come back to step 4 at the next stage. Otherwise enumerate x back in E and
extract the ct-th member of Bt from B and move the value of the counter to ct + 1. If
at this stage during the Γ-rectification procedure a different marker m for an axiom that
contains Bt was extracted then enumerate m back in B. Go back to step 1.

The Proof.

The construction ensures that for any n, at any stage t, at most one axiom in Γ defines
ΓA,B(n). Generally, we extract a number from Bn to drive n out of ΓA,B . When an N -strategy
α acts at step 3 of the Attack module, at stage s say, α needs to preserve ΦB(xα). All lower
priority strategies are initialized and an element b1 in Bkα is extracted from B to prevent the
S-strategy from changing B on φ(xα). Note that all axioms for elements n ≥ kα contain Bkα .
So at stage s, when we extract b1 from B, n is driven out of ΓA,B . As in the remainder of the
construction, at any stage, we will have either that A has changed below an or B has changed
on Bn, these axioms will never be active again. As the Γ-module acts first, it may still extract
a marker m from an axiom for n > kα if A ¹ an has changed back and thereby injure B ¹ φ(xα).
But when α is visited it will correct this by enumerating m back in B and extracting a further
element b2 ∈ Bkα from B to keep Γ true. This makes our N -strategies and the S-strategy
consistent. We comment here that such a feature is also true in the proof of Theorem A.2.2,
but there we do not worry about this as we are constructing a ∆0

2 set. In the proof of Theorem
A.2.3, this becomes quite crucial, as we are constructing B as a 3-c.e. set, and we have less
freedom to extract numbers out from B.

The construction ensures that B is a 3− c.e. set. First we prove that the counter cn never
exceeds the size of its corresponding set Bn and therefore we will always have an available
marker to extract from B if it is necessary.
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Lemma A.2.4. For every set of markers Bn and corresponding counter cn at all stages of the
construction cn < |Bn| and the cn-th member of Bn is in B.

Proof. For each set of markers Bn only one node along the true path can enumerate its elements
back into B. Indeed if Bn enters the guess list Ut at some node α on the tree then at stage t,
Bn is the current set of markers for n and n is the threshold for α. When α enumerates Bn in
its Ut, it cancels the current markers for the element n. Hence Bn does not belong to any Uβ

t′

for t′ ≤ t and any node β or else Bn will not be current and Bn will not enter Uβ
t′′ at any stage

t′′ ≥ t and any node β as it is not current anymore.
We ensure that n being a threshold is in K, hence after stage t the Γ-rectification procedure

will not modify B ¹ Bn. Before stage t while the markers were current the counter cn was moved
only when the Γ-rectification procedure observed a change in A ¹ an, i.e some element that was
in A ¹ an at the previous stage is not there anymore. After stage t α will move the marker
cn once at entry in Ut and then only when it observes a change in A ¹ an, i.e Un = A ¹ an[t]
was a subset of A at a previous step but is not currently. Altogether cn will be moved at most
gn + 1 < |Bn| times.

Otherwise Bn belongs to an axiom which contains the set Bk for a particular threshold k

and n /∈ K. Then again its members are enumerated back in B only in reaction to a change in
A ¹ an.

We will now prove that Lemma A.2.1 is valid for this construction as well. Note that this
construction is a bit different, therefore we will need a new proof. The true path f is defined
in the same way.

Lemma A.2.5. For each strategy f ¹ n the following is true:

1. There is a stage t1(n) > tn such that at all f ¹ n-true stages t > t1(n) Check does not
empty U .

2. There is a stage t2(n) > t1(n) such that at all f ¹ n-true stages t > t2(n) the Attack
module never passes through step 2 and hence the strategies below α are not initialized
anymore, B is not modified by f ¹ n, and the markers an for any elements n are not
moved by f ¹ n

Proof. Suppose the two conditions are true for m < n. Let f ¹ n = α. Let t0 be an α-true
stage bigger than t2(m) for all m < n and tn.

Then after stage t0 α will not be initialized anymore. The proof of the the existence of
stage t1(n) satisfying the first property is the same as in Lemma 1.

To prove the second clause suppose that the module passes through step 2 infinitely many
times and consider the set V =

⋃
L(U) where L(U) denotes the left part of entries in the guess

list U . By assumption A is not c.e. hence A 6= V .
If V * A then there is element p such that p ∈ V \A. Let tp > t2 be a stage such that the

approximation of A settles down on p, i.e. for all t > tp, At(p) = A(p) = 0. Then when we
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pass through step 2 after stage tp we will spot this error, go to step 4 and never again return
to step 1.

If V ⊂ A, let p be the least element such that p ∈ A\V . Every guess in U is eventually
correct and allows us to move to step 3, i.e. we pass through step 3 infinitely often. As a result
ak grows unboundedly and will eventually reach a value greater than p. As on all but finitely
many stages t, p ∈ At, p will enter V .

Corollary A.2.2. Every Ni-requirement is satisfied.

Proof. Let α ⊂ f be an Ni-strategy. As a corollary of Lemma A.2.5 there is a stage t3 > t2(i)
after which the Attack module is stuck at step 1, and hence x /∈ ΦB , but x ∈ E. Or else the
module is stuck at step 4, in which case x ∈ ΦB and x /∈ E. Indeed step 4 was accessed with
G = 〈Ut, Bt, ct〉, belonging to the last entry in the guess list 〈Ut, Bt, ct〉. At stage t we had
x ∈ ΦB [t]. The current markers bn , for n ≥ k were cancelled and bk[t] was extracted from
B. Hence the Γ-rectifying procedure will not extract any element below the restraint B ¹ φ(x)
from B. It does not extract markers of elements n < k. If n ≥ k and n ∈ K then its current
marker is greater than φ(x). If n > k and n /∈ K then any axiom defined before stage t is
invalid, because one of its b-markers is extracted from B at a previous stage or else it has an
A-component Ut * A. Any axiom defined after stage t has b-markers greater than φ(x).

After stage t, if α modifies B it will be in the set of markers Bt, and when step 4 is accessed
we have Bt ⊂ B.

Lemma A.2.2 is now valid for Theorem A.2.3 as well, hence all requirements are satisfied
and this concludes the proof of Theorem A.2.3.

Acknowledgments: We thank an anonymous reviewer for pointing out an inaccuracy in the
previous version of this paper.
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A.3 Total Degrees and Nonsplitting Properties of Σ0
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This paper continues the project, initiated in [3], of describing general conditions under
which relative splittings are derivable in the local structure of the enumeration degrees.

The main results below include a proof that any high total e-degree below 0′e is splittable
over any low e-degree below it, and a construction of a Π0

1 e-degree unsplittable over a ∆2

e-degree below it.
In [3] it was shown that using semirecursive sets one can construct minimal pairs of e-

degrees by both effective and uniform ways, following which new results concerning the local
distribution of total e-degrees and of the degrees of semirecursive sets enabled one to proceed, via
the natural embedding of the Turing degrees in the enumeration degrees, to results concerning
embeddings of the diamond lattice in the e-degrees. A particularly striking application of these
techniques was a relatively simple derivation of a strong generalisation of the Ahmad Diamond
Theorem.

This paper extends the known constraints on further progress in this direction, such as the
result of Ahmad and Lachlan [2] showing the existence of a nonsplitting ∆0

2 e-degree > 0e, and
the recent result of Soskova [13] showing that 0′e is unsplittable in the Σ0

2 e-degrees above some
Σ0

2 e-degree < 0′e. This work also relates to results (e.g. Cooper and Copestake [8]) limiting
the local distribution of total e-degrees.

For further background concerning enumeration reducibility and its degree structure, the
reader is referred to Cooper [6], Sorbi [12] or Cooper 7, chapter 11.

Theorem 1. If a < h ≤ 0′, a is low and h is total and high then there is a low total e-degree
b such that a ≤ b < h.

Corollary 2. Let a < h ≤ 0′, h be a high total e-degree, a be a low e-degree. Then there are
∆0

2 e-degrees b0 < h and b1 < h such that a = b0 ∩ b1 and h = b0 ∪ b1.

Proof. Immediately follows from Theorem 1, and Theorem 6 of [3].
Proof of Theorem 1. Assume A has low e-degree, H ⊕ H has high e-degree (i.e., H has high
Turing degree) and A ≤e H ⊕H.

We want to construct an H-computable increasing sequence of initial segments {σs}s∈ω

such that the set B = ∪sσs satisfies the requirements
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Pn : n ∈ A ⇐⇒ (∃y)[〈n, y〉 ∈ B] and
Rn : (∃σ ⊂ B)[n ∈ Wσ

n ∨ (∀τ ⊃ σ)[τ ∈ SA =⇒ n /∈ W τ
n ]]

for each n ∈ ω, where
SA = {τ : (∀x)(∀y)[τ(〈x, y〉) ↓= 1 =⇒ x ∈ A]}.

Note that Pn-requirements guarantee that A ≤e B, and hence A ≤e B ⊕B. To prove that
the Rn-requirements provide B′ ≡T ∅′, first note that SA ≡e A, which has low e-degree, and

X = {〈σ, n〉 : (∃τ ⊃ σ)[τ ∈ SA & n ∈ W τ
n ]} ≤e SA.

Then X ∈ ∆0
2 and

n /∈ B′ ⇐⇒ (∃σ ⊂ B)[〈σ, n〉 /∈ X],

so that B′ is co-c.e. in B ⊕ ∅′ ≡T ∅′. Thus B′ ≤T ∅′ by Post’s Theorem.
Since the set B will be computable in H, the set

Q = {n : (∀σ ⊂ B)(∃τ ⊃ σ)[τ ∈ SA & n ∈ W τ
n ]}

will be computable in (H ⊕ ∅′)′ ≡T H ′ – indeed, we have n ∈ Q ⇐⇒ (∀σ ⊂ B)[〈σ, n〉 ∈ X],
so that Q is co-c.e. in H ⊕ ∅′. Now to construct the desired set B we can apply the Recursion
Theorem and fix an H-computable function g such that Q(x) = lims g(x, s).

Let {As}s∈ω and {SA
s }s∈ω be respective H-computable enumerations of A and SA.

Construction.

Stage s = 0. σ0 = λ.

Stage s + 1 = 2〈n, z〉 (to satisfy Pn). Given σs define l = |σs|.
If n /∈ As, then let σs+1 = σŝ0.

If n ∈ As, then choose the least k ≥ l such that k = 〈n, y〉 for some y ∈ ω and define
σs+1 = σŝ0k−l̂1 (so that σs+1(k) = 1).

Stage s+1 = 2〈n, z〉+1 (to satisfy Rn). H-computably find the least stage t ≥ s such that
either g(n, t) = 0, or n ∈ W τ

n,t for some τ satisfying τ ∈ SA
t and τ ⊃ σs. (Such stage t exists

since if lims g(n, s) = 1 then n ∈ Q, and hence there exists some τ ⊃ σs such that n ∈ W τ
n and

τ ∈ SA.)
If g(n, t) = 0 then define σs+1 = σŝ0.

Otherwise, choose the first τ ⊃ σs such that τ ∈ SA
t and n ∈ W τ

n,t. Define σs+1 = τ.

This completes the description of the construction.

Let B = ∪sσs. Clearly B ≤T H since each σs is obtained effectively in H. Each Pn-
requirement is satisfied by the even stages of the construction since σs ∈ SA for any s ∈ ω.

To prove that each Rn-requirement is met suppose that

(∀σ ⊂ B)(∃τ ⊇ σ)[τ ∈ SA & n ∈ W τ
n ]

for some n. This means that n ∈ Q. Choose any odd stage s = 2〈n, z〉+ 1 such that g(n, t) = 1
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for all t ≥ s. Then by the construction n ∈ Wσs
n .

Hence A ≤e B ⊕B ≤e H ⊕H, and dege(B ⊕B) is low.

Theorem 3. There is a Π0
1 e-degree a and a 3-c.e. e-degree b < a such that a is not splittable

over b.

Proof. We construct a Π0
1 set A and 3-c.e. set B satisfying both the global requirement:

G : B = Ω(A),
and the requirements

RΞ,Ψ,Θ : A = Ξ(Ψ(A)⊕Θ(A)) =⇒ (∃ e-operator Γ)A = Γ(Ψ(A)⊕B)∨
(∃ e-operator Λ)A = Λ(Θ(A)⊕B)

for each triple of e-operators Ξ, Ψ,Θ, and

NΦ : A 6= Φ(B)

for each e-operator Φ.

In fact A will be constructed as a 2-c.e. set. Note that the e-degrees of Π1 sets coincide
with the e-degrees of 2-c.e. sets. Hence this will still produce the desired enumeration degrees.

Basic Strategies

Suppose we have an effective listing of all requirements R1, R2, . . . and N1, N2, . . . The require-
ments will then be arranged by priority in the following way: G < R1 < N1 < R2 < N2 < . . .

To satisfy the requirement G we will make sure that every time we enumerate an element
into the set B, we enumerate a corresponding axiom into the set Ω; and every time we extract
an element from B, we make the corresponding axiom invalid by extracting elements from A.
More precisely every element y that enters B will have a corresponding marker m in A and
an axiom 〈y, {m}〉 in Ω. If y is extracted from B then we extract m from A. If y is later
re-enumerated into B – this can happen since B is 3-c.e. – then we will just enumerate the
axiom 〈y, ∅〉 into Ω.

To satisfy the requirements Ri we will initially try to construct an operator Γ using in-
formation from both of sets B and Ψ(A). Again, enumeration of elements into A is always
accompanied by enumeration of axioms into Γ, and extraction of elements from A can be
rectified via B-extractions.

The N -strategies follow a variant of the Friedberg -Muchnik strategy while at the same time
respecting the Γ-rectification, so we will call them (NΦ, Γ)-strategies. They choose a follower x,
enumerate it in A, then wait until x ∈ Φ(B). If this happens - they extract the element x from
A while restraining B ¹ ϕ(x) in B. The need to rectify Γ after the extraction of the follower x

from A can be in conflict with the restraint on B. To resolve this conflict we try to obtain a
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change in the set Ψ(A) which would enable us to rectify Γ without any extraction from the set
B. To do this we monitor the length of agreement

lΞ,Ψ,Θ(s) = max{y : (∀y < x)[y ∈ A[s] ⇐⇒ y ∈ Ξ(Ψ(A)⊕Θ(A))[s]]}.

We only proceed with actions directed at a particular follower once it is below the length
of agreement. This ensures that the extraction of x from A will have one of the following
consequences

1. The length of agreement will never return so long as at least one of the axioms that
ensure x ∈ Ξ(Ψ(A)⊕Θ(A)) remains valid.

2. There is a useful change in the set Ψ(A).

3. There is a useful change in the set Θ(A).

We will initially assume that it is the case that the third consequence is true and com-
mence a backup strategy (NΦ,Λ) which is devoted to building an enumeration operator Λ with
information from A and Θ(A). This is a new copy of the N -strategy working with the same
follower. It will try to make use of this change in Θ(A) to satisfy the requirement. Only when
we are provided with evidence that our assumption is wrong will we return to the initial strategy
(NΦ, Γ).

Basic module for an NΦ-strategy below one RΞ,Ψ,Θ-strategy

We will first consider the simple case involving just two requirements. Assume we have NΦ,
which we refer to as the N -requirement, below RΞ,Ψ,Θ, which we refer to as the R-requirement.

At the root we have the R-strategy denoted by (R, Γ). It will have two outcomes e <L gw.
The R-strategy will monitor all elements x /∈ A. In the case in which there is an element x /∈ A

such that x ∈ Γ(Ψ(A) ⊕ B) the operator Γ cannot be rectified. The (R, Γ)-strategy will then
have outcome gw, and we will be able to argue that x ∈ Ξ(Ψ(A) ⊕ Θ(A)), which indicates a
global win for the R-requirement. Strategies working below this outcome will follow a simple
Friedberg-Muchnik strategy and preserve the difference at x by using followers of big enough
value. In case there is no such x the operator, Γ can be rectified and the (R, Γ)-strategy will
have outcome e.

Below e we will try to meet N satisfying A = Γ(Ψ(A) ⊕ B). The (N, Γ)-strategy will
have four outcomes: three finitary outcomes, f , w and l, and one infinitary outcome λ. The
outcomes are arranged in the following way: λ <L f <L w <L l. Outcome l indicates that at
that node the R-requirement is globally satisfied since the follower x enumerated in A is not in
Ξ(Ψ(A)⊕Θ(A)). Outcome w indicates that Γ is correct on x and the N -requirement is satisfied
as x ∈ A − Φ(B). Outcome f is only accessible once a follower x has been returned. It will
indicate that Γ is again correct on x and the N -requirement is satisfied via x ∈ Φ(B)−A.

Below outcome λ strategies will be devoted to constructing an operator Λ with A =
Λ(Θ(A) ⊕ B) where they will receive their followers from (N, Γ). Again we have a control-
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ling strategy (R, Λ) with only one outcome e which makes sure that the operator Λ can be
rectified at all times. In case it sees an element x /∈ A for which the axiom enumerated in Λ is
valid, it will send x back to (N, Γ). We will be able to argue that x has provided evidence of a
useful change in Ψ(A).

Below (R, Λ)’s only outcome e we try to meet N by (N, Λ) with A = ΛΦ(Θ(A) ⊕ B).
The strategy below the outcome λ acts only when the (N, Γ)-strategy sends its follower x. It
performs similar actions with regard to (N, Γ) and has two outcome f <L w both indicating
that the N -requirement is satisfied and the operator Λ remains intact.

The R strategy:

1. Scan all followers x /∈ A defined up to the current stage.

2. If x ∈ Γ(Ψ(A)⊕B), then let the outcome be o = gw.

3. If all followers are scanned and none has produced an outcome o = gw, then let the
outcome be o = e.

The (N, Γ) strategy:

At stage s the strategy will start its work at the step of the module indicated at the previous
stage.

Setup 1) Choose a new follower x as a fresh number (bigger than any previously set up restraint).
Enumerate it into As.

2) If there are finite sets G(x), H(x), L(x) with x ∈ Ξ(G(x) ⊕ H(x)), G(x) ⊂ Ψ(L(x)),
H(x) ⊂ Θ(L(x)) and L(x) ⊂ A then restrain A on max(L(x)) and go to Setup 3. Other-
wise let the outcome be o = l and return to Setup2) at the next stage.

3 ) Define x′s B-marker y(x), along with its corresponding A-marker m(x), as fresh
numbers bigger than any previously set restraint on A or B. Enumerate y(x) in Bs and
m(x) in As. Define a new axiom 〈y(x), {m(x)}〉 for Ωs.

Enumerate each 〈z, Gx ⊕B ¹ y(x)〉 into Γ where z is either x, or m(x), or a follower
z ∈ A from a previous cycle of the strategy. Note that we enumerate axioms for previous
followers as well. So at this point the operator Γ is rectified. Let the outcome be o = w.
Go to Wait at the next stage.

Wait If x ∈ Φ(Bs) then go to Attack. Otherwise let the outcome be o = w and return to Wait

at the next stage.

Attack 1) Check if any previously sent follower has been returned. If so go to Result. Otherwise
go to Attack2.

2)Let v(x) = max(ϕ(x), y(x)) and restrain B on v(x). Extract y(x) from Bs and m(x)
from As, noting that x is still in Ξ(Ψ(A)⊕Θ(A)) as the marker m(x) is chosen as a fresh
number after G(x) and H(x) are already defined.
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Send x. Let the outcome be o = λ. At the next stage start from Setup1, choosing a
new current follower. The strategy working below outcome λ will believe B only below
a right boundary Rs = y(x). Note that the next follower will choose its B-marker of
greater value. So if the outcome λ is visited infinitely often then the right boundary R

will grow unboundedly.

Result Let the returned follower be x. Put y(x) into Bs and 〈y(x), ∅〉 into Ωs. For each follower
z of this strategy such that z ∈ A put the axiom 〈z, ∅〉 into Γs.

1) For the returned follower we know that x /∈ As and H(x) ⊂ Θ(As). The outcome
λ will not be accessible anymore so we can preserve H(x) ⊆ Θ(At) at further stages t.
Also if G(x) ⊆ Ψ(As) then the (R, Γ)-strategy would have outcome gw preserving the
difference and satisfying R globally. The (N, Γ)-strategy would not be accessible any
longer. Otherwise G(x) * A and the outcome is o = f . Return at Result1 at the next
stage.

The (R, Λ)-strategy below outcome λ :

1. Scan all followers x /∈ A.

2. If x ∈ Λ(Θ(A)⊕B) then return x. End this stage.

3. If all followers are scanned and none have been returned then let the outcome be e.

The (N, Λ)-strategy below outcome λ :

Setup 1) Let x ∈ A be a new integer which was sent by the (N, Γ)-strategy. Now x becomes
the follower of the (N, Λ)-strategy. Go to Setup2.

2) Put 〈x,Hx ⊕B ¹ v(x)〉 into Λ. Go to Wait.

Wait If x ∈ Φ(B) with use ϕ(x) < Rs then go to Attack. Otherwise the outcome is o = w,
return to Wait at the next stage.

Attack Extract x from A. Go to result.

Result Let the outcome be o = f . Return to Result at the next stage.

The (N, FM)-strategy below outcome l or gw :

Setup Choose a new follower x bigger than any previously set restraint on A and enumerate it
into A. Go to Wait.

Wait If x ∈ Φ(B) go to Attack. Otherwise the outcome is o = w, return to Wait at the next
stage.

Attack Extract x from A and go to Result.

Result Let the outcome be o = f . Return to Result at the next stage.
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Now the (N, FM) strategy below outcome l will also be changing A. To keep Γ and Λ
rectified, every time we initialise the (N, FM)-strategy and cancel its follower x, if x ∈ A we
will add the axiom 〈x, ∅〉 in Γ and Λ.

If the (R, Γ)-strategy has outcome gw on stage s for the first time, then the (N, FM)-
strategy working below will will be initialised on the previous stage and will choose its follower
x anew, respecting the restraint on A that (N, Γ) has set up. So (R, Γ) will have outcome gw

on all further stages and B will not be modified any longer. The (N, FM)-strategy will be able
to satisfy its requirement.

Suppose that (R, Γ)-strategy never has outcome gw. We will analyse all possible outcomes
of the N -strategies and see that in each case the requirements are satisfied.

Consider first the possible outcomes of the strategy (N, Γ). If one of the cycles stops at
Setup2, i.e. on all stages t > s the strategy has outcome l, then the true outcome will be (o = l).
The length of agreement lΞ,Ψ,Θ(s) = max{y : (∀y < x)[y ∈ A[s] ⇐⇒ y ∈ Ξ(Ψ(A)⊕Θ(A))[s]]}
is bounded and hence the requirement R is trivially satisfied.

The set B is not modified after stage s and the simple strategy (N, FM), active on all
stages t ≥ s succeeds to satisfy the requirement N .

Suppose now that no cycle of the (N, Γ)-strategy stops at Setup2. In this case the (N, FM)-
strategy may be activated infinitely many times and will be initialised every time the (NΓ)-
strategy moves on to Wait. The current follower x of the (N, FM)-strategy will be cancelled
and if it is not yet extracted from A the corresponding axiom 〈x, ∅〉 will be enumerated in Γ
and Λ. This ensures that both operators will be correct at x for all cancelled followers x of the
strategy (N, FM).

We first consider the case when the (N, Γ)-strategy during its work sends only finitely many
integers. Then some cycle with a follower x stops either at Wait or reaches Result. If the cycle
stops at Wait then the outcome is o = w and x ∈ A − Φ(B), hence the N -requirement is
satisfied. On the other hand for all followers z we have z ∈ A ⇐⇒ z ∈ Γ(Ψ(A) ⊕ B) and
m(z) ∈ A ⇐⇒ m(z) ∈ Γ(Ψ(A) ⊕ B) since y(z) ∈ B ⇐⇒ z = x. Hence Γ is correct at all
followers z.

If the cycle reaches Result then we have y(x) ∈ B and hence x ∈ Φ(B)−A, so N is satisfied.
Also Hx ⊆ Θ(A) via some finite set Px ⊂ A. If Gx ⊆ Ψ(A) then this will be apparent at some
finite stage s, i.e. on stage s we will see a finite set Qx ⊂ A such that Gx ⊆ Ψ(Qx). Then
from stage s on the (R, Γ)-strategy will have outcome o = gw, contradicting our assumption.
So Gx * Ψ(A) giving x /∈ Γ(Ψ(A) ⊕ B). Since again y(z) ∈ B ⇐⇒ z = x we have
z ∈ A ⇐⇒ z ∈ Γ(Ψ(A) ⊕ B) and m(z) ∈ A ⇐⇒ m(z) ∈ Γ(Ψ(A) ⊕ B) for any follower z.
Hence the operator Γ remains correct at all further stages.

Suppose now that the (N, Γ)-strategy during its work sends infinitely many integers. In
particular, no x is returned to (N, Γ). Then the true outcome is o = λ and we will see that the
(N, Λ)-strategy is successful.

If the (N, Λ)- strategy stops at Wait then x ∈ A − Φ(B). Indeed if we assume that
x ∈ Φ(B) then there is some finite Mx ⊂ B such that x ∈ Φ(Mx). The right boundary R grows
unboundedly, so eventually there will be a stage s with Rs > max(Mx) and the strategy will
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move on to Attack.
The second case is if the strategy reaches Result. Then x ∈ Φ(B) − A because at some

stage s we found a set Mx ⊂ Bs with max Mx < R such that x ∈ Φ(Mx). The strategy (N, Γ)
will not extract any more markers from B after stage s that are below the right boundary Rs,
hence x ∈ Φ(B).

At this stage of the construction we can only prove that Λ will be correct at the follower x

and all cancelled followers of the strategy (NΦ, FM). To prove that the operator is correct at
the rest of the followers enumerated in A by the (N, Γ)-strategy we will need to consider how
all N -strategies will work together.

Basic module for many NΦ-strategies under one RΞ,Ψ,Θ-strategy

We will try to meet all requirements NΦ1 , NΦ2 , . . . . Each requirement NΦj
will be denoted by

Nj and met by one of the following strategies:

1. (Nj , Γ) with outcomes λ, f , w and l;

2. (Nj , FM) with outcomes f and w and situated in the subtree of the strategy (Ni, Γ) with
outcome l, where i ≤ j.

3. (Nj , Λ) with outcomes f and w and situated in the subtree of the strategy (Ni,Γ) with
outcome λ where where i ≤ j.

We now need to be more careful as more strategies will enumerate and extract markers
from A and B. We will have to ensure that the operator constructed on the true path is correct
and manages to satisfy the R-requirement.

The first rule that we will implement in order to achieve this follows the idea of cancelling
followers of the (N,FM)-strategy from the previous section. Namely, whenever we initialise a
strategy (Nj , S) on an node α in the tree of strategies whose follower x is in A we will enumerate
an axiom 〈x, ∅〉 into all operators Γ and Λ that are constructed on nodes β < α. If m(x) is in
A we will also enumerate an axiom 〈m(x), ∅〉 into these operators.

Secondly we will be more careful when enumerating axioms in the corresponding operators.
Instead of just using the sets G(x) and H(x), we will use the information from all axioms
defined up until now. More precisely we will modify the modules of the strategies from the
previous section in the following way:

The (Nj ,Γ)-strategy is the same as the as the (NΦ,Γ)-strategy with the exception of step
Setup3, which is now as follows:

Setup3) Enumerate all 〈z, Gx ⊕B ¹ yx ∪ U〉 into Γ where z is either x, or mx, or a follower
z ∈ A from a previous cycle of the strategy and U is the union of all sets D such that 〈v,D〉 is
a valid axiom in Γ, where v ∈ A is a follower of the strategy (Ni, Γ) with i < j.

The (NΦj ,Λ)-strategy is the same as the (NΦ, Λ)-strategy with the exception of Setup2),
which is now as follows:

Setup2) Enumerate 〈x, (Hx ⊕B ¹ v(x)) ∪ U〉 into Λ where U is the union of all finite sets
D such that 〈v,D〉 ∈ Λ for some follower v ∈ A of an (Nk, Λ)-strategy with k < j.
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The main idea behind the added sets U in the axioms is that a strategy α working below
another strategy β where α and β construct the same operator O believes that β′s work is final
and the axioms enumerated in O by β will remain true. In the case that β changes its mind
and invalidates one of these axioms α will be initialised as β will have an outcome to the left of
α. If α′s followers are still in A then an axioms for them will be enumerated in the operator as
stated in above. But if α′s follower is not in A, then we need to ensure that there isn’t a valid
axiom in O for it. α will not be able to monitor this follower any longer, so the job is going to
be transferred to β automatically via the set U which includes an axiom for β′s follower, which
β observes and makes sure is invalid.

Two R-requirements

Now we need to consider the case when there are two R-requirements. Corresponding to them
there are nodes on the tree: an (R1,Γ1)-strategy and an (R2,Γ2)-strategy along each path,
scanning for an appropriate global win for the R-requirements. Below outcome gw for an
Ri-strategy the N -requirements simply ignore the requirement Ri and act as in the previous
section.

There now more possibilities for an N -strategy working below outcomes e of both (Ri, Γi)-
strategies depending on how it believes the Ri-requirements will be satisfied.

The main strategy will be again the one that deals with operators Γ1 and Γ2. It will try
to obtain the necessary changes in the sets Ψ1(A) and Ψ2(A) using backup strategies that
try to satisfy the R requirements in a different manner. The requirement R1 is of higher
priority. The method for satisfying the lower priority requirement R2 will be decided after
we have established the method for satisfying R1 unless we have already evidence that the
R2-requirement is trivially satisfied. The N -strategy starts off assuming that the requirements
will be satisfied via operators Γ1 and Γ2. It will be denoted by (N, Γ1, Γ2). Its outcomes are
λ2 <L f <L w <L l2 <L l1. Outcomes w and f will represent the fact that the strategy has
succeeded in satisfying its requirement while keeping both operators rectified.

Outcome l1 will represent a global win for R1. The price we pay for it is that the operator Γ2

will not be rectified. Below this outcome there will be a backup (N, FM1, Γ′2)-strategy. It will
construct a new operator Γ′2 and meet the requirement N . Its outcomes are λ2 <L f <L w <L l2

and it acts just as the (N, Γ)-strategy from the previous section.

Outcome l2 will represent a global win for R2. Below it we have a strategy (N, Γ1, FM2)
which continues to construct the same operator Γ1 as the (N, Γ1,Γ2)-strategy. Strategies below
will simply treat R2 as satisfied - that is, this requirement will be invisible to them.

Below outcome λ2 is the (R2, Λ2)-strategy followed by a backup strategy (N, Γ1,Λ2). It
continues to construct the same operator for the first strategy Γ1 but switches the method for
the second strategy to Λ2. Its outcomes are λ1 <L f <L w.

Below outcome λ1 is the (R1, Λ1)-strategy a backup strategy that changes the method for
satisfying the requirement R1. As a consequence the method for R2 must be decided again.
The strategy is (N, Λ2, Γ′′2) with outcomes λ2 <L f <L<w<L l2. The method for satisfying R1
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cannot be switched anymore. The method for R2 can be further switched via (N, Λ1, FM2)
below l2 and to (N, Λ1, Λ′′2) below outcome λ2.

In this way all possible combinations of methods for satisfying the two R-requirements are
distributed through the tree.

The modules for each of the described strategies above follow the basic steps as outlined
in the previous section. The (N, Γ1,Γ2) strategy chooses a follower x. It tries to define the
parameters for R1 - H1(x), G1(x), y1(x) and m1(x) and rectifies Γ1. Then it focuses on
the second requirement R2. Once R2’s parameters are defined a new element m2(x) will be
enumerated in A. The new point is that this new change in A must be reflected in the definition
of Γ1. So an axiom 〈m2(x), G1(x)⊕ {y2(x)}〉 is enumerated in Γ1. If m2(x) is extracted from
A then we will extract y2(x) from B and this axiom will not be valid. We will enumerate y2(x)
back in B only if x has been returned in which case G1(x) * Ψ1(A).

The axioms enumerated in Γ2 will have to include additionally m1(x) and all m1(z) for
previously defined followers of this strategy from previous cycles, that are still in A.

Once we have established that x ∈ Φ(B), we start the attack by sending the follower x with
defined v(x) = max(ϕ(x), y1(x), y2(x)) to (N, Γ1, Λ2). This strategy will need to get further
permission from Γ1. An axiom 〈z, H2(x)⊕B ¹ v(x)〉 will be enumerated for each z which is a
follower from a previous cycle, x or m1(x). This strategy also starts an attack by sending x to
(N, Λ1, Γ′′2) and extracting y1(x) and m1(x) from A once it has observed that x ∈ Φ(B). Note
that this will make the axiom for x in Λ2 invalid.

The (N, Λ1, Γ′′2)-strategy now must define parameters G′′2(x) and H ′′
2 (x), markers y′′2 (x) and

m′′
2(x). And then it will initiate the last attack sending x to (N, Λ1, Λ′′2).

Once the follower is extracted from A it can climb back up these strategies. (R2,Λ′′2) will
send it back to (N, Λ1,Γ′′2) in case H ′′

2 (x) ⊂ Θ2(A).
(R1,Λ1) will send the follower x back to (N, Γ1,Λ2) in case H1(x) ⊂ Θ1(A).
Then (R, Λ2) will send it back to (N, Γ1Γ2) in case H2(x) ⊂ Θ2(A).
When the (N, Γ1Γ2)-strategy re-receives x it will have proof that H1(x) ⊆ Θ1(A), so that

G1(x) * Ψ1(A) and Γ1 is rectified and H2(x) ⊂ Θ2(A), so G2(x) * Ψ2(A) and Γ2 is rectified.
Considering two requirements we can justify the need for the (Ri, Λi)-strategies. Suppose

α l̂2 ⊂ β and β is sharing the same method Λ1 as α. If a follower x of β is extracted from A we
must ensure that the axioms for x defined in the operator Λ1 are invalid. It could be the case
that α moves on to outcome w and initialises β. The follower x will not be observed any longer.
But as Θ1(A) is not in our control it is possible that H1(x) ⊂ Θ1(A) and this is revealed at a
later stage after x has been cancelled. If x is not sent back, then Λ1 will not be correct. This
is why we need the (R1, Λ1) strategy which observes all followers. It will return x even after x

is cancelled.
The (R, Γ1) strategy plays a similar role. Suppose that α l̂2 ⊂ β. Now β is sharing the

same method Γ1 as α. If a follower x of β is extracted from A we must ensure that the axioms
for x defined in the operator Γ1 are invalid. If α moves on to outcome w thereby initialising
β we lose control on x and it could happen that G1(x) ⊂ Ψ1(A) at a later stage. We will be
able to argue that if the axiom for x in Γ1 is valid, then H1(x) ⊂ Θ1(A) and (R, Γ1) will have
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outcome gw at all further stages.
In [4] we combine the ideas from the above description to obtain the construction that

meets all requirements.
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