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1 Introduction
Enumeration reducibility captures a natural relationship between sets of natu-
ral numbers in which positive information about the first set is used to produce
positive information about the second set. It was introduced independently sev-
eral times in works by Friedberg and Rogers [10], Myhill [39], and Selman [45],
who were searching for a natural way to extend the notion of relative Turing
computability from total functions to partial functions. Informally, A ⊆ ω is enu-
meration reducible to B ⊆ ω if there is a uniform way to compute an enumeration
of A from an enumeration of B. The formal definition that we give below is the
one by Friedberg and Rogers [10].

Definition 1.1. A ⊆ ω is enumeration reducible to a set B ⊆ ω (A ≤e B) if there
is a c.e. set W such that

A = {n : (∃e)[〈n, e〉 ∈W and De ⊆ B]},

where De is the eth finite set in a canonical enumeration.

By identifying sets that are reducible to each other we obtain an algebraic
representation of this reducibility as a partial order: the structure of the enumer-
ation degreesDe. The degree structureDe is an upper semi-lattice with least upper
bound induced by the effective join operation A⊕B = {2n | n ∈ A}∪{2n+1 | n ∈
B} and a least element 0e, the degree of all c.e. sets.

Motivation for the interest in the enumeration degrees comes from its nontriv-
ial connections to the study of the Turing degrees. In Turing reducibility, ≤T ,
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we use membership information, both positive and negative, from a given oracle
set B to obtain the same type of membership information about a reduced set A.
Enumeration reducibility, restricts us to both using and producing only positive
information. There is a further relation that sits between Turing and enumeration
reducibility. The relation relative computable enumerability (c.e. in) uses positive
and negative information about an oracle set B to produce only positive informa-
tion about a set A. We can express the positive and negative information about
a set A in a positive way by replacing it with A ⊕ A. This gives the following
relationship between the three reducibilities:

Proposition 1.2. A ≤T B ⇔ A⊕A is B-c.e.⇔ A⊕A ≤e B ⊕B.

Myhill [39] used this relationship to define a natural embedding of the Turing
degrees into the enumeration degrees. He proved that the embedding ι : DT → De,
defined by

ι(dT (A)) = de(A⊕A),
preserves the order and the least upper bound. Thus we have a copy of the
Turing degrees sitting inside the enumeration degrees. Medvedev [35] observed
that sufficiently generic sets have enumeration degrees outside of the range of this
embedding and so the enumeration degrees properly extend the Turing degrees.

In this article we outline some of the more recent results in the study of
the enumeration degrees. We will focus on three aspects of the structure of the
enumeration degrees:

I. The first order theory of De and its fragments;

II. First order definability;

III. Automorphisms and automorphism bases.

We will outline the current state of the art and discuss open problems on each
topic that we believe mark important goals for the advancement of knowledge in
the field. We will see that enumeration reducibility and the enumeration degrees
have nontrivial interactions with other parts of mathematics, most prominently
with topology.

The structure of this article is motivated by a theorem that was proved by
Slaman and Woodin [53] for the Turing degrees and extended by Soskova [54] to
the enumeration degrees. We state it here and elaborate on it throughout the
paper:

Theorem 1.3 (Slaman and Woodin, Soskova). The following are equivalent:

1. De is biinterpretable with second order arithmetic.
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2. The definable relations in De are exactly the ones induced by degree invariant
definable relations in second order arithmetic.

3. De is a rigid structure.

Thus, the three aspects we consider are related and provide different outlooks
on one main problem.

Question 1.4. Are there nontrivial automorphisms of the enumeration degrees?

2 The first order theory of De and its fragments

We start our explorations with the theory of the enumeration degrees Th(De), the
set of sentences in the language of partial orders that are true in the structure.
Our first observation is that enumeration reducibility is a relation that can be
defined in second order arithmetic Z2. Assuming some basic facts from classical
recursion theory, it is straightforward to check that enumeration reducibility is a
Σ0

3 relation. Therefore, the theory Th(De) can be effectively interpreted in second
order arithmetic. This does not really help us with understanding the complexity
of the set, except for providing the evident upper bound Th(De) ≤T Th(Z2). It
does, however, set the stage for our investigations and hints to the connections
between De and Z2 outlined in Theorem 1.3. We will first consider fragments of
the theory that we obtain by restricting the quantifier complexity of the sentences.

2.1 The existential theory of De
The simplest fragment of the theory of De is the existential theory, the set of
existential sentences true in the structure. We denote this set by ∃-Th(De). An
existential statement has the form

(∃x1) . . . (∃xn)[ϕ(x1, . . .xn)],

where ϕ is either obviously false because it contradicts the axioms of partial
orderes or else it is a disjunction of quantifier free formulas that partially describe
a finite partial order. In order for an existential sentence to be true in De, it
first must comply with the axioms of partial order. This is something that can
be effectively checked. It follows that in order to decide whether an existential
sentence is true in De we must understand which finite partial orders can be
embedded in De. The answer is simple: all partial orders can be embedded.
This result can be traced back to Sacks [43], who showed that every countable
partial order can be embedded in DT (in fact, he showed it for DT (≤T 0′), the
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initial interval of the Turing degrees bounded by 0′), in combination with the
embedding of DT in De. In the enumeration degrees this result was extended
first by Lagemann [26], who showed that every countable partial order can be
embedded below any nonzero ∆0

2 enumeration degree, then by Bianchini [4] who
found such embeddings in any nonempty interval of Σ0

2 enumeration degrees, then
by Soskov and Soskova [55], who replaced Σ0

2 with good. A good enumeration
degree is a degree that contains a set with a good approximation. The good
approximations were introduced by Lachlan and Shore [24]. They use them to
show density for the n-c.e.a. degrees: a hierarchy of enumeration degrees based
on the relation c.e. in. Most recently this series of results have been extended by
Slaman and Sorbi [48].

Theorem 2.1 (Slaman, Sorbi). Every countable partial order can be embedded
below any nonzero enumeration degree.

Note that the statement of the theorem above, reveals an important structural
property of the enumeration degrees, initially proved by Gutteridge [16]: the
enumeration degrees are downwards dense. We will see that this statement will
play a trick on us when we consider more complex fragments of the theory. It
also provides an example of a structural difference between De and DT , where
minimal degrees exist.

In any case, we now know that the existential theory of the enumeration
degrees is decidable. We move on to the next quantifier complexity level, where
the situation is less clear.

2.2 The two quantifier theory of De
We only have partial understanding of the two quantifier theory of the enumer-
ation degrees ∀∃-Th(De). In order to describe this, let us again consider the
problem in more detail. A two quantifier statement has the form:

(∀x1) . . . (∀xk)(∃y1) . . . (∃yn)[ϕ(x1, . . .xk,y1, . . .yn)],

where ϕ is once again a disjunction of conjunctions. Let ψ1, . . . ψr be formulas
that describe the complete quantifier free type of the variables x1, . . .xk. The
statement above is equivalent to the following:∧

i<r

(∀x1) . . . (∀xk)[ψi(x1, . . .xk)→ (∃y1) . . . (∃yn)ϕ(x1, . . .xk,y1, . . .yn)].

And so it is sufficient to decide statements of the form:

(∀x1) . . . (∀xk)[ψ(x1, . . .xk)→
∨
i<t

(∃y1) . . . (∃yn)ϕi(x1, . . .xk,y1, . . .yn),
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where ψ describes the quantifier free type of the variables x1, . . .xk and each ϕi
describes one possible quantifier free type of the variables x1, . . . ,xk,y1, . . . ,yn
that is consistent with the type described by ψ. We can restate this question in
a structural way as follows:

Problem 2.2. If P is a finite partial order and Q1, . . .Qt are finite extensions
of P , decide whether every embedding of P into the enumeration degrees can be
extended to an embedding of one of the Qi.

The simpler problem when t = 1 is the the extension of embeddings problem.
For DT the problem above is decidable. Lerman [30] showed that every finite

lattice P can be embedded as an initial segment of DT . Thus, if P is a lattice
then this embedding of P can be extended to an embedding of Q only if no new
element in Q \ P is below any element of P . In addition, Q must respect least
upper bounds: i.e. if x ∈ Q \ P is above two old elements u, v ∈ P then x must
be above u ∨ v. If P is not a lattice then points in Q \ P can also take the place
of least upper bounds that need to be added just because we are embedding in
an upper semi-lattice. Shore [46] and Lerman [31] then proved that these are the
only obstacles and so the decision problem is computable. The algorithm does
not even use the possibility of selecting different possible extensions in different
situations: the decision problem is reduced to its simplest case, it is equivalent to
the extension of embeddings problem.

In De the situation is very interesting for the following reasons. As we men-
tioned earlier, Gutteridge [16] showed that the enumeration degrees are down-
wards dense and so no finite lattice can be embedded as an initial segment.
Cooper [8] proved, however, that the enumeration degrees are not dense and Sla-
man and Calhoun [6] extended Cooper’s results by showing that there are empty
intervals in the Π0

2-enumeration degrees. Kent, Lewis-Pye, and Sorbi [21] showed
that there are strong minimal covers in the enumeration degrees:

Definition 2.3. The degree b is a strong minimal cover of a if a < b and every
degree x < b is also bounded by a.

Consider the two-element lattice P consisting of two elements u < v. The
embedding of P to degrees a < b such that b is a strong minimal cover of a
extends to an embedding of Q only if new elements x ∈ Q \ P that are strictly
below v are also below u. The embedding of P to degrees 0e < b, on the other
hand, extends to an embedding of Q only if new elements x ∈ Q \P are above u.
Using Theorem 2.1 and a fairly standard forcing construction we can conclude that
these are the only obstacles. Thus for this lattice P we can decide the problem of
extending to one of many Qi’s: every embedding of P extends to an embedding
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Q1, . . . Qn, if and only if there is one Qi that places elements strictly below v also
below u and there is another Qj that places new elements above u. The decision
procedure is already slightly more complicated than that for the same lattice in
DT and is not equivalent to the extension of embeddings problem.

Towards a possible decision procedure for the more general problem Lempp,
Slaman, and Soskova [28] prove the following

Theorem 2.4 (Lempp, Slaman, Soskova). Every finite distributive lattice can be
embedded as an interval [a,b], so that if x ≤ b then x ∈ [a,b] or x < a.

Note that in the theorem above the range of our embedding is the whole
interval [a,b], and so this is an extension of the existence of strong minimal
covers in the enumeration degrees. We will say that this is a strong interval lattice
embedding. This turns out to be sufficient to decide the extension of embeddings
problem:

Theorem 2.5 (Lempp, Slaman, Soskova). The extension of embeddings problem
for De is decidable.

Some very important questions remain open. First of all, we do not know,
whether we can remove the distributivity restriction in the theorem above.

Question 2.6. Does every finite lattice have a strong interval embedding in De?

Even if we had a positive answer to the question above, we still do not know,
whether we can decide the two quantifier theory of De. Before we can answer that
question, we need to understand more about the structure of De. One particularly
difficult structural questions concerns the existence of a strong minimal pair.

Definition 2.7. A pair of degrees a and b form a strong minimal pair if

• a and b are incomparable degrees with only 0e as their common lower bound.

• if x ≤ b then a ∨ x ≥ b, and, similarly, if x ≤ a then b ∨ x ≥ b.

Question 2.8. Are there strong minimal pairs in De?

2.3 The three quantifier theory of De
Finite distributive lattices are already fairly complicated structures. Nies [40]
showed that their ∀∃∀-theory in the language of partial orders is hereditarily
undecidable. He also gave a way to transfer this undecidability to structures in
which we can define finite distributive lattices.
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Definition 2.9. Let C be a class of structures in a finite relational language
L = {R1, . . . Rn}. We say that C is Σk-elementary definable in De if there are Σk

formulas ϕU , ϕRi , and ϕ¬Ri for i ≤ n such that for every C ∈ C there are pa-
rameters ~p ∈ De that make the structure with universe U = {x | De |= ϕU (x, ~p)}
and relations Ri defined as {~x | De |= ϕRi(~x, ~p)} = {~x | De |= ¬ϕ¬Ri(~x, ~p)}
isomorphic to C.

Theorem 2.4 implies that the class of finite distributive lattices is Σ1-elemen-
tary definable in the partial order De with two parameters: ϕU (x,a,b) is the
formula a ≤ x & x ≤ b and =, 6=, ≤ and � are interpreted via =, 6=, ≤ and �.
We next apply the Nies Transfer Lemma [40]:

Lemma 2.10 (Nies Transfer Lemma). Let r ≥ 2 and k ≥ 1. If a class of models
C is Σk-elementarily definable in De and the r + 1-quantifier fragment of C is
hereditarily undecidable then the k + r-quantifier fragment of De is hereditarily
undecidable.

We can now conclude:

Corollary 2.11. The three quantifier theory of De is (hereditarily) undecidable.

This makes the question of the decidability of the ∀∃-theory of De all the more
interesting, as it would exactly give us the quantifier complexity where decidability
breaks down.

2.4 The full theory of De
Let us now turn to the full theory of the enumeration degrees. It follows from what
we have said so far that this theory is not decidable. But how complicated is it?
Well, first of all, as we already discussed, enumeration reducibility is arithmetically
definable in Z2 and so Z2 can interpret De. This sets an upper bound to the
complexity of Th(De), namely we see that it is 1-reducible to Th(Z2). Slaman
and Woodin [52] prove that the reverse is true as well.

Theorem 2.12 (Slaman, Woodin). The first order theory of the enumeration
degrees is computably isomorphic to the theory of second order arithmetic.

In other words, they show that there is an algorithm that allows us to translate
a sentence ϕ in the language of second order arithmetic to a sentence ψ in the
language of partial orders so that Z2 |= ϕ if and only if De |= ψ. The main tool
that they use is their Coding Theorem:
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Theorem 2.13 (Coding Theorem). There is a uniform way to define every
countable relation on De using parameters. In other words, for every n there is a
formula ϕn such that for every countable relation R ⊆ Dne there are parameters ~p
such that R(a1, . . .an) is true if and only if De |= ϕn(a1, . . .an, ~p).

The Coding Theorem lets us pick out in a definable way a tuple of parameters
~p that codes unary relations N~p and C~p, 3-ary relations R+,~p and R∗,~p, such
that the structure M~p = (N~p; +~p, ∗~p, C~p), where a1 +~p a2 = a3 if and only if
R+,~p(a1,a2,a3) and, similarly, a1 ∗~p a2 = a3 if and only if R∗,~p(a1,a2,a3), is
isomorphic to true arithmetic with a predicate for a set C. We say that ~p codes
the model (N,+, ∗, C).

The biinterpretability conjecture suggests that the relationship between Z2 and
De is even stronger:

Conjecture 2.14 (Biinterpretability conjecture). The relation Bi(~p, c), true
when ~p codes a model (N,+, ∗, C) and dege(C) = c, is first order definable in
De.

Slaman and Woodin formulate this conjecture for a number of degree struc-
tures, including DT , De, the arithmetical degrees Da, the hyperarithmetical de-
grees Dh. In their fundamental work [53] on the analysis on the automorphism
group of DT they prove that the conjecture is true for the hyperarithmetical de-
grees. For DT they are only able to show that it is true modulo the use of a single
parameter. Soskova [54], extends their work and shows that, as anticipated, the
same is true for De.

Theorem 2.15 (Slaman and Woodin, Soskova). There is a single parameter g
and a formula ϕ such that Bi(~p, c) is true if and only if De |= ϕ(g, ~p, c).

Using the equivalence proved in Theorem 1.3 we can infer something about
our next theme: first order definability. However, in this case as well, we need to
use a parameter.

Corollary 2.16. Every relation on De that is induced by a degree invariant de-
finable relation in second order arithmetic can be defined in De using a single
parameter g.

3 First order definability in De
One of the most celebrated first order definability results in the structure of the
Turing degrees is the first order definability of the Turing jump. Recall, that the
Turing jump is an operator on DT that maps a degree a to a′ > a and is defined
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by relativizing the halting problem to an arbitrary set. Slaman and Woodin’s [53]
analysis of the automorphism group of DT allows them to prove that for every
automorphism on the Turing degrees π and every degree x we have that π(x)′′ =
π(x′′). In other words, the double jump operator is preserved by automorphisms.
They also show that if a relation is invariant under all automorphisms then it must
be definable without parameters. As a result they get the first order definability of
the double jump operator. Shore and Slaman [47] then build on top of that result
to prove that the jump operator is also definable. The proof uses the Kumabe-
Slaman forcing method. As you can probably guess, the first order definition of
the jump operator that comes out of this elaborate proof is not intuitive and has
fairly high quantifier complexity. We will see in this section that definability in
the enumeration degrees is quite different.

3.1 The enumeration jump and the total enumeration degrees

Before we can illustrate how definability differs in the enumeration degrees, we
need to isolate interesting relations on De whose first order definability would
be informative. And what better way to start than with an enumeration degree
analog of the jump operator. Recall that the halting set KA relative to a set A is
the uniform join of all c.e. in A sets. When we try to adapt the definition to the
world of enumeration degrees we naturally consider the set KA = ⊕

e<ω Γe(A)—
the uniform join of the sets that are enumeration reducible to A. Unfortunately,
this does not give rise to a very interesting operator, because KA ≡e A. In the
proof that A �T KA we actually use the fact that KA is not c.e. in A. This idea
gives rise to the following definition of the enumeration jump operator introduced
by Cooper [7].

Definition 3.1. The enumeration jump of a set A is the set A′ = KA⊕KA. The
jump of a degree is dege(A)′ = dege(A′).

The enumeration jump operator has many of the properties that we expect
from a jump operator: for instance for all a we have that a < a′ and a ≤ b implies
a′ ≤ b′. It also agrees with the Turing jump under the standard embedding ι. So
naturally we may wonder: Is the enumeration jump operator first order definable?

Another, possibly more important, class of enumeration degrees is the class of
all total enumeration degrees.

Definition 3.2. A set A is total if A ≤e A. An enumeration degree is total if it
contains a total set.

To understand where the name total note that the graph of a total function
is total and that every total degree contains the graph of a total function. An
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equivalent way of defining total degrees is as the enumeration degrees of sets of
the form A ⊕ A. In other words, the total enumeration degrees are exactly the
degrees that are images of Turing degrees under the standard embedding ι. It
was Rogers [42] who asked first whether the total degrees are first order definable
in De. In fact, Rogers [42] had a list of questions among which were whether De
and DT are rigid, whether the Turing jump is first order definable and whether
definability is equivalent to invariance under automorphisms.

We will see that in De both the enumeration jump and the total enumeration
degrees have natural, simple first order definitions. At the heart of these definition
is a notion introduced by Jockusch [18] in his thesis.

Definition 3.3. A set A is semi-computable if and only if there is a total com-
putable selector function sA : ω2 → ω—a function such that ∀x, y ∈ ω we have
that sA(x, y) ∈ {x, y} and whenever {x, y} ∩A 6= ∅ we have that sA(x, y) ∈ A.

Jockusch [18] characterized semi-computable sets as left cuts in computable
linear orderings on ω. One direction of this characterization is straightforward:
if ≤L is a computable linear ordering then the function s(x, y) that compares
its inputs and outputs the one that is smaller with respect to ≤L witnesses that
all left cuts in that linear ordering are semi-computable. Jockusch also proved
that semi-computable sets are far from computable. In fact, every Turing degree
contains a semi-computable set that is neither c.e. nor co-c.e. Translated through
the embedding ι into enumeration degree theoretic terms this shows that every
total enumeration degrees is the nontrivial join of the enumeration degrees of
a semi-computable set and its complement. Here by nontrivial, we mean that
neither of these two degrees is 0e. Arslanov, Cooper and Kalimullin [3] realized
that the enumeration degrees of a semi-computable set and its complement satisfy
an unusual structural property:

Definition 3.4. A pair of enumeration degrees {a,b} is a robust minimal pair if
and only if:

(∀x)[(a ∨ x) ∧ (b ∨ x) = x.]

Note that 0 forms a robust minimal pair with any other degree. We will call
this a trivial robust minimal pair. The reason that we called the property above
unusual is once again rooted in intuition coming from the Turing degrees. Posner
and Robinson [41] prove that if D ≥T ∅′ and {Ai}i<ω is a sequence of uniformly
D-computable incomputable sets then there is a set G such that

(∀i)(Ai ⊕G ≡T G′ ≡T D)

As a consequence we get that for any pair of nonzero Turing degrees {a,b} there
is a Turing degree g such that a∨g = b∨g = g′. As g < g′, the degree g witnesses
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that the pair {a,b} is not a robust minimal pair. So there are no nontrivial robust
minimal pairs in the Turing degrees.

It is alluring to hope that the robust minimal pairs define semi-computable
pairs, as that would give a fairly simple definition of the nonzero total enumeration
degrees: joins of nontrivial robust minimal pairs. Kalimullin [19] showed that this
is, unfortunately, not the case. He gave a combinatorial characterization of the
pairs of sets whose degrees form robust minimal pairs:

Definition 3.5. Sets A and B form a Kalimullin pair (K-pair) relative to a set
U if and only if there is a set W ≤e U such that A×B ⊆W and A×B ⊆W .

Theorem 3.6 (Kalimullin). A pair of sets A and B are a K-pair relative to a set
U if and only if their enumeration degrees a, b and u satisfy

(∀x ≥ u)[(a ∨ u ∨ x) ∧ (b ∨ u ∨ x) = x

We will say that a and b are a robust minimal pair relative to u if they satisfy
the formula from the definition above. And so, the robust minimal pairs are
exactly the degrees of K-pairs relative to any c.e. set. We call such pairs simply
K-pairs. It is not difficult to show that this class is much larger than the class of
semi-computable pairs. Nevertheless, Kalimullin [19] was able to show that they
are extremely useful for definability results in De. He proved that the enumeration
jump can be characterized via robust minimal pairs.

Theorem 3.7 (Kalimullin). The jump of an enumeration degree u is the greatest
degree that can be represented as a ∨ b ∨ c where {a,b}, {b, c}, and {a, c} all
form robust minimal pairs relative to u.

Ganchev and Soskova [14] gave an alternative definition of the enumeration
jump which only relies on unrelativized robust minimal pairs:

Theorem 3.8 (Ganchev, Soskova). The jump of an enumeration degree u is the
greatest degree that can be represented as a ∨ b for a nontrivial robust minimal
pair {a,b} such that a ≤ u.

It took several more years to arrive at the correct approach to the first order
definability of the total enumeration degrees. Ganchev and Soskova [14] realized
that semi-computable pairs satisfy a stronger structural feature: they are maximal
robust minimal pairs.

Definition 3.9. A robust minimal pair {a,b} is maximal if and only if whenever
{c,d} is a robust minimal pair such that a ≤ c and b ≤ d, we have that a = c
and b = d.
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In other words, these are robust minimal pairs such that neither side can be
further lifted to form a higher robust minimal pair. The final piece of the puzzle
was to show that for every K-pair {A,B} there is a semi-computable set C such
that A ≤e C and B ≤e C. Ganchev and Soskova [14] showed that this holds
for K-pairs bounded by 0′e. The full result was then obtained by Cai, Ganchev,
Lempp, Miller and Soskova [5]:

Theorem 3.10 (Cai, Ganchev, Lempp, Miller and Soskova). A nonzero enumer-
ation degree is total if and only if it can be represented as a ∨ b, for a maximal
robust minimal pair.

The first order definability of the total enumeration degrees clarified a lot of
the parallels that we were observing between DT and De. For example, Theo-
rem 2.12, Theorem 2.13, and Theorem 2.15 are now a direct consequences of the
corresponding facts true of the Turing degrees.

This definition of the total enumeration degrees lead to an additional surprising
consequence: the first order definability of the image of the relation “c.e. in”.
Recall that for Turing degrees a and b, we say that a is c.e. in b if and only if
there is some set A ∈ a which is c.e. in some set (or equivalently all sets) B ∈ b.

Theorem 3.11 (Cai, Ganchev, Lempp, Miller and Soskova [5]). The relation

{(a,b) ∈ D2
e | a,b are total & ι−1(a) is c.e. in ι−1(b)}

is first order definable in De.

So far we have only looked at relations and classes that are closely related to
our study and understanding of the Turing degrees. We next take a look at a
class that arises differently: from the study of effective mathematics.

3.2 The continuous degrees

Computable analysis allows us to lift computability theoretic notions from sets of
natural numbers to more complex mathematical objects, such as real numbers,
continuous functions, elements of the Hilbert cube. All of these are examples of
points in computable metric spaces, a notion introduced by Lacombe [25].

Definition 3.12. A computable metric space is a metric spaceM together with
a countable dense sequence QM = {qMn }n∈ω on which the metric is computable,
i.e. there is a computable function that maps a pair of indices i, j and a precision
ε ∈ Q+ to a rational that is within ε of dM(qi, qj).
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The canonical example of a computable metric space is R with QR some com-
putable listing of the rational numbers Q. But many other second countable
metric spaces (metric spaces with a countable base) can be supplied with a list-
ing of a dense sequence to make them computable: for example, Cantor space
2ω and Baire space ωω with the usual metric, the continuous functions on the
unit interval C[0, 1] with the uniform metric, the Hilbert cube [0, 1]ω with metric
d(α, β) = ∑

n∈ω
|α(n)−β(n)|

2n .
To every member x of a computable metric space we associate a set of names—

discrete objects that give us a way to approximate x with arbitrary precision using
the distinguished dense sequence:

Definition 3.13. λ : Q+ → ω is a name of a point x in a computable metric
spaceM if for all rationals ε > 0 we have dM(x, qMλ(ε)) < ε.

We think of the set of names for x as carrying the algorithmic content of x.
In particular, we can define a computable function on computable metric spaces
f : M→N as (represented by) a computable functional Ψ that takes names of a
point x ∈M to names of f(x) ∈ N . We can also talk about the Turing degree of
a point: the least Turing degree of a name for that point. It is fairly easy to see
that every real number r has a Turing degree, the Turing degree of its Dedekind
cut {q ∈ Q | q < r} ⊕ {q ∈ Q | q > r}. Pour El and Lempp asked whether this is
also true for continuous functions on the real numbers. To answer their question,
Miller [36] introduced a way to compare the computable strength of points in
arbitrary computable metric spaces.

Definition 3.14. If x and y are members of (possibly different) computable
metric spaces, then x ≤r y if there is a uniform way to compute a name for x
from a name for y.

This reducibility induces a degree structure, which Miller [36] called the con-
tinuous degrees. His reason for the choice of name comes from the following
characterization:

Theorem 3.15 (Miller). Every continuous degree contains a point from [0, 1]ω
and a point from C[0, 1].

In other words, we can think of the continuous functions on the unit inter-
val and of the Hilbert cube as universal spaces. Using the universality of [0, 1]ω
Miller [36] was able to show that the continuous degrees embed into the enumer-
ation degrees. For α ∈ [0, 1]ω, let

Cα =
⊕
i∈ω
{q ∈ Q | q < α(i)} ⊕ {q ∈ Q | q > α(i)}.
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Enumerating Cα is exactly as hard as computing a name for α. So α 7→
Cα induces the aforementioned embedding. Each element of 2ω, ωω, and R is
mapped onto the total degree of its least Turing degree name (i.e., the image of
its Turing degree). Lempp and Pour El’s question can be restated in terms of this
embedding as: is there a continuous degree that is non-total. Miller [36] answered
this question:

Theorem 3.16 (Miller). There is a nontotal continuous degree.

It is worth pointing out that every known proof of this result uses nontrivial
topological facts: Miller [36] used a variant of Brouwer’s fixed point theorem for
multivalued functions on an infinite dimensional space. Day and Miller [9] gave an
alternative proof that relies on neutral measures. Levin [33] used Sperner’s lemma
to construct such measures. More recently, Kihara and Pauly [23], and indepen-
dently Hoyrup (unpublished) used results from topological dimension theory—
that [0, 1]ω is strongly infinite dimensional and therefore not the countable union
of finite dimensional spaces.

The continuous degrees therefore constitute an interesting class of enumeration
degrees. They properly extend the Turing degrees. Miller [36] proved that no
continuous degree can be quasiminimal, so they are a proper subclass of the
enumeration degrees. Are they first order definable? Surprisingly, the answer
turns out to be: yes and they have a very natural first order definition. Andrews,
Igusa, Miller and Soskova [2] use an effective version of Urysohn’s metrization
theorem due to Schröder [44] to show the following:

Theorem 3.17 (Andrews, Igusa, Miller, and Soskova). An enumeration degree a
is continuous if and only if it is almost total: if x � a and x is total then a ∨ x
is total.

It follows from the definability of the total enumeration degrees that the con-
tinuous degrees are first order definable. In this case as well, the definability of
the continuous degrees has a pleasing further consequence. Recall, that a Turing
degree a is PA above a Turing degree b if a computes a path in every infinite
b-computable tree. Using the embedding ι we can transfer this relation to to-
tal degrees. Miller [36] proved that nontotal continuous degrees can be used to
characterize this relation.

Theorem 3.18. For total degrees a is PA above b if and only if there is a nontotal
continuous degree c such that b < c < a.

The definability of the non-total continuous degrees now yields:
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Corollary 3.19. The image of the relation “PA above” is first order definable in
De.

Ganchev, Kalimullin, Miller, and Soskova [11] give an alternative first order
definition of the continuous degrees that relies only on K-pairs and avoids invoking
the definability of the total degrees. They show that an enumeration degree is
continuous if and only if it is not half of any nontrivial relativized K-pair. This
gives a structural dichotomy in the enumeration degrees:

Theorem 3.20 (Ganchev, Kalimullin, Miller, and Soskova). For every enumer-
ation degree a, exactly one of the following two properties holds:

1. The degree x is continuous, so for every total enumeration degree x � a,
a ∨ x is total.

2. There is a total enumeration degree x � a such that a ∨ x is a strong
quasiminimal cover of x.

3.3 The skip operator and the cototal enumeration degrees

Before we can explore first order definability in the enumeration degrees further,
we must accumulate a collection of classes and relations on the enumeration de-
grees and understand their interactions with classes that we have already explored.
Andrews, Ganchev, Kuyper, Lempp, Miller, A. Soskova and M. Soskova [1] initi-
ate the study of a natural operator on the enumeration degrees: the skip operator,
and the related class of the cototal degrees. Recall that by KA we denote the
uniform join of all set that are enumeration reducible to A.

Definition 3.21. The skip of a set A is the set A♦ = KA = ⊕
e<ω Γe(A).

It is straightforward to check that A ≤e B implies KA ≤1 KB, and so the skip
operator on sets induces an operator on degrees: dege(A)♦ = dege(A♦). There are
several ways in which it can be argued that the skip operator is the more natural
analog of the Turing jump operator for the structure De. Andrews, et al. [1] prove
that:

1. A ≤e B if and only if A♦ ≤1 B♦, but there are sets A and B such that
A′ ≤1 B

′ but A �e B.

2. If b ≥e 0′e then there is a degree a such that a♦ = b. In fact, a can be
chosen to be quasiminimal.

3. On total enumeration degrees the skip and the jump coincide.
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On the other hand, there are ways in which the skip behaves differently: even
though the skip of a degree is never below that degree it can be, and most often
is, to the side of it, so a and a♦ are usually incomparable degrees. Andrews et
al. [1] push this to the extreme with the following theorem:

Theorem 3.22 (Andrews, et al.). There are degrees a and b that form a skip
2-cycle, i.e. a♦ = b and b♦ = a. Such degrees a and b must be above every
hyperarithmetic degree.

There is much more to investigate about the skip operator and its structural
behavior, in particular, the authors leave open:

Question 3.23. Is the skip operator first order definable in De?

The class of degrees on which the skip behaves just like the jump operator is
the class of cototal enumeration degrees:

Definition 3.24. A set A is cototal if A ≤e A. An enumeration degree is cototal
if and only if it contains a cototal set.

Clearly, every total degree is cototal: A⊕ A ≡1 A⊕A = A⊕ A. Andrews et
al. [1], also show that every Σ0

2 enumeration degree and every continuous degree
is cototal. On the other hand, sufficiently generic degrees are not cototal. Thus
we have a proper superclass of the continuous degrees.

Motivation for the study of the cototal enumeration degrees came from sym-
bolic dynamics. Jeandel and his group were studying the spectrum of a minimal
subshift.

Definition 3.25. A set S ⊆ 2ω is called a subshift if S is topologically closed and
closed under the shift operator that maps α(0)α(1)α(2) . . . to α(1)α(2) . . . .
The subshift is minimal if it has no proper nonempty subset that is also a subshift.
The spectrum of a subshift S is the set of Turing degrees that compute a member
of S.

Jeandel [17] had noticed that a Turing degree computes a member of a given
minimal subshift S if and only if it can enumerate the set LS , the language of
S, consisting of all finite subwords of elements of S. Thus, the spectrum of a
minimal subshift S is exactly characterized by the enumeration degree of LS . He
also noticed that the set LS can be uniformly enumerated given any enumeration of
its complement (the set of forbidden words in S), i.e. LS is cototal. McCarthy [34]
proved that every cototal degree contains the set LS for some minimal subshift S
and so we get a characterization of the cototal degrees.
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Theorem 3.26 (Jeandel, McCarthy). An enumeration degree is cototal if and
only if it contains the language of a minimal subshift.

It turns out that cototal degrees have numerous characterization arising in all
kinds of areas of effective mathematics. The cototal degrees are:

1. The degrees on which the skip and the jump operator coincide.

2. The degrees of complements of maximal independent sets in computable
graphs on ω.

3. The degrees of complements of maximal antichains in ω<ω.

4. The enumeration degrees such that the set of Turing degrees above them is
the spectrum of a structure and the the upward closure of an Fσ subset of
ωω.

5. The degrees of sets with good approximations.

6. The degrees of points in computable Gδ topological spaces.

(1) and (2) are proved by Andrews et al. [1]. (3) is proved by McCarthy [34].
(4) was proved by Montalbán [38] and McCarthy [34]. (5) was proved by Miller
and Soskova [37]. They used this characterization to prove that the cototal enu-
meration degrees are dense. (6) is proved by Kihara, Ng, and Pauly [22].

And so we come to a second open question related to definability:

Question 3.27. Are the cototal enumeration degrees first order definable in De?

The last characterization of the cototal degrees is part of a more general
program, initiated by Kihara and Pauly [23] and extended in Kihara, Ng, and
Pauly [22], to transfer topological spaces and topological properties to the enu-
meration degrees.

Definition 3.28. A represented space is a pair of a second countable topological
space X and listing of an open base BX = {Bi}i<ω.
A name for a point x ∈ X is an enumeration of the set Nx = {i | x ∈ Bi}.
For x ∈ X and y ∈ Y , where X and Y are (possibly different) represented spaces,
we say that x ≤ y if and only if every name for y uniformly computes a name for
x.

Thus a represented space X gives rise to a class of enumeration degrees DX ⊆
De. For example:
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1. DS∞ = De, where S is the Sierpinski topology {∅, {1}, {0, 1}}.

2. D2ω = DR is the class of all total enumeration degrees.

3. D[0,1]ω is the class of the continuous degrees.

4. DR< , where R< denotes the reals equipped with the lower topology which
is generated by {(q,∞)}q∈Q, is the class of all semi-computable degrees.

Kihara, Ng, and Pauly [22] further investigate DX , where X is the ω-power
of: the cofinite topology on ω, the telophase space, the double origin space, the
quasi-Polish Roy space, the irregular lattice space. Thus we have many more
classes whose first order definability in De can be pursued.

4 Automorphisms and automorphism bases

4.1 Global automorphisms

In this section we discuss the implications of definability for the automorphism
group of the enumeration degrees.

Definition 4.1. Let A be a structure with domain A. A set B ⊆ A is an
automorphism base for A if any two automorphisms that agree on B coincide.

Equivalently, B is a base if the only automorphism that fixes all members of
B is the identity.

Let us take a look at some highlights in Slaman and Woodin’s [53] automor-
phism analysis:

Theorem 4.2 (Slaman, Woodin). The Turing degrees have at most countably
many automorphisms.
There is a single degree g ≤ 0(5)

T that is an automorphism base for DT .
Relations on DT induced by definable relations in Z2 are first order definable in
DT with such a parameter g.
Relations on DT induced by definable relations in Z2 that are furthermore invari-
ant under automorphisms are first order definable in DT (without parameters).

We will extract from this theorem a lot of information about the automor-
phisms of the enumeration degrees using the definability of the total degrees and
the following old result of Selman [45].

Theorem 4.3 (Selman). a ≤ b if and only if every total degree above b is also
above a.
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Thus, the total enumeration degrees are a definable automorphism base for
De. Definability implies that every automorphism of the enumeration degrees π
induces an automorphism of the Turing degrees π∗(a) = ι−1(π(ι(a))). The fact
that the total degrees form an automorphism base tells us that this mapping
is injective, and, in particular, a nontrivial automorphism of De gives rise to a
nontrivial automorphism of DT . As promised we get the following:

Corollary 4.4. De has at most countably many automorphisms. Furthermore, a
single total degree below 0(5)

e is an automorphism base for De.

The most pressing open question here is therefore, whether the reverse rela-
tionship holds.

Question 4.5. Does every automorphism of DT extend to an automorphism of
De?

A positive answer to the question above would give us that the two automor-
phism groups are isomorphic. It would also imply that automorphisms of the
Turing degrees preserve the relations c.e. in and PA above, as they both have
definable images in De. By Theorem 4.2 this yields their first order definability
in DT . If on the other hand we can rule out the existence of nontrivial automor-
phisms of DT that preserve these relations then we would get that De is rigid. Our
hope is that by proceeding in this fashion and uncovering more definable classes of
total enumeration degrees we will put more and more restrictions on the possible
extendable nontrivial automorphisms of DT to eventually get rigidity.

4.2 Local and global structural interactions

The local structure of the enumeration degrees De(≤ 0′e) consists of the initial
interval bounded by 0′e. Every degree in that interval consists entirely of Σ0

2 sets.
The local structure has been studied extensively as well. Cooper [7] proved that
it is a dense structure and, as we mentioned earlier, Bianchini [4] extended this
result to prove that every countable partial order can be embedded densely in
De(≤ 0′e). This gives the decidability of the the existential theory of De(≤ 0′e).
The two quantifier theory is much more difficult to analyze. Density prevents us
from using the initial segment embedding method that Lerman and Shore [32]
use for DT (≤ 0′T ). Nevertheless, there are partial results: Lempp and Sorbi [29]
show that every finite lattice can be embedded in De(≤ 0′e) preserving least and
greatest element and Lempp, Slaman, and Sorbi [27] prove that the extension
of embeddings problem is decidable. Kent [20] showed that the three quantifier
theory of De(≤ 0′e) is not decidable. So the first open problem we have for
De(≤ 0′e) matches the one we have for De:
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Question 4.6. Is the two quantifier theory of De(≤ 0′e) decidable?

The full theory was shown to be computably isomorphic to first order arith-
metic by Ganchev and Soskova [13]. Their proof relies on a local version of the
Coding Theorem that was already established by Slaman and Woodin [52] and
the local definability of K-pairs [12], which was not previously known. The local
definability of K-pairs unlocked a series of other first order definability results,
proved in a series of papers by Ganchev and Soskova [12, 14, 15]:

Theorem 4.7 (Ganchev, Soskova). The following classes have first order defini-
tions in De:

1. The downwards properly Σ0
2 degrees, degrees that bound no nonzero ∆0

2 de-
gree.

2. The upwards properly Σ0
2 degrees, degrees that are not bounded by any in-

complete ∆0
2 degree.

3. The ∆0
2 total enumeration degrees.

4. The low enumeration degrees, degrees with a′ = 0′e.

5. All members of the jump hierarchy: the lown and the highn degrees for n ≥ 1.

The local structure De(≤ 0′e) relates to first order arithmetic in a similar way
as the global structure De relates to second order arithmetic. We can formulate
a biinterpretability conjecture for the local structure as well. The Σ0

2 sets form a
countable class that can be naturally indexed. For example we can set Ue = Γe(∅′),
where {Γe}e<ω list all enumeration operators.

Question 4.8. The biinterpretability conjecture for De(≤ 0′e) is that there is
a definable coded model of first order arithmetic M = (NM,+M, ∗M) and a
definable function ϕ : NM → De(≤ 0′e) such that ϕ(eM) = dege(Ue). Is it true?

The function ϕ above is called an indexing of the degrees in De(≤ 0′e). Slaman
and Soskova [50] prove that a similar biinterpretability conjecture for DT (≤ 0′T )
is true modulo the use of finitely many parameters. Their approach transferred to
the enumeration degrees does not lead to a similar result, so even biinterpretabil-
ity for De(≤ 0′e) with parameters remains open. It does, however, allow them to
uncover an important relationship between local and global structure. The start-
ing point in both approaches is the following theorem of Slaman and Woodin [51],
a consequence of the local coding theorem:

Theorem 4.9 (Slaman, Woodin). There is an indexing of the c.e. Turing degrees
that is definable from ∆0

2 parameters in the local structure DT (≤ 0′T ).
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Slaman and Soskova [49] start with the result above transferred to De(≤ 0′e)
via the standard embedding ι. They use the local definability of the total degrees,
the low enumeration degrees, as well as several technical priority constructions, to
prove that if a set of finitely many parameters defines an indexing of the image of
the c.e. Turing degrees then the same set of parameters defines an indexing of the
image of the ∆0

2 Turing degrees. Next, using the definability of the jump operator
and the image of the relation c.e. in, they show that every set of parameters
that defines an indexing of the image of the ∆0

2 Turing degrees also defines an
indexing of the image of the degrees that are c.e. in and above some ∆0

2 Turing
degree. Next, using properties of sufficiently generic sets, they show that every
set of parameters that defines an indexing as above, also defines an indexing of
the image of all Turing degrees bounded by 0′′T . The last two steps can now be
iterated any finite number of times to show that:
Theorem 4.10 (Slaman, Soskova). Any set of parameters that defines an indexing
of the image of the c.e. Turing degrees also defines an indexing of the image of
the Turing degrees bounded by 0(n)

T for every natural number n.
This theorem combines well with what we know about the automorphism

group of De, in particular, the fact that there is a single total degree below 0(5)
e

that forms an automorphism base for De. If a set of parameters defines an indexing
of the image of the Turing degrees below 0(5)

T and an automorphism fixes these
parameters then it is not difficult to see that the automorphism must fix all
elements in the range of the definable indexing. As this includes the degree that
by itself is an automorphism base for all of De, the automorphism must be the
identity.
Theorem 4.11 (Slaman, Soskova). There is a finite set of ∆0

2 total degrees that
forms an automorphism base for the global structure De.

Similar arguments lead Slaman and Soskova [49] to the following consequence
of their theorem:
Corollary 4.12 (Slaman, Soskova). If De has a nontrivial automorphism then so
does:

1. The local structure De(≤ 0′e).

2. The structure of the ∆0
2 Turing degrees DT (≤ 0′T ).

3. The structure of the c.e. Turing degrees.
Naturally, we wonder:

Question 4.13. Do the automorphisms of any of these structures extend to
automorphisms of De?
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