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Abstract. We show that every splitting of 0′
e in the local structure of the

enumeration degrees, Ge, contains at least one low-cuppable member. We
apply this new structural property to show that the classes of all K-pairs in

Ge, all downwards properly Σ0
2 enumeration degrees and all upwards properly

Σ0
2 enumeration degrees are first order definable in Ge.

1. Introduction

Enumeration reducibility introduced by Friedberg and Rogers [11] arises as a
way to compare the computational strength of the positive information contained
in sets of natural numbers. A set A is enumeration reducible to a set B if given any
enumeration of the set B, one can effectively compute an enumeration of the set A.
The induced structure of the enumeration degrees De is an upper semilattice with
least element and jump operation. This structure can be viewed as an extension of
the structure of the Turing degrees, as there is an embedding ι : DT ⇒ De which
preserves the order, the least upper bound and the jump operation.

The jump operation gives rise to a local substructure, Ge, consisting of all de-
grees in the interval enclosed by the least degree and its first jump. The elements
of the local structure of the enumeration degrees can be characterized in terms of
their relationship to the arithmetical hierarchy. Cooper [4] shows that the elements
of Ge are precisely the enumeration degrees which contain Σ0

2 sets, or equivalently
are made up entirely of Σ0

2 sets, which we call Σ0
2 degrees. Naturally the arith-

metical hierarchy gives rise to a substructure of Ge, the substructure of the ∆0
2

enumeration degrees, the enumeration degrees which contain ∆0
2 sets. This is a

proper substructure of Ge, as there are properly Σ0
2 enumeration degrees, degrees

which do not contain any ∆0
2 set. Another way to partition the elements of Ge is in

terms of the jump hierarchy. We distinguish between low and non-low enumeration
degrees, where a degree is low if its enumeration jump is as low as possible, namely
0′e. In terms of their relationship with the Turing degrees the elements of Ge can
be divided into total enumeration degrees, ones that are images of Turing degrees
under the embedding ι, or non-total degrees, ones that are not.

Each of these subclasses of Ge is defined by singling out a property of the sets
that comprise an element in the class. For example McEvoy [18] proves that an
enumeration degree is low if and only if all of its members are ∆0

2. An enumeration
degree is total if and only if it contains a set of the form A ⊕ A. One of the
goals in the study of the local structure of the enumeration degrees is to find a
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relationship between the natural information content of the sets in a Σ0
2 degree and

its definability in Ge. In this article we give the first example of such a relationship,
we prove the local definability of the enumeration degrees of sets that form a K-pair.

Definition 1.1. [Kalimullin] A pair of sets of natural numbers A and B is a K-pair
if there is a c.e. set W such that:

A×B ⊆W & A×B ⊆W.

The notion of a K-pair is a special case of a U -e-ideal, introduced and used by
Kalimullin to prove the definability of the jump operation in the global structure
De. In [16] Kalimullin proves that the property of being a K-pair is degree theoretic
and first order definable in the global structure De. A pair of sets form a K-pair if
and only if their degrees a = de(A) and b = de(B) satisfy the property:

K(a,b) 
 ∀x[(a ∨ x) ∧ (b ∨ x) = x].

We will call a pair of enumeration degrees a K-pair if they contain representatives
which form a K-pair in the sense of Definition 1.1.
K-pairs have been proven useful for coding structures in Ge, some of their main

advantages lying in their properties: e.g. every K-pair of nonzero degrees in Ge is
a minimal pair of low enumeration degrees. It has been shown in [12] for instance,
that using countable K-systems, systems of nonzero e-degrees such that every pair
of distinct degrees forms a K-pair, that every countable distributive semi-lattice can
be embedded below every nonzero ∆0

2 e-degree. The local definability of K-pairs
is the first step in a larger project [14], aimed at showing that the theory of Ge is
computably isomorphic to first order arithmetic, where K-systems are used to code
standard models of arithmetic in Ge.

Kalimullin [16] has shown that if a pair of sets A and B do not form a K-pair
then there is a set C, computable from A ⊕ B ⊕K, where K denotes the halting
set, such that the degree de(C) witnesses the fact that de(A) and de(B) do not
satisfy the formula K. Hence if A and B are ∆0

2 enumeration degrees then C is
also ∆0

2 and the property ”a and b form a K-pair” is first order definable in the
substructure of the ∆0

2 enumeration degrees by the same formula, K. If A and B
are properly Σ0

2 then the witness C is at best estimated as ∆0
3, hence it is quite

possible that there are fake pairs (a,b) of Σ0
2 enumeration degrees, such that:

Ge |= K(a,b), but De |= ¬K(a,b).

The key to the definability of K-pairs lies in the cupping properties of Ge. We
say that a Σ0

2 enumeration degree u is cuppable if there exists an incomplete v < 0′e
such that u ∨ v = 0′e. Cooper, Sorbi and Yi [9] prove that not every nonzero Σ0

2

enumeration degree is cuppable, in contrast to the ∆0
2 enumeration degrees, where

for every nonzero degree one can find a total ∆0
2 cupping partner. Soskova and Wu

[21] prove furthermore that every nonzero ∆0
2 enumeration degree is low-cuppable,

i.e. cuppable by a low enumeration degree. In [13] a stronger version of Soskova and
Wu’s theorem is proved, which also reveals certain cupping properties of K-pairs:

Theorem 1.1. [13] For every nonzero ∆0
2 degree a there is a K-pair, {b, c} of

nonzero ∆0
2 degrees, such that a ∨ b = b ∨ c = 0′e.

The final ingredient for the definability of K-pairs in Ge is provided by the follow-
ing new cupping property of the elements in Ge, which we believe is of independent
interest.
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Theorem 1.2. For every pair of Σ0
2 enumeration degrees u and v with u∨v = 0′e,

there exists a low ∆0
2 enumeration degree a < 0′e, such that at least one of the

following is true:

(1) u ∨ a = 0′e,
(2) v ∨ a = 0′e.

This property reveals that the class of low-cuppable Σ0
2 enumeration degrees

contains at least half of the cuppable enumeration degrees. Whether or not there
are cuppable Σ0

2 degrees, which are not low-cuppable remains open.
Using Theorem 1.2 we show how one can give a local definition of a nonempty

set of K-pairs. Applying Theorem 1.1 we prove that every member of a K-pair
is bounded by some element from this set. Thus as an application of these two
structural properties of Ge we obtain the desired definability result:

Theorem 1.3. There is a first order formula LK in the language of Ge such that
a pair of nonzero Σ0

2 enumeration degrees a and b form a K-pair if and only if:

Ge |= LK(a,b).

The definability of K-pairs allows us to give a first order definition of two further
classes that have been of interest in the study of the local structure. A nonzero
degree a ∈ Ge is downwards properly Σ0

2 if all nonzero degrees b ≤ a are properly Σ0
2.

For example every non-cuppable Σ0
2 degree is necessarily downwards properly Σ0

2

as every ∆0
2 enumeration degree is cuppable. Another example is given by Cooper,

Li, Sorbi and Yang [8], who show that there is a Σ0
2 degree which does not bound

a minimal pair, whereas every ∆0
2 degree does.

The symmetric class of the upwards properly Σ0
2 enumeration degrees contains

the incomplete enumeration degrees a ∈ Ge such that all incomplete degrees b ≥ a
are properly Σ0

2. Soskova [20] proves that there is an enumeration degree a < 0′e,
such that no pair of incomplete degrees above it forms a splitting of 0′e. This,
combined with Arslanov and Sorbi’s [2] result, that there is a splitting of 0′e above
every incomplete ∆0

2 enumeration degree, gives an example of an upwards properly
Σ0

2 degree. Bereznyuk, Coles and Sorbi [3], prove that there is an upwards properly
Σ0

2 degree above any incomplete member of Ge. Cooper and Copestake [7] show
furthermore that there are properly Σ0

2 enumeration degrees that are incompara-
ble with every nonzero, incomplete ∆0

2 degree, and hence are both upwards and
downwards properly Σ0

2.
We show that these two classes are also first order definable in the local structure.

Theorem 1.4. The following two classes of Σ0
2 enumeration degrees are first order

definable in Ge:
(1) The class of downwards properly Σ0

2 enumeration degrees;
(2) The class of upwards properly Σ0

2 enumeration degrees.

The revealed relationship between definability and information content in the Σ0
2

enumeration degrees calls forth the search for other examples of this phenomenon.
In view of the nature of the particular classes that are proved definable in this
article, an important question that remains open is:

Question 1.4.1. Is the class of the ∆0
2 or the class of the total enumeration degrees

enumeration first order definable in Ge?
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2. Preliminaries

We assume that the reader is familiar with the notion of enumeration reducibil-
ity, and refer to Cooper [5] for a survey of basic results on the structure of the
enumeration degrees and to Sorbi [19] for a survey of basic results on the local
structure Ge. For completeness we will nevertheless outline here basic definitions
and properties of the enumeration degrees used in this article.

Definition 2.1. A set A is enumeration reducible (≤e) to a set B if there is a c.e.
set Φ such that:

A = Φ(B) = {n | ∃u(〈n, u〉 ∈ Φ & Du ⊆ B)},
where Du denotes the finite set with code u under the standard coding of finite sets.
We will refer to the c.e. set Φ as an enumeration operator and its elements will be
called axioms.

A set A is enumeration equivalent (≡e) to a set B if A ≤e B and B ≤e A. The
equivalence class of A under the relation ≡e is the enumeration degree de(A) of A.
The structure of the enumeration degrees 〈De,≤〉 is the class of all enumeration
degrees with relation ≤ defined by de(A) ≤ de(B) if and only if A ≤e B. It has
a least element 0e = de(∅), the set of all c.e. sets. We can define a least upper
bound operation, by setting de(A) ∨ de(B) = de(A ⊕ B) and a jump operator
de(A)′ = de(Je(A)). The enumeration jump of a set A, denoted by Je(A) is defined
by Cooper [4] as LA ⊕ LA, where LA = { n| n ∈ Φn(A)}.

Enumeration degrees which contain a set of the form A ⊕ A are called total
enumeration degrees. The interest in the class of the total enumeration degrees,
arises from the fact that it is an isomorphic copy of the Turing degrees. The map
ι, which sends a Turing degree dT (A) to the e-degree de(A⊕A), is an embedding,
which preserves the order, the least upper bound and the jump operation.

We shall say that an e-degree is quasi-minimal if and only if it bounds no total
degree, except for the least e-degree 0e.

Finally we introduce one further piece of notation. In what follows we will often
need to work with a set C reducible to the least upper bound of two other sets, say
A and B. To keep notation simple we will consider the set C as being enumerated
relative to two sources and write C = Φ(A,B), instead of C = Φ(A⊕B). Naturally
we will assume that an axiom of the operator Φ has the structure 〈n,DA, DB〉 and
that it is valid if an only if DA ⊆ A and DB ⊆ B.

Further notation and terminology used in this article are based on that of [6].

3. A local definition of K-pairs

K-pairs can be viewed as a generalization of the notion of a semi-recursive set,
defined by Jockusch [15]. Recall that a set A is semi-recursive if it has a computable
selector function sA : N×N such that for all natural numbers n and m: sA(n,m) ∈
{n,m} and if {n,m}∩A 6= ∅ then sA(n,m) ∈ A. It is not difficult to see that if A is
semi-recursive then A and A form a K-pair. Indeed let sA be the selector function
for A and let

sA(n,m) =

{
n , if sA(n,m) = m

m , if sA(n,m) = n.

Now consider the c.e. set W = {(sA(n,m), sA(n,m)) | n,m ∈ N} and notice that

A×A ⊆W and A×A = A×A ⊆W .
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Another simple example of a K-pair is {W,A}, where A is any set of natural
numbers and W is a c.e. set. This we shall consider as a trivial example and we
will mainly be interested in nontrivial K-pairs, ones consisting of two non-c.e sets.
We shall say that a degree a is half of a K-pair if there is a nonzero degree b such
that {a,b} forms a K-pair of degrees. The degree b will be called a K-partner for
a. Some basic properties of K-pairs of degrees, collected from Kalimullin [16], are
summarized in the following theorem.

Theorem 3.1 (Kallimullin). Let K(a,b) denote the formula with free variables a
and b, defined by:

∀x[(a ∨ x) ∧ (b ∨ x) = x].

(1) A pair of degrees a and b form a K-pair if and only if De |= K(a,b).
(2) A pair of ∆0

2 degrees a and b form a K-pair if and only if Ge |= K(a,b).
(3) Every half of a nontrivial K-pair in Ge is quasi-minimal and low.
(4) The set of degrees which form a K-pair with a fixed degree de(A) is an ideal

with upper bound de(A).
(5) If a and b form a nontrivial K-pair then a and b form a minimal pair, i.e.

the only degree that is both below a and b is 0e.
(6) Every nonzero ∆0

2 enumeration degree bounds a nontrivial K-pair.

We add one additional property to the list, which motivates our interest in the
cupping properties of the elements in Ge.

Lemma 3.1. Let a and b be Σ0
2 enumeration degrees such that:

Ge |= K(a,b).

If c is a Σ0
2 enumeration degree, such that b ∨ c = 0′e, then a ≤ c.

Proof. By the property K(a,b) applied to c we get:

(b ∨ c) ∧ (a ∨ c) = c.

Replacing (b ∨ c) with its equal 0′e we get:

0′e ∧ (a ∨ c) = c.

Now as 0′e is the largest element of Ge we get:

a ∨ c = c or equivallently a ≤ c.

�

Jockusch [15] shows that for every set B there is a semi-recursive set A ≡T B
such that A and A are non-c.e. This, combined with the quasi-minimality of K-
pairs, proves that every total member of Ge can be represented as the least upper
bound of the elements of a nontrivial K-pair. In particular 0′e can be split by a
nontrivial K-pair of ∆0

2 enumeration degrees.
We are now ready to give a first order definition of K-pairs assuming Theorems

1.1 and 1.2. Consider the formula

L(a) � a > 0e & ∃b > 0e(a ∨ b = 0′e & K(a,b)).

From the argument above it follows that there are elements of Ge which satisfy this
formula. We show that every element which satisfies this formula is in fact a half
of a K-pair.
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Propostion 3.1. If Ge |= L(a) then a is half of a nontrivial K-pair.

Proof. Let b > 0e be a degree such that a ∨ b = 0′e & K(a,b). Then {a,b} is a
splitting of 0′e and hence applying Theorem 1.2 we get a low ∆0

2 degree c which
cups a or b.

Case 1: b ∨ c = 0′e. By Lemma 3.1 we get a ≤ c. Now by the monotonicity of
the enumeration jump it follows that a is low, hence ∆0

2, and by the property that
all nonzero ∆0

2 are low-cuppable, a is as well low-cuppable.
Case 2: a ∨ c = 0′e. Then similarly b ≤ c and hence ∆0

2 and low-cuppable.
Therefore if one of the degrees a and b is low-cuppable, then both are low-

cuppable and both are ∆0
2. Now applying part 2 of Theorem 3.1 we get that a and

b form a K-pair. �

The set defined by the formula L is therefore a nonempty set of low enumeration
degrees. It does not contain all halves of nontrivial K-pairs. Let c be any total
incomplete ∆0

2 enumeration degree and let A be a semi-recursive set, such that
de(A ⊕ A) = c and both A and A are not c.e. It follows from Theorem 3.1 that
a = de(A) is half of a nontrivial K-pair and de(A) = a is the largest element of the
ideal of K-partners for a. Hence for every K-partner b of a, a∨b ≤ a∨a = c < 0′e
and a does not satisfy L. Nevertheless the set L contains an upper bound to every
half of a nontrivial K-pair in Ge.

Propostion 3.2. If a ∈ Ge is a half of a nontrivial K-pair then there is a degree
c ≥ a such that Ge |= L(c).

Proof. Let b be a nonzero K-partner for a. Then b is a ∆0
2 enumeration degree and

hence by Theorem 1.1 there is a nontrivial K-pair {c, d} such that b∨c = d∨c = 0′e.
Consider the degree c. First of all c satisfies the formula L with d as witness for
this. Secondly by Lemma 3.1 a ≤ c. �

On the other hand, suppose that there is a pair of Σ0
2 enumeration degrees a and

b which satisfy the formula K in Ge but are not a K-pair. It follows by an argument
similar to the one in the Proposition 3.1 that both a and b are not low-cuppable
and hence are downwards properly Σ0

2. As every member of the set defined by L
is low and hence bounds only ∆0

2 enumeration degrees it follows that both a and b
are incomparable (and even form a minimal pair) with every element which satisfies
L.

To finalize the proof of Theorem 1.3 we set LK to be the formula:

LK(a,b) � K(a,b) & a > 0e & b > 0e & ∃c(c ≥ a & L(c)).

Now we can easily prove Theorem 1.4 as well. The last property in Preposi-
tion 3.1 shows that every ∆0

2 enumeration degree bounds a nontrivial K-pair. As
every K-pair consists of ∆0

2 enumeration degrees, it follows that a degree is down-
wards properly Σ0

2 if and only it bounds no nontrivial K-pair. Thus a degree a is
downwards properly Σ0

2 if and only if:

Ge |= ∀b, c[(b ≤ a & c ≤ a)⇒ ¬LK(b, c)].

To prove the second part of this theorem, recall that every total enumeration
degree can be represented as the least upper bound of the elements of a K-pair.
The least upper bound of the elements of every K-pair, on the other hand, is a
∆0

2 degree. The last ingredient comes from a theorem of Arslanov, Cooper and
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Kalimullin [1] (Theorem 7), which states that for every ∆0
2 enumeration degree

a < 0′e there is a total enumeration degree b such that a ≤ b < 0′e. From all this it
follows that a degree a is upwards properly Σ0

2 if and only if no incomplete degree
above it can be represented as the least upper bound of the elements of a K-pair,
i.e. if:

Ge |= ∀c,d(LK(c,d) & a ≤ c ∨ d⇒ c ∨ d = 0′e).

4. Cupping properties of 0′e-splittings

We start this section with a very general description of the idea behind the
construction for the proof of Theorem 1.2. We then proceed to formalizing this
idea, giving more intuition as we progress.

4.1. General idea. The construction is inspired by the non-splitting technique
introduced in [20]. There it is shown that there is a Σ0

2 e-degree a < 0′e, such that
no pair of Σ0

2 degrees u,v above a splits 0′e. An equivalent way to formulate this
is as follows.

Theorem 4.1 ([20]). There exists a Σ0
2 enumeration degree a < 0′e, such that for

every pair of Σ0
2 enumeration degrees u and v with u ∨ v = 0′e at least one of the

following is true

u ∨ a = 0′e or v ∨ a = 0′e

In the construction of a non-splitting degree, a set A and an auxiliary set E are
constructed to meet the following requirements:

(1) For every enumeration operator Ψ:

NΨ : E 6= Ψ(A).

(2) For all triples of an enumeration operator Θ and Σ0
2 sets U and V :

PΘ,U,V : E = Θ(U, V )⇒ (∃Γ,Λ)[K = Γ(U,A) ∨K = Λ(V,A)]

Here K is a Π0
1 member of 0′e.

The N -requirements guarantee that de(A) is nonzero. Now if U ⊕ V ≡e K then
there is an operator Θ such that Θ(U, V ) = E and hence the requirement PΘ,U,V

ensures that de(A) cups at least one of the degrees de(U) or de(V ) to 0′e.
Hence one incomplete degree is a cupping partner to at least half of the cuppable

enumeration degrees. There is no hope that this particular non-splitting degree can
be constructed as a low enumeration degree, as by Arslanov and Sorbi [2] there is a
splitting of 0′e above every incomplete ∆0

2 enumeration degree. Our task is however
much less demanding. Given a particular pair of degrees which splits 0′e we have
to show that at least one of them is low-cuppable.

Let u and v be two given Σ0
2 enumeration degrees with least upper bound 0′e.

Fix two representatives U ∈ u and V ∈ v.

Definition 4.1. A set A is 1-generic if for every c.e. set W of finite binary strings
there is an initial segment of the characteristic function of A, τ ⊆ A, such that:

τ ∈W ∨ ∀µ ⊇ τ(µ /∈W ).
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Copestake [10] proves that the degree of every 1-generic ∆0
2 set is low. As every

1-generic set is non c.e., our main plan is to construct a 1-generic ∆0
2 set A, such

that de(A) cups u to 0′e. If this plan fails we turn to a backup plan: construct a
1-generic ∆0

2 sets B, such that de(B) cups v to 0′e. So fix a computable listing of
all c.e. sets Wi, viewed as sets of finite binary strings. We need to satisfy one of
two groups of requirements:

(1) The main requirements. There is a ∆0
2 set A, which satisfies C and Gi

for all i < ω, where:

C : ∃Γ(Γ(U,A) = K);

Gi : ∃τ ⊆ A(τ ∈Wi ∨ ∀µ ⊇ τ(µ /∈Wi)).

(2) The backup requirements. There is a ∆0
2 set B, which satisfies Č and

Ǧi for all i < ω, where:

Č : ∃Λ(Λ(V,B) = K)

Ǧi : ∃τ ⊆ B(τ ∈Wi ∨ ∀µ ⊇ τ(µ /∈Wi)).

Following the non-splitting construction we will again make use of an auxiliary
Π0

1 set E, meant to help us use the fact that U ⊕ V is in the largest possible
Σ0

2 enumeration degree. Even though we are constructing this set, we know that
there is an enumeration operator Θ such that Θ(U ⊕ V ) = E. Using the recursion
theorem we may assume that we are given this operator in advance. We will use
this operator to predict changes in the approximations to the sets U and V : an
extraction of an element e from the set E will ultimately lead to an extraction of
elements out of the set U ⊕ V . Now we turn to our main strategy: construct a
1-generic ∆0

2 set A and an operator Γ such that Γ(U ⊕A) = K. Here K is a fixed
Π0

1 member of 0′e. To construct Γ we have a main enumeration strategy which
watches the approximation to K and enumerates axioms for elements currently
in K using finite subsets of the current approximations to U and A. When an
element exits the approximation to K it invalidates perviously enumerated axioms
by extracting numbers from A. To meet a main genericity requirement, Gi, we have
a corresponding main genericity strategy, which tries to find an initial segment of A,
either in the set Wi, or which cannot be extended to an element of Wi. The strategy
to construct Γ is in conflict with the strategies to make A 1-generic. Extracting
elements from A, in order to rectify the enumeration Γ(U ⊕ A) prevents us from
restraining A on certain initial segments. To resolve this conflict we try to provoke
an extraction from the set U , using the set E. An extraction from the set U will
allow us to rectify Γ without changing the approximation to A. If every genericity
strategy after finitely many unsuccessful attempt eventually manages to successfully
provoke an extraction from the set U , then it is successful, and ultimately all main
requirements will be satisfied. Otherwise there will be a least genericity strategy,
which fails infinitely often to provoke an extraction from the set U , as every attempt
ends in an extraction from the set V . In this case this particular genericity strategy
activates the backup strategy: to construct a second 1-generic ∆0

2 set B and an
operator Λ such that Λ(V ⊕B) = K. The backup strategies, both enumeration and
genericity act in a similar way to their main counterparts. The only difference is
that every time a backup genericity strategy tries to provoke a change in V , it times
its actions with the main genericity strategy, which is responsible for its activation.
This ensures that the attempt is successful for the backup strategy.
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With this general plan in mind we start to formalize the intuitive description of
the strategies. We start by selecting approximations to the given sets U and V .

4.2. Approximations. We will use good approximations to the given sets. The
notion of a good approximation to a Σ0

2 sets is first used by Jockusch [15] and by
Cooper [4]( Σ0

2 approximations with infinitely many thin stages). Later on Lachlan
and Shore [17] formalize this notion and prove that every n-c.e.a set has one.

We fix a good Σ0
2 approximation {(U ⊕ V ){s}}s<ω to the set U ⊕ V . A good Σ0

2

approximation is one, which has the following two properties:

G. There are infinitely many good stages s such that (U ⊕ V ){s} ⊆ U ⊕ V .
Σ0

2. For all n there exists a stage s such that at all stages t > s we have
(U ⊕ V ) � n ⊆ (U ⊕ V ){s}.

Denote by GU⊕V the set of good stages in the approximation to U ⊕ V . We use
the following property of good approximations proved in [17]: for every enumeration
operator Θ with standard Σ0

1 approximation {Θ{s}}s<ω,

(4.1) lim
s∈GU⊕V

Θ{s}((U ⊕ V ){s}) = Θ(U ⊕ V ).

Denote Θ{s}((U⊕V ){s}) by Θ(U⊕V ){s}. As noted above we will be constructing
a Π0

1 approximation to a set E and using the recursion theorem we will assume
that we are given in advance an operator Θ such that Θ(U ⊕ V ) = E. Denote by
l(Θ(U ⊕ V ), E, s) the maximal number n such that Θ(U ⊕ V ){s} � n = E{s} � n.
Then as the sets Θ(U ⊕ V ) and E are equal:

lim
s∈GU⊕V

l(Θ(U ⊕ V ), E, s) =∞.

Stages at which l(Θ(U ⊕ V ), E, s) > max{l(Θ(U ⊕ V ), E, t) | t < s} will be
called expansionary stages. Thus as Θ(U ⊕ V ) = E, there are infinitely many
expansionary stages for the operator Θ.

One additional consequence of the equality between the two sets will be used.
An element of the set E must eventually be permanently enumerated in the set
Θ(U ⊕ V ). Hence it will use some finite amount of positive information from the
two sets U and V . We introduce the e-degree version of a use function.

Let F be a finite set. The age of this set with respect to the approximation to
U ⊕ V measured at stage s is the number:

a(F, s) =

{
s− µ t[∀r ∈ [t, s](F ⊆ (U ⊕ V ){r})] + 1, if F ⊆ (U ⊕ V ){s};

0 otherwise.

In other words the age of a finite set is the number of consecutive stages ending in
the current stage s at which the set F is a subset of the approximation to U ⊕ V .
For instance the age of the empty set a(∅, s) = s+ 1 for all s and if F * U ⊕ V {s}
then a(F, s) = 0.

Let Ax = 〈e,DU ⊕DV 〉 ∈ Θ{s} be an axiom for e in Θ. The age of this axiom
at stage s is the number

a(Ax, s) = a(DU ⊕DV , s).

Thus invalid axioms have age 0 at stage s and valid axioms have age equal to the
number of consecutive stages at which they have been valid, ending in the current
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stage. Denote by ax(e, s) the finite set, such that 〈e, ax(e, s)〉 is the oldest axiom
for e in Θ at stage s, i.e. of greatest age. (If there are more than one valid axioms
of maximal age, choose the one with least code).

The use of an element e measured at stage s is the set

θ(e, s) =
⋃

i≤e, i∈Θ(U⊕V ){s}

ax(i, s),

the collection of the finite sets which form the second half of the oldest valid axioms
for all elements that currently appear in the set Θ(U, V ). As Θ(U, V ) = E it follows
tat for every e ∈ E there will be a stage s such that at all stages t ≥ s the use of e
will remain unchanged, i.e. θ(e, s) = θ(e, t). This will be used in the Honestification
module described below.

4.3. The tree of strategies. The construction will be in stages. At every stage
s we construct a finite path of length less than or equal to s, δ{s}, through a tree
of strategies, defined below, approximating the so called true path - a leftmost
infinite path of strategies visited at infinitely many stages. If γ ⊆ δ{s} then we
shall say that γ is visited or activated at stage s and s will be called a γ-true stage.
Every strategy will have outcomes representing different possible ways in which the
corresponding requirement might be satisfied. The outcomes of each strategy are
ordered linearly. Denote by O the collection of all outcomes. The tree T can be
viewed as a computable function with domain the set of finite strings of outcomes,
O<ω, and range the set of strategies.

The tree of strategies T contains strategies of four types: the main enumeration
strategy, main genericity strategies , backup enumeration strategies and backup
genericity strategies. The root of the tree is assigned the main enumeration strategy.
We will denote this strategy by α. This strategy initiates the construction of a set A
and an operator Γ and is successful if Γ(U⊕A) = K. The strategy has two outcomes
e <L b. Outcome e represents the fact that there are infinitely many expansionary
stages. The node α b̂ is a leaf in the tree T . The node α ê is assigned the first main
genericity strategy β(0). Outcome b represents the fact that l(Θ(U ⊕ V ), E, s) is
bounded. By our choice of Θ this cannot be the true outcome of α. We nevertheless
leave this outcome on the tree. The effect of this outcome will be that any other
strategy is activated only on expansionary stages.

The main genericity strategy β = β(i) tries to ensure that A satisfies the i-th
genericity requirement Gi. It has outcomes ∞, h, w and fn for every n arranged as
follows:

∞ <L · · · <L fn <L . . . f1 <L f0 <L h <L w.

Outcome ∞ represents the fact that β has been unsuccessful infinitely often to
secure a witness τ ∈ Wi as an initial segment of A, but has provided sufficient
conditions for the backup strategies to succeed. The node βˆ∞ is assigned the
backup enumeration strategy α̌(β(i)). The outcome fn represents the fact that β
has been successful in securing a witness τ ∈ Wi as an initial segment of A on its
n-th attempt and outcome w the fact that β has found a witness τ ⊆ A which has
no extension in the set Wi. In both cases, o ∈ {fn | n < ω} and o = w, the strategy
has successfully satisfied the i-th genericity requirement and β ô is assigned the
next genericity requirement β(i+ 1).
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Finally outcome h signifies that the strategy β has found an element e ∈ E whose
use does not stabilize at any stage, i.e. for every s there is a stage t > s such that
θ(e, s) 6= θ(e, t). Again this is an outcome that would contradict our choice of Θ. It
cannot be the true outcome of the strategy, but it could still seem like the correct
outcome on finitely many occasions. We leave it on the tree as it will play a role in
the initialization process. The node β ĥ is therefore a leaf in the tree T .

The backup enumeration strategy α̌ = α̌(β), activated by β, initiates the con-
struction of a set Bα̌, and an operator Λα̌. The strategy is successful if ultimately
Λα̌(V ⊕ Bα̌) = K. This strategy has only one outcome e. The node e is assigned
the first backup genericity strategy β̌(α̌, β, 0).

Finally the backup genericity strategy β̌ = β̌(α̌, β, i), working with respect to
α̌ and coordinating actions with β, ensures that Bα̌ satisfies the i-th genericity
requirement Gi(Bα̌). It has three outcomes arranged as follows:

f <L h <L w.

Outcome f represents the fact that β̌ has been successful in securing a witness
τ ∈ Wi as an initial segment of Bα̌. Outcome w represents the fact that β̌ has
found an initial segment τ ⊆ Bα̌ such that ∀µ ⊆ τ(µ /∈ Wi). Both nodes β̌ f̂ and
β̌ˆw are assigned the next genericity strategy β̌(α̌, β, i + 1). Outcome h just as in
the main genericity strategy signifies the fact that β̌ has found an element ě ∈ E
with unstable use. This again cannot be the true outcome of this strategy, or else
we could argue that Θ(U, V ) 6= E, but it could still look like the true outcome any
finite number of stages. The node β̌ ĥ is a leaf in the tree T .

The ordering of the outcomes induces a standard linear ordering of the nodes,
the finite strings in the domain of T , namely: γ ≤ σ if γ ⊆ σ (γ is an initial segment
of σ) or if there exists ρ such that ρ̂ o1 ⊆ γ, ρ̂ o2 ⊆ σ and o1 <L o2. In the latter
case we will also write γ <L σ. If γ < σ we shall say that γ has higher priority than
σ. An infinite path in the tree T will be a function f ⊆ T with domain a maximal
linearly ordered infinite subset of the domain of T . We will abuse notation and
denote with f � n both the node of length n in the domain of f and the strategy
assigned to it.

The next proposition shows that we have two types of infinite paths in T , ones
that have a strategy for every main requirement and ones that have a strategy for
every backup requirement.

Propostion 4.1. Suppose f is an infinite path in the tree T . Then one of the
following is true:

(1) For every i > 0 a main genericity strategy of type β(i) is assigned to the
node f � i.

(2) There is a strategy β ⊆ f such that α̌(β) is assigned to f � |β|+ 1 and for
every i a backup strategy β̌(α̌, β, i) is assigned to the node f � (|β|+ i+ 1).

Proof. Suppose that (1) is not true and let β be the largest node of type main
genericity strategy such that β ⊆ f . By our choice of β and the fact that f is
infinite it follows that α̌(β) = βˆ∞ ⊆ f and β̌(α̌, β, 0) = α̌ ê ⊆ f . Now inductively
if β̌(α̌, β, i) ⊆ f then as f is infinite either β̌(α̌, β, i)̂ f ⊆ f or β̌(α̌, β, i)̂ w ⊆ f and
in both cases this is a β̌(α̌, β, i+ 1) strategy. �

4.4. Strategies and parameters. In this section we shall give more intuition
about how strategies are designed to work and define their parameters.
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4.4.1. The main enumeration strategy. As noted above, α denotes the main enu-
meration strategy.

The strategy α monitors the length of agreement l(Θ(U⊕V ), E, s) at every stage
s. If s is not expansionary then α has outcome b. If s is an expansionary stage
then α has outcome e.

At every stage s α monitors the construction of the set A and the operator
Γ, so that ultimately Γ(U ⊕ A) = K. The axioms in Γ will have a particular
format: to every natural number n we will assign an A-marker a(n) and a U -
marker u(n); the axiom enumerated in Γ at stage s for n will be of the form
〈n, (U{s} � u(n) + 1)⊕ (A{s} � a(n) + 1)〉

The markers will be defined by the main genericity strategies. The only job of α
is to ensure that the constructed operator is correct. So at stage s it will consider
all elements n < s and correct Γ(U,A) by enumerating axioms in Γ for elements

n ∈ K{s}\Γ(U⊕A){s}. In this way we can be sure that if n ∈ K then α will consider
it at infinitely many good stages in the approximation to U and will eventually
enumerate an axiom, which remains permanently valid. To invalidate an axiom it
is enough to consider it at infinitely many stages, regardless of whether they are
good or not. So at expansionary stages the strategy will extract from A the already

defined A-markers that appear in valid axioms for elements n ∈ Γ(U⊕A){s} \K{s}.
The parameters for α are hence A and Γ, both with initial value ∅; the markers

a(n) and u(n) for every natural number n, also called the α-markers for n, initially
undefined.

4.4.2. The main genericity strategy. At every stage s there will be at most one copy
of the i-th main genericity strategy which is not in initial state. Let β = β(i) be
the i-th main genericity strategy. Recall that the strategy β has to ensure that
there is a finite binary string τ ⊆ A such that τ ∈ Wi or no extension µ ⊇ τ is in
the set Wi. The strategy β has to overcome the difficulty set by the higher priority
strategy α which is extracting markers from A in the rectification process. This is
why the simple genericity strategy: select a witness τ ⊆ A, wait until (if ever) an
extension µ ⊇ τ enters Wi, restrain µ as an initial segment of A, will not work.
The strategy to satisfy Gi is a more complex version of this strategy.

The strategy β will have a threshold dβ . The value of this threshold will always

be the i-th element of K. We cannot guess in advance this number but, as K is
an infinite set, approximated by its standard Π0

1 approximation, after finitely many
wrong guesses we will eventually pick the right value for the threshold.

The strategy β is responsible for defining values for the parameters a(dβ) and
u(dβ). The first marker a(dβ) that it defines is denoted as a0

β and plays the real role
of the threshold, the element, below which β can safely assume that A is correct
on all elements and will not be further modified. The values of the A-markers are
always selected to be larger than the values of the markers defined by higher priority
strategies. Note that the way, in which the axioms are defined by the strategy α,
ensures that every axiom enumerated in Γ{s} for elements n > dβ is an extension

of the valid axiom for dβ at stage s. Thus by extracting the marker a(dβ){s} from
the set A the strategy β can invalidate all axioms for all elements n > dβ valid at
stage s.

Assuming that higher priority main genericity strategies have finished with their
actions, and α has finished correcting Γ for elements n < dβ at stage s0, the
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strategy β can safely assume that τ0 = A{s0} � a(dβ) + 1 is a good candidate for a
first witness.

If τ0 /∈ Wi then the strategy β is successful and needs no further actions. The
outcome is w and the next genericity strategy is activated. If however there is
an extension µ0 ⊇ τ0 such that µ0 ∈ Wi, then the strategy β is now in a difficult
position, namely β cannot restrain A on elements a such that |τ | < a ≤ |µ|, without
injuring α. This is where the set E comes into play. We will select an element e0

currently in the constructed set E called an agitator and arrange things so that
every valid axiom for dβ in Γ, extends the use of e0. The process of making this
arrangement will be called honestification.

To do this we wait for a large enough stage s such that the use θ(e0, s) seems
stable at stages t > s. Every time we see that the current stage does not meet this
description, i.e. the use has changed since the previous β-true stage, we we must
forcefully invalidate all previously enumerated axioms for dβ and reset the value
of the parameter u(dβ). The use of e0 will however eventually become stable, as
otherwise we can argue that Θ(U ⊕ V ) 6= E, contradicting our choice of Θ.

After finitely many iterations of honestification, at a stage s, say, we will have
achieved our goal: the use of e0 has stopped changing and all valid axioms for dβ in
Γ extend θ(e0, s). We shall say that Γ is honest at dβ at stage s. Suppose also that
we have found an extension µ0 ⊃ τ0 in the c.e. set Wi. The strategy β will now
attack by extracting e0 from E. It will have outcome ∞ at this stage. At every

stage s+ > s, θ(e0, s) * (U ⊕ V ){s
+}. If this is because of a permanent extraction

from the set U , i.e at all further stages t > s( θ(e0, s) * U{t} ⊕ N) then all axioms
enumerated in Γ for elements n ≥ dβ are invalid at all furthers stages and the
strategy β can successfully restrain µ0 ⊆ A with no injury to α. The strategy has
outcome f0 at all stages t > s while θ(e0, s) * U{t} ⊕ N.

If the extraction disappears at stage s1 (in this case θ(e0, s) * N ⊕ V {s1}) the
strategy will evaluate this first cycle as unsuccessful. It will extract the marker
a(dβ), thereby preserving its work from injury by the strategy α. It will activate
the backup strategy α̌(β) below outcome ∞. It will then start a new cycle with
a new larger agitator e1 and witness τ1 ⊇ µ∗0, where µ∗0 is the string µ0 inverted
at only one position a(dβ). At the end of every cycle the strategy will record
in a parameter Witβ information about previous attacks. After every attack the
strategy will go back an re-evaluate previous attacks. Outcome ∞ will be visited
only if there is further evidence that all previous cycles are unsuccessful.

The parameters for β(i) are: the threshold dβ , always assigned at stage s the

i-th element of K
{s}

, with first marker defined by β a0
β initially undefined; the

current agitator eβ and witness τβ initially undefined; the list of witnesses Witβ
initially empty.

4.4.3. The backup enumeration strategy. The strategy α̌ = α̌(β(i)) is similar to the
main enumeration strategy. It initiates the construction of a set Bα̌ and an operator
Λα̌, so that ultimately Λα̌(V ⊕Bα̌) = K.

Note that α̌ is visited in two different situations: at the beginning of an attack
by β and after the end of an unsuccessful attack. Only in the second case can we be
sure that the necessary extractions from the approximation of V have been secured.
At such stages, at which β does not start an attack, called peaceful stages, α̌ will
correct the enumeration Λα̌(V ⊕Bα̌){s} by extracting elements from B. As α̌ is not
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visited at every stage, we cannot assume that it will be visited at infinitely many
good stages for the approximation to V . The strategy α̌ will therefore work with a
delayed approximation to the set V . Fix a stage s and let s− < s be the previous

visit of α̌ (s = 0 if α̌ has not been visited yet). Then V
{s}
α̌ =

⋂
s−<t≤s V

{t}.

It is not difficult to see that {V {s}α̌ }s<ω is also a good Σ0
2 approximation to V .

The backup genericity strategies will as well assign to every element n markers
bα̌(n) and vα̌(n). If α̌ enumerates an axiom for n at stage s, it is of the form:

〈n, (V {s}α̌ � vα̌(n) + 1)⊕ (B
{s}
α̌ � bα̌(n) + 1)〉.

The parameters for α̌(β) are hence Bα̌ and Λα̌, both with initial values ∅; markers
bα̌(n) and vα̌(n) for very natural number n, initially undefined.

4.4.4. The backup genericity strategy. The i-th backup strategy β̌(α̌, β, i) ensures
that Bα̌ satisfies the i-th genericity requirement in a similar way to the main gener-
icity strategy. It has a threshold dβ̌ - the i-th element of K, and is responsible

for defining the markers bα̌(dβ̌) and vα̌(dβ̌). The first Bα̌-marker that β̌ defines

again plays a special role and is denoted by b0
β̌
. The strategy has an agitator eβ̌

for which it ensures that the operator Λα̌ is honest at dβ̌ . The strategy selects

a witness τβ̌ = Bα̌ � bα̌(dα̌) + 1 and starts searching for an extension of τβ̌ in
the set Wi. If there is no such extension then the strategy is successful and has
outcome w. Otherwise it has found an extension µ ⊆ τβ̌ in the set Wi and now
would like to force a change in the approximation to V in order to be able to secure
µ ⊆ Bα̌. To do so the strategy β̌ will time its attack with one of the attacks of
the strategy β. Instead of attacking immediately, it will wait for a stage s at which
β is also attacking. As every new cycle of β comes with a new larger agitator eβ ,

at stage s we have e
{s}
β̌

< e
{s}
β , hence θ(e

{s}
β̌
, s) ⊆ θ(e

{s}
β , s). If both eβ̌ and eβ

are extracted during a joint attack by β̌ and β at stage s then it will be sufficient
for β to look at the changes resulting in θ(eβ̌ , s) * (U ⊕ V ){t} at further stages
t > s, when evaluating this attack. In this way whenever the backup strategies
are activated at two consecutive stages t > t− > s of the second type (at stages
t− and t the strategy β has just evaluated an attack as unsuccessful) we have that
θ(eβ̌ , s1) * N⊕(

⋂
t−<r≤t V

{r}) and so without injury to α̌ the strategy β̌ can secure
µ as an initial segment to Bα̌ and have outcome f at all further stages.

The parameters for β̌(α̌, β, i) are: the threshold dβ̌ , always assigned at stage

s the i-th element of K
{s}

, with first Bα̌-marker b0
β̌
; the current agitator eβ̌ and

witness τβ̌ initially undefined.

4.5. The construction. The construction is in stages. At every expansionary
stage s we construct a finite path of length less than or equal to s, δ{s}. The
intention is that there will be a true path - a leftmost path of strategies visited at
infinitely many stages, along which all strategies are successful.

At the start of the construction all nodes are initialized, E{0} = N and δ{0} = ∅.
At stage s > 0 we construct the E{s} from its previous value by allowing active
strategies to extract elements from E{s−1} and the finite string δ{s} inductively in
steps. δ{s} � 0 is always the root of the tree, the main enumeration strategy α. We
obtain δ{s} � (n + 1) by activating the strategy δ{s} � n and allowing it to select
an outcome o, then δ{s} � (n + 1) = δ{s} � n ô. This process continues until we
have defined a string δ{s} of length s or until we have reached a leaf in the tree
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of strategies. At the end of stage s we initialize all strategies γ > δ{s}. When we
initialize a strategy γ- it’s parameters are set to their initial values. Otherwise the
parameters inherit their values from the previous stage at which γ was visited and
we will not indicate a stage when referring to the current values of the parameters.

Suppose we have defined δ{s} � n and n < s. We have four cases depending on
the type of strategy assigned to δ{s} � n.

Case 1: The strategy δ{s} � n = α is the main enumeration strategy. The
strategy proceeds as follows:

(1) For all n < s such that n ∈ K{s} \ Γ(U{s} ⊕A{s}) and both a(n) and u(n)
are defined then enumerate in Γ the axiom

〈n, (U{s} � u(n) + 1)⊕ (A � a(n) + 1)〉.

(2) If s is not expansionary

l(Θ(U ⊕ V ), E, s) ≤ max
t<s

l(Θ(U ⊕ V ), E, t)

then let the outcome be b.

(3) If s is expansionary then for all n < s such that n ∈ Γ(U{s} ⊕ A) \ K{s}

find all valid axioms, say 〈n,Du ⊕Da〉 ∈ Γ, extract the largest element of
Da from A. (Note that we are changing the value of the parameter A.) Let
the outcome be o = e.

Case 2: The strategy δ{s} � n = β(i) is a main genericity strategy. At stage s
the strategy first passes through Check. Let s− be the previous stage at which β
was visited.

• Check:

Let dβ be the i-th element of K
{s}

. If the strategy is in initial state or

d
{s−}
β 6= d

{s}
β , i.e there is an element m ≤ d{s

−}
β such that m ∈ K{s

−}\K{s}

then go to step 1 of Initialization. If at stage s the strategy α extracts
an element a < a0

β then initialize all of β’s parameters and go to step
2 of Initialization. Otherwise proceed to the submodule indicated at the
previous β-true stage s−.
• Initialization:

(1) Define a new A-marker a(dβ) as a fresh number, larger than any num-
ber that has so far been used in the construction, and enumerate it in
the set A. Set a0

β = a(dβ) and make all A- and U -markers for elements
n > dβ undefined.

(2) Initialize all lower priority strategies.
(3) Define a new agitator eβ ∈ E{s}, as a fresh number.
(4) If eβ ≥ l(Θ(U ⊕ V ), E, s) then end this substage with outcome h and

return to this step at the next β-true stage. Otherwise proceed to the
next step.

(5) Extract a(dβ) from the set A and define a fresh value a(dβ) and enu-
merate it in A. Define u(dβ) to be a number larger than the maximal
number in θ(eβ , s). Make all A- and U -markers for elements n > dβ
undefined. Let τβ = A � a(dβ) + 1. End this substage with outcome
h. Proceed to Honestification at the next stage.
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• Honestification: If θ(eβ , s) 6= θ(eβ , s
−) or if there is a stage t, such that

s− < t ≤ s and θ(eβ , s) * (U ⊕ V ){t} then extract a(dβ) from the set A.
Define a fresh value for the marker a(dβ) and enumerate it in A. Define a
new value for the marker u(dβ) larger than the maximal number in θ(eβ , s).
Make all A- and U -markers for elements n > dβ undefined. Let τβ = A �
a(dβ) + 1. End this substage with outcome h. Return to Honestification at
the next stage.

Otherwise go to Waiting .

• Waiting: If there is a finite string µ ⊇ τβ such that µ ∈W {s}i then proceed
to Attack. Otherwise let the outcome be o = w. Return to Honestification
at the next stage.

• Attack:
(1) Let µ ⊇ τβ be a string such that µ ∈W {s}i . Set aµ = a(dβ) and µ∗ to

be the string µ modified in bit aµ so that µ∗(aµ) = 0. Enumerate a
new entry in the list Witβ namely:

〈µ, µ∗, aµ, θ(eβ , s)〉.

(2) Extract the agitator eβ from the set E{s} and for all a such that
a0
β ≤ a ≤ |µ| set A(a) = µ∗(a). (Note that we are modifying the

parameter A so that the current marker of the threshold aµ = a(dβ)
is extracted from the set.) Define a new value for the marker a(dβ)
as a fresh number, larger than the length of the string µ, |µ|, and
enumerate it in A. Make all A- and U -markers for elements n > dβ
undefined.

(3) Let the outcome be (o =∞). At the next true stage go to Result.
• Result: Let ē be the least element that was extracted during s−, the

stage of the attack. Note that θ(ē, s−) ⊆ θ(eβ , s
−). If eβ 6= ē then mod-

ify the fourth component of the last entry in the list Witβ , making it:
〈µ, µ∗, aµ, θ(ē, s−)〉.

Scan all entries in the listWitβ in the order in which they are enumerated
in the list from first to last.

Suppose β is examining the n-th entry Witβ [n] = 〈µn, µ∗n, an, Un ⊕
Vn, sn〉. For all a such that a0

β ≤ a ≤ |µn| set A(a) = µn(a).

(1) If at all stages t, such that s− < t ≤ s, Un * U{t} then let the outcome
be o = fn. Return to this sub-step at the next true stage.

(2) Otherwise there is a stage t, such that s− < t ≤ s and Vn * V {t}. For
all a such that a0

β ≤ a ≤ |µn|, set A(a) = µ∗n(a). (This is necessary
because the strategy α might have acted at this stage to invalidate an
axiom for an element m > dβ , which extends 〈m,Un⊕{an}〉.) We say
that Witβ [n] is unsuccessful.

(3) If all entries are scanned and all are unsuccessful then end this sub-
stage with outcome o = ∞. At the next stage return to step 3 of
Initialization, choosing a new agitator.

Case 3. The strategy δ{s} � n = α̌(β(i)) is a backup enumeration strategy. Let

s− be the previous visit of α̌. Let V
{s}
α̌ =

⋂
s−<t≤s V

{t}. The strategy proceeds as
follows:
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(1) For all n < s, such that n ∈ K
{s} \ Λα̌(V

{s}
α̌ ⊕ Bα̌) and both bα̌(n) and

vα̌(n) are defined, enumerate in Λα̌ the axiom

〈n, (V {s}α̌ � vα̌(n) + 1)⊕ (Bα̌ � bα̌(n) + 1)〉.

(2) If at stage s the strategy β does not attack, i.e. the visit is peaceful, then

for all n < s such that n ∈ Λα̌(V
{s}
α̌ ⊕ Bα̌) \ K{s} find all valid axioms,

say 〈n,Dv ⊕Db〉 ∈ Λα̌, extract the largest element of Db from Bα̌. Let the
outcome be o = e.

Case 4. The strategy δ{s} � n = β̌(α̌, β̌, i) is a backup genericity strategy.

• Check: Let dβ̌ be the i-th element of K
{s}

. If the strategy is in initial

state or if d
{s−}
β̌

6= d
{s}
β̌

then go to step 1 of Initialization. If at stage s the

strategy α̌ extracts an element b < b0
β̌

then initialize all of β̌’s parameters

and go to step 2 of Initialization. Otherwise proceed to the submodule
indicated at the previous β̌-true stage s−.
• Initialization:

(1) Define a new Bα̌-marker bα̌(dβ̌) as a fresh number, larger than any
number that has so far been used in the construction, and enumerate
it in the set Bα̌. Let b0

β̌
= bα̌(dβ̌) and make all Bα̌- and Vα̌-markers

for elements n > dβ̌ undefined.

(2) Initialize all lower priority strategies.
(3) Define a new agitator eβ̌ ∈ E{s}, as a fresh number.

(4) If eβ̌ ≥ l(Θe(U ⊕ V ), E, s) then end this substage with outcome h and

return to this step at the next β̌-true stage. Otherwise proceed to the
next step.

(5) Extract bα̌(dβ̌) from the set Bα̌ and define a fresh value bα̌(dβ̌) and enu-

merate it in Bα̌. Set vα̌(dβ̌) to be a number larger than max(θ(eβ̌ , s)).
Make all Bα̌- and Vα̌-markers for elements n > dβ̌ undefined. Set

τβ̌ = Bα̌ � bα̌(dβ̌) + 1. End this substage with outcome h. Proceed to
Honestification at the next stage.

• Honestification: If θ(eβ̌ , s) 6= θ(eβ̌ , s
−) or if there is a stage t, such that

s− < t ≤ s and θ(eβ̌ , s) * (U ⊕ V ){t} then extract bα̌(dβ̌) from the set

Bα̌. Define a fresh value for the marker bα̌(dβ̌) and enumerate it in Bα̌.

Define a new value for the marker vα̌(dβ̌) larger than the maximal number

in θ(eβ̌ , s). Make all Bα̌- and Vα̌-markers for elements n > dβ̌ undefined.

Set τβ̌ = Bα̌ � bα̌(dβ̌) + 1. End this substage with outcome h. Return to
Honestification at the next stage.

Otherwise go to Waiting.

• Waiting: If there is a finite string µ ⊇ τβ̌ such that µ ∈W {s}i then proceed
to Attack. Otherwise let the outcome be o = w. Return to Honestification
at the next stage.

• Attack:
(1) If at stage s the strategy β dose not perform an attack then let the

outcome by o = w, return to Honestification at the next stage. Oth-
erwise proceed to the next step. (Note this is how β̌ times its attack
with β.)
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(2) Let µ ⊇ τβ̌ be a string such that µ ∈ W
{s}
i . For all b such that∣∣∣τβ̌∣∣∣ < b < |µ|, set Bα̌(b) = µ(b). Define a new fresh value for the

marker bα̌(dβ̌), a number larger than the length of the string µ, and
enumerate it in Bα̌. Make all Bα̌- and Vα̌-markers for elements n > dβ̌
undefined.

(3) Extract eβ̌ from the set E{s} and go to Result.
• Result: Let the outcome be o = f. Return to this step at the next true

stage.

4.6. Verification of the construction. The tree of strategies T has two features
which make it nontrivial to prove that there is an infinite true path in the con-
struction. Some nodes have infinitely many outcomes and some nodes are leaves.
To start off we prove that the true path exists even though some nodes in the tree
have infinitely many outcomes and contains at least one node different from the
root, i.e. is of length at least 2. Later on we shall see that the true path is infinite.

Propostion 4.2. There exists a path f in the tree of strategies T such that:

(1) For all β ⊆ f there is a stage s such that at all t > s, (δ{t} ≥ β).
(2) For all β ⊆ f there exist infinitely many stages s such that β ⊆ δ{s}.

Proof. We prove that every strategy, visited at infinitely many stages has a leftmost
infinite outcome, i.e. a leftmost outcome that it has at infinitely many true stages,
also called the true outcome, which is not a leaf. Then f is defined inductively
by f(0) = ∅ and f(n + 1) is the true outcome of f � n, if f � n is not a leaf and
f = f � n, otherwise.

The main enumeration strategy has true outcome e, as by our choice of Θ and the
property 4.1 there are infinitely many expansionary stages. The backup enumera-
tion strategies and backup genericity strategies have only finitely many outcomes.
the leftmost one visited at infinitely many stages is their true outcome.

So suppose β is a main genericity strategy, visited at infinitely many stages. If
β has outcome ∞ at infinitely many stages then this is the true outcome of β.
Otherwise there is a stage s such that β does not have outcome ∞ at all t > s. It
follows from the construction that no new entries are enumerated into the list Witβ
after stage s and hence the only possible outcomes for β at stages t > s are finitely

many: w, h, and fn where n ≤
∣∣∣Wit

{s}
β

∣∣∣, and the leftmost one of them visited at

infinitely many stages is β’s true outcome.
�

We know now that there is at least one main genericity strategy along the true
path, namely β(0) = α ê. We shall next investigate some properties of main gener-
icity strategies along the true path.

Propostion 4.3. Let β be a main genericity strategy on the true path. Then:

(1) There is a stage s0
β such that: β is not initialized at stages t > s0

β, β is the

only main genericity strategy of type (i) accessible at stages t > s0
β and β

is visited at every α ê-true stage t > s0
β.

(2) There is a stage sdβ such that at stages t > sdβ the value of dβ does not

change. At stage sdβ the final value of the marker a0
β is defined. All α-

markers for the element dβ are defined by β at stages t ≥ sdβ.



CUPPING AND DEFINABILITY 19

(3) There is a stage scβ ≥ sdβ such that at stages t > scβ Check does not send
β to Initialization. At stages t > scβ the parameter A is not modified on

elements a < a0
β.

(4) After stage scβ every time β changes the value of the marker a(dβ) all main

genericity strategies β(j),where j > i, that are accessible at stages t > scβ,
i.e. for which there is a true stage t > scβ, are in initial state.

(5) If β’s true outcome is w or fn for some natural number n then there is
a stage seβ such that β does not modify any parameters and has its true
outcome at every true stage t > seβ.

Proof. Assume inductively that the statement is true for main genericity strategies
along the true path of higher priority than β = β(i). It follows by the definition of
the tree that all such strategies have outcome w or fn for some n. By the induction
hypothesis (claim 5) and the fact that β ⊆ f there is a stage s0

β such that β is

not initialized after stage s0
β and such that at stages t > s0

β the parameter A is
not modified by main genericity strategies of higher priority than β. Furthermore
it follows that the markers a(n) and u(n) for the first i − 1 elements of K do not
change as the only accessible strategies of type β(j), where j ≤ i are the ones that
are initial segments of β. In other words if s > s0

β is an α ê-true stage then s is a
β-true stage. Hence the only strategies of lower priority than β that are accessible
at stages t > s0 are strategies which extend β.

Let sdβ ≥ s0
β be such that K

{sdβ} correctly approximates the first i elements of K.

Then after stage sdβ the value of the threshold dβ does not change and a0
β receives

its final value, i.e. (a0
β){t} = (a0

β){s
d
β} = a0

β for all t ≥ sdβ . As β is the only strategy

of type (i) accessible after stage sdβ , dβ receives α-markers only from β after stage

sdβ .

After stage sdβ the strategy α will extract finitely many numbers a < a0
β . And

every time such an element is extracted it will not be reenumerated back in A. This
follows from the fact that at stages t > sdβ strategies of higher priority β do not
modify A and accessible strategies of lower priority γ ⊇ β are initialized at stage
sdβ and modify A only on elements larger than a0

γ ≥ a0
β . Hence there is a least stage

scβ such that at stages t > scβ the strategy α does not extract numbers less than a0
β

from A and hence A�a
0
β is not modified at stages t > scβ . At stage scβ the strategy

β performs step 2 of Initialization for the last time and all lower priority strategies
are in initial state.

The following is a diagram which shows the way in which β can change its
outcome at consecutive true stages:

h⇐∞⇐ · · · ⇐ f1 ⇐ f0 ⇐∞⇐ (h⇔ w)

The strategy β changes the value of the marker a(dβ) at stage s > scβ only when
it has outcome h during Initialization or Honestification and when it has outcome
∞ during Attack at stage s. In the second case all main genericity strategies are
initialized at stage s. In the first case let s− be the largest stage scβ < s− < s such

that β has outcome∞ if there is such state and s− = scβ otherwise. Then strategies

extending outcomes fi for some natural number i are in initial state at stage s−

and are not accessible at stages t ∈ [s−, s]. Strategies extending w are initialized at
stage s.
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If β has true outcome o ∈ {w, fn | n < ω}, then from the diagram it follows
that there is a stage seβ such that β has outcome o at all stages t > seβ . From the
construction it follows that β does not modify any parameters . �

The properties listed above are true for the backup genericity strategies along f .

Propostion 4.4. Let β̌ be a backup genericity strategy on the true path. Then:

(1) There is a stage s0
β̌

such that: β̌ is not initialized at stages t > s0
β̌

, β̌ is the

only backup genericity strategy of type (α̌, β, i) accessible at stages t > s0
β̌

and β̌ is visited at every α̌-true stage t > s0
β̌

.

(2) There is a stage sd
β̌

such that at stages t > sd
β̌

the value of dβ̌ does not

change. At stage sd
β̌

the limit value of the marker b0
β̌

is defined. All α̌-

markers for the element dβ̌ are defined by β̌ at stages t ≥ sd
β̌

.

(3) There is a stage sc
β̌
> sd

β̌
such that at stages t > sc

β̌
Check does not send β̌

to Initialization. At stages t > sc
β̌

the value of Bα̌ is not modified below b0
β̌

.

(4) After stage sc
β̌

every time β̌ changes the value of the marker bα̌(dβ̌) all

backup genericity strategies β̌(α̌, β, j), where j > i, that are accessible at
stages t > sc

β̌
, i.e. for which there is a true stage t > sc

β̌
, are in initial state.

(5) If β̌’s true outcome is w or f then there is a stage se
β̌

such that β̌ does not

modify any parameters and has its true outcome at true every stage t > se
β̌

.

Proof. The proof is carried out in the same way as the proof of Proposition 4.3. �

Finally we are ready to prove that the true path is infinite.

Propostion 4.5. If β ⊆ f is a main genericity strategy then it’s true outcome is
not h. Similarly if β̌ ⊆ f is a backup genericity strategy then it’s true outcome is
not h. Hence the true path is infinite.

Proof. Suppose towards a contradiction that β ⊆ f has true outcome h and let
s ≥ scβ be a stage such that at stages t > s the strategy β is not initialized and
does not have outcome ∞. Then at stages t > s the strategy β has a fixed agitator
eβ ∈ E. As E = Θe(U ⊕ V ) then limt θ(eβ) = θ(eβ) exists and θ(eβ) ⊆ U ⊕ V . Let
slim > s be a β-true stage such that at all stages t > slim we have θ(eβ , t) = θ(eβ)

and θ(eβ) ⊆ (U ⊕V ){t}. It follows that β cannot have outcome h at stages t > slim
contradicting the fact that h is β’s true outcome.

The second statement is proved in a similar way. �

Propostion 4.6. Let β ⊆ f be a main genericity strategy and let dβ be the limit
value of β’s threshold attained at stage sdβ. If τβ is defined as the current witness

of β at stage s ≥ scβ then for all a ≥ a0
β such that a is a previous value of the

A-marker of the threshold dβ, τβ(a) = 0.

Proof. We prove this with induction on the stage s. Suppose that the statement is

true for values of the witness τβ defined before stage s. Recall that τ
{s}
β = A{s} �

a(dβ). If a is an old marker of the threshold dβ , a < a(dβ){s} and it is sufficient to

prove that a /∈ A{s}.
Suppose towards a contradiction that a is an old marker defined before and

cancelled before or on stage s and a ∈ A{s}. As every time β cancels an old value
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of the A-marker of the threshold, it extracts this value from A, this could only be
possible if a strategy later on at stage sa < s re-enumerates a in A and a remains
in the set A at all stages t ∈ [sa, s]. By Proposition 4.3 the only strategy that
can re-enumerate a in the set A is the strategy β and by construction this is only
possible if at stage sa the strategy β starts evaluating Witβ [n]{sa} for some n, and
µn(a) = 1. But µn is defined as an extension of a previous value τ of the witness
τβ and by induction if a < |τ | then τ(a) = 0. It follows that |τ | ≤ a < |µn| and
by construction the only possibility is that a = an, as the next value of the A-
marker for dβ is defined as a number larger than |µ|. So at stage sa the strategy
β has outcome fn and is evaluating the result of its most recent attack. At stage
s a new value for τβ is defined, so β must have evaluated it most recent attack
as unsuccessful. This means that at a stage in the interval (sa, s) the strategy β
evaluates Witβ [n] as unsuccessful and extracts an = a from the set A, contradicting

our choice of stage sa. It follows that the assumption is wrong and a /∈ A{s}. �

Propostion 4.7. Let β ⊆ f be a main genericity strategy and let dβ be the limit
value of β’s threshold attained at stage sdβ. If an axiom 〈x,Du⊕Da〉 is enumerated

in Γ{s} for an element x /∈ K after stage sdβ then one of the following holds:

(1) s ≤ scβ. Then the axiom is invalid at all stages t > scβ.

(2) Da contains a marker a of the threshold dβ which is cancelled as current at
stage s+ at which β defines the next value of the A-marker of the threshold.
Then a /∈ A{t} at all t > s+.

(3) Da contains a marker a of the threshold dβ which is cancelled as current at
stage s+ and at stage s+, a = an becomes a component of the n-th entry in
the list Witβ, 〈µn, µ∗n, an, Un ⊕ Vn〉 and in this case Un ⊆ Du.

(4) Da contains the final value of the A-marker of the threshold dβ.

Proof. As s > sdβ and x ∈ K
{s} \ K it follows that x > dβ . By the fact that

every time a new value for the markers of dβ are defined, the markers for x are
cancelled and the format of the axioms enumerated in Γ it follows that Da contains
the current marker a = a(dβ){s} which is defined by β by Proposition 4.3.

If s ≤ scβ then at stage scβ the strategy α extracts an element a0 < a0
β such that

a0 ∈ A{s}, hence a0 ∈ Da, which is never re-enumerated in the set A. It follows
that the axiom is invalid at all stages t > scβ . So suppose that s > scβ

If a = a(dβ){t} at all t > s then case 4 is true. Otherwise let s+ be the stage at

which a(dβ) is changed. If a ∈ A{t} at some t > s+. Then as in Proposition 4.6
only β can enumerate a in the set A during Result if for some n, µn(a) = 1. This
is only possible if an = a.

So if a 6= an for any member if the list Witβ then a /∈ A{t} at all stages t > s+.
Finally suppose a = an for some n. Then s+ is the stage of the n-th attack after

stage scβ . Let s− be the stage at which a(dβ) received the value a. Then at this

stage u(dβ) is set to a number larger than the maximal number of θ(e
{s−}
β , s−) and

all α-marker for elements n > dβ are undefined. At stages t ∈ (s−, s+] the strategy
β does not change the value of a(dβ) and hence has outcome w if visited. It follows

that s ∈ (s−, s+] and e
{s}
β = e

{s−}
β = eβ . On the other hand θ(eβ , s

+) = θeβ ,s ⊆
(U ⊕ V ){s}. Hence θ(eβ , s

+) ⊆ Du ⊕ N. Finally Un ⊕ Vn is defined as the value of
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θ(ē, s+), where ē ≤ e. As by the definition of the use function θ(ē, s+) ⊆ θ(e, s+),
we can conclude that Un ⊆ Du.

As by Proposition 4.6 at all stages t ≥ s+ if an ∈ A{t} then β has outcome fn
at stage t and hence Un * U{t}, the axiom 〈x,Du ⊕ Da〉 is invalid at all stages
t ≥ sn. �

Corollary 4.1. If β = β(i) ⊆ f has true outcome w or fn for some natural number
n then β successfully satisfies Gi.

Proof. Suppose that β has outcome o = w or o = fn for some natural number n at
all stages t ≥ seβ , where seβ is a least such stage. Then by Proposition 4.3 at stage
seβ all lower priority main genericity strategies γ ⊇ β ô are in initial state at stage

se and will not modify A{t} on numbers a < a(dβ){t} < (a0
γ){t} at stages t ≥ seβ .

Higher priority main genericity strategies do not modify A at all.
Suppose that β has outcome w at all stages t ≥ seβ . Then the final value of the

witness τβ is defined at stage shβ , the previous β-true stage before seβ . Note that shβ

is the last stage at which β has outcome h and τβ = A{s
h
β} � a(dβ){s

h
β}. The final

value of the witness τβ does not belong to the set Wi, otherwise after stage seβ , β

would have outcome∞. To see that τβ ⊆ A we show that α does not modify A � |τ |
at stages t > shβ . Indeed, the only case in which α would need to change A after

stage sh on a number less than |µ| is when it sees a valid axiom for and element

x /∈ K{t} which was enumerated before stage sh. By Proposition 4.7 it follows that
Case 1, 2 and 4 cannot apply to this axiom. Case 3 does not apply as well as by
Proposition 4.6 for all entries in the list Witβ , τβ(an) = 0 and hence A{sh}(an) = 0.
As by assumption β does not enter Result after stage shβ , no strategy including β

can re-enumerate these markers back in A{t} at all t > shβ . As there are no more
choices for the assumed axiom, it follows that t does not exists and α does not
modify A{t} on numbers a < |τ | at stages t > shβ .

Now suppose that β has outcome fn. Then µn ⊆Wi and at stage seβ the strategy

β starts evaluating Witβ [n] and sets µn ⊆ A{s
e
β}. In this case as well it is easy

to see that µn will remain an initial segment of A at all further stages as axioms
for elements x /∈ K with maximal A-marker less than |µn| are invalid at all stages
t > seβ . They cannot be Case 4 axioms, and Case 1 and 2 axioms are obviously not
valid at any stage t > seβ . Case 4 axioms which contain markers am for m < n are

invalid as µn(am) = 0. Indeed µn is defined as an extension of a previous witness
τβ which by Proposition 4.6 has this property. Finally if the axiom is of the form
〈x,Du ⊕ Da〉 and Da contains an then Un ⊆ Du. However at all stages t > seβ ,

Un * U{t} hence in this case as well α does not modify A{t} on numbers a ≤ |µn|,
hence µn ⊆ A. �

Propostion 4.8. Let β̌ = β̌(α̌, β̌, i) ⊆ f and let dβ̌ be the limit value of β̌’s

threshold attained at stage sd
β̌

. If an axiom 〈x,Dv ⊕Db〉 is enumerated in Λ{s} for

an element n /∈ K after stage sd
β̌

then one of the following holds:

(1) s ≤ sc
β̌

. Then the axiom is invalid at all stages t > sc
β̌

.

(2) Db contains a marker b of the threshold which is extracted at stage s+ at
which β̌ defines the next value of the Bα̌-marker, and is never reenumerated
in Bα̌.
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(3) Dv contains a subset Vn which eventually becomes a component of the n-th
entry in the list Witβ, 〈µn, µ∗n, an, Un ⊕ Vn〉.

(4) Da contains the final value of the A-marker of the threshold dβ.

Proof. Part one is proved just as Part 1 of Proposition 4.7, so assume that s > sc
β̌
.

We note that sc
β̌
> scβ as every time β is restarted during Check, β̌ is initialized.

As s > sc
β̌

and x ∈ K{s} \K it follows that x > dβ̌ . By the fact that every time

new values for the markers of dβ̌ are defined, the α̌-markers for n are cancelled and
the format of the axioms enumerated in Λα̌ it follows that Db contains the current
marker b = bα̌(dβ̌){s} which is defined by β̌ by Proposition 4.4. If b = bα̌(dβ̌){t}

at all t > s then case 4 is true. Otherwise let s+ be the stage at which bα̌(dβ̌)

is changed. If this is during Initialization or Honestification then b /∈ B{t}α̌ at all
t > s+.

Suppose that s+ is the stage at which β̌ performs an Attack and times it with
the n-th Attack of β. Then at stage s+ the strategy β̌ extracts its agitator eβ̌ .
On the next β-true stage the strategy β evaluates the result of its n-th attack and
enumerates as the fourth component Un ⊕ Vn = θ(eβ̌ , s

+).

Let s− be the stage at which b(α̌)(dβ̌) received the value b. Then at this stage

vα̌(dβ̌) is set to a number larger than the maximal number of θ(e
{s−}
β̌

, s−) and all

α̌-marker for elements n > dβ̌ are undefined. At stages t ∈ (s−, s+] the strategy β̌

does not change the value of bα̌(dβ̌) and hence has outcome w if visited. It follows

that s ∈ (s−, s+] and e
{s}
β̌

= e
{s−}
β̌

= e
{s+}
β̌

= eβ̌ and θ(eβ̌ , s
−) = θeβ̌ ,s = θeβ̌ ,s+ =

Un ⊕ Vn ⊆
⋂
t∈[s−,s](U ⊕ V ){t}. Hence Vn ⊆ Dv. �

Corollary 4.2. If β̌ = β̌(α̌, β, i) ⊆ f has true outcome w or f then β successfully
satisfies Gi(A).

Proof. Suppose that β̌ has outcome o = w or o = f at all stages t ≥ se
β̌
, where se

β̌

is a least such stage. Then by Proposition 4.4 at stage seβ all lower priority backup

genericity strategies γ ⊇ β̌ ô are in initial state at stage se
β̌

and will not modify B
{t}
α̌

on numbers b ≤ bα̌(dβ̌){t} < (b0γ){t} at stages t ≥ seβ . Higher priority strategies do
not modify Bβ̌ at all at stages t ≥ se

β̌
.

We prove that α̌ does not modify B
{t}
α̌ on numbers b ≤ bα̌(dβ){t} at stages t > seβ .

Suppose towards a contradiction that it does. Then at a stage t > se
β̌
, α̌ invalidates

a valid at stage t axiom, 〈x,Dv⊕Da〉, for an element x /∈ K{t}. By Proposition 4.8
this must be a case 3 axiom and Dv contains a subset Vn which at a stage s < seβ
becomes a component of the n-th entry in the list Witβ , 〈µn, µ∗n, an, Un ⊕ Vn〉. By
construction at stage t > se

β̌
the strategy β has outcome∞ after evaluating Witβ [n]

as unsuccessful, hence Vn * V
{t}
α̌ , contradicting the assumption that 〈x,Dv ⊕Da〉

is valid at stage t.
If β̌ has outcome w at all stages t ≥ seβ . Then τβ̌ ⊆ Bα̌ and τβ̌ /∈ Wi. Indeed if

τβ̌ ∈ W
{t}
i and t1 < t2 are two consecutive β̌-true stages after t then at least one

of them is a stage of an attack by the main genericity strategy β, hence β̌ would
attack and have outcome h <L w, contradicting the choice of se

β̌
.
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If β̌ has outcome f then at stage se
β̌

it has found an µ ∈ Wi, ensured µ ⊆ B
{se
β̌
}

α̌

and defined the final value of bα̌(dβ̌) > |µ|. It follows that µ ⊆ Bα̌. �

Lemma 4.1. There is a ∆0
2 1-generic set C such that U⊕C ≡e K or V ⊕C ≡e K.

Proof. By proposition 4.1 we have two cases for the true path f :
Case 1: For every i a strategy of type β(i) is assigned to the node f � i. We

will prove that in this case C = A is the required set.
It follows from the construction and Part (2) of Proposition 4.3 that the limit

values of the markers a0
i = a0

β(i) exist for every β(i) ⊆ f and form an unbounded

increasing sequence. Furthermore by Part (3) of Proposition 4.3 for every i there
is a stages si = scβ(α,i), such that at all stages t > si, A

{si} � Ai = A{t} � Ai and

hence the set A is ∆0
2.

For every number n if n /∈ K then the actions of the main enumeration strategy
α ensure that at infinitely many stages s (the α ê-true stages after the extraction
of n from K) n /∈ (Γ(U ⊕A)){s}, hence n /∈ Γ(U ⊕A).

Let n be the i-th element of K. Then n = dβ at all stages t > sdβ , where

β = β(α, i) ⊆ f . Hence at all stages t > sdβ the α-markers for n are defined. By
our assumption Proposition 4.5 and our assumption on f , either o = fk for some k
or o = w is the true outcome for β and there is a stage seβ such that the α-markers

for n, u(n) and a(n) do not change after stage seβ . Let s > scβˆo be a U -true stage

such that at all t > s U � u(n) + 1 ⊆ U{t}. Then at stage s, α ensures that there
is a valid axiom for n in Γ, say 〈n,Un ⊕ An〉. By our choice of stage s Un ⊆ U{t}

and An ⊆ A{t} at all stages t > s, hence n ∈ Γ(U ⊕A).
Finally by Corollary 4.1 it follows that A is 1-generic.
Case 2: There is a strategy β ⊆ f such that α̌(β) is assigned to f � |β|+ 1 and

for every i a backup strategy β̌(α̌, β, i) is assigned to the node f � |β|+ i+ 1. We
will prove that in this case C = Bα̌ is the required set.

That Bα̌ is ∆0
2 is proved as in the first case using the limit values of the markers

b0i = b0
β̌(α̌,β,i)

for every β̌ ⊆ α̌ ⊆ f and by Part (3) of Proposition 4.4.

To prove that Λα̌(V ⊕ Bα̌) we observe that there are infinitely many stages s
(the α̌-true stages after the extraction of n from K at which β does not attack) at

which α ensures that there are no valid axioms for elements n < s, n /∈ K{s}. If n
is the i-th element of K then n = dβ̌ at all stages t > sd

β̌
, where β̌ = β̌(α̌, β, i) and

the values of its α̌-markers will eventually reach a limit. Hence at a α̌ stage s at

which V � vα̌(n) + 1 ⊆ V {t}α̌ ⊆ V the strategy α̌ ensures that there is a valid axiom
for n in Λα̌ at all stages t > s, hence n ∈ Λα̌(V ⊕Bα̌).

Finally by Corollary 4.2 it follows that Bα̌ is 1-generic. �

Acknowledgements: We would like to thank an anonymous referee, whose
comments and remarks helped us to improve the exposition of this article.

References

[1] M. M. Arslanov, S. B. Cooper, and I. Sh. Kalimullin, Splitting properties of total enumeration

degrees, Algebra and Logic 42 (2003), 1–13.
[2] M. M. Arslanov and A. Sorbi, Relative splittings of 0′e in the ∆2 enumeration degrees, Lect.

Notes in Logic 13 (1999), 44–56.



CUPPING AND DEFINABILITY 25

[3] S. Bereznyk, R. Coles, and A. Sorbi, The distribution of properly Σ0
2 e-degrees, J. Symbolic

Logic 65 (2000), 19–32.

[4] S. B. Cooper, Partial degrees and the density problem. Part 2: The enumeration degrees of
the Σ2 sets are dense, J. Symbolic Logic 49 (1984), 503–513.

[5] , Enumeration reducibilty, nondeterministic computations and relative computability

of partial functions, Recursion theory week, Oberwolfach 1989, Lecture notes in mathematics
(Heidelberg) (K. Ambos-Spies, G. Muler, and G. E. Sacks, eds.), vol. 1432, Springer-Verlag,

1990, pp. 57–110.

[6] , Computability theory, Chapman & Hall/CRC Mathematics, Boca Raton, FL, New
York, London, 2004.

[7] S. B. Cooper and C. S. Copestake, Properly Σ2 enumeration degrees, Z. Math. Logik Grund-

lag. Math. 34 (1988), 491–522.
[8] S. B. Cooper, A. Li, A. Sorbi, and Y. Yang, Bounding and nonbounding minimal pairs in

the enumeration degrees, J. Symbolic Logic 70 (2005), 741–766.
[9] S. B. Cooper, A. Sorbi, and X. Yi, Cupping and noncupping in the enumeration degrees of

Σ0
2 sets, Annals of Pure and Applied Logic 82 (1996), 317–342.

[10] C. Copestake, 1-Genericity in the enumeration degrees, J. Symbolic Logic 53 (1988), 878–
887.

[11] R. M. Friedberg and Jr. H. Rogers, Reducibility and completeness for sets of integers, Z.

Math. Logik Grundlag. Math. 5 (1959), 117–125.
[12] H. Ganchev and M. I. Soskova, Embedding distributive lattices in the Σ0

2 enumeration degrees,

accepted in Journal of Logic and Computation.

[13] , The high/low hierarchy in the local structure of the ω-enumeration degrees, accepted
in Annals of Pure and Applied Logic.

[14] , Interpreting true arithmetic in the local structure of the enumeration degrees, in
preparation.

[15] C. G. Jockusch, Semirecursive sets and positive reducibility, Trans. Amer. Math. Soc. 131

(1968), 420–436.
[16] I. Sh. Kalimullin, Definability of the jump operator in the enumeration degrees, Journal of

Mathematical Logic 3 (2003), 257–267.

[17] A. H. Lachlan and R. A. Shore, The n-rea enumeration degrees are dense, Arch. Math. Logic
31 (1992), 277–285.

[18] K. McEvoy, Jumps of quasi-minimal enumeration degrees, J. Symbolic Logic 50 (1985),

839–848.
[19] A. Sorbi, The enumeration degrees of the Σ0

2 sets, Complexity, Logic and Recursion Theory

(New York) (A. Sorbi, ed.), Marcel Dekker, 1997, pp. 303–330.

[20] M. I. Soskova, A non-splitting theorem in the enumeration degrees, Annals of Pure and
Applied Logic 160 (2009), 400–418.

[21] M. I. Soskova and G. Wu, Cupping ∆0
2 enumeration degrees, Mathematical Structures in

Computer Science 19 (2009), 169–191.

Faculty of Mathematics, Sofia University, 5 James Bourchier bvld., 1164 Sofia


