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1 Introduction

In an upper semi-lattice with greatest element 〈A,≤,∨, 1〉 we say that an
element a is cuppable if there exists an element b 6= 1 such that a ∨ b = 1.
The element b is called a cupping partner for a. The cupping properties of
both the local structure of the Turing degrees reducible to 0′, DT (≤ 0′), and
the structure of all c.e. Turing degrees, R, have been thoroughly investigated.
Posner and Robinson [15] show that every nonzero degree in DT (≤ 0′) is
cuppable, while Cooper and Yates [6] show the existence of a nonzero c.e.
degree which cannot be cupped within R.

In this article we consider cupping properties of the local degree structure of
all enumeration degrees reducible 0′e, De(≤ 0′e). Intuitively we say that a set A
is enumeration reducible to a set B, denoted as A ≤e B, if there is an effective
procedure to enumerate A given any enumeration of B. This relation is a
preorder on the sets of natural numbers and induces an equivalence relation≡e.
The equivalence class of a set A, denoted by de(A), is the enumeration degree of
the set A. The collection of all enumeration degrees together with the relation
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≤, where de(A) ≤ de(B) if A ≤e B, defines the structure of the enumeration
degrees 〈De,≤〉. This structure is furthermore an upper semi-lattice with jump
operator and least element 0e, the collection of all computably enumerable sets.
The semi-lattice of the enumeration degrees can be considered as an extension
of the semi-lattice of the Turing degrees, as the second semi-lattice can be
embedded in the first, via an order theoretic embedding ι preserving the least
upper bound and the jump operator.

Cooper [3] proves that the Σ0
2 enumeration degrees are exactly the enumer-

ation degrees reducible to 0′e. The images of the c.e. Turing degrees under the
embedding ι are exactly the Π0

1 enumeration degrees. The ∆0
2 Turing degrees

embed onto a proper subset of the ∆0
2 enumeration degrees, the total ∆0

2 enu-
meration degrees. Thus the local structure of the enumeration degrees itself
can be considered as a proper extension of the local structure of the Turing
degrees.

In [7], Cooper, Sorbi and Yi prove that every nonzero ∆0
2 enumeration

degree can be cupped by a total incomplete ∆0
2 enumeration degree, in contrast

to the Σ0
2 enumeration degrees where non-cuppable degrees exist. Soskova

and Wu [18] examine the cupping properties of the ∆0
2 enumeration degrees

further and show that every nonzero ∆0
2 enumeration degree can be cupped

by a 1-generic ∆0
2, hence non-total and low, enumeration degree. The latter

two results show that one has a certain flexibility when searching for cupping
partners of ∆0

2 enumeration degrees. On the other hand the last result shows
that we can limit our search for a cupping partner to a small subclass of the
∆0

2 enumeration degrees. It would be natural to ask whether or not we can
narrow this search even further, perhaps there is a finite set which contains a
cupping partner for every nonzero ∆0

2 enumeration degree. Lewis [13] proves
that this is not true for the ∆0

2 Turing degrees. Our first result shows that the
∆0

2 enumeration degrees are not any different in this respect.
Given a sequence of sets {Ai}i∈C , where C is some computable index sets,

we shall say that the set A = {〈i, x〉| i ∈ C ∧ x ∈ Ai} is an enumeration of
the sequence. For example the universal set K1 = {〈e, x〉| x ∈ We} is a Σ0

1

enumeration of the sequence {We}e<ω of all c.e. sets. On the other hand any
finite sequence of ∆0

2 sets has a ∆0
2 enumeration.

We prove that if a sequence of sets {Ai}i<ω contains within its members a
representative of a cupping partner for every nonzero ∆0

2 enumeration degree,
then this sequence does not have a ∆0

2 enumeration.

Theorem 1 Let {Ai}i<ω be a sequence of sets with a ∆0
2 enumeration A.

There exists a nonzero ∆0
2 enumeration degree b such that for every i < ω if

Ai is incomplete then de(Ai) ∨ b 6= 0′e.

Having found the first limitation in the cupping properties of De(≤ 0′e) we
consider a finer partition of its members arising from the difference hierarchy,
defined by Ershov [8], [9]. For every n ≤ ω we shall say that an enumeration
degree is n-c.e. if it contains an n-c.e. set. Cooper [4] proves that the class of
2-c.e. enumeration degrees coincides with that of the Π0

1 enumeration degrees,
thus the first proper superclass of Π0

1 enumeration degrees in this hierarchy
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consists of all 3-c.e. enumeration degrees. The last proper subclass of the ∆0
2

enumeration degrees that we shall consider is that of the ω-c.e. degrees. For
every n ≤ ω the class of all n-c.e. sets has an n-c.e. enumeration, see [1], thus
an immediate corollary from Theorem 1 is the following.

Corollary 1 There exists a nonzero ∆0
2 enumeration degree that cannot be

cupped by any incomplete ω-c.e. enumeration degree.

Soskova and Wu [18] prove that this ∆0
2 enumeration degree cannot itself

be an ω-c.e. enumeration degree as every nonzero ω-c.e. enumeration degree
can even be cupped by an incomplete 3-c.e. enumeration degree. We face again
the question of how much further we can limit our search for cupping partners
when we restrict our attention to the smaller subclass of all n-c.e. enumeration
degrees for some n, 3 ≤ n ≤ ω. In contrast to the ∆0

2 enumeration degrees,
there is even a 3-c.e. enumeration of a sequence of sets containing a repre-
sentative of a cupping partner for every nonzero n-c.e. degree, namely the
enumeration of all 3-c.e. sets. Can we limit this further to a finite set? Cooper,
Seetapun and (independently) Li prove that there exists a single incomplete
∆0

2 Turing degree that cups every nonzero c.e. degree. When we transfer this
statement into the enumeration degrees we obtain a single incomplete ∆0

2 enu-
meration degree that cups all nonzero Π0

1 enumeration degrees, suggesting the
possibility that a single incomplete degree from a larger class might be enough
to cup all nonzero degrees from a smaller class in the considered hierarchy.
Our next result shows that this is not the case as for every incomplete Σ0

2

enumeration degree a there exists a nonzero member of the second class, a
nonzero 3-c.e. enumeration degree b, such that b is not cupped by a. This
provides a partial answer to the suggested question: If there is a finite set con-
taining cupping partners for every nonzero n-c.e. enumeration degree, where
3 ≤ n ≤ ω, then it cannot be of cardinality 1.

Theorem 2 Let a be an incomplete Σ0
2 enumeration degree. There exists a

nonzero 3-c.e. enumeration degree b such that a ∨ b 6= 0′e.

An extended abstract of Theorem 2 has been published in [17].

2 Preliminaries

We shall start by giving formal definitions of the notions used in the introduc-
tion and in the rest of this article.

Definition 1 A set A is enumeration reducible (≤e) to a set B if there is a
c.e. set Φ such that:

n ∈ A ⇔ ∃u(〈n, u〉 ∈ Φ ∧Du ⊆ B),

where Du denotes the finite set with code u under the standard coding of
finite sets. We will refer to the c.e. set Φ as an enumeration operator and its
elements will be called axioms.
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We can define a least upper bound operation in the structure of the enu-
meration degrees 〈De,≤〉. By setting de(A) ∨ de(B) = de(A⊕B) and a jump
operator de(A)′ = de(Je(A)). The enumeration jump of a set A, denoted by
Je(A) is defined by Cooper [3] as KA ⊕A, where KA = { n| n ∈ ΦA

n }.
The jump operator gives rise to the local structure of the enumeration

degrees, consisting of all enumeration degrees a ≤ 0′e. We note once again that
Cooper [3] proves that these are exactly the Σ0

2 enumeration degrees, where
an enumeration degree is called Σ0

2 if it contains a Σ0
2 set, or equivalently if it

consists entirely of Σ0
2 sets.

Definition 2 1. For n < ω a set A is n-c.e. if there is a total computable
function f such that for each x, f(x, 0) = 0, |{s | f(x, s) 6= f(x, s+1)}| ≤ n
and A(x) = lims f(x, s).

2. A is ω-c.e. if there are two total computable functions f(x, s) and g(x)
such that for all x, f(x, 0) = 0, |{s | f(x, s) 6= f(x, s + 1)}| ≤ g(x) and
A(x) = lims f(x, s).

An enumeration degree which contains an n-c.e. set, where n ≤ ω, will be
called an n-c.e. enumeration degree.

Next we make a note on the approximations used in the proofs of both
theorems. We use the definition of a good approximation given by Lachlan
and Shore [12].

Definition 3 Let {A[s]}s<ω be a uniform computable sequence of finite sets.
We say that {A[s]}s<ω is a good approximation to the set A if:

1. (∀n)(∃s)[ A ¹ n ⊆ A[s] ⊆ A ] and
2. (∀n)(∃s)(∀t > s)[ A[t] ⊆ A ⇒ A ¹ n ⊆ A[s] ].

Stages s at which A[s] ⊆ A are called good stages.

That every Σ0
2 set has a good Σ0

2 approximation is proved by Jockusch
[10]. In [12] Lachlan and Shore give a computable method for obtaining a
good ∆0

2 approximation from a given ∆0
2 approximation to a set A. They

prove furthermore the following proposition:

Proposition 1 (Lachlan, Shore) If {A[s]}s<ω is a good approximation to
A, G the set of good stages and Φ is any enumeration operator then

lim
s∈G

ΦA[s] = ΦA.

A useful notion when dealing with Σ0
2 sets is the age of an element. This

notion was used first by Nies and Sorbi [14] and was given its name by Kent
[11].

Definition 4 Given a Σ0
2 approximation {A[s]}s<ω to a set A, a stage s, and

an element n ∈ A[s], we define a(A,n, s), the age of n in A at stage s, to be
the least sn such that for all t, if sn ≤ t ≤ s then n ∈ A[t]. The age of a finite
set F ⊂ A[s] at stage s is a(A,F, s) = max{ a(A,n, s)| n ∈ F}.



5

An element n belongs to a Σ0
2 set A if and only if its age relative to a fixed

Σ0
2 approximation reaches a finite limit value. We will denote this value by

a(A,n) and refer to it as the limit age. The limit age for a finite subset F ⊆ A
is defined, as one might expect, as max{ a(A,n)| n ∈ F}.

Finally we introduce one further notational convention. In what follows we
will often need to work with a set C reducible to the least upper bound of two
other sets, say A and B. To keep notation simple we will consider the set C
as being enumerated relative to two sources and write C = ΦA,B , instead of
C = ΦA⊕B . Naturally we will assume that an axiom of the operator Φ has the
structure 〈n,DA, DB〉 and that it is valid if an only if DA ⊆ A and DB ⊆ B.

Further notation and terminology used in this article are based on that of
[5] and [16].

3 The first limitation

We shall first give a proof of Theorem 1. Suppose we are given a sequence
{Ai}i<ω such that the enumeration A = {〈i, x〉| x ∈ Ai} is ∆0

2. We shall con-
struct a ∆0

2 set B whose enumeration degree is nonzero and such that de(Ai)
does not cup de(B) for every incomplete member of the sequence {Ai}i<ω.

Fix a ∆0
2 approximation {A[s]}s<ω of the set A. For every i the sequence

{{x| 〈i, x〉 ∈ A[s]}}s<ω is a ∆0
2 approximation to the set Ai. From this approx-

imation, using Lachlan and Shore’s algorithm, we effectively obtain a good ∆0
2

approximation {Ai[s]}s<ω to Ai for every i.
The requirements that the constructed set B needs to satisfy are:
1. The set B is not c.e. Let {We}e<ω be the standard listing of all c.e. sets.

For every natural number e we have a requirement:

Ne : We 6= B.

2. The degree of the set B is not cupped by any incomplete member of the
sequence. Let {Θj}j<ω be the standard listing of all enumeration operators.
For every i and every j we will have a requirement:

Pi,j : ΘAi,B
j = K ⇒ (∃Γi,j)[ΓAi

i,j = K].

We shall use the priority method to construct the required set B. The
requirements will be ordered linearly as follows:

P0,0 < N0 < P0,1 < N1 < P1,0 . . .

Each particular requirement can be satisfied in more than one way. We
connect to each such way an outcome. The choice of the correct way to satisfy
a certain requirement depends on the outcomes of higher priority requirements.
Therefore we represent the set of all possible sequences of outcomes as a tree of
outcomes. Each node α on the tree is labelled by a requirementR and equipped
with a finite set of instructions that determine its actions when activated. The
node α will be referred to as an R-strategy.
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The set of all possible outcomes for each requirement will be linearly or-
dered (<L, defined below) and the nodes of the tree of strategies will be ordered
by the induced lexicographical ordering ≤. The construction is in stages. Every
c.e. set We and every enumeration operator Θj will be approximated by its
standard Σ0

1 approximation. The set K is approximated by a sequence of co-
finite sets, obtained from the standard Σ0

1 approximation to the set K, namely
for every s, K[s] = K[s]. At each stage s we construct a set B[s] approximating
B and a string δ[s] of length s in the tree of strategies. The initial segments
δ ⊆ δ[s] are the nodes of the tree visited during stage s of the construction;
they are the strategies that might act to satisfy their requirements. If δ ⊂ δ[s]
then s is a δ-true stage. The intent is that there will be a true path, a leftmost
path of nodes visited infinitely often, such that all nodes along the true path
are able to satisfy their requirements.

3.1 Basic strategies

We shall describe the basic strategies with the context of the tree in mind.
Consider a P-strategy α working on the requirement Pi,j . We shall denote

Θj by Θα, Ai by Aα and Γi,j by Γα. The basic goal of α is to construct the
operator Γα so that ΓAα

α = K. It shall have two outcomes i <L w.
The strategy will perform cycles k of increasing length, examining each

element n < k on each cycle. The cycles do not necessarily correspond to
the stages at which α is active. In fact α can take any number of stages to
complete one of its cycles. When examining a particular element n, the strategy
α shall try to rectify the operator Γα at this element n, using information from
the current approximation of the set ΘAα,B

α . The strategy will act differently
depending on whether or not the element is in the current approximation of
the set K.

If n ∈ K then the strategy will try to find an axiom to enumerate in Γα

which is valid at almost all stages s. Candidates for such an axiom come from
the axioms currently enumerated in Θα. The strategy α shall select the axiom
〈n,An, Bn〉 that has been valid the longest (i.e. of least age) including at all
stages since the strategy last examined the element n during the previous
cycle. If there is such an axiom then α will record it as its current guess in
a special parameter Axα(n) and enumerate a corresponding axiom 〈n, An〉 in
the operator Γα. Then during the same stage it will move on to examine the
next element in the cycle. If the current guess recorded in Axα(n) has not
been valid at some stage since the last time n was examined or if there is
no appropriate axiom valid long enough in the current approximation of the
operator Θα then the strategy shall indicate that it has been unsuccessful to
rectify Γα at n via the outcome i, ending its actions for this particular stage
and cancelling the value of Axα(n). When α is active again it will move on to
examine the next element in the cycle. Thus if α has outcome i infinitely often
in relation to a particular element n, this yields that Θα is unable to supply
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α with an axiom for n that is valid at all but finitely many stages and hence
n /∈ ΘAα,B

α .
If n /∈ K, then to rectify Γα the strategy should ensure that all previously

enumerated axioms for n in Γα are invalid. It is enough to ensure that there are
infinitely many stages s at which n /∈ ΓAα

α . Thus the strategy first searches for
such a stage looking back at all stages since the last time that n was examined.
If such a stage is found, α assumes that the operator will be rectified eventually
and moves on to the next element, without any further actions related to n.
If α is not able to spot a stage at which n /∈ ΓAα

α , then it shall enumerate the
element n back in the set ΘAα,B

α by enumerating back in B the B-part, Bn,
of each axiom that is used for n in Γα and we shall say that α is restraining
these elements in B. The strategy will indicate that it has been unsuccessful
to rectify Γα at n via the outcome w. It shall next concentrate its attention
on this element at further stages not moving on to the next element in the
cycle, until it observes a stage at which the operator Γα is rectified. Thus if α
has outcome w at all but finitely many stages then the strategy is never able
to rectify Γα at some element n. From the properties of a good approximation
we can deduce that in this case n ∈ ΘAα,B \K.

To sum up we have three possibilities for the outcomes of a P-strategy α:

1. The strategy α has outcome w at all but finitely many stages. Then α
performs finitely many cycles, reaching an element n ∈ ΘAα,B

α \K.
2. The strategy α has outcome i related to a particular element n at infinitely

many stages. Then α performs infinitely many cycles and for this element
n we have that n ∈ K \ΘAα,B

α .
3. The strategy α has outcome i at infinitely many stages, but for every

element n the outcome i is related to n only at finitely many stages. In
this case the construction of Γα is successful, i.e. ΓAα

α = K.

Now consider an N -strategy β working on the requirement Ne. We shall
denote We by Wβ . This strategy attempts to prove that B 6= Wβ . First it
selects a fresh witness xβ , one that has not appeared in the construction so far.
While xβ /∈ Wβ the strategy keeps xβ in B and indicates this via a rightmost
outcome w. If xβ enters Wβ then every time the strategy β is activated it
extracts xβ from B and indicates this by a leftmost outcome d.

3.2 Interactions between strategies

The strategies are designed so that they do not interfere with each other.
Every N -strategy β is responsible for its unique witness xβ , which will never
be extracted unless β decides to extract it. If it is extracted then β will extract
it every time it is activated. A P-strategy is most of the time only an observer,
it does not modify the approximation to B except in one case, when it restrains
elements in B. In this case it has outcome w and we ensure that all strategies
extending this outcome are in initial state. Thus lower priority strategies will
not injure this restraint. Higher priority strategies initialize α if they injure
this restraint.
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The only risk we face is that the set B turns out to be properly Σ0
2 as an

element x is extracted and enumerated back in B infinitely often. Consider
a P-strategy α and an N -strategy β ⊇ α î. Assume that both strategies are
visited infinitely often. The strategy β has a witness xβ which is extracted
from B. The strategy α has used in the definition of its operator Γα an axiom
〈n,An, Bn〉 such that xβ ∈ Bn. At stage s the strategy α examines the element
n, which is not in K[s] and enumerates the witness xβ back in the set B. Then
at the next β-true stage xβ is extracted once again from B. If we were dealing
with a Σ0

2 set Aα it would be possible that an element in the finite set An

is extracted and enumerated back in in the approximation of Aα infinitely
many times and as a consequence the element xβ would be extracted and
enumerated back in B infinitely often. In this construction however we are
given a ∆0

2-approximation to Aα. As a result the approximation to Aα will
eventually settle down on the elements of the finite set An and hence the
described situation will not happen.

It is still possible however that after α enumerates xβ in B and before the
strategy β is activated again, α moves on to a new element n′, enumerates a
new axiom for it , say 〈n′, An′ , Bn′〉, and again xβ ∈ Bn′ . Then β is activated
and extracts xβ . Now we are faced with a new situation, which could be
repeated infinitely often, regardless of the ∆0

2-ness of Aα. If it does then the
number xβ will again be extracted infinitely often from B.

To avoid this risk we shall require that a P-strategy α always restores the
set B in its initial state after it has observed a rectifying stage. In this way
after α is done with the element n it extracts the witness xβ , preempting β’s
actions, before it enumerates a new axiom for n′. Thus the new axiom used
for n′ will not contain the witness xβ in its B-part. This action makes the
P-strategies a bit more aggressive as now they will extract numbers from B
as well. This turns out not to provoke further conflicts and is dealt with in
detail in Section 3.5.

3.3 Parameters and the tree of strategies

A P-strategy α will have a parameter Γα, the enumeration operator that it
will construct. At initialization Γα is set to the empty set. It will have also
parameters kα denoting the current cycle of the strategy and nα ≤ kα denoting
the current element of the cycle that α is working with. At initialization the
values of the parameters are set to kα = 0 and nα = 0. For every n it will
have a parameter Axα(n) denoting the axiom in Θα for n which is currently
assumed to be permanently valid. Finally it will keep track in a set Outα of
all witnesses that the strategy has currently re-enumerated back in B, initially
empty. At initialization α will give up any restraints.

An N -strategy β shall have a parameter xβ , which will be undefined if β
is initialized. At initialization β will give up any restraints.
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The tree of strategies is a computable function T with domain D(T ) ⊂
{w, d, i}<ω and range R(T ) the set of all requirements with the following in-
ductive definition:

1. T (∅) = P0,0.
2. Let α be a P-node in the domain of T . Then α ô, where o ∈ {i, w}, is also

in the domain of T and T (α ô) = N|α|/2, the least N -requirement in the
priority listing which is not yet assigned to any node.

3. Let β be an N -node in the domain of T . Then β ô, where o ∈ {d,w}, is in
the domain of T and T (β ô) = Pi,j , where Pi,j is the least P-requirement
in the priority listing which is not yet assigned to any node.

3.4 Construction

The set B shall be approximated by a sequence of cofinite sets with B[0] = N
and every set B[s] obtained from B[s− 1] by allowing the active strategies at
stage s to enumerate or extract numbers from it. A traditional ∆0

2 approxi-
mation {B̂[s]}s<ω to the set B can be obtained by setting B̂[s] = B[s] ¹ s.

At stage 0 all nodes are initialized. Suppose we have constructed δ[t] for
t < s. We construct δ[s](n) with an inductive definition. We always start at
the root of the tree: δ[s](0) = ∅. Suppose that we have constructed δ[s] ¹ n. If
n = s, we end this stage and move on to s + 1, initializing all nodes σ > δ[s].
Otherwise we visit the strategy δ[s] ¹ n and let it determine its outcome o. We
define δ[s](n + 1) = o. We have two cases depending on the type of strategy
associated with δ[s] ¹ n:

I. δ[s] ¹ n = α is a P-node:
Let s− be the previous α-true stage, if α has not been initialized since, and
s− = s otherwise. The strategy α will inherit the values of its parameters
from stage s− and during its actions it can change their values several times.
Thus we will omit the subscript indicating the stage when we discuss α’s
parameters.
If the current element nα does not need further actions we shall move on
to the next element in the cycle. As this is a subroutine which is frequently
performed in the construction, we define it here once and for all and refer
to it with the phrase “reset the parameters”.

Definition 5 (Resetting the parameters )
Denote the current values of nα by n and of kα by k. We reset the param-
eters by performing the following actions:
• Initialize the strategies extending αˆw.
• If Outα is not empty then extract Outα from B and set Outα = ∅.
• Remove any restraint imposed by α.
• If n < k then set nα := n + 1.
• If n = k then set kα := k + 1, nα := 0 and end this sub-stage with

outcome i.
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At stage s we perform the following actions:
1. Let k = kα and n = nα. Let s−n be the previous stage when n was

examined, if α has not been initialized since, s−n = s otherwise.
2. If n ∈ K[s] and n ∈ ΓAα

α [t] for all stages t with s−n < t ≤ s then reset
the parameters and go to step 1.

3. If n ∈ K[s], but n /∈ ΓAα
α [t] at some stage t with s−n < t ≤ s then:

a. If Axα(n) is not defined then define it as the axiom that has been
valid longest including at all stages s−n < t ≤ s and move on to step
c. If there is no such axiom then let the outcome be i and reset the
parameters.

b. If Axα(n) is defined but was not valid at some stage t with s−n <
t ≤ s, then cancel its value (make it undefined) and let the outcome
be i, reset the parameters.

c. If Axα(n) = 〈n,An, Bn〉 is defined and has been valid at all stages
t with s−n < t ≤ s then enumerate in Γα the axiom 〈n,An〉. Reset
the parameters and go back to step 1.

4. If n /∈ K[s] and n /∈ ΓAα
α [t] at some stage t, with s−n < t ≤ s, reset the

parameters and go back to step 1.
5. Suppose n /∈ K[s] but n ∈ ΓAα

α [t] at all t such that s−n < t ≤ s. For
each axiom 〈n,An〉 ∈ Γα[s], consider the corresponding B-part Bn of
the axiom 〈n,An, Bn〉 ∈ Θα. If Bn * B[s] then enumerate all elements
from Bn that are not in B[s] back in the set B. Out of these elements
enumerate in the set Outα the ones that are currently restrained out of
B. Restrain the elements of Bn in B. Let the outcome be w. Note that
we will not reset the parameters at this point, thus the construction
will keep going through this step while there is no change in Aα. If
later on there is a change in Aα then the strategy will move on to the
next element in the cycle but only after it has restored the set B to its
original state by extracting Outα from B.

II. δ[s] ¹ n = β is an N -node:
Let s− be the previous β-true stage if β has not been initialized since. The
strategy β inherits the values of its parameters from stage s− and goes to
the step indicated at stage s−. Otherwise s− = s and the strategy starts
from step 1.
1. Define xβ as a fresh number - one that has not appeared in the con-

struction so far. Go to the next step.
2. If xβ /∈ Wβ [s] then let the outcome be w, return to this step at the next

β-true stage. Otherwise go to the next step.
3. If xβ ∈ B[s], then extract xβ from B[s] and restrain it out of B. Let

the outcome be d, come back to this step at the next β-true stage.

3.5 Proof

We define the true path h to be the leftmost infinite path in the tree of strate-
gies of nodes visited at infinitely many stages, i.e.:
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1. (∀n)(∃∞s)[h ¹ n ⊆ δ[s]];
2. (∀n)(∃sl(n))(∀s > sl(n))[δ[s] 6<L h ¹ n].

The true path exists as the tree is finitely branching. We shall prove that
the strategies along the true path do not get initialized infinitely often.

Proposition 2 For all n there exists a stage si(n) such that h ¹ n does not
get initialized at stages t ≥ si(n).

Proof We prove this proposition by induction on n. The case n = 0 is trivial
as h ¹ 0 does not get initialized at any stage t > 0, thus si(0) = 1.

Suppose that we have proved the statement for n. Then h ¹ (n + 1) does
not get initialized at any stage t ≥ max(si(n), sl(n + 1)) unless it is initialized
by h ¹ n. The only case when this is possible is when h ¹ n is a P-strategy and
h ¹ (n + 1) = (h ¹ n)̂ w. It follows from the construction that h ¹ n performs
only finitely many cycles, as the actions on resetting the parameters ensure
that every time the strategy starts a new cycle it has outcome i. Thus after
a certain stage si(n + 1) the strategy h ¹ n will not reset its parameters and
hence will not initialize strategies below outcome w. ut

The next lemma shows that the only elements that are ever extracted from
the set B are the witnesses that are extracted by an N -strategy.

Proposition 3 1. Let xβ be a witness of an N -strategy β. If β does not
extract xβ at any stage, then xβ ∈ B[s] for all s.

2. If x is not a witness to an N -strategy, then x ∈ B[s] for all s.

Proof 1. It follows that the witness xβ will never be restrained out of B. From
the choice of a witness in step II.1 of the construction it follows that xβ

is not a witness to any other N -strategy. On the other hand it cannot be
extracted by a P-strategy α as in order to be extracted by α it must first
enter the set Outα and elements in this set are necessarily restrained out
of B.

2. Part 2. is proved by a similar argument as Part 1. ut
This is all we need to prove that the N -requirements are satisfied.

Lemma 1 The set B is not c.e.

Proof For every i there is a strategy β along the true path working with
Ni. This strategy is visited infinitely often and not initialized at any stage
t ≥ si(|β|), where si(|β|) is defined in Proposition 2. Let x = xβ [si(|β|)] be β′s
permanent witness at stages t ≥ si|β|. If βˆw ⊂ h then x is never enumerated
in Wi and Proposition 3 yields x ∈ B, hence x ∈ B \Wi. If β d̂ ⊂ h then there
is a stage sx such that x ∈ Wi[t] at all t ≥ sx. At every β-true stage t ≥ sx

the strategy β ensures x /∈ B[t], hence x ∈ Wi \B. ut
We shall turn our attention to the P-strategies. Before we can prove that

they are successful we will show that the restraints that they impose on B are
respected.
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Lemma 2 Let α be a P-strategy. If α restrains an element n in B at stage s
then n ∈ B[t] at all stages t > s until α removes the restraint.

Proof Suppose for a contradiction that a strategy γ extracts n from B at stage
s1 ≥ s strictly before α has removed the restraint. And let s1 be the least such
stage and γ be the least such strategy. We have to consider different cases
depending on the type and priority of the strategy γ.

1. γ <L α. Then γ is visited at stage s1 and hence α is initialized at stage s1

and removes its restraints.
2. α <L γ. Then γ is initialized at stage s. If γ is an N -strategy then γ

chooses its witness after stage s hence bigger than n. If γ is a P-strategy
then γ will extract only elements from B that enter Outγ at a stage t such
that s < t < s1. Elements that enter the set Outγ [t] are not in B[t]. By
our choice of stage s1 as the least stage greater than s at which n /∈ B, we
have that n ∈ B[t] and hence does not enter Outγ .

3. α ⊂ γ. The only strategies that are accessible while α is restraining el-
ements in B are the strategies extending outcome w. By the actions in
Resetting the parameters these strategies are in initial state at stage s.
Thus the argument in 2 is valid for these strategies as well.

4. γ ⊂ α and γ is an N -strategy. Then n is the witness of γ. If γˆw ⊆ α then
at stage s1 the strategy γ has outcome d and initializes α, forcing it to drop
any restraints. If γ d̂ ⊆ α then the element n is extracted by γ at every
α-true stage since the last initialization of α. Thus no axiom 〈m,Am, Bm〉
with n ∈ Bm is valid at an α-true stage after the last initialization of α
and hence no such axiom will be used by α in the construction of Γα. This
contradicts the fact that α restrains n at stage s.

5. γ ⊂ α and γ is a P-strategy. Then n ∈ Outγ [s1]. Suppose n enters the set
Outγ at stage t < s1. Then n /∈ B[t] and by the choice of s1 it must be that
t ≤ s. Then at stage s the element n is in Outγ and by the construction
γ has outcome w at stage s, as whenever it has outcome i the set Outγ is
empty. As α is visited at stage s, γˆw ⊆ α. By the actions of Resetting the
parameters when the set Outγ is extracted from B, γ initializes α at stage
s1. ut

We are ready to prove that every P-requirement is satisfied.

Lemma 3 For every i if Ai 6≡e K then Ai ⊕B 6≡e K.

Proof Suppose that Ai is incomplete and for each j consider the strategy
α ⊂ h along the true path labelled by the requirement Pi,j . Then Θj = Θα

and Ai = Aα. We will prove that ΘAα,B
α 6= K. By Proposition 2 after stage

si(|α|) the strategy α is not initialized. Let Γα =
⋃

t>si(|α|) Γα[t]. Then by
assumption ΓAα

α 6= K.
Suppose there is an m ∈ ΓAα \K. Then there is a valid axiom 〈m,Am〉 in

Γα for m. Let s > si(|α|) be the stage at which this axiom is enumerated in
Γα. As Am ⊆ Aα, Aα is a ∆0

2 set and K is a Π1 set, there is a stage s1 > s
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such that (∀t ≥ s1)[Am ⊆ Aα[t] ∧m /∈ K[t]]. If after stage s1 the strategy α
considers m then by I.5 of the construction α will never again move on to a
different element and will have outcome w forever. Thus α will perform finitely
many cycles.

If α performs finitely many cycles then let n be the last element it considers
and let s2 be the least stage such that nα[t] = n for all t ≥ s2. Then again by
I.5 of the construction n /∈ K[t] and n ∈ ΓAα

α [t] at all t ≥ s2 or else I.4 of
the construction would be valid at an α-true stage and α would move on to
the next element. The good approximation that we have chosen for Aα and
Proposition 1 guarantee that in this case n ∈ ΓAα

α and hence there is a valid
axiom 〈n,An〉 in Γα. By the actions that α performs at stage s2 under I.5 each
axiom for n including 〈n,An, Bn〉 is restored, i.e. Bn ⊆ B[s2] and α restrains
Bn in B at all stages t ≥ s2. By Lemma 2 Bn ⊆ B. Thus n ∈ ΘAα,B

α .
Suppose now that ΓAα

α ⊆ K and that α performs infinitely many cycles.
Let n be the least element such that n ∈ K \ ΓAα

α . We will prove that in this
case n /∈ ΘAα,B

α . Suppose not. Then there is a valid axiom in Θα. Consider
the oldest valid axiom 〈n,An, Bn〉 in Θα, i.e. the one with least limit age
a(Aα ⊕B, An ⊕Bn).

By assumption the strategy will perform infinitely many cycles and hence at
infinitely many stages it will examine n. As n /∈ ΓAα

α and we have chosen a good
approximation to Aα there will be infinitely many stages at which n /∈ ΓAα

α [t].
Let s0 be the first stage at which α examines n and at which the oldest
valid axiom 〈n,An, Bn〉 has reached its limit age, i.e. a(Aα ⊕B,An⊕Bn, t) =
a(Aα ⊕B, An ⊕ Bn) at all t ≥ s0 and all other axioms for n enumerated in
Θ[s0] have greater age.

Let t0 be the least stage after s0 such that n /∈ ΓAα
α [t0]. Consider the

least stage s1 > t0 at which n is again considered by α. Then step I.3 of
the construction will be executed. If Axα(n) is currently undefined then α
will select 〈n,An, Bn〉 as the new value of Axα(n) and enumerate it in Γα.
If Axα(n) does have a value then it will be cancelled as the corresponding
axiom is already enumerated in Γα and was not valid at stage t0. Let t1 be
the next stage at which n /∈ ΓAα

α [t1] and s2 be the next stage at which α
considers n. Finally I.3.a and I.3.c will be executed and the axiom 〈n, An〉
will be enumerated in Γα. By assumption this axiom is valid at all stages
t > s0 hence n ∈ ΓAα

α and we have reached the desired contradiction. ut
Finally to complete the proof we need to show that the constructed set B

is in fact a ∆0
2 set. We will do this in two steps.

Lemma 4 Suppose α is a strategy visited at stages s1 and s2. Suppose x is a
witness of a higher priority strategy β < α. If B(x)[s1] = 1 and B(x)[s2] = 0
then α is initialized at a stage t, with s1 < t ≤ s2.

Proof First note that in order to have B(x)[s2] = 0, β must extract the witness
x at stage sx ≤ s2 by Proposition 3. If s1 < sx then β is visited at stage sx

and has outcome d. Then if β <L α or βˆw ⊆ α, the strategy α is initialized
at stage sx. If β d̂ ⊆ α then as at stage s1 the witness x ∈ B[s1], β must have
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a different witness at stage s1 and must have been initialized together with all
its successors including α at a stage t such that s1 < t ≤ sx ≤ s2.

Suppose sx < s1. As all strategies of lower priority than β are in initial
state at stage sx, the element x must be enumerated back in B before or at
stage s1 by a P-strategy γ of higher priority than β. By construction at this
stage γ executes step I.5 of the construction with outcome w and restrains x
in B. This restraint is still valid at stage s1 hence α ≥ γˆw. By Lemma 2 γ
gives up its restraint at a stage t ≤ s2 as otherwise x ∈ B[s2]. By construction
when γ gives up its restraint, it is either initialized (together with all nodes of
lower priority than γ) or else it itself initializes all strategies of lower priority
than γˆw, hence α is initialized at stage t. ut
Lemma 5 The set B is ∆0

2.

Proof We will prove that for every number n the value of B(n) changes only
finitely often. By Proposition 3 this is true for numbers that are not witnesses
to any N -strategy and for numbers that are witnesses to an N -strategy and
are never extracted by it.

Suppose that n is the witness xβ to the N -strategy β extracted for the
first time at stage sx. No other N -strategy will affect B(xβ) as the sets of
witnesses to each N -strategy are disjoint. If β is initialized at stage s > sx

then β gives up its restraint on xβ and will not extract xβ at any further stage.
Furthermore xβ cannot enter the set Outα[t] for any t > s and any P-strategy
α. At stage s the element xβ can belong to finitely many sets Outα for finitely
many strategies α. Each such strategy can extract the element xβ only once,
when emptying the set Outα. Altogether B(xβ) changes finitely often.

Suppose that β is not initialized after stage sx. Then the element xβ has a
permanent restraint out of B and no strategy α <L β is visited after stage sx.

First we note that P-strategies of lower priority than β will not change
the value of B(xβ) as in order to do this they must be visited at a stage s1

at which B(xβ)[s1] = 1 to include an axiom that uses xβ and then again at
a stage s2 at which B(xβ)[s2] = 0 to enumerate xβ back in B, without being
initialized in between and by Lemma 4 this is not possible.

Thus we only need to prove that the finitely many P-strategies α ⊂ β do
not change the value of the B(xβ) infinitely often. Assume for a contradiction
that this is not true and let α ⊂ β be the largest strategy that changes the value
of xβ infinitely often. It follows that α is visited infinitely often, not initialized
and performs infinitely many cycles. Let s > sx be a stage after which no lower
priority P-strategy ever changes the value of B(xβ). Let s0 > s be the least
stage at which B(xβ) = 0.

At any stage t > s0 if α is visited and chooses a new axiom to enumerate in
Γα then B(xβ)[t] = 0. Indeed higher priority strategies α′ î ⊂ α always have
empty Outα′ when they have outcome i. Higher priority strategies α′′ˆw do
not enumerate any further elements after stage s0 or else α and hence β are
initialized. If α enumerates the element xβ in B at stage t0 it executes step
I.5 and does not define new axioms in Γα. The element xβ is permanently
restrained out of B and hence enters the set Outα[t0]. If α chooses a new
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axiom at stage t > t0 then its set Outα is empty and Outα[t0] is extracted
from B, hence xβ /∈ B[t].

Thus α will use only finitely many axioms whose B-part contains xβ in
the definition of Γα. These are axioms for finitely many numbers, only part of
which are not elements of the set K. For each such element n /∈ K there will be
finitely many axioms Ax(n) enumerated in Γα. Let sn be a stage after which
the approximation of the ∆0

2 set Aα does not change on the A-parts of the
axioms Ax(n). After stage sn the value of ΓAα

α (n) does not change. If ΓAα
α (n) =

1 then when α examines n after stage sn it will restrain xβ in B forever
and never move on to a different element contrary to the assumption that α
performs infinitely many cycles. If ΓAα

α (n) = 0 then whenever α examines n
at stages after sn, step I.4 of the construction will be valid and α will not
enumerate xβ back in B. This proves that our assumption is wrong and hence
B(xβ) changes its value only at finitely many stages. ut

4 The second limitation

In this section we give a proof of Theorem 2. Given an incomplete Σ0
2 enumer-

ation degree a we will construct a nonzero 3-c.e. enumeration degree b which
is not cupped by a.

Let A be a representative of the given Σ0
2 enumeration degree. Let {A[s]}s<ω

be a good Σ0
2 approximation to A. We shall construct two 3-c.e. sets X and Y ,

so that ultimately the degree of one of them will have the requested properties.
The sets will actually be constructed as co-d.c.e., i.e. as complements of 2-c.e.
sets.

Consider the following requirements:
1. Let {Θi}i<ω and {Ψi}i<ω be standard listings of all enumeration opera-

tors. For every i we will have a pair of requirements:

P0
i : ΘA,X

i 6= K and P1
i : ΨA,Y

i 6= K.

2. Let {We}e<ω be the standard listing of all c.e. sets. For every natural
number e we have a requirement:

Ne : We 6= X ∧We 6= Y.

We shall construct the sets X and Y so that for all e the requirement Ne

is satisfied, thus both X and Y have nonzero enumeration degree, and if Pj
i

is not satisfied for some i then for all i′ the requirement P1−j
i′ is satisfied,

thus the degree of at least one of the sets A⊕X or A⊕ Y is incomplete. The
construction resembles the one used in Section 3, it is carried out in stages
and uses a tree of strategies.
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4.1 Basic strategies

We shall again describe the basic strategies with the context of the tree in
mind. The tree of strategies shall be designed so that each node shall be
assigned either an N -requirement or a pair of a P0- and a P1-requirement.

A P-strategy α is associated with a pair of requirements, P0
α and P1

α. It will
attempt at proving that at least one of them is satisfied. To do this the strategy
constructs an enumeration operator Γα, threatening to prove that A ≥e K.
The outcomes of the strategy will be divided into two groups, finitary, i.e.
requiring a finite number of actions, and infinitary outcomes, requiring an in-
finite number of actions. There will be infinitely many infinitary outcomes -
two for each number n arranged from left to right by the order of the nat-
ural numbers: 〈X, 0〉 <L 〈Y, 0〉 < 〈X, 1〉 . . . Then there will be two finitary
rightmost outcomes 〈X,w〉 <L 〈Y, w〉. Thus all the outcomes of a P-node are
arranged as follows:

〈X, 0〉 <L 〈Y, 0〉 <L . . . <L 〈X, n〉 <L 〈Y, n〉 . . . <L 〈X, w〉 <L 〈Y, w〉.

For each outcome the first element of the pair indicates which requirement
has been satisfied. The next P-strategy below outcomes 〈X,−〉 shall be as-
sociated with a new P0-requirement and the same P1-requirement. Similarly
the next P-strategy below outcomes 〈Y,−〉 will be associated with the same
P0-requirement and a different P1-requirement. Thus if Pj

i never gets satisfied
for some i then all P1−j

i′ must be.
Similarly to the P-strategy described in Section 3 the strategy α performs

cycles of increasing length. On the k-th cycle it examines all elements n =
0, 1, . . . , k in turn. While it examines an element n the strategy can choose to
end its actions for the particular stage by selecting an outcome or move on to
the next element in the cycle, possibly even starting a new cycle. Suppose α
is examining the element n. If the element n currently belongs to K then the
only possible outcomes that it can choose for this element are the infinitary
〈X,n〉 or 〈Y, n〉. If the element n is in both sets ΘA,X

α and ΨA,Y
α and has been

there at all stages since α last looked at n then it will enumerate an axiom
for n in Γα which comprises the A-parts of the two axioms for n in Θα and in
Ψα that have been valid the longest, i.e. have least age, and move on to the
next element. Otherwise α will select the appropriate outcome corresponding
to the set that has failed to provide a valid axiom and end its actions for this
stage. When α is active again, it will start working with the next element of
the cycle.

If the element n has left the approximation of K then for each axiom in
Γα for this element the strategy shall select and restore one of the axioms in
either Θα or Ψα by enumerating the corresponding X-part back in X or Y -part
back in Y and have the corresponding finitary outcome 〈X, w〉 or 〈Y, w〉. The
precise method for this selection will be described in the next section. Note
that for α’s success this selection is irrelevant. The strategy shall then wait
until it has observed a change in A that rectifies the operator Γα, i.e. it will



17

not move on to the next element in the cycle until (if ever) this happens and
it will keep having the same finitary outcome.

As A is incomplete the strategy will eventually include in its cycles an ele-
ment n such that ΓA

α (n) 6= K(n). If there is an element n such that n ∈ ΓA
α \K

then n ∈ ΓA
α [s]\K[s] at all but finitely many stages s. Thus eventually ΓA

α (n)
will not be rectified by any change in A and α will have a finitary outcome
proving the successful diagonalization. Otherwise α will have infinitely many
cycles and each element n will be examined infinitely often. Consider the least
n such that n ∈ K\ΓA

α . By the properties of a good approximation we have
that at infinitely many stages s, in fact at all good stages, n /∈ ΓA

α [s]. Thus
infinitely often α will discover that at least one of the operators Θα or Ψα

has failed to provide it with an axiom that is permanently valid, i.e. infinitely
often α will have proof that ΘA,X

α (n) = 0 or ΨA,Y
α (n) = 0 and have outcome

〈X,n〉 or 〈Y, n〉 respectively.
An N -strategy β working on Wβ would like to prove that Wβ 6= X and

Wβ 6= Y . The obvious strategy for β would be the one described in Section 3. It
will select a witness xβ and wait until xβ ∈ Wβ . The sets X and Y will initially
be approximated by N, then during the construction the strategies extract or
enumerate back elements in the sets. Thus if xβ never enters Wβ the strategy
will be successful and will have outcome w. If the element does enter Wβ then
the strategy will extract xβ from both sets X and Y , have outcome d, where
d <L w, and again will have proved a difference. This strategy is unfortunately
incomplete as we shall see in the next section.

4.2 Elaborating the N -strategy to avoid conflicts

The naive N -strategy described in the previous section is in conflict with the
need of higher priority P-strategies to restore axioms by enumerating elements
back in one of the sets X or Y , constructed as 3-c.e. sets. Therefore the strategy
for an N -node β will have to be more elaborate. This conflict justifies the
introduction of nonuniformity.

The elaborated strategy will start off as the original strategy: select a
witness xβ as a fresh number and wait until xβ ∈ Wβ . If this never happens
then the requirement will be satisfied with outcome w. Otherwise it will extract
xβ from both sets X and Y . Suppose a higher priority P-strategy α wants to
restore an axiom that includes xβ in its X- or Y -part. As was noted previously,
the strategy α can make a choice between enumerating elements back in X
or enumerating elements back in Y . In this case β shall permanently restrain
xβ out of X and only allow α to enumerate it back in Y , i.e. if α has the
choice between enumerating the finite set Xθ back in X or Yψ back in Y , and
xβ ∈ Xθ, then α will select to enumerate Yψ back in Y . The strategy β shall
then initialize all lower priority strategies, choose a new witness yβ that has not
been used in any axiom so far. From this point on any axiom that appears in
the construction shall necessarily have xβ /∈ X, thus xβ and yβ cannot appear
in the same axiom. The strategy β will wait again with outcome w until yβ
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enters Wβ and then extract it from Y with outcome d. Should a higher priority
α require that an axiom be restored which involves yβ then β will only give
permission to enumerate back in X.

This will resolve the central conflict between strategies. Note that as the
only actions that the P-strategies ever take is enumerating certain elements
back in the sets X and Y , the P-strategies are not in conflict with each other.
Possible conflicts between N -strategies are resolved via initialization. When-
ever a higher priority N -strategy β decides to extract a number n from X
or Y all strategies below outcome w are initialized and all strategies below
outcome d are in initial state. Thus lower priority strategies will operate at
further stages under the assumption that n is extracted, the axioms used by
lower P-strategies will not include this element and the witnesses used by N -
strategies will be chosen as big numbers that do not appear in any axiom seen
so far, thus cannot appear in an axiom that includes the element n.

4.3 Parameters and the tree of strategies

A P-strategy α will have a parameter Γα, the enumeration operator that
it will construct when visited. At initialization Γα is set to the empty set.
The strategy will also have parameters kα denoting the current cycle of the
strategy and nα ≤ kα denoting the current element of the cycle that α is
working with. On initialization the values of the parameters are set to kα = 0
and nα = 0. Furthermore for each element n < ω the strategy α shall have
one more parameter Dα(n), a list of all pairs of X- and Y -parts of axioms
from Θα and Ψα respectively, for which the A-parts are used in axioms for n
in Γα. Initially the values of all such lists will be ∅. Finally it will have two
parameters Axθ

α(n) and Axψ
α(n) denoting axioms in Θα and Ψα respectively

which will be candidates for the construction of a new axiom in Γα, initially
undefined.

An N -strategy β shall have parameters xβ , yβ , initially undefined. Fur-
thermore on initialization β will give up any restraint it has imposed so far.

Let OP denote the set of all possible outcomes of a P-strategy and ON =
{d,w}. Let O = OP ∪ON be the collection of all possible outcomes and R the
collection of all requirements. The tree of strategies is a computable function T
with domain a downwards closed subset of O<ω and range a subset of R2 ∪R
with the following inductive definition:

1. T (∅) = 〈P0
0 ,P1

0 〉.
2. Let α be in the domain of T and α be a 〈P0

i ,P1
j 〉-node. Then α ô, where

o ∈ OP , is also in the domain of T and T (α ô) = N|α|/2.
3. Let β be an N -node in the domain of T . Then β = α ô, where α is a
〈P0

i ,P1
j 〉-node for some i and j. Then β ô′, where o′ ∈ ON , is in the domain

of T . If o = 〈X, n〉 for some n ∈ ω ∪ {w} then T (β ô′) = 〈P0
i+1,P1

j 〉. If
o = 〈Y, n〉 for some n ∈ ω ∪ {w} then T (β ô′) = 〈P0

i ,P1
j+1〉.
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4.4 Construction

At stage 0 all nodes are initialized and X[0] = Y [0] = N, δ[0] = ∅.
Suppose we have constructed δ[t], X[t] and Y [t] for t < s. The sets X[s]

and Y [s] shall be obtained by allowing the strategies visited at stage s to
modify the approximations X[s− 1], Y [s− 1] obtained at the previous stage.
We construct δ[s](n) with an inductive definition. Define δ[s](0) = ∅. Suppose
that we have constructed δ[s] ¹ n. If n = s, we end this stage and move on to
s+1. Otherwise we visit the strategy δ[s] ¹ n and let it determine its outcome
o. Then δ[s](n+1) = o. We have two cases depending on the type of the node
δ[s] ¹ n.

I. If δ[s] ¹ n = α is a P-node, we perform the following actions:
Let s− be the previous α-true stage if α has not been initialized since and
s− = s otherwise. The strategy α will inherit the values of its parameters
from stage s− and during its actions it can change their values several
times. The actions that α makes when moving on to a new element in the
cycle will be defined in advance as was done in Section 3.4.

Definition 6 (Resetting the parameters) Denote the current values
of nα by n and of kα by k. We reset the parameters by changing the values
of the parameters as follows:
• If n < k then set nα := n + 1.
• If n = k then set kα := k + 1, nα := 0.
• Initialize the strategies extending α 〈̂X,w〉 and α 〈̂Y,w〉.

At stage s we perform the following actions:
1. Let k = kα and n = nα. Let s−n be the previous stage when n was

examined, if α has not been initialized since, s−n = s otherwise.
2. If n ∈ K[s] and n ∈ ΓA

α [t] for all stages t with s−n < t ≤ s then reset
the parameters and go to step 1.

3. If n ∈ K[s], but n /∈ ΓA
α [t] at some stage t with s−n < t ≤ s then:

a.X If Axθ
α(n) is not defined, then define it as the axiom 〈n,Aθ, Xθ〉

with least age a(A[s]⊕X[s], Aθ⊕Xθ, s) ≤ s−n and move on to step
a.Y . If there is no such axiom then let the outcome be 〈X, n〉 and
reset the parameters.

b.X If Axθ
α(n) is defined but was not valid at some stage t with s−n <

t ≤ s then cancel its value (make it undefined) and let the outcome
be 〈X, n〉, reset the parameters. Otherwise go to step a.Y .

a.Y If Axψ
α(n) is not defined, then define it as the axiom 〈n,Aψ, Yψ〉

with least age a(A[s]⊕Y [s], Aψ ⊕Yψ, s) ≤ s−n and move on to step
c. If there is no such axiom then let the outcome be 〈Y, n〉 and reset
the parameters.

b.Y If Axθ
α(n) is defined but was not valid at some stage t with s−n <

t ≤ s then cancel its value (make it undefined) and let the outcome
be 〈Y, n〉, reset the parameters. Otherwise go to step c.
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c. If both Axθ
α(n) = 〈n,Aθ, Xθ〉 and Axψ

α(n) = 〈n,Aψ, Yψ〉 are defined
and have been valid at all stages t with s−n < t ≤ s then enumerate
in Γα the axiom 〈n,Aθ ∪Aψ〉. Enumerate 〈Xθ, Yψ〉 in Dα(n). Reset
the parameters and go back to step 1.

4. If n /∈ K[s] and n /∈ ΓA
α [t] at some stage t, with s−n < t ≤ s, reset the

parameters and go back to step 1.
5. Suppose n /∈ K[s] but n ∈ ΓA

α [t] at all t such that s−n < t ≤ s. For every
pair 〈Xθ, Yψ〉 ∈ Dα(n) find the highest priority N -strategy β ⊃ α that
has permanently restrained an element x ∈ Xθ out of X or y ∈ Yψ out
of Y . If there is such a strategy β and it has a permanent restraint on X,
enumerate Yψ in Y [s]; if it has a permanent restraint on Y , enumerate
Xθ back in X[s]. Otherwise if there is no such strategy enumerate Yψ

back in Y [s]. Choose the axiom 〈n, Aθ ∪ Aψ〉 in ΓA
α with least age

a(A[s], Aθ ∪ Aψ, s). Let Xθ and Yψ be the corresponding X and Y
parts of the axioms 〈n,Aθ, Xθ〉 ∈ Θα and 〈n,Aψ, Yψ〉 ∈ Ψα.
a. If Xθ ⊆ X[s] then this will ensure that n ∈ ΘA,X

α [s]. Let the out-
come be 〈X, w〉.

b. If Xθ * X[s] then Yψ ⊆ Y [s] and this will ensure that n ∈ ΨA,Y
α [s].

Let the outcome be 〈Y, w〉.
II. If δ[s] ¹ n = β is an N -node, we perform the following actions:

Let s− be the previous β-true stage if β has not been initialized since, go
to the step indicated at stage s−. Otherwise s− = s and go to step 1.
1. Define xβ as a fresh number, one that has not appeared in the con-

struction so far and is bigger than s. Go to the next step.
2. If xβ /∈ Wβ [s] then let the outcome be w, return to this step at the next

β-true stage. Otherwise go to the next step.
3. Extract xβ from X[s] and Y [s]. Restrain permanently xβ out of X. Let

the outcome be d, go to the next step at the next β-true stage.
4. If xβ ∈ Y [s] then define yβ as a fresh number, initialize all strategies of

lower priority than β and go to the next step. Otherwise the outcome
is d, return to this step at the next β-true stage.

5. If yβ /∈ Wβ then let the outcome be w. Return to this step at the next
β-true stage. Otherwise go to the next step.

6. If yβ is not yet restrained then restrain yβ permanently out of Y and
extract yβ from Y [s]. Let the outcome be d, return to this step at the
next β-true stage.

4.5 Proof

The tree is infinitely branching and therefore there is a risk that there might
not be an infinite path in the tree that is visited infinitely often. However we
shall start the proof by establishing some basic facts about the relationship
between strategies.

For technical convenience we shall define one more notation. Let α be a
P-strategy. To every axiom Ax = 〈n,Aθ∪Aψ〉 ∈ Γα we shall associate a corre-



21

sponding entry 〈n, Aθ, Xθ, Aψ, Yψ〉 so that 〈n,Aθ, Xθ〉 ∈ Θα and 〈n, Aψ, Yψ〉 ∈
Ψα are the corresponding axioms used to construct Ax.

Lemma 6 Let β be an N -strategy, initialized for the last time at stage si. If
β has a witness xβ that is extracted by β at stage sx > si then xβ /∈ X[t] at all
t ≥ sx. If β has a witness yβ that is extracted from Y at stage sy > sx then
yβ /∈ Y [t] at all t ≥ sy.

Proof There are only finitely many N -strategies of higher priority than β that
are ever visited in the construction as after stage si no strategy to the left
of β is visited. Every higher priority strategy β′ < β that is ever visited is
not initialized after stage si, as otherwise β would be initialized after stage si

contrary to our assumption. We can inductively assume that the statement is
valid for every higher priority strategy β′.

Suppose β chooses the witness xβ at stage s1 > si. We can furthermore
prove the following:

Claim: Any witness which is permanently extracted by a higher priority
strategy β′ is extracted before or at stage s1.

Indeed, suppose that β′ permanently extracts a new witness at stage s2 >
s1. Then at stage s2 the strategy β′ has outcome d. Thus if β >L β′ or
β ⊇ β′ˆw then β would be initialized at stage s2 contrary to assumption. This
leaves us with the only possibility that β ⊇ β′ d̂. Then at stage s1, as β was
visited, β′ was visited and had outcome d. As β′ is not initialized after stage
s1 and permanently extracts a new witness at stage s2 it must be the case that
β′ permanently extracts a witness yβ′ from Y and xβ′ was already extracted
before or at stage s1. It follows that between stages s1 and s2, β′ has selected
this new witness yβ′ passing through II.4 of the construction and initializing
all lower priority strategies including β. This leads again to a contradiction
with the assumption that β is not initialized after stage s1 and hence the claim
is correct.

Thus at stage s1 all witnesses of higher priority strategies that are ever
permanently restrained out of either set X or Y are already permanently
restrained out of X or Y . At stage s1 the strategy β selects xβ as a fresh
number. And at stage sx the witness xβ is permanently restrained out of X.

Now we will prove again inductively but this time on the stage t, that
xβ /∈ X[t] at all stages t ≥ sx.

So suppose this is true for t < s3 and that at stage s3 > sx a P-strategy
α is visited and reaches point I.5 of the construction. Suppose α wants to
enumerate Xθ or Yψ back in X or Y respectively for the axiom 〈n,Aθ∪Aψ〉 in
Γα with corresponding entry 〈n,Aθ, Xθ, Aψ, Yψ〉. We have the following cases
to consider:

1. Suppose α > β. If α >L β d̂ then α is initialized at stage sx. If α ⊂ β d̂,
then α was initialized at stage si and was not accessible before stage sx.
Thus in both cases the axiom 〈n,Aθ ∪Aψ〉 was enumerated in Γα at stage
t with sx ≤ t < s3, at which both 〈n,Aθ, Xθ〉 and 〈n,Aψ, Yψ〉 were valid
i.e. Xθ ⊆ X[t] and Yψ ⊆ Y [t]. By induction xβ /∈ X[t] hence xβ /∈ Xθ and
thus α does not enumerate xβ back in X.
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2. Suppose α < β. If α <L β then β would be initialized at stage s3, hence
α ⊂ β. Suppose the axiom 〈n,Aθ ∪ Aψ〉 was enumerated in Γα at stage t.
If t ≤ s1 then by the choice of xβ as a fresh number at stage s1 we have
that xβ /∈ Xθ. If t > s1 then both 〈n,Aθ, Xθ〉 and 〈n, Aψ, Yψ〉 were valid
at stage t i.e. Xθ ⊆ X[t] and Yψ ⊆ Y [t]. By I.5 of the construction α will
consider all N -strategies that extend it and select the one with highest
priority that has permanently restrained an element out of either set X or
Y .
Consider any β′ < β. By our Claim any witness xβ′ or yβ′ of β′ that is ever
permanently restrained out of X or Y is already restrained out at stage s1

and by induction at all stages s ≥ s1 including at stage t. Thus Xθ does
not contain xβ′ and Yψ does not contain yβ′ . As this is true for an arbitrary
strategy β′ of higher priority than β that is ever visited, if xβ ∈ Xθ then β
will be the strategy selected by α and α will choose to enumerate Yψ back
in Y . Thus again α does not enumerate xβ back in X.

To prove the second part of the lemma suppose yβ is selected at stage s4 and
extracted at stage sy. Because s1 < s4 and all strategies of lower priority than
β are initialized at stage s4 the interactions between β and other strategies are
dealt with in the same way as in the case when we were considering xβ . The
only thing left for us to establish is that β does not come into conflict with
itself. So suppose that at stage s5 > sy a P-strategy α is visited and reaches
point I.5 of the construction. Suppose α wants to enumerate Xθ or Yψ back
in X or Y respectively for the axiom 〈n,Aθ ∪ Aψ〉 in Γα with corresponding
entry 〈n, Aθ, Xθ, Aψ, Yψ〉. We will prove that if xβ ∈ Xθ then yβ /∈ Yψ. Let t
be the stage at which the axiom 〈n,Aθ ∪Aψ〉 was enumerated in Γα. If t < s4

then yβ /∈ Yψ by the choice of yβ at stage s4 as a fresh number. If t ≥ s4 > sx

then we have already proved that xβ /∈ X[t]. The axiom 〈n, Aθ, Xθ〉 was valid
at stage t, thus Xθ ⊆ X[t], and hence xβ /∈ Xθ.

This completes the induction step and the proof of the lemma. ut
Lemma 7 Let α be a P-strategy, visited infinitely often and not initialized
after stage si. If α performs finitely many cycles then:

1. There is a stage sn ≥ si after which the value of nα does not change.
2. At all α-true stages t > sn, α has either outcome 〈X, w〉 or outcome 〈Y,w〉.
3. There is a stage sd ≥ sn such that at all α-true stages t > sd, α has a fixed

outcome o.
4. If o = 〈X, w〉 then ΘA,X

α 6= K and if o = 〈Y,w〉 then ΨA,Y
α 6= K.

Proof It follows from the construction and the definition of the actions reset-
ting the parameters that if the value of nα changes infinitely often, then there
will be infinitely many cycles. Thus part (1) of the lemma is true. Let sn be
the stage after which the value of nα does not change. The only case when the
value of the parameter nα = n is not reset is when n /∈ K and n ∈ ΓA

α [t] at
all stages t since the last time n was examined at stage s−n , thus α will have
only outcomes 〈X, w〉 or 〈Y, w〉 at all stages after sn and part (2) is true. It
follows from step I.5 of the construction and the fact that nα does not change
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any longer that at all stage t > sn, n ∈ ΓA
α [t]. By the properties of a good

approximation and under these circumstances n ∈ ΓA
α . Then there will be

an axiom 〈n,Aθ ∪ Aψ〉 ∈ Γα which is valid at all but finitely many stages.
Select the axiom with least limit age. This axiom has corresponding entry
〈n,Aθ, Xθ, Aψ, Yψ〉. The strategy α will eventually be able to spot this precise
axiom, after possibly finitely many wrong guesses. So after a stage sd ≥ sn

the strategy α will consider this axiom to select its outcome.
At stage sn either Xθ ⊆ X[sn] or Yψ ⊆ Y [sn]. As we initialize all strategies

below outcomes 〈X,w〉 and 〈Y, w〉 whenever we reset the parameters, we can
be sure that N -strategies visited at stages t > sn of lower priority than α will
not extract any elements of Xθ∪Yψ from X or Y . Higher priority N -strategies
will not extract any elements at all, otherwise α would be initialized. Thus if
Xθ ⊆ X[sn] then for all stages t ≥ sn we have Xθ ⊆ X[t] and similarly if
Yψ ⊆ Y [sn] then for all stages t ≥ sn we have Yψ ⊆ Y [t].

Suppose Xθ ⊆ X[sn]. Then at stages t ≥ sd the strategy α will always
have outcome 〈X,w〉. The axiom 〈n,Aθ, Xθ〉 ∈ Θα will be valid at all stages
t ≥ sd, thus n ∈ ΘA,X , and n /∈ K.

If Xθ * X[sn] then there is a strategy β ⊃ α which is permanently re-
straining some element x ∈ Xθ out of X at stage sn. Then β <L α 〈̂X,w〉 as
strategies extending α 〈̂X,w〉 or to the right of it are in initial state at stage
sn and do not have any restraints. This strategy β will not be initialized at
stages t ≥ sn according to part (2) of this lemma and the choice of sn > si.
By Lemma 6 x /∈ X[t] at all t ≥ sn. Hence case I.5.b of the construction is
valid at all t ≥ sd. Thus α will have outcome 〈Y, w〉 at all stages t ≥ sd and
n ∈ ΨA,Y . This proves parts (3) and (4) of the lemma. ut

Proposition 4 Let α be a P-strategy, visited infinitely often and not initial-
ized after stage si. If v is an element such that ΓA

α (v) = K(v) then there is
a stage sv after which the outcomes 〈X, v〉 and 〈Y, v〉 are not accessible any
longer.

Proof If α has finitely many cycles then by Lemma 7 there will be a stage sn

after which 〈X, v〉 and 〈Y, v〉 are not accessible. Suppose there are infinitely
many cycles.

If v /∈ K then there is a stage sv at which v exits K. Then after stage sv

the outcomes 〈X, v〉 and 〈Y, v〉 are not accessible.
If v ∈ ΓA

α then there is an axiom in Γα that is valid at all but finitely many
stages, say at all stages t ≥ s′v. If α is on its k-th cycle during stage s′v then
let sv be the beginning of the (k + 2)-nd cycle. Then after stage sv, whenever
α considers v, part I.2 of the construction holds and hence α will never have
outcome 〈X, v〉 or 〈Y, v〉. ut

Lemma 8 Let α be a P-strategy, visited infinitely often and not initialized
after stage si. If α performs infinitely many cycles, then there is leftmost out-
come o <L 〈X, w〉 that α has at infinitely many stages and

1. If o = 〈X, u〉 then ΘA,X
α (u) 6= K(u).
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2. If o = 〈Y, u〉 then ΨA,Y
α (u) 6= K(u).

Proof The set A is not complete by assumption, hence ΓA
α 6= K. Let u be

the least difference between the sets. By Proposition 4 for every v < u the
outcomes 〈X, v〉 and 〈Y, v〉 are not visited at stages t > sv. Let s0 be a stage
bigger than max{ sv| v < u}. As α has infinitely many cycles there will be
infinitely many stages t > s0 at which nα[t] = u. If u /∈ K and u ∈ ΓA

α then
there is a stage s1 > s such that at all stages t > s1 we have u ∈ ΓA

α [t] and
u /∈ K[t] and when α considers u at the first stage after s1, it will never move
on to the next element, and α would have finitely many cycles. Hence u ∈ K
and u /∈ ΓA

α .

1. If u /∈ ΘA,X
α then all axioms for u in Θα are invalid at infinitely many

stages. Let t be any stage greater than or equal to s0. We will prove that
there is a stage t′ ≥ t at which α has outcome 〈X, u〉. As u /∈ ΓA

α and
{A[s]}s<ω is a good approximation to A there are infinitely many stages s
at which u /∈ ΓA

α [s] and hence part I.3 of the construction holds at infinitely
many stages at which we consider u. Let t1 ≥ t be such that nα[t1] = u and
part I.3 of the construction is true. If Axθ

α(u) is not defined and we are
not able to define it as there is no appropriate axiom in Θα valid for long
enough then α will have outcome 〈X, u〉 at stage t1, hence t′ = t1 proves
the claim. Otherwise Axθ

α(u) is defined at stage t1 and by assumption there
are infinitely many stages t ≥ t1 at which it is invalid. Let t2 > t1 be the
next stage when Axθ

α(u) is invalid and let t′ ≥ t2 be the first stage after
t2 at which again nα[t′] = u and part I.3 of the construction is true. By
I.3.b.X of the construction α will have outcome 〈X, u〉 at stage t′.

2. Now assume that u ∈ ΘA,X
α . Then there is an axiom 〈u,Aθ, Xθ〉 ∈ Θα valid

at all but finitely many stages. Select the axiom, say Ax, with least limit
age. Then Axθ

α(u) will have permanent value Ax after a certain stage s1.
It follows that u /∈ ΨA,Y

α as otherwise we would be able to find an axiom in
ΨA,Y

α valid at all but finitely many stages, and construct an axiom in Γα

valid at all but finitely many stages. Now a similar argument as the one
used in part (1) of this lemma proves that α will have outcome 〈Y, u〉 at
infinitely many stages. ut
As an immediate corollary from Lemmas 7 and 8 we obtain the existence

of the true path:

Corollary 2 There exists an infinite path through the tree of strategies with
the following properties:

1. (∀n)(∃∞s)[h ¹ n ⊆ δ[s]];
2. (∀n)(∃sl(n))(∀t > sl(n))[δ[t] ≮L h ¹ n];
3. (∀n)(∃si(n))(∀t > si(n))[h ¹ n is not initialized at stage t].

Proof We will define the true path by induction on n and prove that it has the
properties needed. The case n = 0 is trivial: h ¹ 0 = ∅ is visited at every stage
of the construction and is never initialized, sl(0) = si(0) = 0. Suppose we have
constructed h ¹ n with the required properties. We shall define h ¹ (n + 1).
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If h ¹ n = β is an N -strategy then let o ∈ {d,w} be the leftmost outcome
that β has at infinitely many stages. The design of the strategy ensures that
there is a stage so > si(n) such that β ô ⊆ δ[t] at all t ≥ so. If β does not
define yβ after stage si(n) then so is the first stage after si(n) at which β has
outcome o. If β defines yβ at stage sy then so is the first stage after sy at
which β has outcome o. We define h ¹ (n + 1) = β ô and si(n + 1) = so.

Suppose h ¹ n = α is a P-strategy. If α performs finitely many cycles
then by Lemma 7 there is a stage so > si(n) after which α does not reset the
parameters and has the same fixed outcome o. We define h ¹ (n + 1) = α ô
and si(n + 1) = so.

If α performs infinitely many cycles then by Lemma 8 there is a leftmost
outcome o <L 〈X, w〉 that α has at infinitely many stages. Let so > si(n)
be a stage such that at stages t > so the strategy α does not have outcomes
o′ <L o. Then h ¹ (n + 1) = α ô and si(n + 1) = so. ut

Corollary 3 X and Y are not c.e.

Proof For every requirement Ne there is an Ne-strategy β along the true path,
visited infinitely often and not initialized at any stage t > si. Let xβ and yβ

be the final values of β’s witnesses. If βˆw ⊂ h then there is an element
u ∈ {xβ , yβ} that never enters We. The way each Ne-strategy chooses its
witnesses ensures that only β can extract u from either of the sets X or Y .
The construction and the definition of the true path ensure that β does not
extract u from X and Y at any stage. Hence u ∈ X ∩ Y and u /∈ We.

If β d̂ ⊂ h then xβ ∈ We and there is a β-true stage sx at which β extracts
xβ from X and Y . By Lemma 6 xβ /∈ X[t] at all stages t ≥ sx. If at any stage
t ≥ sx we have that xβ ∈ Y [t] then β selects yβ at its next true stage. As the
true outcome is d, yβ ∈ We[t′] at some stage t′ ≥ t. Then at the next β-true
stage sy ≥ t′ the strategy β will permanently restrain yβ out of Y and by
Lemma 6, we have that yβ /∈ Y . ut

Corollary 4 A⊕X 6≡e K or A⊕ Y 6≡e K.

Proof Consider the P-nodes on the true path. From the definition of the tree
it follows that either for every P0

e -requirement there is a node on the tree α
which is associated with P0

e or there is a fixed requirement P0
e associated with

all but finitely many nodes. In the latter case there is a node on the true path
for every P1

e -requirement.
Suppose there is a node on the tree for each P0

e -requirement. We can show
that A ⊕ X 6≡e K. Assume for a contradiction ΘA,X

e = K and let α ⊂ h be
the last node associated with P0

e . Then α has true outcome 〈X, u〉 for some
u ∈ ω ∪ {w}. It follows from Lemma 7 and Lemma 8 that ΘA,X

e 6= K.
The case when there is a node for every P1

e -requirement yields by a similar
argument that A⊕ Y 6≡e K. ut

Lemma 9 The sets X and Y are 3-c.e.
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Proof We can easily obtain a 3-c.e. approximation of each of the sets X and
Y from the one constructed. Define X̂[s] = X[s] ¹ s and Ŷ [s] = Y [s] ¹ s.

It follows from the construction that elements extracted from X and Y
are necessarily witnesses of N -strategies. Suppose therefore that n is the wit-
ness xβ for an N -strategy β. Then n appears in the defined approximations
{X̂[s]}s<ω and {Ŷ [s]}s<ω at stage n + 1. If β never extracts xβ then we are
done - as no other strategy can extract it. If β extracts xβ then it does so
only once at stage sx when it goes through II.3 and moves on to II.4 at
the next stage. In order for β to return to step II.3 of the construction, β
has to be initialized and will select new witnesses. Thus after its extraction
at stage sx from both X̂[sx] and Ŷ [sx], the number xβ can only be enumer-
ated back in either set and hence |{ s| X̂[s− 1](xβ) 6= X̂[s](xβ)}| ≤ 3 and
|{ s| Ŷ [s− 1](xβ) 6= Ŷ [s](xβ)}| ≤ 3.

If n is the witness yβ then it will never be extracted from X. If it is ever
extracted from Y it is extracted only once by β at the first stage it reaches step
II.6. After that yβ is already restrained by β and whenever β executes step
II.6 it will ignore the first sentence of the instruction and just have outcome
o = d. Thus again |{ s| Ŷ [s− 1](yβ) 6= Ŷ [s](yβ)}| ≤ 3.

This concludes the proof of the lemma and of the theorem. ut
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