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Abstract. We show that all levels of the jump hierarchy are first order de-

finable in the local structure of the enumeration degrees.

1. Introduction

Definability in degree structures has been a main theme in degree theory for many
years. One of the first nontrivial examples is in the global structure of the Turing
degrees DT : Jockusch and Shore [16] proved that the class of arithmetical sets is
first order definable. There is an intimate relationship between the structure of the
Turing degrees and second order arithmetic. Turing reducibility is an arithmetically
definable relation on sets of natural numbers, thus every definable relation on DT is
induced by a degree invariant relation on sets definable in second order arithmetic.
The next breakthrough was by Slaman and Woodin [28], (see also [29]), who showed
that if R is such a relation, then it is definable with parameters in DT . Their proof
is intricate and goes through many steps, it uses powerful methods, such as forcing
in set theory, and a coding of countable relations in DT via parameters, and so
the definitions of these relations become quite complex. Nevertheless, this work
reveals a lot about the structure of the Turing degrees and suggests a conjecture,
the biinterpretability conjecture of Slaman and Woodin1, that if true would give
a full characterization of the structure of the Turing degrees. This conjecture is
equivalent to rigidity of the structure, the statement that DT has no nontrivial
automorphisms. It is also equivalent to a precise characterization of the definable
relations in DT : the ones induced by a degree invariant relation on sets definable
in second order arithmetic. The rigidity of the structure of the Turing degrees
remains the main open question in degree theory. Many have ventured to attack it,
the most significant effort being that by Barry Cooper [9], who believed that he had
found a way to construct an example of a nontrivial automorphism. Unfortunately,
he never completed his proof or managed to convey his ideas to the rest of the
community in a convincing way, and so in recent years Cooper talked about this
problem as still open and continued to make plans to work on it until his last days.
Another consequence of the Slaman and Woodin’s analysis was the definability of
the double jump operator. Based on this Shore and Slaman [25] were able to prove
the definability of the jump operation in the Turing degrees.
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In parallel, the local structure of the Turing degrees DT (≤ 0′T ), consisting of the
∆0

2 Turing degrees, was being investigated. In the local structure, one cannot talk
about a jump operation, but one can consider the following jump classes:

Definition 1. Let a ≤e 0′ and n ∈ N be such that n ≥ 1.

(1) The degree a is lown if a(n) = 0(n).
(2) The degree a is highn if a(n) = 0(n+1).

The jump hierarchy, also known as the high/low hierarchy, was introduced in-
dependently by Cooper (see [10]) and Soare [30]. Shore [23], [24] showed that all
jump classes except for low1 are first order definable. The methods used here go
through a coding of first order arithmetic. The first order definability of the class
of the low1 degrees remains a major open question in local degree theory. Later,
Slaman and Soskova [26] showed that DT (≤ 0′T ) relates to first order arithmetic
in much the same way as the Turing degrees relate to second order arithmetic:
all relations on DT (≤ 0′T ) that are induced by relations on ∆0

2 indices, invariant
under Turing equivalence and definable in first order arithmetic, are definable in
DT (≤ 0′T ) with parameters. Furthermore, the rigidity of the structure is equivalent
to its own biinterpretability with first order arithmetic and the definability of all
relations in the form described above.

The structure of the enumeration degrees De remained outside the focus of most
degree theorists in this period. Initial work was done by Friedberg and Rogers [11],
Medvedev[19], Case [4], Selman [22] and Rozinas [20], establishing that the struc-
ture has interesting properties: the Turing degrees embed into it as the proper
substructure of the total enumeration degrees, which forms an automorphism base
for De. In 1982 Barry Cooper became interested in the problem of density in
the enumeration degrees. Gutteridge [15] had claimed that the structure of the
enumeration degrees is dense, however his proof had an error and so his idea was
never published. Cooper [6], who had been working mostly on properties of min-
imal Turing degrees until then, saw that Gutteridge’s idea can still be used to
show that the structure of the enumeration degrees does not have any minimal
elements. In a follow up paper [7], he introduced the local structure of the enu-
meration degrees De(≤ 0′e), consisting of all Σ0

2 enumeration degrees and proved
that it is dense. This marked the beginning of his long list of contributions to the
development of enumeration degree theory. His 1990 survey paper [8], which still
serves as the main reference for results on this topic, contained a series of interst-
ing open questions that attracted many other researchers, most of whom became
his collaborators. In one such collaboration Arslanov, Cooper and Kalimullin [1]
investigated the properties of semi-computable sets and their enumeration degrees.
This work lead Kalimullin [17] to a major discovery: he introduced what are now
known as Kalimullin pairs (K-pairs) as a generalization of semi-computable sets
and showed that they induce a class with a natural first order definition. A pair of
of enumeration degrees a,b form a K-pair if and only if they satisfy:

(∀x)[(a ∨ x) ∧ (b ∨ x) = x].

The definability of K-pairs unlocked the natural definability of many other impor-
tant classes of enumeration degrees. Kalimullin [17] showed that the enumeration
jump is first order definable. Ganchev and Soskova focused on Kalimullin pairs in
the local theory of the enumeration degrees. They showed in [13] that K-pairs are
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also locally definable2. Using K-pairs they further showed in [14] that the total
enumeration degrees below 0′e and the low1 enumeration degrees are first order de-
finable. This put the local structures of the Turing and the enumeration degrees in
a strange juxtaposition: the only jump class not known to be definable in the first
structure was the only one known to be definable in the other.

Global definability in the enumeration degrees is connected to its rigidity, in
the same manner that we already described for the Turing degrees (see [32]). Cai,
Ganchev, Lempp, Miller and Soskova [2] extended the ideas from [14] to give an ex-
planation of this phenomenon. They showed that the total enumeration degrees are
first order definable in De. This gives a strong relationship between the automor-
phism problems of De and DT : the total enumeration degrees are now a definable
automorphism base for the structure of the enumeration degrees, and so the rigidity
of DT would implies the the rigidity of De. Soskova and Slaman [27] used methods
from [26] and the results from [2] to show another relationship: the rigidity of any
local structure – the structure of the c.e. degrees, DT (≤ 0′T ), and De(≤ 0′e), implies
the rigidity of De. This brings back the focus from global to local definability. In
this article we give one further piece of this grand puzzle, we show that every jump
class is first order definable in De(≤ 0′e).

2. Preliminaries

Enumeration reducibility, introduced by Friedberg and Rogers [11], is a positive
reducibility between sets of natural numbers. Intuitively A ≤e B if and only if
every enumeration of B can be effectively transformed into an enumeration of A.
Formally this can be expressed as follows:

Definition 2. A set A is enumeration reducible (≤e) to a set B if there is a c.e.
set Φ such that:

A = Φ(B) = {n | ∃u(〈n, u〉 ∈ Φ & Du ⊆ B)},
where Du denotes the finite set with code u under the standard coding of finite sets.
We will refer to the c.e. set Φ as an enumeration operator.

A set A is enumeration equivalent (≡e) to a set B if A ≤e B and B ≤e A. The
equivalence class of A under the relation ≡e is the enumeration degree de(A) of A.
The structure of the enumeration degrees 〈De,≤〉 is the class of all enumeration
degrees with relation ≤ defined by de(A) ≤ de(B) if and only if A ≤e B. It
has a least element 0e, the set of all c.e. sets, and a least upper bound operation
de(A) ∨ de(B) = de(A⊕B).

The enumeration jump of a set A is defined by Cooper [6].

Definition 3. The enumeration jump of a set A is denoted by A′ and is defined
as KA ⊕KA, where KA = {〈e, x〉| e ∈ N & x ∈ Φe(A)}. The enumeration jump of
the enumeration degree of a set A is de(A)′ = A′).

By iterating the jump operation, we define inductively the n-th jump of a degree
a for every n: a0 = a and a(n+1) = (a(n))′.

Definition 4. A set A is called total if A ≡e A ⊕ A. An enumeration degree is
called total if it contains a total set.

2Cai, Lempp, Miller and Soskova [3] later gave a simpler first order definition.
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As noted above, the structure of all total enumeration degrees is an isomorphic
copy of the Turing degrees. The map ι, defined by ι(dT (A)) = de(A ⊕ A) is an
embedding of DT in De, which preserves the order, the least upper bound and the
jump operation.

The local structure of the enumeration degrees, denoted by De(≤ 0′e), is the sub-
structure with domain, consisting of all enumeration degrees, which are reducible
to 0′e. The elements of De(≤ 0′e) are the enumeration degrees which contain Σ0

2

sets, or equivalently, which consist entirely of Σ0
2 sets.

3. Defining jump classes in De(≤ 0′e).

The jump hierarchy for the local structure of the enumeration degrees is defined
in the same manner as the one for DT (≤ 0′T ). An enumeration degree is lown if its
n-th jump is as low as possible and highn if its n-th jump is as high as possible.
The results by Shore and by Ganchev and Soskova, outlined in the introduction,
can be summarized as follows:

Theorem 1 ([23, 24, 14]). The following classes of degrees are first order definable
in De(≤ 0′e):

(1) The low1 enumeration degrees;
(2) The total lown degrees for every n;
(3) The total highn degrees for every n;

The natural next goal is to use the definability of jump classes restricted to total
degrees to show full definability. Selman’s theorem [22] shows that an enumeration
degree is determined by the set of total degrees above it: a ≤e b if and only if

{x | x is total and a ≤ x} ⊇ {x | x is total and b ≤ x}.

Furthermore, Soskov [31] showed that every enumeration degree is bounded by
a total enumeration degree with the same jump. When one moves to the local
structure, however, Selman’s theorem is no longer true. Cooper and Copestake [5]
show the there are upwards properly Σ0

2 enumeration degrees, enumeration degrees
a < 0′e with no total enumeration degree in the interval [a,0′e). We do not know
if Soskov’s theorem remains true in the local structure. If it does, then we could
easily define the jump classes: as lown degrees are downwards closed, we would
have that a is lown if and only if some total x ≥ a is lown, and as highn degrees
are upwards closed, we would have that a is highn if and only if all total x ≥ a are
highn. It would also follow that all upwards properly Σ0

2 enumeration degrees are
high1, which is a separate open question, that has been proven difficult to solve.

The idea we use is in the same spirit, if slightly more indirect. We show that
every enumeration degree bounds a nonzero enumeration degree, for which the
property in Soskov’s theorem is true.

Theorem 2. For every nonzero Σ0
2 enumeration degree a there are nonzero enu-

meration degrees b and x, such that

(1) b ≤ a and b ≤ x;
(2) x is total and b′ = x′.

We combine this theorem with the following result of Ganchev and Sorbi [12].
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Theorem 3 ([12]). For every nonzero Σ0
2 enumeration degree a there is a nonzero

Σ0
2 enumeration degree b ≤ a such that for every enumeration degree y ∈ (0,b] we

have that y′ = a′.

These two theorems give us the necessary tools to prove our main result.

Theorem 4. For every natural number n ≥ 1 the class of all lown enumeration
degrees and the class of all highn enumeration degrees is first order definable in
De(≤ 0′e).

Proof. A nonzero enumeration degree a is lown if and only if for every nonzero
enumeration degree b ≤ a there is a nonzero c ≤ b and a total enumeration degree
x ≥ c that is lown. Indeed, every lown enumeration degree satisfies this property,
as by Theorem 2 every nonzero Σ0

2 degree b bounds a nonzero c for which there is
a total x ≥ c with c′ = x′. As lown degrees are downwards closed, all such degrees
c are lown and so all such total degrees x are lown. On the other hand, if a satisfies
this property then let b ≤ a be the degree from Theorem 3. All degrees in the
interval (0e,b] have the same jump as a and one of them is bounded by a total
lown degree, hence a is lown.

A nonzero enumeration degree a is highn if and only if there exists an enumera-
tion degree b ≤ a such that for every nonzero c ≤ b all total enumeration degrees
x ≥ c are highn. If a is highn then let b ≤ a be the degree from Theorem 3. All
nonzero degrees c bounded by b are highn and so by the upwards closure of the
highn degrees all total degree above such degrees c must also be highn. If, on the
other hand, a satisfies this property as witnessed by b then let c ≤e b and x be
the degrees we get when we apply Theorem 2 to the nonzero enumeration degree
b. It follows that c is highn and so again by the upwards closure of this class we
have that a is highn. �

4. Proof of Theorem 2

Let A be a Σ0
2 set that is not computably enumerable. We must construct sets

B and X, such that:

(1) B is not computably enumerable;
(2) X is total;
(3) B ≤e A;
(4) B ≤e X;
(5) B′ ≡e X ′.

We will construct X as a Π0
1 set. As all Π0

1 sets are total, this ensures (2). We
will also construct enumeration operators Γ and Λ, so that Γ(A) = Λ(X) = B,
ensuring (3) and (4). To satisfy the theorem we must ensure that Γ(A) is not c.e.
and that X ′ ≤e Γ(A)′. By the monotonicity of the enumeration jump this will
automatically yield Γ(A)′ ≡e X ′. The proof uses methods introduced by Sacks [21]
in his jump inversion theorem.

Fix a good Σ0
2 approximation {As}s<ω to A. Good approximations were intro-

duces by Lachlan and Shore [18] as a generalization of Cooper’s [9] approximations
with infinitely many thin stages. A good Σ0

2 approximation to a set A is a Σ0
2

approximation with the additional property that for infinitely many s we have that
As ⊆ A. We construct c.e. approximations to the sets Γ and Λ and a Π0

1 approxi-
mation to X, i.e. X0 = N, Xs is co-finite and Xs+1 ⊆ Xs for all s.
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To ensure that Γ(A) = Λ(X), we will let other strategies build Γ and use the
following method to construct Λ. To every natural number x we dedicate the column
N[x] = {〈x, n〉 | n ∈ N}. At the beginning of every stage we ensure that Γ(A)[s] =
Λ(X)[s] as follows: if x < s is a natural number such that x ∈ Γ(A)[s] \ Λ(X)[s]
then we pick a new fresh current marker λ(x) ∈ {〈x, n〉 | n ∈ N} and enumerate
〈x, {λ(x)}〉 in Λ. Note that as λ(x) is selected as a fresh number, it belongs to the
set Xs. If on the other hand x is such that x ∈ Λ(X)[s] \ Γ(A)[s] then we extract
the number λ(x) from Xs and make λ(x) ↑. If x ∈ Γ(A) then there is a stage sx,
such that for all t > sx we will have x ∈ Γ(A)[t]. Thus we will define a final value
for the marker λ(x) and never remove it from X. If on the other hand x /∈ Γ(A)
then at infinitely many stages s, x /∈ Γ(A)[s] and every axiom enumerated in Λ for
x is eventually invalidated.

The rest of the construction is on a tree T of strategies. Strategies at levels 3e
will work towards satisfying the requirements We 6= Γ(A). They will have outcomes
of order type ω + 2:

0 <L 1 · · · <L n <L · · · <L ∞ <L w.

Next at level 3e+ 1 we have strategies that will allow us to correctly approximate
Γ(A) on a finite set of numbers that are used by strategies of higher priority than
this one. The outcomes of these strategies have order type ω:

0 <L 1 · · · <L n <L . . .

Finally at level 3e we will have strategies that ensure that whether or not e ∈
Φe(X) can be determined from the true path, i.e. the leftmost path of nodes visited
infinitely often. These strategies have two outcomes:

yes <L no.

At every stage we construct a finite path δ[s] of length s on the tree T . The path
is defined inductively: δ � 0[s] = ∅, the root of the tree. Once we define δ � n[s],
we run this strategy and it determines its outcome o. Then δ(n+ 1)[s] = o. At the
end of every stage we initialize all strategies on the tree that are of lower priority
than δ.

Suppose that α is a strategy working towards We 6= Γ(A). The goal of α is
to find a witness x such that We(x) 6= Γ(A). The strategy will pick a series of
witnesses. It will have a list of old witnesses Lα ⊆ We used so far and a current
witness xα selected at stage sxα that has not yet appeared in We. The strategy will
also keep a current approximation to the set A, denoted by Uα, such that if Uα * A
then one of the old witnesses must be out of the set Γ(A).

When visited the strategy will first check the entries of the list Lα in order. If
it finds an old witness y ∈ Lα, such that for some stage t ∈ (s−α , s], where s−α is the
previous stage when α was visited, we have that y /∈ Γ(A)[t] then the strategy will
have outcome y. If α has outcome y infinitely often then y ∈ We \ Γ(A) and so α
is successful. If all witnesses y ∈ Lα have been in Γ(A)[t] at all stages t ∈ (s−α , s]
then the strategy will move on to examine its current witness. If xα /∈We then the
strategy will enumerate in Γ the axiom 〈xα, Uα ∪

⋂
t∈(sxα,s]

At〉 and have outcome

w. If α has ouctome w at all but finitely many stages then it will follow that
xα ∈ Γ(A) \We and α is successful as well. Finally if xα ∈ We then the strategy
will redefine Uα as Uα∪

⋂
t∈(sxα,s]

At, enumerate one last axiom for xα in Γ: namely

〈xα, Uα〉 and then enumerate xα in the list Lα. It will then define a new fresh
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value for the current witness xα and set sxα = s. The outcome will be ∞. It will
follow from the construction that if α has outcome∞ at infinitely many stages then
{Uα[s]}s<ω is a c.e. approximation to A, contradicting the fact that A is not c.e.

The next type of strategy γ is sitting on a node of length 3e+1. The goal of this
strategy is to approximate the value of Γ(A) on numbers z, such that z is currently
the witness (old or current) to a strategy α <L γ. So let Mγ [s] be the list of all
such numbers at a given stage s. Let s−γ again denote the previous stage when γ
was visited. Note that Mγ is always a finite set. Furthermore, if γ is not initialized
between true stages s−γ and s, it follows that Mγ [s−γ ] = Mγ [s]. Suppose that at
stage s we have that Mγ = {z0 < z1 · · · < zm−1}. To every element zi it will assign
the value s(z) ∈ {0, 1} as follows: s(zi) = 0 if there is a stage t ∈ (s−γ , s], such that
zi /∈ Γ(At) and otherwise s(zi) = 1. Consider the standard ordering of boolean
vectors, defined inductively as follows: if σ0 < σ1 < . . . σ2n−1 is the standard
ordering of the boolean vectors of length n then 0σ0 < 0σ1 < . . . 0σ2n−1 < 1σ0 <
1σ1 < . . . 1σ2n−1 is the standard ordering of the boolean vectors of size n + 1.
Suppose that (s(z0), s(zi), . . . s(zm−1)) is the k-th boolean vector in this standard
ordering. Then γ has outcome k. If γ is on the true path then there is a stage
sγ , such that γ is not initialized at stages t ≥ sγ . Hence Mγ [t] = Mγ [sγ ] for all
such stages t. We will see that the true outcome of γ will correspond to the correct
approximation to Γ(A)(z) for all z ∈Mγ .

Finally we have strategies β working on nodes of length 3e+ 2. At stage s such
a strategy will search for an axiom 〈e,D〉 in We[s], such that D ⊆ Xs and does not
contain any markers λ(z) for a number z that is either:

(1) a witness of a strategy α, such that α x̂ � β and x < z.
(2) an element of Mγ with s(z) = 0, for γ � β.

We call such axioms believable. If there is no such axiom then the outcome is no.
If there is a believable axiom then the outcome is yes.

We argue that if β is on the true path then its true outcome corresponds to the
whether or not e ∈ We(X). Suppose that e ∈ We(X). It follows that there is an
axiom 〈e,D〉 ∈ We, such that D ⊆ X. We will show that if z is a number that
has the properties described above then z /∈ Γ(A). So any marker λ(z) that is ever
defined for z does not belong to X. Hence D does not contain such elements. There
will be a stage s when this axiom is enumerated in We[s]. At the next true stage β
will see this axiom and have outcome yes. Suppose now that β has outcome yes at
stage s. Then at this stage there is a believable axiom 〈e,D〉 in We[s]. This axiom
will remain believable at all further stages as all strategies of lower priority than β
will be initialized and hence e ∈We(X).

To sum up, we have a global strategy constructing Λ and three types of strategies
on the tree T .

(1) Strategies of type α have the following parameters: a list of witnesses Lα,
the stage of the previous visit s−α , a current approximation to the set A
denoted by Uα, a current witness xα and the stage when it was defined sxα.
Initially Lα = Uα = ∅, s−α = 0, xα ↑ and sxα ↑. When α is initialized during
the construction, all of its witnesses y ∈ Lα ∪ {xα} are dumped in Γ(A),
i.e. the axiom 〈y, ∅〉 is enumerated in Γ, and all of its parameters get initial
values.
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(2) Strategies pf type γ also have a parameter s−γ , initially 0 and a list Mγ ,
initially empty. When γ is initialized its parameters are set to their initial
states.

(3) Strategies of type β have no parameters.

Construction

At stage 0 all strategies have initial values, Γ[0] = Λ[0] = ∅, X[0] = N.
At stage s all parameters inherit their values from the previous stage, unless

explicitly modified during the construction. We start stage s by visiting the global
Λ-strategy:

The global Λ-strategy: Scan all x < s in turn:

(1) If x ∈ Γ(A) \ Λ(X) then let λ(x) ∈ {〈x, n〉 | n ∈ N} be a fresh number.
Enumerate 〈x, {λ(x)}〉 in Λ.

(2) If x ∈ Λ(X) \ Γ(A) then extract the number λ(x) from X[s+ 1] and make
λ(x) ↑.

Next we build δ[s]. Suppose we have constructed δ[s] � n and n < s. We have
three cases depending on n:

Case 1: n = 3e. Denote δ[s] � n by α and pick the first case which applies.

(1) If α is in initial state, (s−α = 0), we pick xα to be a fresh number and set
sxα = s. Let the outcome be w.

(2) If there is an element y ∈ Lα, such that for some stage t ∈ (s−, s] we have
that y /∈ Γ(A)[t] then pick the least such y and let the outcome be y.

(3) If xα ∈We then:
• Let Uα be the set Uα[s] ∪

⋂
t∈(sxα,s]

A[t].

• Enumerate the axiom 〈xα, Uα〉 in Γ.
• Pick a new fresh value for the witness xα and let sxα = s.

Let the outcome be ∞.
(4) Otherwise enumerate in Γ the axiom 〈xα, Uα ∪

⋂
t∈(sxα,s]

A[t]〉. Let the

outcome be w.

Case 2: n = 3e+ 1. Denote δ[s] � n by γ and execute the following two actions.

(1) If γ is in initial state (s−γ = 0) then let Mγ be the set of all witnesses z that
are currently used by a strategy α <L γ.

(2) Let Mγ = {z0 < z1 · · · < zm−1}. For all i < m set s(zi) = 0 if there is a
stage t ∈ (s−γ , s], such that zi /∈ Γ(At) and otherwise set s(zi) = 1. Suppose
that the boolean vector (s(z0), . . . s(zm−1)) is the k-th vetor in the standard
ordering of all boolean vectors of length m. Let the outcome be k.

Case 3: n = 3e+ 2. Denote δ[s] � n by β and pick the first case which applies.

(1) If there is an axiom 〈e,D〉 ∈ We such that D ⊆ X[s] and does not contain
markers λ(z) for z such that
• z is a witness of a strategy α, such that α x̂ � β and x < z;
• z ∈Mγ and s(z) = 0, for γ the immediate predecessor of β;

then let the outcome be yes.
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(2) Otherwise let the outcome be no.

End of construction

To verify that the construction works we prove the following lemmas

Lemma 1. There is a true path f in the tree T such that

(1) For all n there are infinitely many stages s such that f � n � δ[s].
(2) For all n there is a stage sn such that for all t > sn we have that f � n ≤ δ[s].

Proof. The proof is by induction on n. Suppose that we have constructed f � n
and sn. We have three cases:

If n = 3e then f � n = α. The construction ensures that there is a leftmost
outcome visited at infinitely many stages: if α ever has outcome n and n is the k-th
member of the list Lα, then α must have had outcome ∞ at least k many times.
We show that in fact this outcome cannot be ∞. Suppose towards a contradiction
that there are infinitely many stages s > sn such that α is visited at stage s and
has outcome ∞ and that no outcome to the left of ∞ is visited infinitely often.
It follows that for every s we have that Uα[s] ⊆ A. Indeed, if for some s the set
Uα[s] * A then consider the witness x that is enumerated in the list Lα at the
stage when Uα[s] is defined. All axioms 〈x,D〉 defined for x in Γ have the property
Uα[s] ⊆ D. So if Uα[s] * A then x /∈ Γ(A). It follows from the construction that
the outcome x <∞ will be visited infinitely often, contrary to our assumptions. We
claim that for every natural number z, z ∈ A if and only if there is an s > sn such
that z ∈ Uα[s]. Let z ∈ A. There is a stage sz such that x ∈ At at all stages t > sz.
Let sz < t1 < t2 be two stages such that α has outcome ∞ at these stages. Then
z ∈ Uα[t2]. This contradicts that A is not c.e. We are left with two possibilities.
If there is a least x such that x is visited infinitely often then let f(n) = x and
sn+1 be the stage such at all stages t > s the outcome is greater than or equal to
x. Otherwise, there must be a stage sn+1 such that at all stages t > sn+1 we have
that Lα[t] = Lα[sn+1] = Lα, Lα ⊆ Γ(A)[t] and xα[t] = xα[sn+1] /∈We. In that case
we set f(n) = w.

If n = 3e+ 1 then f � n = γ. At the first visit after sn we define the final value
of Mγ . It is a finite set of fixed size, say m. The only possible outcomes for γ
at further stages are 0, 1, . . . 2m. There is a leftmost one o from these visited at
infinitely many stages. Let f(n) = o and let sn+1 be the first stage after sn such
that no outcome to the left of o is visited infinitely often.

If n = 3e+ 1 then f � n = β. There are two possible outcomes. If yes is visited
infinitely often then f(n) = yes and sn+1 = sn. Otherwise let sn+1 > sn be the
stage such that yes is not visited at any stage t ≥ sn+1 and let f(n) = no. �

Lemma 2. For every natural number e we have that We 6= Γ(A).

Proof. Consider the strategy α on the true path at level 3e. If the true outcome of
α is some natural number x then x has been added to α’s list Lα, because x ∈We.
At infinitely many stages t, x /∈ Γ(A)[t], hence x /∈ Γ(A). The only other possibility
is that α’s true outcome is w. This means that there is a stage s such that at
all stages t > s if α is visited at stage t, it has outcome w, the module for α’s
actions always ends in case (4). As a consequence Lα[t] = Lα[s] ⊆ Γ(A)[t] and
Uα[s] = Uα[t] ⊆ A[t] and xα[s] = xα[t] /∈ We[t]. Let r be an α-true stage, such
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that the interval (sxα, r] contains a stage t such that At ⊆ A. Then the axiom
enumerated in Γ for xα at stage r will be a valid axiom and xα ∈ Γ(A). �

Lemma 3. Λ(X) = Γ(X).

Proof. The actions of the global strategy ensure that this is true. If x /∈ Γ(A)
then there are infinitely many stages s such that x /∈ Γ(A)[s]. At such stages Λ
ensures that x /∈ Λ(X)[s] by extracting the marker λ(x) from X. If on the other
hand x ∈ Γ(A) then there is a stage sx such that x ∈ Γ(A)[t] for all stages t ≥ sx.
No later than on stage sx the strategy Λ ensures that x ∈ Λ(X)[sx] via the axiom
〈x, {λ(x)}〉. As markers are chosen always from disjoint sets, and Λ is the only
strategy that can remove them from X, it follows that x ∈ Λ(X) �

Lemma 4. e ∈ X ′ if an only if f(3e+ 2) = yes.

Proof. Let γ and β be the strategies along the true path of length 3e+ 1 and 3e+ 2
respectively. After stage s3e+1 the strategy γ is not injured, hence Mγ has a fixed
value {z0, . . . zm−1}. Let ~a = (a0, . . . am−1) be the boolean vector, such that ai = 1
if and only if zi ∈ Γ(A). We first show that γ’s true outcome corresponds to the
position of ~a in the standard ordering. An easy induction on the length of ~a shows

that if ~b < ~a and k is the first position where these two vectors differ, then bk = 0
and ak = 1. Let s be a stage such that at all stages t > s if zi ∈ Γ(A) then
zi ∈ Γ(A)[t]. Then at stages t > s, γ will not have outcome corresponding to the

position of ~b, where ~b is any vector of smaller position than ~a. Now, the fact that
there are infinitely many good stages in the approximation to A, guarantees that
infinitely often we will see stages t, such that for all i if zi /∈ Γ(A) then zi /∈ Γ(A)[t],
so infinitely often ~a will be the true outcome of γ.

Suppose that z is a witness of a strategy α, such that α x̂ � β and x < z. By
our previous arguments, we know that since x is the true outcome of α, it follows
that x /∈ Γ(A). Suppose x enters the list Lα at stages t, then the axiom 〈x, Uα[t]〉
was enumerated in Γ at stage t. It follows that Uα[t] * A. Now again the design of
our strategy ensures that every axiom 〈z, F 〉 that we ever enumerate in Γ will have
Uα[t] ⊆ F . It follows that z /∈ Γ(A).

Suppose that at all β-true stages after s3e+2, the strategy has outcome no. If at
stage s > s3e+2 the strategy β sees an axiom 〈e,D〉 ∈ We[s] such that D ⊆ X[s],
then D contains a number λ(z) for a number z of two possible kinds: a witness
of some α � β as described in the previous paragraph, or a number z ∈ Mγ with
s(z) = 0. In both cases we have argued that z /∈ Γ(A) hence λ(z) /∈ X. It follows
that D * X. So We contains no valid axiom for e with respect to the oracle X,
hence e /∈We(X).

Suppose now that there is a stage s > s3e+2 such that β has outcome yes. At
stage s, it has found a believable axiom 〈e,D〉 and D ⊆ X[s]. We will show that
D ⊆ X and that at all stages t > s the strategy β has outcome yes when visited.
First note that if D contains a marker λ(z) for some element z then this marker has
been defined before stage s and belongs to a witness defined before stages s. This
follows from the way we define new values for parameters: always as fresh numbers.
If z is a witness to a higher priority strategy then z is not seen as an obstacle by
β. Either it is a witness of α � β with true outcome x for x > z or it is in Mγ and
s(z) = 1. As β is not initialized after stage s3e+2, it follows that z ∈ Γ(A)[t] and
hence λ(z) ∈ X[t] at all t > s3e+2. If z is a witness to a lower priority strategy then
this strategy is in initial state or initialized at stage s. It follows z is dumped in Γ
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and hence again z ∈ Γ(A)[t] and hence λ(z) ∈ X[t] at all t > s3e+2. Thus D ⊆ X
and the axiom is believable at all further stages. �

Lemma 5. The set Γ(A)⊕ ∅′ can compute the true path f .

Proof. The procedure is inductive. Suppose that Γ(A)⊕ ∅′ can compute f � n and
the stages sn from the true path lemma. We have three cases:

If n = 3e then f � n = α. We run the construction until we find the least
witness x, such that Γ(A)(x) 6= We(x). If x /∈ Γ(A) then the true outcome of α is
x. Otherwise it is w. Next for each witness y < x defined by α after stage sn we
search for a stage sy such that ∅′ gives a negative answer to the following question:
“Does there exists t > sy such that y /∈ Γ(A)?”. We know that for every y < x
eventually such a stage will be found. We define sn+1 to be the maximum of all
such stages sy.

If n = 3e + 1 then f � n = γ. We run the construction until the first γ-true
stage after sn to figure out the final value of Mγ = {z0 < · · · < zm−1}. The true
outcome corresponds to the position of the vector (Γ(A)(z0), . . .Γ(A)(zm−1)). To
figure out sn+1 we again use ∅′ to figure out for each zi ∈ Γ(A) the stage szi such
that zi ∈ Γ(A)[t] at all t > szi and take the maximum of all these stages.

If n = 3e + 1 then f � n = β. We use ∅′ to answer the question: “Is there a
stage s > sn such that β is visited and has outcome yes at stage s”. If the answer
is positive then f(n) = yes. Otherwise f(n) = no. In both cases sn+1 = sn. �

Corollary 1. X ′ ≡e Γ(A)′.

Proof. The set X ′ is defined as KX ⊕KX , where KX = {e | e ∈We(X)}. We just
showed that KX ≤T Γ(A)⊕ ∅′. It is also easy to see that Γ(A)⊕ ∅′ ≤T KΓ(A). So

KX ≤T KΓ(A) and hence X ′ = KX ⊕KX ≤e KΓ(A) ⊕KΓ(A) = Γ(A)′.
On the other hand we already saw that Γ(A) ≤e X, so by monotonicity of the

jump operation Γ(A)′ ≤e X ′. �
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