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Abstract. The structure of the semi lattice of enumeration degrees has
been investigated from many aspects. One aspect is the bounding and
nonbounding properties of generic degrees. Copestake proved that every
2-generic enumeration degree bounds a minimal pair and conjectured
that there exists a 1-generic degree that does not bound a minimal pair.
In this paper we verify this longstanding conjecture by constructing such
a degree using an infinite injury priority argument.
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1 Introduction

In contrast to the Turing case where every 1-generic degree bounds a minimal
pair as proved in [5] we construct a 1-generic set whose e-degree does not bound
a minimal pair in the semi-lattice of the enumeration degrees.

In her paper [1] Copestake examines the n-generic degrees for every n < ω.
She proves that every 2-generic enumeration degree bounds a minimal pair and
states that there is a 1-generic enumeration degree that does not bound a min-
imal pair. Her proof of the statement does not appear in the academic press.
Later Cooper, Li, Sorbi and Yang show in [2] that every ∆0

2 enumeration degree
bounds a minimal pair and construct a Σ0

2 enumeration degree that does not
bound a minimal pair. In the same paper the authors state that their construc-
tion can be used to build a 1-generic degree that does not bound a minimal
pair. Initially the goal of this paper was to build a 1-generic enumeration degree
with the needed properties by following the construction from [2]. In the working
process it turned out that significant modifications of the construction had to
be made in order to get the desired 1-generic degree. The enumeration degree
that is constructed is also Σ0

2 and generalizes the result from [2].

2 Constructing a 1-generic degree that does not bound a
minimal pair

Definition 1. A set A is enumeration reducible to a set B if there is a c.e. set
Φ such that:
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n ∈ A ⇔ ∃u(〈n, u〉 ∈ Φ ∧Du ⊂ B)

where Du denotes the finite set with code u under the standard coding of finite
sets. The c.e. set Φ is an enumeration operator and its elements will be called
axioms. We will write A ≤e B to denote that A is enumeration reducible to B
and A = Φ(B) to denote the fact that A is enumeration reducible to B via the
enumeration operator Φ.

We will denote enumeration operators by capital Greek letters Φ,Θ . . . .
As with Turing reducibility, enumeration reducibility gives rise to a degree

structure. Note that all c.e. sets have degree 0, the least enumeration degree.
We will use lower case Greek letters (especially ρ, τ) for finite binary strings

and let τ ⊆ ρ indicate that τ is an initial segment of ρ. When A is a set τ ⊂ A
means that τ is an initial segment of A′s characteristic function χA considered
as an infinite binary sequence.

Definition 2. A set A is 1-generic if for every c.e. set X of finite binary strings

∃τ ⊂ A(τ ∈ X ∨ ∀ρ ⊇ τ(ρ /∈ X)).

An enumeration degree is 1-generic if it contains a 1-generic set.

Definition 3. A pair of enumeration degrees a and b form a minimal pair in
the semi-lattice of the enumeration degrees if:

1. a > 0 and b > 0.
2. For every enumeration degree c (c ≤ a ∧ c ≤ b → c = 0).

Theorem 1. There exists a 1-generic enumeration degree a that does not bound
a minimal pair in the semi-lattice of the enumeration degrees.

We will use the priority method with infinite injury to build a set A whose
e-degree will have the intended properties. The construction involves a priority
tree of strategies. For further definitions of both computability theoretic and tree
notations and terminology we refer the reader to [3] and [4].

2.1 The Requirements

We will construct a set A satisfying the following requirements:

1. A is generic. Therefore for all c.e. sets W we have a requirement:

GW : ∃τ ⊆ A(τ ∈ W ∨ ∀µ ⊇ τ(µ /∈ W )),

where τ and µ are finite binary strings.
Let ReqG be the set of all GW requirements.



2. A does not bound a minimal pair. For each pair of enumeration operators
Θ0 and Θ1 we will have a requirement:

RΘ0Θ1 : Θ0(A) is c.e. ∨Θ1(A) is c.e.∨
∨∃D(D ≤e Θ0(A) ∧D ≤e Θ1(A) ∧D is not c.e.).

Let ReqR be the set of all RΘ0Θ1 requirements.
Fix a requirement RΘ0Θ1 . Let X = Θ0(A) and Y = Θ1(A). This require-
ment is too complicated to be satisfied at once and we will break it up into
subrequirements:

RΘ0Θ1 : (∃Φ0)(∃Φ1)(∀c.e. sets W )[SW ]

where SW is the subrequirement:

SW : X is c.e. ∨ Y is c.e. ∨ [Φ0(X) = Φ1(Y ) = D ∧ ∃d(W (d) 6= D(d))].

Let ReqS
RΘ0Θ1 be the set of all SW subrequirements of RΘ0Θ1 .

Let Req = ReqG ∪ReqR ∪ (
⋃

R∈ReqR
ReqS

R).

2.2 Priority Tree of Strategies

The set Req is linearly ordered with order type ω and requirements in earlier
positions have higher priority. Each particular requirement can be satisfied in
more than one way. We connect to each such way an outcome. The choice of the
correct way to satisfy a certain requirement depends on the outcomes of higher
priority requirements. Therefore we represent the set of all possible sequences
of outcomes as a tree of strategies. Each node α on the tree is labelled by a
requirement P ∈ Req and the node α will be referred to as a P -strategy. The
children of α correspond to each of α’s possible outcomes. So, although each of
those nodes will be labelled by the same requirement, each may have a different
approach to satisfying its requirement depending on what it “believes” to be the
outcome of α.

The set of all possible outcomes for each requirement will be linearly ordered
(<L, defined below) and the nodes of the tree of strategies will be ordered by the
induced lexicographical ordering ≤. The construction is by stages; in each stage
s we construct a set As approximating A and a string δs of length s in the tree
of strategies. The initial segments δ ⊆ δs are the nodes of the tree visited during
stage s of the construction; they are the strategies that might act to satisfy their
requirements. The intent is that there will be a true path, a leftmost path of
nodes visited infinitely often, such that all nodes along the true path are able to
satisfy their requirements. If the node β is visited on stage s, we say that s is a
β-true stage.

Each node (say of length n) will build its own approximation An
s , so As = As

s;
nodes will obey restrictions on A and A set by higher priority requirements.
Ultimately A will be the set of all natural numbers a such that

(∃ta)(∀t > ta)[a ∈ At].



At the end of stage s we initialize all strategies δ > δs by setting all parameters
to their initial values and cancelling any witnesses.

We will proceed to describe what general actions the different types of strate-
gies, corresponding to the different types of requirements, will make.

1. Let γ be a GW -strategy. The actions that γ makes when visited are the
following:

(a) γ chooses a finite string λγ according to rules that ensure compatibility
with strategies of higher priority.

(b) Then it searches for a string µ such that λγˆµ ∈ W . If it finds such a
string then γ remembers the shortest one, µγ , and has outcome 0. If not
then µγ = ∅ and the outcome is 1. The order between the two outcomes
is 0 <L 1. The strategy will be successful if λγˆµγ ⊆ A. γ will restrain
some elements out of and in A to ensure this.

2. Let α be a RΘ0Θ1-strategy. It acts as a mother strategy to all its substrate-
gies ensuring that they work correctly. We assume that on this level the
two enumeration operators Φ0 and Φ1 are built. They are common to all
substrategies of α. This strategy has only one outcome: 0.

3. Let β be a SW -strategy. It is a substrategy of one fixed RΘ0Θ1 -strategy
α ⊂ β. The actions that β makes are the following:

(a) First it tries to prove that the set X is c.e. by building a c.e. set U which
should turn out to be equal to X. On each stage it adds elements to U
and then looks if any errors have occurred in the set. While there are no
errors the outcome is ∞X .

(b) If an error occurs then some element that was assumed to be in the
set X has been extracted from X. The strategy can not fix the error
by extracting the element from U because we want U to remain c.e. In
this case β gives up on its desire to make X c.e. It finds the smallest
error k ∈ U\X and forms a set Ek which is called an agitator set for k.
The agitator contains an element a for every axiom for k in the current
approximation of Θ0, say 〈k, Dk〉, such that a ∈ Dk. So extracting the
agitator set from A will make sure that each axiom for k in Θ0 will not
be valid for Θ0(A) = X, that is will make sure that k /∈ X. On the other
hand with some additional actions we will make sure that if the agitator
is a subset of A then k ∈ X. And so the agitator will have the following
property which we will refer to as the control property:

k ∈ X ⇔ Ek ⊆ A.

The strategy now turns its attention to Y . It tries to prove that it is
c.e. by constructing a similar set Vk that would turn out equal to be
Y . It makes similar actions, checking at the same time if the agitator
for k preserves its control property. Note that the agitator will lose this
property if a new axiom for k is enumerated in Θ0. While there are no
errors in Vk the outcome is 〈∞Y , k〉.



(c) If an error is found in Vk, the strategy chooses the least l ∈ Vk\Y and
forms an agitator F k

l for l in a similar way. F k
l now has the control

property:
l ∈ Y ⇔ F k

l ⊆ A.

Now β has some control over the sets X and Y , namely using the agita-
tors it can determine whether or not k ∈ X and l ∈ Y . It adds axioms
〈d, {k}〉 ∈ Φ0 and 〈d, {l}〉 ∈ Φ1 for some witness d, constructing a differ-
ence between D and W . If d ∈ W the outcome is 〈l, k〉 and the agitators
are kept out of A. If d /∈ W then the agitators are enumerated back in
A, so d ∈ D and the outcome is the symbol d0.

The possible outcomes of a SW -strategy are:

∞X <L T0 <L T1 <L · · · <L Tk <L · · · <L d0

where Tk is the following group of outcomes:

〈∞Y , k〉 <L 〈0, k〉 <L 〈1, k〉 <L · · · <L 〈l, k〉 <L . . .

The priority tree of strategies is a computable function T with Dom(T ) ⊆
{0, 1,∞X , 〈∞Y , k〉, 〈l, k〉, d0|k, l ∈ N}<ω and Range(T ) = Req for which the fol-
lowing properties hold:

1. If α ∈ Dom(T ) and T (α) ∈ ReqR then α 0̂ ∈ Dom(T ).
2. If γ ∈ Dom(T ) and T (γ) ∈ ReqG then γ ô ∈ Dom(T ) where o ∈ {0, 1}.
3. If β ∈ Dom(T ) and T (β) ∈ ReqS

R then β ô ∈ Dom(T ) where
o ∈ {∞X , 〈∞Y , k〉, 〈k, l〉, d0|k, l ∈ N}.

4. For all δ ∈ Dom(T ) such that the length lh(δ) is even T (δ) ∈ ReqG.
5. If α ∈ Dom(T ) is a R-strategy then for each subrequirement SW there is a

SW -strategy β ∈ Dom(T ), a substrategy of α, such that α ⊂ β.
6. If β is a SW -strategy, a substrategy of α, then α ⊆ β and under βˆ∞X and

β 〈̂∞Y , k〉 there aren’t any other substrategies of α.
7. For each infinite path h in T and each R- or G-requirement there is a node

h ¹ n along the path which is a R- or G-strategy respectively. For every
SW -requirement, subrequirement of R, there is also a node h ¹ n which is
an SW -strategy, unless there is already a higher priority SW -strategy h ¹ m
belonging to the same requirement R and h(m + 1) = ∞X or h(m + 1) =
〈∞Y , k〉.

2.3 Interaction between strategies

In order to have any organization whatsoever we make use of a global parameter,
a counter b, whose value will be an upper bound to the numbers that have
appeared in the construction up to the current moment.

1. First we will examine the interaction between an SW -strategy β and a GW -
strategy γ. The interesting cases are when γ ⊇ βˆ∞X and similarly when
γ ⊇ β 〈̂∞Y , k〉.



Let γ ⊇ βˆ∞X and suppose β is of length n. Suppose β is visited on stage
s > n and adds an element k to the set U . There is an axiom 〈k, E′〉 ∈ Θ0

which is currently valid, i.e. E′ ⊆ An
s . The strategy β will keep a list U of the

axioms from Θ0 that it assumes to be valid when enumerating new elements
in U . It is possible that later (even on the same stage) γ chooses a string µγ

and extracts a member of E′ from A. If there aren’t any other axioms for
k in the corresponding approximation of Θ0, we have an error in U . On the
next β-true stage, s1 say, β will find this error, choose an agitator for k and
move on to the right with outcome 〈∞Y , k〉. It is possible that later a new
axiom for k is enumerated in the corresponding approximation of Θ0 and
thus the error in U is corrected. On the next β-true stage s2, β returns to
its initial aim to prove that X is c.e. But then another GW -strategy γ1 ⊇ γ
chooses a string µγ1 and again takes k out of U by extracting an element
that invalidates the new axiom for k. If this situation appears infinitely many
times, ultimately we will claim to have X = U but k will be taken out of
X infinitely many times and thus our claim would be wrong. Then this SW

requirement will not be satisfied. This is why we will have to ensure some
sort of stability for the elements that we put in U , more precisely for the
corresponding axioms in U that we assume to be valid. This is how the idea
for applying an axiom arises. We apply an axiom 〈k,E′〉 by changing the
value of the global parameter b so that it is larger than the elements of the
axiom and then by initializing those strategies that might take k out of X.
The first thing that comes to mind is to initialize all strategies δ ⊇ βˆ∞X .
This way we would avoid errors at all. If the set X is infinite though, we would
never give a chance to strategies δ ⊇ βˆ∞X to satisfy their requirements.
This problem is solved with the notion of local priority. Every GW -strategy
γ ⊇ βˆ∞X will have a fixed local priority regarding β. This priority is given
by a computable bijection σβ : Γ → N where Γ is the set of all GW -strategies
in the subtree of βˆ∞X . If γ ⊂ γ1 then σβ(γ) < σβ(γ1). A strategy γ ⊇ βˆ∞X

has local priority σβ(γ) in relation to β. When we apply the axiom 〈k, E′〉
only strategies γ with σβ(γ) greater than k will be initialized. Then as the
stages grow so do the elements that we put into U and with them grows the
number of GW -strategies that we preserve. Ultimately all strategies will get
a chance to satisfy their requirements.

2. Now let us examine the interactions between two SW -strategies β and β1.
The interesting case is β ⊇ β1ˆ∞X and α ⊂ α1 where α and α1 are the
corresponding mother strategies. Suppose that on stage s1 the strategy β
chooses its agitators Ek and F k

l and takes them out of A. Note that it is
important to keep both agitators in A or both agitators out of A to preserve
the equality in the sets Φα

0 (X) and Φα
1 (Y ) constructed at level α. Suppose

now that on the next β1-true stage s2 the strategy β1 decides to build its
own agitators and in them it includes members from only one of the agitators
that β selected at stage s1, causing a difference in the sets Φα

0 (X) and Φα
1 (Y ).

To avoid this β1 will choose its agitators carefully: along with the elements
needed to form the agitator with the requested control property it will add
also all elements of all agitators that were chosen and out of A on the previous



β1-true stage s1. Thus the two agitators of β will not be separated and will
not cause an error such as d /∈ Φα

0 (X) and d ∈ Φα
1 (Y ).

Unfortunately this will not solve the problem completely. It is possible that
on a later stage s3 a new axiom is enumerated in Θ0 for k or a new axiom
is enumerated in Θ1 for l, causing one of the agitators to lose its control
property and creating a difference between the sets Φα

0 (X) and Φα
1 (Y ) at

the element d. If β is visited again then it would fix this mistake by dis-
carding the false witness d. If not, the error would stay unfixed and the
R-strategy α might not satisfy its requirement. Therefore we will attach a
new parameter to α: a list Watchedα through which α will keep track of
all its SW -substrategies. The list will contain entries for all substrategies
including information on what their agitators are. If α sees that one of the
agitators loses its control property then it will go ahead with the actions on
discarding the false witness and correcting the mistake in the operators Φ0

and Φ1 in advance. This action will not interfere with β’s work. In fact if β
is ever visited again it will cancel the witness and give up the agitator that
has lost its control property. In that sense α is just pre-empting the actions
of β.

2.4 The Construction

We will begin the description of the construction by listing again all parameters
that are connected with each strategy. Their purpose was explained intuitively in
the previous two sections. While describing the parameters we will suppress the
superscripts that indicate the strategy to which they belong. The superscripts
will appear only when more than one strategies are involved in a discussion and
we need to distinguish between their parameters.

We have one global parameter b, common to all strategies, which is an upper
bound to all elements that have appeared so far in the construction. Its initial
value is 0.

In addition every strategy δ visited on stage s will have two more parameters
Es and Fs. The set Es contains all elements restrained out of A on this stage s
by strategies δ′ ⊂ δ. The set Fs contains all elements that are restrained in A
by strategies of higher priority δ′′ < δ. Note that these elements may have been
restrained on a previous stage.

Each GW -strategy γ will have two parameters: finite binary strings λ and µ,
with initial value the empty string ∅.

Each R-strategy α has a list Watched with entries of the form
〈β : 〈E, Ek, F k

l 〉, d〉 where β is a substrategy of α, Ek and F k
l are β’s current

agitators, the set E contains information needed to assess if the agitators still
have the control property and d is the witness that must be cancelled in case
one of the agitators loses its control property. The initial value of the list is ∅.
Also α has the parameters Φ0 and Φ1, the enumeration operators that α and all
its substrategies β construct together. Their initial value is ∅ as well.

Each S-strategy β inherits the two parameters Φ0 and Φ1 from its mother
strategy. In addition it has c.e. sets U and Vk for all k, initially all empty. Then



corresponding to them lists U and Vk, with initial values the empty list. During
the construction β might form agitators Ek for all k and F k

l for all k and l
or choose a witness d, but initially the agitators are empty and the witness is
undefined.

On stage s = 0 all nodes of the tree are initialized, b0 = 0, δ0 = ∅ and
A0 = N.

On each stage s > 0 we will have A0
s = N, δ0

s = ∅ and b0
s = bs−1

s−1.
Let’s assume that we have already built δn

s , An
s and bn

s . If n = s then go on
to the next stage s + 1. Otherwise n < s the strategy δn

s makes some actions as
described below and has an outcome o. Then δn+1

s = δn
s ô.

I. δn
s is a GW -strategy γ.

(a) If λ = ∅ then define λ to be the binary string of length bn
s + 1 such that

λ(a) ' 0 iff a ∈ Es

and increase the value of the counter to bn+1
s = bn

s + 1.
(b) If µ = ∅ then ask if ∃µ( λˆµ ∈ W ). If the answer is No then An+1

s =
An

s . All elements for which λ(a) = 1 are restrained by γ in A and the
outcome is o = 1.
If the answer is Yes then let µ be the least such binary string so that
λˆµ ∈ W and increase the value of the counter to
bn+1
s = max(bn+1

s , lh(λˆµ)+1). All a such that λˆµ(a) = 1 are restrained
in A by γ. All a such that a ≥ lh(λ) and λˆµ(a) = 0 are restrained out
of A by γ.
An+1

s = An
s \ {a|a is restrained out of A by γ} and the outcome is o = 0.

II. δn
s is a R-strategy α.

Then scan all entries in the list Watchedα. For each 〈β : 〈E,Ek, F k
l 〉, d〉 ∈

Watched check if there is an axiom 〈k, E′〉 ∈ Θ0 such that E′∩ (E∪Ek) = ∅
or 〈l, F ′〉 ∈ Θ1 such that F ′ ∩ (E ∪ Ek ∪ F k

l ) = ∅. If there is such an axiom
then cancel d by enumerating in both sets Φ0 and Φ1 the axiom 〈d, ∅〉.
An+1

s = An
s and o = 0.

III. δn
s is a SW -strategy β, a substrategy of α .

First check if β is watched by α and delete the corresponding entry from
Watchedα if there is one. Unless otherwise specified bn+1

s = bn
s . The actions

that β makes depend on the outcome o− that it had on the previous β-true
stage s−. If this is the first β-true stage in the construction, let o− = ∞X

(a) The outcome o− is ∞X .
1. Choose the least k ∈ X\U . Here X = Θs

0(A
n
s ). If there is such

an element then there is an axiom 〈k, E′〉 ∈ Θs
0 with E′ ⊆ An

s .
Enumerate k in the set U and its relevant axiom 〈k, E′〉 in the list
U. Apply this axiom by initializing all strategies δ ⊇ βˆ∞X such
that there is a GW -strategy γ ⊆ δ of local βˆ∞X -priority with value
greater than k and by setting bn+1

s = max(bn
s , E′).

2. Proceed through the elements of U until an element draws attention
or until all elements are scanned. An element k ∈ U draws attention
if there isn’t an applicable axiom for it.



Definition 4. An axiom 〈k,E′〉 ∈ Θ0 is applicable if:
1. E′ ∩ Eβ

s = ∅,
2. E′ ∩ Out1s = ∅ where Out1s is the set of all elements restrained
out of A by some strategy δ ⊇ βˆ∞X such that:

i. δ ⊆ δs− ,
ii. All GW -strategies γ ⊆ δ have local βˆ∞X-priority with value

less than k (the ones that cannot be initialized when applying an
axiom for k).

The intuition behind this definition is that it is plausible that the
axiom will end up valid. Note that the set Out1 includes all elements
that are restrained by GW strategies with local priority less than k
along what seems to be the true path. When we find a valid axiom
that has not been applied, we will apply it thereby initializing all
strategies below the first GW -strategy with local priority greater
than k along each path. We will not however initialize SW -strategies
above some GW -strategy with local priority less than k. These SW -
strategies may have already chosen an agitator that may remain
permanent. Therefore we must respect their choice and ask that an
applicable axiom does not include any such elements.
For each element k ∈ U act as follows:
– If k doesn’t draw attention, find an applicable axiom 〈k, E′〉 for k

that has minimal code. If the entry for k in U is different, replace
it with 〈k, E′〉. If the axiom 〈k, E′〉 is not yet applied, apply it.
If there aren’t any elements k that draw attention then let An+1

s =
An

s and o = ∞X .
– If k draws attention:
A. Initialize all strategies δ ⊇ βˆ∞X such there is a GW -strategy

γ ⊆ δ of local βˆ∞X -priority with value greater than k.
B. Examine all strategies in the subtree with root βˆ∞X . If β′ was

visited on stage s−, had outcome 〈l′, k′〉 and was not initialized
after stage s− then add to the list Watchedα′ where α′ is the
mother strategy of β′ an element of the following structure:
< β′ : 〈Eβ′

s− , Eβ′

k′ , F
k′,β′

l′ 〉, dβ′ > .
Then define the agitator for k as Ek = Out1s\Eβ

s . All elements
a ∈ Ek are restrained out of A by β. Let An+1

s = An
s \Ek and

o = 〈∞Y , k〉.
(b) The outcome o− is 〈∞Y , k〉.

1. Check if there is an axiom 〈k, E′〉 ∈ Θ0 such that E′∩(Eβ
s ∪Ek) = ∅.

If so then act as in d.1.
2. Choose the least element l ∈ Y \Vk. If there is such an element then

there is 〈l, F ′〉 ∈ Θs
1 with F ′ ⊆ An

s \Ek. Enumerate the element l in
Vk and its corresponding axiom 〈l, F ′〉 in Vk. Apply this axiom by
initializing all strategies δ ⊇ β 〈̂∞Y , k〉 such there is a GW -strategy
γ ⊆ δ of local β 〈̂∞Y , k〉-priority with value greater than l and by
setting bn+1

s = max(bn
s , F ′).



3. Proceed through the elements of Vk until all are scanned or until
an element draws attention. An axiom 〈l, F ′〉 ∈ Θ1 is defined to be
applicable similarly to case a.2:

Definition 5. An axiom 〈l, F ′〉 ∈ Θ1 is applicable if:
1. F ′ ∩ Eβ

s = ∅,
2. F ′ ∩ Out2s = ∅ where Out2s is the set of all elements restrained
out of A by some strategy δ ⊇ β 〈̂∞Y , k〉 such that:

i. δ ⊆ δs− ,
ii. All GW -strategies γ ⊆ δ have local β 〈̂∞Y , k〉-priority with value

less than l,

3. F ′ ∩ Ek = ∅.
For each element l ∈ Vk act as follows
– If l doesn’t draw attention, find an applicable axiom with min-

imal code 〈l, F ′〉. If the entry for l in Vk is different, replace it
with 〈l, F ′〉. If the axiom 〈l, F ′〉 is not yet applied, apply it.
If none of the elements draw attention then let An+1

s = An
s \Ek

and o = 〈∞Y , k〉.
– If l draws attention:
A. Initialize all strategies δ ⊇ β 〈̂∞Y , k〉 such that there is a GW -

strategy γ ⊆ δ of local β 〈̂∞Y , k〉-priority with value greater
than l.

B. Examine all strategies in the subtree with root β 〈̂∞Y , k〉. If
β′ was visited on stage s−, had outcome 〈l′, k′〉 and was not
initialized after stage s− then add to the list Watchedα′ where
α′ is the mother strategy of β′ an element of the following
structure: < β′ : 〈Eβ′

s− , Eβ′

k′ , F
k′,β′

l′ 〉, dβ′ >.
The agitator for l is F k

l = Out2s\(Eβ
s ∪ Ek). All elements

a ∈ (Ek ∪ F k
l ) are restrained in A by β.

Find the least element d that has not been used in the defini-
tion of Φ0 yet. This will be a witness β. Enumerate the axiom
〈d, {k}〉 in Φ0 and the axiom 〈d, {l}〉 in Φ1. Let An+1

s = An
s

and o = d0.
(c) The outcome o− is d0. Check if the witness d has been enumerated in

the c.e. set W . That is, check if d ∈ Ws.
If the answer is Yes then β restrains all elements a ∈ (Ek ∪ F k

l ) out of
A. Let An+1

s = An
s \(Ek ∪ F k

l ) and o = 〈l, k〉.
If the answer is No then let An+1

s = An
s and o = d0.

(d) The outcome o− is 〈l, k〉. Then the agitators Ek and F k
l and the witness

d are defined.
1. Check for an axiom 〈k, E′〉 ∈ Θ0 such that E′ ∩ (Eβ

s ∪Ek) = ∅, that
is Ek has lost its control property. If there is one then cancel d and
let Vk = Vk = Ek = F k

l = ∅. Replace the entry for k in U with
〈k,E′〉. Apply the axiom 〈k,E′〉. The strategy β stops restraining
elements a ∈ Ek ∪ F k

l . Let An+1
s = An

s and o = βˆ∞X .



2. Check for an axiom 〈l, F ′〉 ∈ Θ1 such that F ′ ∩ (Eβ
s ∪Ek ∪ F k

l ) = ∅.
If there is one then cancel d and let F k

l = ∅. Replace the entry for
l in Vk with 〈l, F ′〉. Apply the axiom 〈l, F ′〉. The strategy β stops
restraining elements a ∈ F k

l . Let An+1
s = An

s \Ek and o = β 〈̂∞Y , k〉.
3. If neither of the above two cases hold, hence both agitators still have

their control property, then let An+1
s = An

s \(Ek ∪F k
l ) and o = 〈l, k〉.

2.5 Proof

The proof of the theorem is divided into four groups of lemmas. The first group
is about the restrictions. It gives a clear idea about which elements are restrained
at different stages. The second group of lemmas is about the agitator sets. Its
purpose is to prove that the agitators have the intended control properties that
we claim. Then follows the group of lemmas about the true path. Finally we
prove that the requirements are indeed satisfied.

Restriction Lemmas The restriction lemmas are basic tools for the rest of the
proof. We will establish some basic rules about the restriction that will help us
later determine properties of the characteristic function of A. Note that, since
the tree is infinitely branching, we could have infinite activity to the right of
the true path. The following lemmas ensure that this activity does not have any
undesired effect on A.

We start off with a simple property of the agitator sets that will be helpful
for the rest of the restriction lemmas.

Proposition 1. Let β be a strategy that is visited and chooses an agitator Ag on
stage s. Then the elements of the agitator Ag were restrained out of A by some
GW -strategy γ ⊃ β on some previous stage s0 < s after β was last initialized.

Proof. The proof is by induction on s. Suppose the lemma is true for all strategies
visited on stages t < s and let β be visited on stage s. Assume β chooses its
agitator and let a be an element from this agitator. Finally let s′ be the stage
on which β was last initialized before stage s. We will concentrate on the case
when β chooses Ek; the case when it chooses F k

l is similar. Then a ∈ Out1s and
hence is restrained out of A on stage s− by some strategy in the subtree with
root βˆ∞X . Obviously s− > s′, otherwise Out1s = ∅ because all strategies that
extend β would also be initialized and would not restrain any elements out of A.

If a was restrained out of A by a GW -strategy on stage s− the lemma is
proved. Suppose a was restrained by a SW -strategy β′ ⊇ βˆ∞X . Then a is in
the agitator Agβ′ of β′. This agitator was chosen on some stage t ≤ s− and β′

was not initialized on stages between t and s− as otherwise the agitator would
be cancelled. So if we assume that β′ was cancelled for the last time before stage
s on stage t′, we have s′ ≤ t′ < t ≤ s−.

Then according to our induction hypothesis for t we have that a was re-
strained by a GW -strategy on stage t0 such that t′ < t0 < t. In particular
s′ < t0 < s. This concludes the induction and the proof of the lemma. ¤



Lemma 1 (Preserving the Restrictions Lemma). Let s1 and s2 be two
consecutive δ-true stages. If δ is not initialized on any intermediate stage t such
that s1 < t ≤ s2 then Eδ

s1
= Eδ

s2
.

Proof. We will prove the lemma by induction on the length of δ.
If δ is of length 0 then δ = ∅ and Eδ

s1
= Eδ

s2
= ∅. So let us assume that the

statement is true for strategies δ of length n. We will prove that it holds for δ ô.
Suppose δ1 = δ ô is visited on stages s1 and s2 and not initialized on stages

t such that s1 < t ≤ s2. Then δ is also visited on stages s1 and s2 and is not
initialized on any stage t such that s1 < t ≤ s2. The induction hypothesis gives
us Eδ

s1
= Eδ

s2
. So we only need to prove that the elements that δ restrains on

stages s1 and s2 are the same. Indeed on each stage the set Eδ1 is obtained from
Eδ by adding the elements that δ restrains out of A on that stage.

We will examine the different cases:

Case 1. If δ is a R-strategy, a GW -strategy with o = 1 or a SW -strategy with o = ∞X

or o = d0 then δ does not restrain any elements on stages s1 and s2.
Case 2. Suppose δ is a GW -strategy with outcome o = 0. Then the value of δ’s

parameters λ and µ are the same on stages s1 and s2, as they can change
only after initialization. Therefore the elements that δ restrains on both
stages s1 and s2 are the same as well, namely the elements a > lh(λδ) such
that λδˆµδ(a) = 0.

Case 3. Suppose δ is a SW -strategy with outcome o = 〈∞Y , k〉. Then the elements
that δ restrains out of A on stages s1 and s2 are the ones in (Ek)s1 and
(Ek)s2 respectively. If we assume that (Ek)s1 6= (Ek)s2 then on some stage t
such that s1 < t ≤ s2 we would have had an outcome o = ∞X . Indeed δ can
only choose a value for its agitator Ek if it had outcome ∞X on the previous
true stage. Once the value is chosen it can only be changed if the strategy
is initialized or if the agitator loses its control property. In the latter case δ
would have outcome ∞X . But ∞X <L 〈∞Y , k〉 and therefore δ1 would be
initialized on stage t.

Case 4. Suppose δ is a SW -strategy with outcome o = 〈l, k〉. Then the elements
that δ restrains on stages s1 and s2 are the ones in (Ek)s1 ∪ (F k

l )s1 and
(Ek)s2 ∪ (F k

l )s2 respectively. If we assume that (Ek)s1 6= (Ek)s2 or (F k
l )s1 6=

(F k
l )s2 then on some stage t such that s1 < t ≤ s2 we would have had an

outcome o′ = ∞X or o′ = 〈∞Y , k〉 to the left of o and δ1 would be initialized
on stage t. ¤

Proposition 2. If s is a δ-true stage and a ∈ Eδ
s then δ cannot restrain a (in

or out of A) on this stage.

Proof. 1. Let δ be a GW -strategy. Let s0 ≤ s be the earliest stage on which δ
is visited such that δ is not initialized between stages s0 and s. According to
Lemma 1, Eδ

s0
= Eδ

s and therefore a ∈ Eδ
s0

. The value of the parameter λδ is
chosen on stage s0 and remains the same until stage s. Then a < lh(λδ) and
λδ(a) = 0, hence δ does not restrain a on stage s.

2. Let δ be a SW -strategy. Then δ restrains only elements in its agitators. Let
s0 ≤ s be the stage on which δ is visited and chooses an agitator Ag. According



to Lemma 1 Eδ
s0

= Eδ
s and therefore a ∈ Eδ

s0
. According to the construction

Ag ∩ Eδ
s0

= ∅. Therefore δ does not restrain a. ¤

Lemma 2. If s is a δ-true stage and a ∈ F δ
s then δ can not restrain a out of A

on stage s.

Proof. Assume that a is restrained in A by δ1 < δ on stage s1 ≤ s. Note that
a ∈ F δ

s until δ1 is initialized or is visited and stops restraining a in A. Hence δ1

is not initialized until stage s. Let s2 ≥ s1 be the first stage after the imposition
of the restraint on which δ is visited. We will prove that s2 is the first visit of δ
after an initialization.

Case 1. δ1 <L δ . Then δ is initialized on stage s1.
Case 2. δ1 ⊂ δ.

a. δ1 is a GW -strategy. Then s1 is the earliest stage after δ1’s last initial-
ization, say on stage t, on which it picks a value for one of it parameters
λ or µ.
If δ1 chooses λδ1 on stage s1 then s1 is the first stage after the initial-
ization on stage t on which δ1 is visited. But δ was also initialized on
stage t. If δ1 chooses µδ1 on stage s1 then it has outcome 0 and will
have outcome 0 on each visit until it is initialized again (if ever). As δ
is visited on stage s we can conclude that δ ⊇ δ1 0̂. On the other hand
the nodes that extend δ1 0̂ are visited for the first time after δ1’s last
initialization on stage t not sooner than on stage s1.

b. δ1 is a SW -strategy then on stage s1 it has outcome d0. This is the only
case when a SW -strategy restrains elements in A. Furthermore δ1 had
outcome 〈∞Y , k〉 on its previous visit on stage s−1 and has outcome d0 on
each visit after s1 while it is restraining the element in A. In particular
it has this outcome on stage s. Hence δ ⊇ δ1 d̂0 and was initialized on
stage s−1 , when δ1 had outcome 〈∞Y , k〉.

So, if γ ⊇ δ is a GW -strategy then for any λγ that γ chooses on stages after
stage s1 we have a < lh(λγ) and γ cannot restrain a out of A.

If δ is a SW -strategy and we assume that δ restrains a out of A then a is
included in some agitator Ag. As we proved in Proposition 1, any element of
the agitator has been restrained out of A by some GW -strategy γ ⊃ δ after δ′s
last initialization. But we just proved that no such γ restrains a out of A. Hence
a /∈ Ag. ¤

Lemma 3. Suppose that on stage s we visit δ1. Suppose that δ1 restrains out
of A an element a that is currently restrained in A by a lower priority strategy
δ2 ⊃ δ1. Then δ2 is initialized on stage s.

Proof. We will make the proof by induction on the distance d(δ1, δ2) = lh(δ2)−
lh(δ1). We know that d > 0. Let us assume that the statement is true for all
pairs of strategies with distance d < n. Let d(δ1, δ2) = n.

On stage s0 we have visited δ2 which restrained a in A. Then from stage s0

up until the substage on which we visit δ1, the element is still restrained in A,
hence δ2 has not been initialized since stage s0. Then neither is the strategy δ1.



It follows from Proposition 2 that a was not restrained out of A by δ1 on
stage s0. So on stage s the elements that δ1 restrains out of A are different from
the ones it restrained on stage s0.

If δ1 is a GW -strategy, this could only happen if it had outcome 1 on stage
s0 and outcome 0 on stage s. The parameter λδ1 does not change value between
stages s0 and s, as δ1 is not initialized. So only if the parameter µ changed value,
could δ1 restrain new elements out of A. But this means that δ2 ⊇ δ1 1̂ and is
initialized on stage s.

If δ1 is a SW -strategy then a is included in some agitator Ag. This agitator
was chosen on stage t ≤ s and is extracted from A on stage s, but was not
extracted from A on stage s0.

The easy case is δ2 ⊇ δ1 d̂0. Then on stage s, δ1 has outcome 〈l, k〉 and
initializes δ2.

Whenever δ1 has outcome 〈l, k〉 both agitators are extracted from A. In
particular if this is the outcome on s0, as the elements extracted by δ1 on stages s0

and s are different, δ1 must have had outcome∞X or 〈∞Y , k〉 on an intermediate
stage when it changed the values of at least one of the agitators. On that stage
δ2 would be initialized.

This leaves us with δ2 ⊇ δ1ˆ∞X or δ2 ⊇ δ1 〈̂∞Y , k〉. In the first case Ag = Ek,
as elements that enter F k

l are restrained by GW -strategies below δ1 〈̂∞Y , k〉 by
Proposition 1. These are initialized on stage s0 and can not restrain a out of A
by Lemma 2. In the second case Ag = F k

l as Ek is already extracted from A on
stage s0 and does not change until stage s, or δ1 would have outcome ∞X on
an intermediate stage and δ2 would be initialized.

In both cases the agitator is chosen on stage t > s0 and after that δ1 has
outcome to the right. Then by the definition of an agitator the element a was
restrained out of A by some σ ⊃ δ1 on stage t− ≥ s0. We claim that σ ⊂ δ2

and s0 < t− so by the induction hypothesis δ2 would be initialized on stage t−,
contradicting our assumptions.

Indeed σ <L δ2 would initialize δ2 on stage t− and δ2 < σ would not allow σ
to restrain a out of A. So σ ⊂ δ2 and furthermore s0 6= t− or by Proposition 2
δ2 cannot restrain a at all on stage s0. ¤

Corollary 1. ∀s∀δ(Eδ
s ∩ F δ

s = ∅).

Proof. Assume for a contradiction that ∃s∃δ(Eδ
s ∩ F δ

s 6= ∅). Let s be the least
stage and δ be the least strategy for which our assumption holds. Let a ∈ Eδ

s∩F δ
s .

Then when we visit δ, a is restrained out of A by δ1 ⊂ δ and a is restrained in
A by δ2 < δ. We will examine the possible positions of δ1 and δ2:

1. δ1 > δ2. But then a ∈ F δ1
s and δ1 can not restrain a out of A.

2. δ1 < δ2. Then δ1 ⊂ δ2. We know that δ1 restrains a on stage s. According to
Lemma 3 δ2 is initialized on stage s. But then it stops restraining elements
and a is not restrained by δ2 when we visit δ. This contradicts our choice of
δ2. ¤



2.6 Lemmas about the Agitators

Let’s take a closer look at the agitators. Suppose β chooses an agitator at stage
s. Then o− = ∞X , in which case Ag = Out1s\Eβ

s , or o− = 〈∞Y , k〉, in which
case Ag = Out2s\(Ek ∪ Eβ

s ). It follows from Lemma 1 that Eβ
s = Eβ

s− . Any
element a in Out1 or Out2 was restrained on stage s− by a strategy δ ⊃ β and
hence Eδ

s− ⊇ Eβ
s− . So Out1s ∩ Eβ

s = Out2s ∩ Eβ
s = ∅. Also in the second case

Eδ
s− ⊇ Ek, so Out2s ∩ Ek = ∅. Hence the agitators have a simpler definition,

namely Ag = Out1s in the first case and Ag = Out2s in the second case.
Suppose β′ ⊃ β is a SW -strategy and on stage s− it was visited and had

outcome 〈l′, k′〉. Then let Eβ′ = Eβ
β′ ∪ Ek′ ∪ F k′

l′ where Eβ
β′ = Eβ′

s−\Eβ
s− : the

elements that are restrained out of A by strategies below β, but above β′. If β′

is not initialized on stage s then Eβ′ ⊂ Ag.
Similarly if β′ ⊃ β is a SW -strategy and on stage s− it was visited and had

outcome 〈∞y, k′〉 then let Eβ′ = Eβ
β′ ∪ Ek′ where Eβ

β′ = Eβ′

s−\Eβ
s− . If β′ is not

initialized on stage s then Eβ′ ⊂ Ag.
Now that we have established these basic facts about the agitators we can

proceed with the proof of some of their more complicated properties. Note that
every SW -strategy may have influence on the operators Φ0 and Φ1 that it helps
construct, even if it is visited finitely many times. The following lemmas give us
information on what that influence might be.

Lemma 4. 1. Let β be a strategy that is visited on stage t0 and chooses an
agitator Ek for k. If the node βˆ∞X is never again initialized or visited on any
stage t > t0 and Ek ⊆ A then k ∈ X.

2. Let β be a strategy that is visited on stage t0 and chooses an agitator F k
l

for l. If the node β 〈̂∞Y , k〉 is not initialized or visited on any stage t > t0 and
F k

l ⊆ A then l ∈ Y .

Proof. We will prove the first clause of the lemma; the second clause is proved
similarly. To prove that k ∈ X = Θ0(A) we need to find an axiom 〈k, E′〉 ∈ Θ0

with E′ ⊂ A.
Consider the axiom 〈k,E′〉 for k listed in U on stage t0. We will prove that

it has that property. It was applied not later than on stage t0. Furthermore it
was valid when it entered U hence E′ ∩ Eβ

t0 = ∅ according to Lemma 1.
The strategy β chooses an agitator for k on stage t0. Hence we initialize all

strategies δ such that β <L δ. Furthermore ot−0
= ∞X , hence on stage t−0 we

have initialized all strategies δ′ such that βˆ∞X <L δ′. The strategies δ′ ⊃ β
such that βˆ∞X <L δ′ are initialized on stage t−0 and are not visited again before
stage t0.

Therefore all nodes δ such that βˆ∞X <L δ cannot restrain elements from
E′ out of A. And the only strategy that can extract elements from E′ out of A
on stage t0 is β.

For a contradiction assume that an element a ∈ E′ is extracted from A on
infinitely many stages t. Let t1 be the first stage after t0 on which a /∈ At1 .
Let δ restrain a out of A on stage t1. We know that βˆ∞X ≮L δ. Also our



assumptions on β, namely that βˆ∞X is never again visited or initialized, give
us that δ + βˆ∞X and δ ≮L βˆ∞X . This leaves us with the following two
possibilities:

a. δ = β. If β itself extracts the element a out of A, then a must be an
element of one of β’s agitators. The F k

l agitators are all empty at stage t0, and
when they are defined at later stages they will contain elements restrained out of
A by strategies extending β 〈̂∞Y , k〉. We have already established such elements
cannot be from the set E′, so a must be in some version of Ek defined at or
after stage t0. However, Ek will not change its value after t0, because otherwise
we will have a βˆ∞X -true stage, contradicting our assumption. As we have also
assumed Ek ⊂ A, we have reached the desired contradiction.

b. δ ⊂ β. We treat GW and SW -strategies separately.
If δ is a GW -strategy then in order to restrain elements out of A on stage t1 it

must have outcome o = 0. It cannot be that β ⊇ δ 1̂ or it would be initialized on
stage t1. Hence δ 0̂ ⊆ β and δ is not initialized on stages t such that t0 < t ≤ t1.
Therefore a ∈ Eβ

t0 and a /∈ E′.
If δ is a SW -strategy then a is included in some agitator Ag which is taken

out of A on stage t1. Whenever a SW -strategy chooses an agitator it moves on
to the right. If the agitator is formed on stage t ≤ t0 then, since on stage t0 the
strategy β is visited and sees a in A, we can conclude that β ⊇ δ d̂0, but then
on stage t1 it must be initialized.

Suppose Ag is formed on stage t > t0. Then a was extracted from A on the
previous δ-true stage t− by one of the strategies extending δ. Our choice of t1 as
the first stage after t0 on which a is extracted from A guarantees that t− = t0.
But we know that the only strategy that can extract a on stage t0 is β, hence
a ∈ Ek ⊂ A. ¤

Lemma 5. Let β 〈̂l, k〉 be visited on stage t0. If β is not initialized or visited on
stages t > t0 and (Ek ∪ F k

l ) 6⊂ A then (Ek ∪ F k
l ∪ Eβ

t0) ∩A = ∅.

Proof. Let (Ek ∪ F k
l ) 6⊂ A. First we will prove that (Ek ∪ F k

l ) ∩ A = ∅. Let
a ∈ Ek ∪F k

l . Then a is restrained out of A by some GW -strategy γ ⊃ β on some
stage t′ < t0 after β′s last initialization as we established in Proposition 1. As β is
not initialized or visited anymore, no other GW -strategy can restrain the element
a out of A. Indeed GW -strategies of higher priority than β would initialize β if
they restrained a new element. The ones to the right of β are initialized on stage
t′ and choose their parameter λ to be of length greater than a. So if a /∈ At

then a is restrained out of A by some SW -strategy δ ⊂ β. We can even say
that δˆ∞X ⊆ β, if a is included in some agitator Ek′ , and δ 〈̂∞Y , k〉 ⊆ β, if
a is included in some agitator F k′

l′ , again using the result from Proposition 1.
Moreover the agitator is chosen on stage t1 > t0, as after the strategy δ chooses
its agitator it has outcomes to the right of β until the agitator is cancelled.

Suppose a is taken out of A on stage t > t0 by β1 ⊂ β. Then a is included
in the agitator Ag1 of β1, chosen on stage t1 > t0. So a /∈ At−1

and t−1 ≥ t0.
If t−1 = t0 then Ek ∪ F k

l ⊆ Ag1. If t−1 > t0 then there is another strategy β2

such that β1 ⊂ β2 ⊂ β and a is included in one of its agitators Ag2. With a



similar argument we get a monotone decreasing sequence of stages t1 > t2 > . . .
bounded by t0, hence finite.

Therefore always when a /∈ At, we have a finite sequence of SW -strategies
β1 ⊂ β2 ⊂ · · · ⊂ β and a corresponding monotone sequence of their agitators
Ag1 ⊃ Ag2 ⊃ · · · ⊃ (Ek ∪F k

l ) such that Ag1 is restrained out of A on stage t. If
a /∈ At and t > t0 then (Ek ∪ F k

l ) ∩At = ∅ and ultimately (Ek ∪ F k
l ) ∩A = ∅.

Let us assume now that b ∈ Eβ
t0 ∩ A 6= ∅. Then there is a stage tb such

that b ∈ At for all t > tb. Let t′ be a stage for which (Ek ∪ F k
l ) ∩ At = ∅ and

t′ > tb. Then there is a series of SW strategies β1 ⊂ β2 ⊂ · · · ⊂ βn ⊂ β and a
corresponding series of their agitators Ag1 ⊃ Ag2 ⊃ · · · ⊃ (Ek ∪ F k

l ). According
to Lemma 1, we can express Eβ

t0 in the following way:
Eβ

t0 = E
βt′
t1 ∪ (Eβ1

β2
)t2 ∪ · · · ∪ (Eβn

β )t0 .
If b ∈ (Eβ1

β2
)t2 ∪· · ·∪(Eβn

β )t0 then b ∈ Ag1 and therefore b /∈ At′ contradicting
the choice of t′ > tb. Therefore Eβ

t0 ∩A = ∅. ¤

2.7 The True Path

The true path will ultimately be the path along which each strategy satisfies its
requirement. It will be as usual the leftmost path visited infinitely often. It is not
obvious that such a path exists, as our tree of strategies is infinitely branching.
Fortunately we can prove the following:

Lemma 6. There exists an infinite path f in T with the following properties:

1. ∀n∃∞t(f ¹ n ⊆ δt) - the infinite property,
2. ∀n∃tn∀t > tn(f ¹ n ≮L δt) - the leftmost property.

Proof. We will define f by induction on n and simultaneously prove that it has
the desired properties. First f ¹ 0 = ∅ obviously has both properties. It is
visited on every stage and t0 = 0. Now let’s assume we have defined f ¹ n with
the desired properties. We will define f ¹ n+1 = (f ¹ n)̂ o where o is an outcome
of the strategy f ¹ n. We will refer to this outcome as the true outcome.

I. If f ¹ n is a R-strategy then o = 0. We always visit f ¹ (n+1) when we visit
f ¹ n, hence infinitely often and tn+1 = tn .

II. If f ¹ n is a GW -strategy then the possible outcomes are 0 and 1. As we
visit f ¹ n infinitely many times, at least one of the two outcomes will also
be visited infinitely many times. If

∃∞t[(f ¹ n)̂ 0 ⊆ δt]

then o = 0. As this is the leftmost possible outcome tn+1 = tn.
Otherwise (f ¹ n)̂ 0 is visited only finitely many times and there exists a
stage t1 such that ∀t > t1[f ¹ n ⊆ δt ⇒ (f ¹ n)̂ 1 ⊆ δt]. Then o = 1 and
tn+1 = max(tn, t1).

III. If f ¹ n is a SW -strategy then:



(a) If
∃∞t[(f ¹ n)̂ ∞X ⊆ δt]

then o = ∞X and tn+1 = tn.
Otherwise there exists a least f ¹ n-true stage t1 such that

∀t ≥ t1[f ¹ n ⊆ δt ⇒ (f ¹ n)̂ ∞X 6⊆ δt].

On stage t1 the strategy f ¹ n chooses an agitator Ek and has outcome
〈∞Y , k〉. Then for all stages greater than t1 the possible outcomes are
〈∞Y , k〉, {〈l, k〉|l ∈ N} and d0.

(b) If
∃∞t[(f ¹ n)̂ 〈∞Y , k〉 ⊆ δt]

then o = 〈∞Y , k〉 and tn+1 = max(tn, t1).
Otherwise there exists a least f ¹ n-true stage t2 ≥ t1 such that

∀t ≥ t2[f ¹ n ⊆ δt ⇒ (f ¹ n)̂ ∞X 6⊆ δt ∧ (f ¹ n)̂ 〈∞Y , k〉 6⊆ δt].

Then on stage t2 the strategy f ¹ n chooses a second agitator F k
l and

has outcome d0. For all stages t > t2 the possible outcomes are d0 and
〈l, k〉.
If on some stage t3 > t2 we have an outcome 〈l, k〉 then on all stages t ≥ t3
we would have this outcome, because you can’t return from outcome 〈l, k〉
back to d0 without passing through 〈∞Y , k〉 or ∞X .

(c) If the outcome 〈l, k〉 never occurs, that is

∀t ≥ t2[f ¹ n ⊆ δt ⇒ (f ¹ n)̂ d0 ⊆ δt],

then o = d0 and tn+1 = max(tn, t2).
(d) Otherwise there is a stage t3 such that

∀t ≥ t3[f ¹ n ⊆ δt ⇒ (f ¹ n)̂ 〈l, k〉 ⊆ δt].

Then o = 〈l, k〉 and tn+1 = max(tn, t3). ¤

Unfortunately the leftmost property does not guarantee that the strategies
along the true path will be initialized only finitely many times and will be able
to satisfy their requirements eventually. This is due to the second case of initial-
ization. That is why we need to prove this separately.

Lemma 7 (Stability Lemma). For every SW -strategy β the following state-
ment is true:

1. If βˆ∞X ⊆ f then for every k ∈ U there exists an axiom 〈k, E′〉 ∈ Θ0 and
a stage tk such that if t > tk and β is visited on t with o− = ∞X then 〈k, E′〉 is
applicable for k and therefore k does not draw attention. Furthermore E′ ⊆ A.

2. If β 〈̂∞Y , k〉 ⊆ f then for every l ∈ Vk there exists an axiom 〈l, F ′〉 ∈ Θ1

and a stage tl such that if t > tl and β is visited on t with o− = 〈∞Y , k〉 then
〈l, F ′〉 is applicable for l and therefore l does not draw attention. Furthermore
F ′ ⊆ A.



Proof. Assume that this is not the case and choose β ⊆ f as the least strategy
for which the proposition is false. Suppose βˆ∞X ⊆ f . The case β 〈̂∞Y , k〉 ⊆ f
is similar. Let k ∈ Uβ be the least element such that k draws attention infinitely
many times.

Let Γ = {γ ⊇ βˆ∞X |γ is a GW -strategy with local priority less than k }.
We choose a stage t so big that:

a. If β′ ⊂ β is a SW -strategy such that β′ˆ∞X ⊆ β then the elements of Uβ′

which are less than or equal to the local β′-priority of any γ ∈ Γ are already
in Uβ′ and do not draw attention any more. For these elements there is an
applicable axiom and let all axioms with a smaller code that get applied
at some stage be already applied. According to our choice of β as the least
strategy for which the proposition is not true, this choice of t is satisfiable.

b. Similarly if β′ ⊂ β is a SW -strategy such that β′ 〈̂∞y, k′〉 ⊆ β then the
elements of V β′

k′ which are less than or equal than the local β′-priority of any
γ ∈ Γ are already in V β′

k′ , do not draw attention anymore and do not apply
any new axioms.

c. For all elements m ∈ U such that m ≤ k we have m ∈ Ut.
d. All elements m < k do not draw attention on stages s > t and do not apply

any axioms.
e. Let M = max {lh(γ)|γ ∈ Γ} + 2. Let tM be the stage for which ∀s >

tM (δs ≮L f ¹ M) from the leftmost property of f . Then t > tM .

According to our choice of t, precisely conditions a, b and e, it is true that
for all s > t, β does not get initialized on stage s. Then Lemma 1 gives us that
Eβ

s is the same on all β-true stages s > t. We can therefore omit the index s in
further discussions and refer to this set as Eβ .

Let t1 > t be a stage on which f ¹ M is visited. On the next β-true stage t+1
the previous outcome is ∞X . We scan the elements of U and change their cor-
responding elements in U if needed. The elements m < k do not draw attention
anymore, but it is still possible that k draws attention.

1. If k does not draw attention then for the axiom 〈k, E′〉 in U we have that:
(a) E′ ∩ Eβ = ∅,
(b) E′ ∩Out1t+1

= ∅.
2. If k does draw attention on stage t+1 then we define an agitator Ek = Out1t+1

and move to the right of the true path. Let t2 be the next stage on which
βˆ∞X is visited. On this stage we must have found an axiom 〈k, E′′〉 for
which again:
(a) E′′ ∩ Eβ = ∅,
(b) E′′ ∩Out1t+1

= ∅.

In both cases we have an axiom 〈k,E0〉 for which the two conditions hold.
Let t3 > t1 be a f ¹ M -true stage by which this strategy is applied. We will
prove that no strategy extracts elements from E0 on stages s > t3. Hence this
axiom will be the one we are searching for.



Note that after this axiom has been applied, none of the strategies that have
been initialized during or after this application can ever restrain any elements
of E0 out of A, including all strategies below f ¹ M . At stage t1 all axioms to
the right of f ¹ M have been initialized. In the first case the axiom is applied
not later than on stage t+1 . The strategies to the right of βˆ∞X are initialized
on that stage and the strategies below βˆ∞X that are to the right of f ¹ M are
not visited after their initialization until t+1 .

In the second case the axiom is applied on stage t2 and again strategies to
the right of βˆ∞X are initialized on that stage and the strategies below βˆ∞X

that are to the right of f ¹ M are not visited after their initialization until t2.
Strategies to the left of f ¹ M are not visited after stage t1 < t3 and can not

restrain elements from E0 out of A at any later stage.
The only danger is that a strategy δ along f ¹ M restrains an element from

E0 out of A on stage s > t3. We will prove that this also does not happen.
First of all if δ is a GW -strategy, by stage t1 its outcome is final and so are

all elements that it restrains out of A. These elements are in Eβ if δ ⊂ β or in
Out1t+1

if δ ⊃ β. In particular a is not restrained by δ out of A on any stage
s > t3.

If δ is an SW -strategy then the elements it restrains out of A are the ones in
its agitators. We need to consider the possible ways that such agitators might
be constructed. So suppose that δ has an agitator Ag that it extracts on stage
s > t3.

Notice first that our approximation of the true path δs never goes left of
f ¹ M after stage t1. Thus δ does not have outcomes to the left of the outcome
it had on stage t1.

Suppose that δ had already chosen this agitator Ag by stage t1, that is Ag
has already a value on stage t1 and does not change its value until stage s on
which it is out of A. If Ag ⊂ At1 then δ has outcome d0 on stage t1. This is the
rightmost outcome and as δ does not have outcomes to the left of it on further
stages it will not extract Ag on stage s. Thus Ag is restrained out of A on stage
t1. Hence Ag ⊂ Eβ ∪Out1β

t+1
and does not contain elements from E0.

We are left with the case when δ chooses Ag after stage t1. This limits
the possibilities for the true outcome of δ. We can have δˆ∞X ⊂ f in which
case each agitator that δ ever chooses is eventually cancelled. We can also have
δ 〈̂∞Y , k〉 ⊂ f in which case the agitator Ek is chosen before stage t1 and does
not contain elements from A, as we have just established, and each agitator F k

l

is eventually cancelled.
We will prove that agitators formed after stage t3 cannot contain elements

from E0. This will show that the elements from E0 can be extracted from A
only finitely many times and hence E0 ⊂ A.

It is convenient to consider each SW -strategy δ ⊂ f ¹ M in order of its
length, starting from the longest. The reason is that strategies of lower priority
determine the elements that enter agitators of higher priority strategies.

Let δ be the longest SW -strategy along f ¹ M . Suppose δ chooses an agitator
Ag on stage s > t3. All of Ag’s elements were restrained by strategies extending



δ on the previous δ-true stage s− ≤ t3. These are either strategies that were
initialized when the axiom 〈k, E0〉 was applied and hence cannot restrain ele-
ments from E0, or GW -strategies γ ⊂ f ¹ M which as we already proved do not
restrain elements from E0.

By induction we can prove the same for the shorter SW -strategies. ¤

Corollary 2. Every strategy along the true path is eventually not initialized.

Proof. We will prove by induction on n that there is a f ¹ n-true stage t∗n such
that f ¹ n is not initialized on any stage t > t∗n. We will refer to this stage t∗n in
the rest of the proof.

The case n = 0 is trivial because f ¹ 0 = ∅ is never initialized and is visited
on every stage, so t∗0 = 0.

Assume that f ¹ n is visited on stage t∗n and not initialized on stages t > t∗n.
If f ¹ (n+1) is a R- or SW -strategy then f ¹ n is a GW -strategy and it does not
initialize strategies in its subtree at all. So let t∗n+1 be the first stage on which
f ¹ (n+1) is visited after max {t∗n, tn+1} where tn+1 is the stage from the leftmost
property of the true path (second property of Lemma6). Then f ¹ (n + 1) is not
initialized on stages t > t∗n+1.

If f ¹ (n + 1) is a GW -strategy then we choose t∗n+1 so that the following
conditions hold

1. t∗n+1 > t∗n.
2. t∗n+1 > tn+1 where tn+1 is the stage from the leftmost property of the true

path.
3. For every SW -strategy β with βˆ∞X ⊆ f ¹ (n + 1) and every k ∈ Uβ less

than the local β-priority of f ¹ (n + 1), we have an applicable axiom 〈k, E0〉
which is applicable on every stage after tk. There are finitely many axioms
with a code that is less than that of E0. Let t∗n+1 be so big that all axioms
with a code that is smaller than the code of E0 and that get applied at some
point are already applied.

4. For every SW -strategy β with β 〈̂∞Y , k〉 ⊆ f ¹ (n+1) and every l ∈ V β
k less

than the local β-priority of f ¹ (n + 1), we have an applicable axiom 〈l, F0〉
which is applicable on every stage after tl. There are finitely many axioms
with a code that is less than that of F0. Let t∗n+1 be so big that all axioms
with a code that is smaller than the code of F0 and that get applied at some
stage are already applied.

5. f ¹ (n + 1) is visited on stage t∗n+1.

It follows from Lemmas 6 and 7 that this choice of t∗n+1 is satisfiable. Clause
2 ensures that f ¹ (n + 1) will not be initialized by strategies to the left. Clause
1 ensures that it won’t initialized due to the initialization of GW -strategies that
f ¹ (n + 1) extends and finally clauses 3 and 4 ensure that f ¹ (n + 1) won’t be
initialized due to SW -strategies that it extends. ¤

2.8 Satisfaction of The Requirements

Lemma 8. Every R requirement is satisfied.



Proof. Fix a R-requirement. Let α be the corresponding R-strategy on the true
path. We will prove that Θ0(A) = X and Θ1(A) = Y do not form a minimal
pair. The proof is divided into the following three cases depending on the true
outcomes of the SW -substrategies of α along the true path:

1. All SW -strategies β̂ ⊂ f , substrategies of α, have true outcomes d0 or 〈k, l〉.
Then we will prove that Φ0(X) = Φ1(Y ) = D and D is not c.e.

2. There is a SW -strategy β̂ ⊂ f , substrategy of α, with true outcome ∞X .
Then X will be c.e.

3. There is a SW -strategy β̂ ⊂ f , substrategy of α, with true outcome 〈∞Y , k〉.
Then Y will be c.e.

We will treat each case separately.

1. For all SW strategies β̂ ⊂ f , substrategies of α,

∃k∃l(β̂ 〈̂l, k〉 ⊂ f) ∨ β̂ d̂0 ⊂ f.

We start by proving that Φα
0 (X) = Φα

1 (Y ). Now the properties of the agi-
tators proved in Section 2.6 will play an important role as the operators Φ0

and Φ1 are constructed by all of α’s substrategies, not only the ones along
the true path. So we have to prove that Φ0(X)(dβ) = Φ1(Y )(dβ), for every
witness dβ that any substrategy β has ever used.
We automatically have this equality for any witness dβ that is cancelled.
Cancelling the witness involves enumerating the axiom 〈dβ , ∅〉 in both oper-
ators. So Φ0(X)(dβ) = Φ1(Y )(dβ) = 1.
This means that strategies β to the right of the true path will not cause
problems. Strategies to the left of and on the true path may have witnesses
that are never cancelled. So let β be a substrategy of α and dβ be a witness
chosen on stage t0 that is never cancelled. Then β has outcome d0 on stage t0.
After stage t0 the strategy β is not initialized and does not have outcomes
∞X or 〈∞Y , k〉, as in those cases we would cancel β’s witness d. Let the
corresponding agitators for d be Ek and F k

l , so we have axioms 〈d, {k}〉 ∈ Φ0

and 〈d, {l}〉 ∈ Φ1. Also note that the length of the node β is necessarily less
than t0, as according to the construction a strategy acts only on stages s
greater than its length.
We have the following three possibilities:
(a) β <L f . Then let t ≥ t0 be the last stage on which β is visited.

If β 〈̂l, k〉 ⊆ δt then the conditions of Lemma 5 are true. Therefore
if (Ek ∪ F k

l ) 6⊆ A then (Ek ∪ F k
l ∪ Eβ

t ) ∩ A = ∅. If (Ek ∪ F k
l ) ⊆ A

then according to Lemma 4 we have k ∈ X and l ∈ Y and therefore
Φ0(X)(d) = Φ1(Y )(d) = 1 .
If (Ek ∪ F k

l ∪ Eβ
t ) ∩ A = ∅ then from the proof of Lemma 5 we can

conclude that there is an entry 〈β : 〈Et, Ek, F k
l 〉, d〉 ∈ Watchedα. In this

case we claim Φ0(X)(d) = Φ1(Y )(d) = 0. Suppose for a contradiction
that this is not true, say Φ0(X)(d) = 1. Then the only axiom in Φ1 for d
is true, so k ∈ X = Θ0(A). Therefore there is an axiom 〈k,E′〉 ∈ Θ0 such



that E′ ⊆ A and hence E′ ∩ (Ek ∪ Eβ
t ) = ∅. It appears in Θs

0 on some
stage s. The strategy α ⊂ f is visited on some stage s′ > s. According
to the construction α will spot this axiom while examining the entry for
β in Watched and cancel d. Similarly we may prove that Φ1(Y )(d) = 0.
If β d̂0 ⊆ δt, as β is not initialized on stages s′ > t, we have that Ek∪F k

l

is restrained in A by β. From Lemmas 2 and 3 it follows that Ek∪F k
l ⊂ A.

Lemma 4 gives us k ∈ X and l ∈ Y . Hence Φ0(X)(d) = Φ1(Y )(d) = 1.
(b) Suppose β d̂0 ⊆ f . By Lemma 6 and the fact that d is not cancelled

whenever we visit β outcome d0 from stage t0 on. Therefore by Lemmas
2 and 3 Ek ∪ F k

l ⊂ A. Lemma 4 gives us k ∈ X and l ∈ Y . Hence
Φ0(X)(d) = Φ1(Y )(d) = 1.

(c) If β 〈̂l, k〉 ⊆ f then by Lemma 6 there is a stage t1 > t0 such that
on β-true stages t > t1 the strategy β always has this outcome and
Ek ∪F k

l is extracted from At. Also by Lemma 1 Eβ
t = Eβ

t1 for all β-true
stages t > t1 and we will refer to this set as Eβ . As β is visited on
infinitely many stages (Ek ∪ F k

l ∪ Eβ) ∩ A = ∅. We claim that in this
case Φ0(X)(d) = Φ1(Y )(d) = 0.
Assume for a contradiction that this is not true, say Φ0(X)(d) = 1. Then
there is an axiom 〈k, E′〉 ∈ Θ0 with E′ ⊆ A and therefore E′ ∩ (Ek ∪
F k

l ∪ Eβ) = ∅. The axiom appears in Θs1
0 on some stage s1 . Let s be a

β-true stage such that s > max(s1, t1). According to the construction on
stage s the strategy β will have outcome ∞X contradicting the choice of
t1. Similarly we may prove that Φ1(Y )(d) cannot equal 1.

This gives us a set D = Φ0(X) = Φ1(Y ). To prove that D is not c.e. let W

be any c.e. set and consider the SW -substrategy β̂ along the true path. Let
n = lh(β̂). After stage tn+1 from Lemma 6 β̂ always has its true outcome
whenever it is visited and a permanent witness d̂. This witness will prove
W 6= D.
If β̂ 〈̂l, k〉 ⊂ f then W (d̂) = 1. The witness d̂ is not cancelled by α. Indeed if α
cancels the witness at stage t due to some axiom 〈k, E′〉 ∈ Θ0 or 〈l, F ′〉 ∈ Θ1

then when we visit β̂ on stage t1 ≥ max(t, tn+1) the strategy β̂ would see
this axiom and have outcome ∞X or 〈∞Y , k〉 contradicting our choice of
stage t1. We just proved that in this case D(d̂) = 0. Therefore D 6= W .
If β̂ d̂0 ⊂ f . Then the witness will not be cancelled by α as there will not be
an entry for it in the list Watchedα. We proved that D(d̂) = 1. It follows that
W (d̂) = 0 as otherwise there would be a stage s > tlh(n)+1 on which d̂ ∈ Ws.
Then on the next β̂-true stage we would have an outcome 〈l, k〉 <L d0.
Therefore D 6= W .

2. There is a strategy β̂, substrategy of α, with β̂ˆ∞X ⊆ f . Let n = lh(β̂).
We will prove that Uβ̂ = X and so X is c.e. Assume for a contradiction
that there is an element k ∈ X\U and choose the least one. Then there is an
axiom 〈k, E′〉 ∈ Θ0 such that E′ ⊂ A. Note that on all β̂-true stages s > t∗n+1

by Lemma 1 Eβ̂
s = Eβ̂

t∗n+1
and Eβ̂

s ⊂ A. So E′ ∩ Eβ̂
s = ∅. Let t > t∗n+1 be a

stage on which all elements smaller than k that ever enter U are already in



U and all elements that are in E′ are not taken out of A anymore. Then k
will enter U on the next β̂-true stage on which o− = ∞X , if not before.
According to Lemma 7 for every k ∈ U there is an axiom 〈k, E′〉 ∈ Θ0 for
which E′ ⊆ A, therefore k ∈ X and U ⊆ X. Ultimately we get X = U .

3. There is a SW -strategy β̂ which is a substrategy of α with β̂ 〈̂∞Y , k〉 ⊂ f

for some k. We show in this case that V β̂
k = Y and therefore Y is c.e. The

proof is similar to part 2. ¤
Lemma 9. Every GW requirement is satisfied.

Proof. Fix a c.e. set W and consider the GW -strategy γ ⊂ f . Let n = lh(γ).
Let λ and µ denote the values of γ’s parameters on stage t∗n+1 from Corollary
2. It follows from the construction that these values remain the same on further
stages. Indeed λ changes value only after initialization and µ changes value only
when γ switches to outcome 0. We will prove that λˆµ ⊂ A and that λˆµ ∈ W
or for every extension τ ⊇ λˆµ we have τ /∈ W and so the requirement GW is
satisfied.

By Lemma 1 the value of the set Eγ
t does not change on γ-true stages t > t∗n+1

and we will refer to it as Eγ . Finally γ has always its true outcome on true stages
t > t∗n+1.

If λˆµ(a) = 1 then a is restrained in A by γ and by Lemmas 2 and 3 a ∈ A.
If λˆµ(a) = 0 and a < lh(λ) then a ∈ Eγ ⊂ A so A(a) = 0. If λˆµ(a) = 0 and
a ≥ lh(λ) then a is extracted on every γ-true stage t ≥ t∗n+1 and A(a) = 0.
Therefore λˆµ ⊂ A.

If γ 0̂ ⊂ f then this outcome was visited after we saw that λˆµ ∈ Wt∗n+1
⊂ W .

If γ 1̂ ⊂ f then µ = ∅ and for all extensions τ ⊇ λ we have τ /∈ W . Indeed if
there were an extension of λ, τ ∈ W , then it would appear in the approximation
of W on some finite stage and on the next γ-true stage we would have outcome
0 contradicting the choice of t∗n+1.

This concludes the proof of the lemma and the theorem. ¤
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