
A generic set that does not bound a minimal
pair

Mariya Ivanova Soskova

University of Leeds

Abstract. The structure of the semi lattice of enumeration degrees has
been investigated from many aspects. One aspect is the bounding and
nonbounding properties of generic degrees. Copestake proved that every
2-generic enumeration degree bounds a minimal pair and conjectured
that there exists a 1-generic set that does not bound a minimal pair. In
this paper we verify this longstanding conjecture by constructing such
a set using an infinite injury priority argument. The construction is ex-
plained in detail. It makes use of a priority tree of strategies.

1 Introduction

In contrast to the Turing case where every 1-generic degree bounds a minimal
pair as proved in [5] we construct a 1-generic set, whose e-degree does not bound
a minimal pair in the semi-lattice of the enumeration degrees.

In her paper [1] Copestake examines the n-generic sets for every n < ω. She
proves that every 2-generic set bounds a minimal pair and states that there is
a 1-generic set that does not bound a minimal pair. Her proof of the statement
does not appear in the academic press. In their paper [2] Cooper, Sorbi, Lee and
Yang show that every ∆0

2 set bounds a minimal pair, and construct a Σ0
2 set

that does not bound a minimal pair. In the same paper the authors state that
their construction can be used to build a 1-generic set that does not bound a
minimal pair. Initially the goal of this paper was to build a 1-generic set with the
needed properties by following the construction from [2]. In the working process
it turned out that significant modifications of the construction had to be made
in order to get the desired 1-generic set. The 1-generic set that is constructed is
also Σ0

2 , and generalizes the result from [2].
Acknowledgements
Thanks are due to Prof. S. B. Cooper for his advice and the discussions on

the preliminary version of this paper.

2 Constructing a 1-generic set that does not bound a
minimal pair

Definition 1. A set A is 1-generic if for every c.e. set X of strings

∃τ ⊂ A(τ ∈ X ∨ ∀ρ ⊇ τ(ρ /∈ X))

An enumeration degree is 1-generic, if it contains a 1-generic set.

Definition 2. Let a and b be two enumeration degrees. We say that a and b
form a minimal pair in the semi-lattice of the enumeration degrees if:

1. a > 0 and b > 0.
2. For every enumeration degree c (c ≤ a ∧ c ≤ b → c = 0).

Theorem 1. There exists a 1-generic enumeration degree a, that does not bound
a minimal pair in the semi-lattice of the enumeration degrees.

We will use the priority method with infinite injury to build a set A, whose
degree will have the intended properties. The construction involves a priority
tree of strategies. For further definitions of both computability theoretic and
tree notations and terminologies see [3] and [4].

2.1 Requirements

We will construct a set A, satisfying the following requirements:

1. A is generic, therefore for all c.e. sets W we have a requirement:

GW : ∃τ ⊆ χA(τ ∈ W ∨ ∀µ ⊇ τ(µ /∈ W)),

where τ and µ are finite parts.
Let ReqG be the set of all GW requirements.

2. A does not bound a minimal pair, therefore for each pair of c.e. sets Θ0 and
Θ1 we will have a requirement:

RΘ0Θ1 : Θ0(A) = X − c.e. ∨Θ1(A) = Y − c.e.∨

∨∃Φ0 − c.e.Φ1 − c.e.((Φ0(X) = Φ1(Y) = D) ∧ ∀W − c.e.(W 6= D))

Let ReqR be the set of all RΘ0Θ1 requirements.
For each requirement RΘ0Θ1 let X = Θ0(A), Y = Θ1(A) and let Φ0 and Φ1

be the c.e. sets defined above. In order for RΘ0Θ1 to be satisfied we will make
sure that the following subrequirements SW for each c.e. set W are satisfied:

SW : (X − c.e. ∨ Y − c.e. ∨ (Φ0(X) = Φ1(Y) = D ∧ ∃d(W (d) 6= D(d))))

Let ReqS
RΘ0Θ1 be the set of all SW subrequirements of RΘ0Θ1 .

2.2 Priority Tree of Strategies

For every requirement we will have a different strategy. The strategy aims to ful-
fill the requirement according to the current situation, giving different outcomes.
Let O be the set of all possible outcomes. We define a tree of strategies - a subset
of O∗, closed under extensions. Each node α is labelled with a requirement Req,
we say that α is a Req-strategy.

1. Let γ be a GW -strategy. The actions that γ makes are the following:
(a) γ chooses a finite part λγ , according to rules that insure compatibility

with strategies of higher priority.
(b) If there is a finite part µ, such that λγˆµ ∈ W , then γ remembers the

shortest one – µγ , and has outcome 0. If not, then µγ = ∅, the outcome
is 1. The order between the two outcomes is 0 < 1. The strategy is
successful if we insure that λγˆµγ ⊆ A. γ will restrain some elements out
of and in A to ensure this.

2. Let α be a RΘ0Θ1 - strategy. It is like a mother strategy to all its substrate-
gies. It insures that they work correctly. We assume that on this level the
two sets Φ0 Φ1 are built. They are common to all substrategies of α. This
type of strategy has one outcome: 0.

3. Let β be a SW - strategy. It is a substrategy of one fixed RΘ0Θ1 - strategy -
α, for which α ⊂ β holds. The actions that β makes are the following:
(a) First it tries to make the set X c.e. In order to accomplish this β builds a

set U , which should turn out equal to X. On each step it adds elements
to U and then looks if any errors have occurred in the set. While there
are no errors the outcome is ∞X .

(b) If an error occurs, then some element, that was assumed to be in the
set X has come out of the set. The strategy can not fix the error in U
because we want U to be c.e. In this case it gives up on our desire to
make X c.e., it finds the smallest error k ∈ U\X and forms a set Ek,
which is called an agitator for k. The agitator has the following property:
k ∈ X ⇔ Ek ⊆ A. The strategy now turns its attention to Y , trying
to make it c.e., constructing a similar set Vk, that would turn out equal
to Y . It makes similar actions, checking at the same time if the agitator
for k preserves the desired property. While there is no mistake in Vk the
outcome is 〈∞Y , k〉.

(c) If an error is found in Vk, the strategy chooses the smallest error l ∈ Vk\Y
and forms an agitator F k

l for l with the following property: l ∈ Y ⇔ F k
l ⊆

A. Now β has control over the sets X and Y . It adds axioms 〈d, {k}〉 ∈ Φ0

and 〈d, {l}〉 ∈ Φ1, for some witness d, constructing a difference between
D and W . If d ∈ W\D, the outcome is 〈l, k〉. Otherwise: d ∈ D\W , the
outcome is d0.

And so the possible outcomes of a SW - strategy are:

∞X < T0 < T1 < . . . < Tk < . . . < d0,

where Tk is the following group of outcomes:

〈∞Y , k〉 < 〈0, k〉 < 〈1, k〉 < . . . < 〈l, k〉 < . . .

The priority tree of strategies is a computable function T with Dom(T) ⊆
{0, 1,∞X , 〈∞Y , k〉, 〈l, k〉, d0|k, l ∈ N}∗ and Range(T) = ReqG∪ReqR∪(

⋃
R∈ReqR

ReqS
R),

for which the following properties hold:

1. For every infinite path f in T Range(T ¹ f) = Range(T).

2. If α ∈ Dom(T) and T (α) ∈ ReqR , then α 0̂ ∈ Dom(T).
3. If γ ∈ Dom(T) and T (γ) ∈ ReqG, then γ ô ∈ Dom(T), where o ∈ {0, 1}.
4. If β ∈ Dom(T) and T (β) ∈ ReqS

R, then β ô ∈ Dom(T), where o ∈ {∞X , 〈∞Y , k〉, 〈k, l〉, d0|k, l ∈ N}.
5. If α ∈ Dom(T) is a R-strategy, then for each subrequirement SW there is a

SW -strategy β ∈ Dom(T), a substrategy of α, such that α ⊂ β.
6. If β is a SW -strategy, substrategy of α, then α ⊆ β and under βˆ∞X and

β 〈̂∞Y , k〉 there aren’t any other substrategies of α.

The construction is on stages - on each stage we construct a set As – ap-
proximating A and a string δs ∈ dom(T) of length s. For every visited node
δ ⊆ δs of length n ≤ s we will build a corresponding set An

s , and then As = As
s.

Ultimately the set A will be the set of all natural numbers a, for which there
exists a step ta, such that ∀t > ta(a ∈ At). At the end of step s we initialize all
strategies δ > δs.

2.3 Interaction between strategies

In order to have any organization whatsoever we make use of a global parameter
– a counter b, whose value will be an upper bound of the numbers, that have
appeared in the construction up to the current moment.

1. First we will examine the interaction between a SW -strategy β and a GW -
strategy γ. The interesting cases are when γ ⊇ βˆ∞X and its similar one –
when γ ⊇ β 〈̂∞Y , k〉.
Let γ ⊇ βˆ∞X . When we visit β we add an element k to the set U . For it
there is an axiom 〈k,E′〉, recorded in a corresponding set U, and E′ ⊆ A
holds. It is possible that even on the same stage γ chooses a string µγ which
takes out of A an element from E′. If there aren’t any other axioms for k in
the corresponding approximation of Θ0, we we have an error in U . On the
next stage when we visit β we will find this error, choose an agitator for k
and move on to the right with outcome 〈∞Y , k〉. It is possible that later a
new axiom for k is enumerated in the corresponding approximation of Θ0

and thus the error in U is corrected. We return to our desire to make X-
c.e. But then another GW -strategy γ1 ⊇ γ chooses a string µγ1 and again
takes k out of U . If this process continues infinitely many times, ultimately
we will claim to have X = U , but k will be taken out of X infinitely many
times and thus our claim would be wrong. Then this SW requirement will
not be satisfied. This is why we will have to ensure some sort of stability for
the elements, that we put in U . This is how the idea for applying an axiom
arises. When we apply an axiom 〈k, E′〉 – we change the value of the global
parameter b, so that it is larger than the elements of the axiom. Then we
initialize those strategies, that might take k out of X.
The first thing that we can think of is to initialize all strategies δ ⊇ βˆ∞X .
This way we would avoid errors at all. If the set X is infinite though, we would
never give a chance to strategies δ ⊇ βˆ∞X to get satisfied. This problem
is solved with a new idea - local priority. Every GW - strategy γ ⊇ βˆ∞X

will have a fixed local priority regarding β, given by a computable bijection
σ : Γ → N,where Γ =

{
γ −GW strategy|γ ⊇ βˆ∞X

}
such that if γ ⊂ γ1,

then σ(γ) < σ(γ1). γ ⊇ βˆ∞X has local priority σ(γ) in relation to β.
When we apply the axiom 〈k,E′〉, only strategies γ of local priority lower
than k will be initialized. Then as the value of the stage increases, so do
the elements that we put into U , and with them grows the number of GW -
strategies, that we do not initialize. Ultimately all strategies will get a chance
to satisfy their requirements.

2. Now let us examine the interactions between two SW - strategies β β1. An
interesting cases is again β1 ⊇ βˆ∞X . Therefore let β1 ⊇ βˆ∞X ,let β1 be a
substrategy of α1 and α1 ⊂ β. It is possible that β1 chooses agitators Ek1 and
F k1

l1
and takes them out of A. The next stage on which β is visited, β might

like to build its own agitators that may include elements from Ek1 or F k1
l1

,
causing an error in the sets Φα1

0 and Φα1
1 . If β1 is visited again then it would

fix this mistake, by discarding the false witness. If not, the error would stay
unfixed - and the R- strategy α1 will not satisfy its requirement. In order to
avoid this situation we do two things. First we choose our agitators carefully:
along with the elements, needed two form the agitator with the requested
property, we will add also all elements of all agitators that were chosen and
out of A on the previous β - true stage. Thus the two agitators of β1 will not
be separated and will not cause an error like d1 /∈ Φα1

0 (X) and d1 ∈ Φα1
1 (Y)

in the corresponding sets. It is possible that on a later stage a new axiom for
k or l in the corresponding approximations of Θα1

0 or Θα1
1 appears, causing

one of the agitators to loose its control. If this happens - we might again
have the same error in Φα1

0 (X) and Φα1
1 (Y). Therefore we will connect a

structure with α1 - a list Watchedα1 in which we will keep track of all SW -
substrategies of α1 that do not have control over their agitator sets. Through
this list α1 can avoid any errors.

If a strategy δ is visited on a stage s, we connect to δ the set Eδ
s , that contains

all elements restrained out of A on this stage s by strategies δ′ ⊂ δ.

2.4 The Construction

At the beginning all nodes of the tree are initialized, b0 = 0, δ0 = ∅, A0 = N.
On each stage s > 0 we will have A0

s = N, δ0
s = ∅ and b0

s = bs−1
s−1.

Lets assume that we have already built δn
s , An

s and bn
s .

The strategy δn
s makes some actions and has an outcome o. Then δn+1

s = δn
s ô.

I. δn
s is a GW strategy γ.

bn+1
s = bn

s .

(a) If γ has been initialized on some stage after its last visit λγ = ∅. Then
define λγ so: λγ is a string of length bn

s + 1 and
λγ(a) ' 0, iff a ∈ Eγ

s

bn+1
s = bn+1

s + 1

(b) Ask if: ∃µ(λγˆµ ∈ W). If the answer is ”No” then: χγ = λγ , An+1
s =

An
s , all elements for which χγ(a) = 1 are restrained from γ in A, the

outcome is o = 1.
If the answer is ”Yes”, then µγ = the least µ, such that λγˆµ ∈ W .
χγ = λγˆµγ . bn+1

s = max(bn+1
s , lh(χγ + 1)). All a ∈ Dom(χγ) and such

that χγ(a) = 1 are restrained in A from γ. All a ∈ Dom(χγ) such
that a ≥ lh(λγ) and χγ(a) = 0 are restrained out of A from γ. An

s =
An+1

s \ {a| is restrained out of A from γ}, the outcome is o = 0.
II. δn

s is a R strategy α.
Then scan all substrategies β ,for which there is an element in the list
Watchedα.
Let 〈β,E, Ek, F k

l , d〉 ∈ Watchedα. Check if there is an axiom 〈k, E′〉 ∈ Θ0,
such that E′∩(E∪Ek) = ∅ or 〈l, F ′〉 ∈ Θ1, such that F ′∩(E∪Ek∪F k

l) = ∅. if
there is such an axiom then cancel d : Φ0 = Φ0∪{〈d, ∅〉}, Φ1 = Φ0∪{〈d, ∅〉}.
An+1

s = An
s , o = 0.

III. δn
s is a SW strategy β, substrategy of α .

First check if β is watched by α and delete the corresponding element from
Watchedα if there is one.
bn+1
s = bn

s

The outcome β depends on what the previous outcome o− was on the pre-
vious β- true stage s−.
(1) The outcome − is ∞X

a. Let k0 be the least k ∈ X\U . Here X = Θs
0(A

n
s). If there is such an

element, then there is an axiom 〈k0, E
′〉 ∈ Θs

0 with E′ ⊆ An
s . Then

U = U ∪ {k0} and U = U ∪ {〈k0, E
′〉}.

b. Proceed through the elements of U , until an elements that draws
attention, or until all elements are scanned.

Definition 3. An axiom 〈k,E′〉 ∈ Θ0 is applicable, if:
1. E′ ∩ Eβ

s = ∅
2. Let Γ be the set of these elements a, that are restrained out of A
from GW strategies γ ⊇ βˆ∞X of higher local priority than k. Let
Out1β

s = Γ\As−. Then E′ ∩Out1s = ∅.
An element k ∈ U draws attention, if there isn’t an applicable axiom
for it.
For each element k ∈ U act as follows:
A. If k doesn’t draw attention, find an applicable axiom for k -

〈k,E′〉, that has a minimal code. If the element for k in U is
different, replace it with 〈k,E′〉. If the axiom 〈k, E′〉 is not yet
applied, apply it.
If there aren’t any elements k that draw attention, then: An+1

s =
An

s , o = ∞X .
B. If k draws attention:

1.Examine all strategies
β′ ∈ O1 = {β′|β′ ⊇ βˆ∞X ∧ β′ 〈̂∞Y , k′〉 ⊆ δs−}

β′ is visited on stage s− and an agitator Ek′ is defined for it.
Let Eβ′ = Eβ

β′ ∪ E′
k, where Eβ

β′ = β′
s−\Eβ

s− - the elements,that
are restrained out of A from strategies below β, but above β′.
2. Examine all strategies
β′ ∈ O2 = {β′|β′ ⊇ βˆ∞X ∧ β′ 〈̂l′, k′〉 ⊆ δs−}
β′ is visited on stage s− and both agitators Ek′ and F k′

l′ and a
witness d′ are defined. Then let Eβ′ = Eβ

β′ ∪ Ek′ ∪ F k′
l′ , where

Eβ
β′ = β′

s−\Eβ
s−.

Add to the list Watchedα′ , where α′ is the superstrategy of β′

an element of the following structure:
< β′ : 〈β′s−, Ek′ , F

k′
l′ 〉, d′ >

The agitator for k is defined as follows:
Ek = (Out1β

s ∪
⋃

β′∈O1∪O2
Eβ′)\Eβ

s

All elements a ∈ Ek are restrained out of A from β. An+1
s =

An
s \Ek and o = 〈∞Y , k〉

(2) The outcome − is 〈∞Y , k〉.
a. Check if there is an axiom 〈k,E′〉 ∈ Θ0, such that ′ ∩ (Eβ

s ∪Ek) = ∅.
If so then act as in 4.a.

b. Let l0 be the least l ∈ Y \Vk. If there is such an element, then there is
〈l0, F ′〉 ∈ Θs

1 with F ′ ⊆ An
s \Ek. Vk = Vk∪{l0}, Vk = Vk∪{〈l0, F ′〉}.

c. Proceed throuhg the elements of Vk, until all are scanned, or until
an element that draws attention.
An axiom 〈l, F ′〉 ∈ Θ1 is defined to be applicable similarly to case
2.b with the additional requirement that F ′ ∩ Ek = ∅.
For each element l ∈ Vk:
A. If it doesn’t draw attention, find an applicable axiom with mini-

mal code 〈l, F ′〉. If the element for l in Vk is different, replace it
with 〈l, F ′〉. If the axiom 〈l, F ′〉 is not yet applied, apply it.
If none of the elements draw attention, then: An+1

s = An
s \Ek

o = 〈∞Y , k〉
B. If l draws attention:

1.Examine all strategies
β′ ∈ O1 = {β′|β′ ⊇ β 〈̂∞Y , k〉 ∧ β′ 〈̂∞Y , k′〉 ⊆ δs−}
β′ is visited on stage s− and an agitator Ek′ is defined for it. Let
Eβ′ = Eβ

β′ ∪ E′
k, where Eβ

β′ = β′
s−\Eβ

s− - the elements, that are
restrained out of A from strategies below β,but above β′.
2. Examine all strategies
β′ ∈ O2 = {β′|β′ ⊇ β 〈̂∞Y , k〉 ∧ β′ 〈̂l′, k′〉 ⊆ δs−}
β′ is visited on stage s− and both agitators Ek′ and F k′

l′ and a
witness d′ are defined. Then let Eβ′ = Eβ

β′ ∪ Ek′ ∪ F k′
l′ , where

Eβ
β′ = β′

s−\Eβ
s−.

Add to the list Watchedα′ , where α′ is the superstrategy of β′

an element of the following structure:
< β′ : 〈β′s−, Ek′ , F

k′
l′ 〉, d′ >

The agitator for l is:
F k

l = (Out2β
s ∪

⋃
β′∈O1∪O2

Eβ′)\(Eβ
s ∪ Ek)

All elements a ∈ (Ek ∪ F k
l) are restrained in A from β.

Find the least d /∈ L(Φ0). This will be a witness for the strategy.
Φ0 = Φ0 ∪ {〈d, {k}〉}, Φ1 = Φ1 ∪ {〈d, {l}〉}.
An+1

s = An
s , o = d0.

(3) The outcome o− is d0. Check if the witness d has been enumerated in
the c.e. set W .
If the answer is ”YES”, β restrains all elements a ∈ (Ek ∪ F k

l) out of .
An+1

s = An
s \(Ek ∪ F k

l), o = 〈l, k〉.
If the answer is ”NO” then:
An+1

s = An
s , o = d0.

(4) The outcome o− is 〈l, k〉. Then there are agitators Ek and F k
l and a

witness d.
a. Check for an axiom 〈k, E′〉 ∈ Θ0, such that E′ ∩ (Eβ

s ∪ Ek) = ∅.
If there is: cancel d, Vk = ∅. Replace the element for k in U with
〈k,E′〉. Apply the axiom 〈k, E′〉. All elements a ∈ Ek ∪ F k

l are not
restrained from β anymore. An+1

s = An
s , o = βˆ∞X . Proceed to the

next step.
b. Check for an axiom 〈l, F ′〉 ∈ Θ1, such that F ′∩(Eβ

s ∪Ek∪F k
l) = ∅. If

there is: cancel d. Replace the element for l in Vk with 〈l, F ′〉. Apply
the axiom 〈l, F ′〉. β stops restraining elements a ∈ F k

l . An+1
s =

An
s \Ek, o = β 〈̂∞Y , k〉. Proceed to the next step.

c. If not, then the agitators are still valid: An+1
s = An

s \(Ek ∪ F k
l) ,

o = 〈l, k〉

2.5 Proof

The proof of the theorem is divided into a number of groups of lemmas. The
first group concerns the construction. The lemmas from this group are more like
facts, that help the reader to get a more clear picture of the construction. The
second group of lemmas is about the restrictions – it gives a clear idea about
which elements are restrained and how this changes on the different stages.
The third group of lemmas is about the agitator sets. Its purpose is to prove
that the agitators have indeed the properties that we claim. Then follows the
group of lemmas about the true path. Finally come the lemmas that prove, that
the requirements are indeed satisfied. Here the final part of the proof will be
summarized.

The true path f is defined inductively as the most left infinite path in the
tree of strategies, for which

∀n ∞
∃ t(f ¹ n ⊆ δt)

As usual a second property of the true path is:

Lemma 1 (Most Left Lemma). ∀n∃tn∀t > tn(f ¹ n ≮L δt)

Unfortunately these two properties are not sufficient for the proof. The prob-
lem comes from the application of axioms. Even when a stage comes, at which
we are sure that for a certain n, f ¹ n can not be initialized from a strategy to the
left, strategies that are above it can still initialize it at a later stage. Therefore
another lemma is proved:

Lemma 2 (Stability Lemma). For every SW strategy β the following state-
ment is true:

1.If βˆ∞X ⊆ f , then for every k ∈ U there exists an axiom 〈k, E′〉 ∈ Θ0

and a stage tk, such that if t > tk and β is accessible on t with o− = ∞X ,
then 〈k, E′〉 is applicable for k and therefore k does not draw attention. For this
axiom 〈k, E′〉: E′ ⊆ A.

2.If β 〈̂∞Y , k〉 ⊆ f , then for every l ∈ Vk there exists an axiom 〈l, F ′〉 ∈ Θ1

and a stage tl, such that if t > tl and β is accessible on t with o− = 〈∞Y , k〉,
then 〈l, F ′〉 is applicable for l and therefor l does not draw attention. For this
axiom 〈l, F ′〉: F ′ ⊆ A.

Corollary 1.

∀n∃t∗n(f ¹ n is accessible on stage t∗n∧∀t > t∗n(f ¹ n is not initialized on stage t))

Finally we are ready to prove the most important result.

Lemma 3. Every R requirement is satisfied.

Proof. Let us look at one R requirement. Let α is the corresponding R - strategy
on the true path. The proof of the lemma is divided into the following three cases:

1. For all SW strategies β,that are substrategies of α

β ⊂ f ⇒ (∃k∃l(β 〈̂l, k〉 ⊂ f) ∨ β d̂0 ⊂ f)

In this case we prove Φα
0 (X) = Φα

0 (Y) = D and for each c.e. set W we have
a witness d such that with W (d) 6= D(d).

2. There is a SW strategy β, that is a substrategy of α for which:

β ⊂ f ∧ βˆ∞X ⊂ f

In this case we prove that X = U , end hence X is c.e.
3. There is a SW strategy β, which is a substrategy of α for which:

β ⊂ f ∧ ∃k(β 〈̂∞Y , k〉 ⊂ f)

In this case we prove that Y = Vk and hance Y is c.e.

Lemma 4. Every GW requirement is satisfied.

Proof. Let us look at a fixed GW requirement and let γ be the corresponding
GW strategy on the true path. On each stage t > t∗lh(γ), γ in not initialized and
has a constant string χγ . It can be proved that χγ ⊂ A. Then

1. If γ 1̂ ⊆ f , then χγ = λγ ⊆ χA and there is no extension χγ , that is in W .
2. If γ 0̂ ⊆ f , then χγ ∈ W .

References

1. K. Copestake, 1-genericity in the enumeration degrees, J. Symbolic Logic 53 (1988),
878–887.

2. S. B. Cooper, Andrea Sorbi, Angsheng Li and Yue Yang, Bounding and nonbounding
minimal pairs in the enumeration degrees, to appear in the J. Symbolic Logic.

3. R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Heidelberg,
1987.

4. S. B. Cooper, Computability Theory, Chapman & Hall/CRC Mathematics, Boca
Raton, FL, 2004.

5. P. G. Odifreddi, Classical Recursion Theory, Volume II, North-Holland/Elsevier,
Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo 1999.

