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1 Introduction

Sacks [14] showed that every computably enumerable (c.e.) degree > 0 has a
c.e. splitting. Hence, relativising, every c.e. degree has a Δ2 splitting above each
proper predecessor (by ‘splitting’ we understand ‘nontrivial splitting’). Arslanov
[1] showed that 0′ has a d.c.e. splitting above each c.e. a < 0′. On the other hand,
Lachlan [9] proved the existence of a c.e. a > 0 which has no c.e. splitting above
some proper c.e. predecessor, and Harrington [8] showed that one could take
a = 0′. Splitting and nonsplitting techniques have had a number of consequences
for definability and elementary equivalence in the degrees below 0′.

Heterogeneous splittings are best considered in the context of cupping and
noncupping. Posner and Robinson [13] showed that every nonzero Δ2 degree can
be nontrivially cupped to 0′, and Arslanov [1] showed that every c.e. degree > 0
can be d.c.e. cupped to 0′ (and hence since every d.c.e., or even n-c.e., degree has
a nonzero c.e. predecessor, every n-c.e. degree > 0 is d.c.e. cuppable). Cooper
[2] and Yates (see Miller [11]) showed the existence of degrees noncuppable in
the c.e. degrees. Moreover, the search for relative cupping results was drastically
limited by Cooper [3], and Slaman and Steel [15] (see also Downey [7]), who
showed that there is a nonzero c.e. degree a below which even Δ2 cupping of
c.e. degrees fails.

We prove below what appears to be the strongest possible of such nonsplitting
and noncupping results.

Theorem 1. There exists a computably enumerable degree a < 0′ such that
there exists no nontrivial cuppings of c.e. degrees above a in the Δ2 degrees
above a.

In fact, if we consider the extended structure of the enumeration degrees,
Theorem 1 is a corollary of the even stronger result:

Theorem 2. There exists a Π1 e-degree a < 0′
e such that there exist no non-

trivial cuppings of Π1 e-degrees above a in the Σ2 e-degrees above a.
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This would appear to be the first example of a structural feature of the
Turing degrees obtained via a proof in the wider context of the enumeration
degrees (rather than the other way round).

This can be seen as a first step towards using structural properties of the
enumeration degrees to obtain definability of natural relations over the Turing
degrees, where this cannot be got just within the Turing degrees. Whether such
relations exist is completely open, of course.

Notation and terminology below is based on that of [5].

2 Requirements and Strategies

We assume a standard listing of all quadruples (Ψ, Θ, U, W ) of enumeration op-
erators Ψ and Θ, Σ2 sets U and c.e. sets W . We will construct Π1 sets A and E
to satisfy the corresponding list of requirements:

NΨ : E �= ΨA

PΘ,U,W : E = ΘU,W ⇒ (∃Γ, Λ)[K = ΓU,A ∨ K = ΛW,A]

where ΓU,A, for example, denotes an e-operator enumerating relative to the data
enumerated from two sources U and A.

2.1 The simple NΨ -Strategy

The naive strategy to satisfy one N requirement is the simple Friedberg-Muchnik
strategy, we will denote it by (NΨ , FM). Select a witness x for NΨ and wait for
x ∈ ΨA. Then extract x from E while restraining each y ∈ A � use(Ψ, A, x),
where the use function use(Ψ, A, x) is defined in the usual way by use(Ψ, A, x) =
μy[x ∈ ΨA�y].

2.2 The naive PΘ-Strategy

We are presented with three options to satisfy a fixed P-requirement, say PΘ,U,W .
We start off by constructing an enumeration operator Γ meant to reduce K to
the set U ⊕ A and monitor the length of agreement between the sets E and
ΘU⊕W . The hope is that a bounded length of agreement function will be enough
evidence for an inequality between the sets E and ΘU⊕W .

We progressively try to rectify Γ at each stage by ensuring that n ∈ K ⇔ n ∈
ΓU,A for each n below l(E, ΘU,W ). The definition of the enumeration operator
Γ involves axioms of the form 〈n, U � u(n) + 1, A � γ(n) + 1〉 with two types
of markers u(n) and γ(n) ∈ A. Given a suitable choice of a marker γ(n) ∈ A if
n exits K, Γ can be rectified via A-extraction. So if the length of agreement is
unbounded we will construct the required reduction Γ .

Unfortunately using just any approximation to the Σ2 set U might prevent
us from being able to carry out this plan. We could have a bounded length of



agreement function even if E = ΘU,W . Moreover it is possible that at each stage
s the approximation Us � u(n) � U , so that we will not have a valid axiom for
n in Γ . Fortunately we can construct a special approximations to the sets U ,W
and U ⊕ W which behave nicely.

2.3 The Approximations

Consider a PΘ,U,W requirement.

Definition 1. We inductively say that a stage s + 1 is PΘ-expansionary if and
only if l(E[s + 1], ΘU,W [s + 1]) attains a greater value at stage s + 1 than at any
previous PΘ-expansionary stage.

To ensure that E = ΘU,W gives infinitely many expansionary stage, we need
an approximation (U⊕W )s = Bs to the set U⊕W = B, which should be a good
approximation (basically one with sufficient thin stages, in the sense of Cooper
[4]) as defined in [10]: i.e., it should have the following properties:

G1. ∀n∃s(B � n ⊂ BS ⊂ B) - such stages s are called good stages.
G2. ∀n∃s∀t > s(Bt ⊂ B ⇒ B � n ⊂ Bt)

On the other hand the approximation to the set U that is derived from this
via Us = {n|2n ∈ Bs} should still be a Σ2 approximation, and the derived
approximation to the set W should retain some stability – that is, under some
computable condition we must be sure that if some element n /∈ W s, then n /∈ W t

for all stages t > s.
First we will choose a more convenient enumeration of the triples 〈Θ, U, W 〉.

Fix an index a. Then all Σ2 sets U can be listed by the sequence {WK⊕Wa
e }e∈ω,

as the Σ2 sets are exactly the sets that are c.e. in K ≡T K ⊕ Wa. We obtain
the required enumeration by listing all triples of natural numbers (i, e, a) and
defining Θ = Wi, W = Wa and U = WK⊕Wa

e .
Given a requirement (e, a, i) we approximate K⊕Wa = C via a better approx-

imation as defined in [10]. A better approximation to the set C is a computable
sequence of finite characteristic functions αs, such that:

B1. ∀n∃s1,n(χC � n ⊂ αs1,n
⊂ χC)

B2. ∀n∃s2,n∀t > s2,n({n|αt(n) = 1} ⊂ C ⇒ χC � n ⊂ αt)

Consider Cs to be the standard approximating sequence to the c.e. set C =
K ⊕ Wa. And let aps = μm[m ∈ Cs\Cs−1], aps = s if Cs = Cs−1. It is not hard
to see that {αs} is a better approximating sequence to C, where α0 = ∅, and if
s > 0

αs =

⎧⎨
⎩

1 if n ∈ Cs,
0 if n /∈ CS and n < aps

not defined otherwise.

As for all t we have that {n|αt(n) = 1} ⊂ C, the second property of a better
approximating sequence can be improved to:



B2′. ∀n∃s2,n∀t > s2,n(χC � n ⊂ αt)

It follows that the value of aps will grow unboundedly as we progress with the
approximation.

Now we can approximate U via Us = Wαs
e,s , W via W s = {n|αs(2n + 1) = 0}

and B via Bs = Us ⊕ W s.

Proposition 1. W s is a good approximation to W . If n leaves the approxima-
tion on a stage t such that 2n + 1 < apt, i.e., n ∈ W t0 and on some stage t > t0
n /∈ W t, then for all s > t we would have n /∈ W s.

Proof. First note that if s is a stage such that αs ⊂ χC , then W s ⊂ W . Indeed
if n ∈ W s, then αs(2n + 1) = 0, hence χC(2n + 1) = 0 and χWa(n) = 0, which
implies W (n) = 1. So every better stage for αs is a good stage for W s.

Then let t be a stage such that all elements of B � n are already enumerated
in Bt. Then at stages s > t, aps > n. If n /∈ W s and 2n + 1 < aps, then
αs(2n + 1) = 1. Hence n ∈ C and it follows from the properties of a standard
approximation to a c.e. set and the definition of α, that n /∈ W t at any t > s.

G1. Fix n. Let sb1,2n+1 be the stage from the first property of the better ap-
proximation αs. Then χC � 2n + 1 ⊂ αsb1,2n+1 ⊂ χC . Then if m < n

and m ∈ W � n, then 2m + 1 < 2n + 1 and 2m + 1 /∈ C, then (χC �
2n + 1)(2m + 1) = 0 = αsb1,2n+1(2m + 1), and hence 2m + 1 ∈ W sb1,2m+1 .

G2. Fix n. Let s = sb2,2n+1. Then at stages t > s W � n ⊂ W t. If m ∈ W � n,
then (χC � 2n + 1)(2m + 1) = 0 = αt, hence m ∈ W t.

The proposition follows. ��

Proposition 2. Us is a good Σ2 approximation to U .

Proof. Again we first note that if αs ⊂ χC , then Us ⊂ U .
For each n, there is an m and an s such that U � n = WχC�m

e,s . Then if
t > max sb2,n, s, then χC � m ⊂ αt and hence U � n = WχC�m

e,s ⊂ Wαt
e,t = Ut.

This proves G2 and the fact that the approximation is Σ2.
For G1, choose t > max(sb1,m, s) to be a stage such that if αt ⊂ C then

Ut ⊂ U and U � n ⊂ Ut. ��

Proposition 3. Bs is a good approximation to B

Proof.G1: Fix n. Choose s′ to be the stage from the second property of a good
approximation to U for n/2 and s′′ to be the stage from the second property
of a good approximation to W for n/2. Then let s > max s′, s′′ be a stage
such that αs ⊂ χC . Then Ut ⊂ U and W t ⊂ W , hence Bs ⊂ B. On the
other hand s > s′ and U � n/2 ⊂ Us, s > s′′ and W � n/2 ⊂ W s. Hence
B � n ⊂ Bs.

G2: Proved easily as well using the stages from property G2 of the better ap-
proximations to U and W . ��



As a consequence of the properties of a good approximation we have the
following:

If ΘU,W = E, then there will be infinitely many expansionary stages, as
lim{s|s is a good stage}Θ

Us,W s = ΘU,W .
Moreover if n ∈ ΘU,W , then there is a stage s such that ∀t > s(n ∈ ΘUt,W t),

and if n /∈ ΘU,W then at good stages t we have n /∈ ΘU,W . Of course, it could
happen that the expansionary stages are not necessarily the good stages. And if
ΘU,W �= E, we could still have infinitely many expansionary stages.

2.4 The Basic Module for one P-requirement

We are now ready to define the basic module for a strategy to satisfy one P-
requirement. The strategy is going to construct an enumeration operator Γ and
will be called a (P, Γ )-strategy.

The (P, Γ )-strategy tries to maintain the equality between K and ΓU,A at
expansionary stages. It scans elements n < l(ΘU,W , E), fixing their axioms as
appropriate. Each such element n will have a current U -marker u(n), a current A-
marker γ(n) and a corresponding current axiom 〈n, U � u(n) + 1, A � γ(n) + 1〉.
If the current axiom is not valid and n ∈ K we will modify the current A-
marker and a new current axiom will be enumerated in Γ . We will progress the
approximation of the sets U , W and U ⊕W only at stages on which this strategy
is active. Also we examine the axioms in Γ for an element n < l(ΘU,W , E), n ∈ K
on each stage. In this way will be sure to catch the true approximation to the
set U � u(n), so that if u(n) remains constant, so will the axiom for n after a
certain stage. Note that if Us � u(n) = U � u(n) and the stage s is big enough so
that all elements of U � u(n) never leave the approximating sets, then at later
stages t we have U � u(n) ⊂ Ut � u(n) and the axiom will not be modified due
to U .

If n /∈ K we will make sure that n /∈ ΓU,A only on expansionary stages s by
extracting A-markers for axioms that are valid at s.

It may happen that the two strategies (PΘ, Γ ) and (PΘ, Λ) influence each
other by extracting markers from A. In order to prevent that we define two
non-intersecting infinite computable sets AG and AL for the possible values of
A-markers for (PΘ, Γ ) and (PΘ, Λ), respectively. Each time (PΘ, Γ ) defines a new
marker for some n, it defines γ(n) big (bigger than any number that appeared
in the construction until now and γ(n) ∈ AG).

We will describe the module in a more general way, so that we can use it
later in the construction involving all requirements.

The (P, Γ )-strategy: At stage s all parameters will inherit their values from
the previous true stage, unless otherwise specified. For this reason we omit the
indices that specify the stage. At stage s we do the following:

1. If the stage is not expansionary, then o = l, otherwise o = e



2. Choose n < l(ΘU,W , E) in turn (n = 0, 1, . . . ) and perform the following
actions:

– If u(n) ↑, then define it new as u(n) = u(n− 1)+1 (if n = 0, then define
u(n) = 1). If u(n) is defined, but aps < u(n) skip to the next element.

– If n ∈ K

• If γ(n) ↑, then define it anew and enumerate into Γ a new axiom
〈n, (U � u(n) + 1, AG � γ(n) + 1)〉 ∈ Γ .

• If γ(n) ↓, but Γ (U,A)(n) = 0, then define γ(n) anew and define an
axiom 〈n, (U � u(n) + 1, AG � γ(n) + 1)〉 ∈ Γ .

– If n /∈ K, but n ∈ Γ (U,A) and the stage is expansionary, then look through
all axioms defined for n and extract the A-marker for any axiom that is
valid.

Note that if n /∈ K, then we will enumerate only finitely many axioms for n
in Γ and hence extract only finitely many markers from A.

2.5 NΨ below PΘ

Consider an N -requirement, say NΨ , working below one P-requirement PΘ. The
simple strategy described in Section 2.1 will now not succeed. The A-restraint
for NΨ following the extraction of x from E conflicts with the need to rectify
ΓΘ. We design a new strategy for NΨ denoted by (NΨ , Γ ) which resolves this by
choosing a threshold d, and trying to achieve γ(n) > use(Ψ, A, x) for all n � d
at a stage previous to the imposition of the restraint.

Definition 2. Let Φ be an enumeration operator and A a set. We will consider
a generalised use function ϕ defined as follows:

ϕ(x) = max
{
use(Φ, A, y)|(y ≤ x) ∧ (y ∈ ΦA)

}

We try to maintain θ(x) < u(d), in the hope that after we extract x from E,
each return of l(E, ΘU,W ) will produce an extraction from U � θ(x) which can
be used to avoid an A-extraction in moving γ(d).

In the event that some such attempt to satisfy NΨ ends with a W � θ(x)-
change, then we will implement a backup strategy (PΘ, Λ) which is designed to
allow lower priority N -requirements to work below the (PΘ, Γ )-activity, using
the W � θ(x)-changes to move Λ-markers. Each time we progress the (PΘ, Λ)-
strategy, we cancel the current witness for (NΨ , Γ ) – and if this happens infinitely
often, NΨ might not be satisfied. This means that (PΘ, Λ) must be accompanied
by an immediately succeeding copy (NΨ , Λ), say, designed to take advantage
of the improved strategy for NΨ without any other PΘ′ intervening between
(NΨ , Γ ) and (NΨ , Λ).



Module for (NΨ , Γ ): Similarly, we will define this module in a more general
way, so that it is valid for all N -strategies working below one P-strategy. To do
this we will incorporate a parameter R which indicates that the strategy can
safely assume B � R does not change due to the activity of other N -strategies.
The precise definition of R is going to given later.

The basic module acts only at PΘ-expansionary stages. If there are only
finitely many expansionary stages, then PΘ is trivially satisfied and NΨ moves
to a truer path through the tree of outcomes.

If the threshold d enters the set K, then we shift its value to the next possible
one, that is to the least n > d such that n ∈ K. Then we will restart this
strategy by choosing a new witness and initializing strategies in the subtree of
this strategy . As K is coinfinite this process will converge and we will eventually
have a constant threshold d.

If at any stage a marker has been extracted from A for some element n < d
then we restart the strategy as well. Notice that once the threshold remains
permanent, there are only finitely many axioms that can restart the strategy –
hence this could happen finitely many times.

– Initialization

1. If a threshold has not yet been defined or is cancelled, choose a new
threshold d bigger than any defined until now, with d > l(ΘU,W , E).

2. If a witness has not yet been defined or is cancelled, choose a new witness
x ∈ E, d < x, bigger than any witness defined previously. Wait for
x < l(ΘU,W , E). (o = w)

3. For every element y ≤ x, y ∈ E enumerate into the list Axioms the
current valid axiom from Θ, which has been valid the longest. That is,
for each axiom Axy ∈ Θ for y let

tAxy
= μr[∀t(s ≥ t ≥ r ⇒ the axiom Ax was valid at stage t)],

and then choose the axiom with least axy.
4. Extract all A-markers defined for the threshold d. We will modify the

definition of θ(x) once again to incorporate the list Axioms, namely
θ(x) = max(

⋃
Axioms). Define u(d) new, bigger than θ(x). Notice that

this makes all axioms for elements n ≥ d invalid. Axioms defined at
further stages will have the property that their U -part will include the
U -part of the axioms in the list Axioms.

– Honestification

Scan the list Axioms. If for any element y ≤ x, y ∈ E, the listed axiom was
not valid on some stage after this strategy was last active, then update the
list Axioms, letting (o = h) and
1. Extract from A all A-markers of axioms defined for the threshold d.

Redefine u(d) new, bigger than θ(x).
2. Cancel all markers u(n) for n > d and n ∈ K.

Otherwise go to:



– Waiting
If Γ is honest (that is, u(d) > θ(x)), and all the axioms enumerated in
Axioms have remained unchanged since the last stage, then wait for x ∈ ΨA

with use(Ψ, A, x) < R, returning at each successive stage to Honestification
(o = w).

– Attack
1. If x ∈ ΨA and u(d) > θ(x), then extract x from E and restrain A on

use(Ψ, A, x). (o = g)
2. Wait until the length of agreement has returned and aps > θ(x). Notice

that the operator Γ will not be modified until such a stage is reached,
since we require aps > u(n) to consider an element n, and for all elements
n ≥ d we have that u(n) > θ(x).

– Result
Let x′ ≤ x be the least element that has been extracted from E during
the stage of the Attack. Call it the attacker. When the length of agreement
returns x′ /∈ ΘU,W . Hence all axioms for x′ in Θ are not applicable, in
particular the one enumerated in Axioms, say 〈x′, Ux′ ,W x′〉. At least one
element has been extracted from Ux′ or W x′ .
If no element has been extracted from W x′ then the attack is successful
and the activity at (PΘ, Γ ) lifts the γ-markers of all elements greater than d
above the restraint to maintain A � use(Ψ, A, x) unchanged. Note that this
change affects all axioms defined in Γ for n ≥ d, because we insured that all
possibly valid axioms in Γ , old and current, contain as a subset Ux′ . If the
change in Ux′ is permanent, then this will lead to success for NΨ . Otherwise
the attack is unsuccessful and we are forced to capriciously destroy Γ by
extracting markers γ(d) from A and to start over with a bigger witness.
This is necessary in order to provide a safe working space for the backup
strategies (P, Λ) and (NΨ , Λ).

1. Unsuccessful attack. Extract all A-markers for axioms defined for the
threshold d from A Cancel γ(n) for n ≥ d. Remove the restraint on A.
Cancel the current witness x. Return to Initialization at the next stage
(choosing a new big enough witness) (o = g).

2. Successful attack. All valid axioms in Γ for n ≥ d are with γ(n) >
use(Ψ, A, x). (o = f) Return to Result at next stage. Note that we will
keep returning to Result at all further stages. Hence if it later on turns
out that W does change, we will re-evaluate the attack as unsuccessful
and proceed with a new cycle of this strategy - choosing a new witness.

Analysis Of Outcomes – PΘ has two possible outcomes:

[l] - there is a stage after which l(ΘU,W , E) remains bounded by its previous
expansionary value, say L. Then PΘ is trivially satisfied. In this case we imple-
ment a simple “Friedberg- Muchnik” strategy for NΨ working with boundary
R = ∞. Notice that in this case the only elements that can initialize the subtree
below outcome l are the ones < L, hence finitely many times.



[e] - infinitely many expansionary stages, on which (NΨ , Γ ) acts:
The possible outcomes of the (NΨ , Γ )-strategy are:
[w]- There is an infinite wait at Waiting for ΨA(x) = 1. Then NΨ is satisfied

because E(x) = 1 �= ΨA(x) and the ΓΘ-strategy remains intact. Successive
strategies work below R = ∞.

[f] - There is a stage after which Success applies exclusively. At sufficiently
large stages K � d has its final value. So there is no injury to the outcomes
below f , ΨA(x) = 1, NΨ is satisfied, leaving the ΓΘ-strategy intact. Successive
strategies work below R = ∞.

[h] - There are infinitely many occurrences of Honestification, precluding an
occurrence of Attack. Then there is a permanent witness x, which has unbounded
limsupθ(x). This means that ΘU,V (y) = 0, for some y ≤ x,y ∈ E, thus PΘ is
again satisfied. In this case we also implement a simple “Friedberg-Muchnik”
strategy for NΨ working below R = γ(d).

[g]- We implement the unsuccessful attack step - infinitely often. As antic-
ipated we must activate the ΛΘ,Ψ -strategy for PΘ. NΨ is not satisfied, but we
have a copy of NΨ designed to take advantage of the switch of strategies for PΘ

below NΨ . It works below R = x.

Module for the (PΘ, Λ)-strategy: Notice that the outcome g is visited in
two different cases - at the beginning of an attack and when the attack turns out
to be unsuccessful. The first case starts a nonactive stage for the subtree below
g, allowing the other N -strategies to synchronize their attacks. The second case
starts an active stage for the strategies in the subtree below g.

The (PΘ, Λ) (call it) acts only on active stages in a similar but less compli-
cated way than (PΘ, Γ ). Also notice that this strategy is visited only on expan-
sionary stages.

1. Choose n < l(ΘU,W , E) in turn (n = 0, 1, . . . ) and perform following actions:
– If w(n) ↑, then define it new as w(n) = w(n − 1) + 1. If w(n) is defined,

but aps < w(n) skip to the next element.
– If n ∈ K

• If λ(n) ↑, then define it anew and define an axiom 〈n, (W � w(n) +
1, AL � λ(n) + 1)〉 ∈ Λ.

• If λ(n) ↓, but ΛW,A(n) = 0 then define λ(n) anew and define an
axiom 〈n, W � w(n) + 1, AL � λ(n) + 1〉 ∈ Λ. Note that in this case
the old axiom is not valid. If this is due to a change in A below the
old λ(n), then this axiom will never be valid again. If this is due to
a change in W then the axiom was enumerated on a stage t such
that apt > w(n). Some element that at stage t was assumed to be
in W � w(n) has now left W . Proposition 1 from the section on the
approximations tells us that this element will never again appear in
the approximations of W and hence the axiom will never again be
valid.

– If n /∈ K, but n ∈ ΛW,A then extract λ(n) from A.



Module for (NΨ , Λ): This strategy is similar to that for (NΨ , Λ), and it has
a threshold (d̂, say) and a witness (x̂). It acts mainly on active stages. The only
action that is performed on a nonactive stage is the attack.

On active stages: If d̂ has entered K then shift the value of d̂ to the next
possible value and restart the strategy.

If a λ-marker for some element n < d̂ has been extracted from A, since the
last stage at which this strategy was active then restart the strategy.

– Initialization
1. Choose a new threshold d̂, bigger than any defined previously, such that

d̂ > l(ΘU,W , E).
2. Choose a new witness x̂ ∈ E, such that d̂ < x̂, bigger than any witness

defined until now. Note that the (NΨ , Γ )-strategy has just cancelled its
witness and will define its next witness x after x̂ has been defined so
x̂ < x.

3. Wait for x̂ < l(E, ΘU,W ). (o = w)
4. For every element y ≤ x̂, y ∈ E enumerate in the list Axioms the

current valid axiom from Θ, that was valid longest. Extract λ(d̂) from
A and cancel w(n) for n ≥ d̂ and n /∈ K. Define w(d̂) to be greater than
θx̂.

– Honestification
On active stages:
If for y ≤ x̂, y ∈ E, the corresponding axiom in Axioms is not valid, then
update the list and let (o = h), then
1. Extract λ(d̂) from A . And redefine w(d̂) to be bigger than its previous

value and θ(x̂).
2. Cancel all markers w(n) for n ≥ d̂, n /∈ K.

– Waiting
If Λ is honest, i.e. w(d̂) > θ(x̂), and the list Axioms has remained the same
since the last stage on which this strategy was active, then wait for x̂ ∈ ΨA,
with use(Ψ, A, x̂) < R returning at each successive step to Honestification
(o = w).

– Attack
1. Wait for a nonactive stage (o = w). This synchronizes the attacks of the

two strategies (NΨ , Γ ) and (NΨ , Λ).
2. If Λ is honest, then extract x̂ from E.

– Result
The next stage at which this strategy will be accessible will be an unsuc-
cessful attack for (NΨ , Γ ), hence if the strategy does not get initialized due
to a K � d̂-change, there will be a W � θ(x̂)- change:
Notice that x̂ < x, so that the attacker x′ ≤ x̂ < x for this strategy is the
same as the attacker for (NΨ , Γ ). This outcome is visited on unsuccessful
attacks, which means that W � θ(x′) has changed, but θ(x′) ≤ θ(x̂), hence
W � θ(x̂) has changed as well. Hence at the next accessible stage we can
simple assume:
Successful attack : Return to Result at the next stage. (o = f)



Analysis Of Outcomes: The possible outcomes of the (NΨ , Λ)-strategy are
[w], [f], and [h], exactly corresponding to the outcomes [w],[f] and [h] of (NΨ , Γ ).
Note that in each of these outcomes we will either have satisfied the requirement
PΘ, and can implement a simple “Friedberg-Muchnik” strategy to satisfy NΨ ,
or have that NΨ is satisfied while the Λ-strategy for PΘ remains intact.

The tree of outcomes at this point looks as follows:

(PΘ,Γ )

l - (NΨ ,FM)

wf

e-(NΨ ,Γ )

wfh - (NΨ ,FM)

wf

g-(PΘ,Λ)

(NΨ ,Λ)

wfh- (NΨ ,FM)

wf

It is worth noticing that the outcomes on the tree, strictly speaking, are out-
comes relating to strategies, rather than outcomes telling us exactly how the re-
quirement is satisfied. And these subsume the case relating to the P-requirements
when E �= ΘU,W but there are infinitely many expansionary stages. This case
only needs to be specially factored in when one considers in the verification what
the strategies deliver.

3 All requirements

When all requirements are involved the construction becomes more complicated.
We will start by describing the tree of outcomes.

The requirements are ordered in the following way:

N0 < P0 < N1 < P1 . . .

Each P-requirement has at least one node along each path in the tree. Each
N -requirement has a whole subtree of nodes along each path, the size of which
depends on the number of P-requirements of higher priority.

Consider the requirement Ni. It has to clear from A the markers of i P-
requirements P0,P1, . . .Pi−1. Each of them can follow one of the three strategies
(NΨ , Γi), (NΨ , Λi) or (NΨ , FMi). There will be nodes for each of the possible
combinations in the subtree.



We distinguish between the following strategies:

1. For every Pi-requirement we have two different strategies: (Pi, Γ ) with out-
comes e <L l and (Pi, Λ) with one outcome s.

2. For every Ni-requirement, where i > 0, we have strategies of the form
(Ni, S0, . . . Si−1), where Sj ∈ {Γj , Λj , FMj}. The requirement N0 has one
strategy (N0, FM). The outcomes are f , w and for each j < i if Sj ∈ {Γj , Λj}
there is an outcome hj , if Sj = Γj , there is an outcome gj . They are ordered
according to the following rules:

– For all j1 and j2, gj1 <L hj2 <L f <L w

– If j1 < j2 then gj2 <L gj1 and hj1 <L hj2 .

Let O be the set of all possible outcomes and S be the set of all possible
strategies.

Definition 3. The tree of outcomes is a computable function T : D(T ) ⊂ O∗ →
S which has the following properties:

1. T (∅) = (N0, FM)
2. T (α) = S and OS is the set of outcomes for the strategy S, then for every

o ∈ OS, αˆo ∈ D(T ).
3.If S = (Ni, S0, S1, . . . , Si−1), then
T (αˆgj) = (Pj , Λj) and T (αˆgj ŝ) = (Pj+1, Γj+1) . . . T (αˆgj ŝ̂ oj+1ˆoi−2) =

(Pi−1, Γi−1), where ok ∈ {ek, lk} for j + 1 ≤ k ≤ i − 2.
All this means that, under an outcome gj the strategy Pj starts its work on

building the second possible functional Λj, and all strategies Pk for k > j start
their work from the beginning, i.e., start building the functional Γk again.

T (αˆgj ŝ̂ oj+1ˆoi−1) = (Ni, S0, . . . , Λj , . . . , Si−1), where Sk = Γk if ok = ek

and Sk = FMk if ok = lk for every k such that j < k < i.
Then there is a copy of the strategy Ni which starts work with the old strate-

gies Sl for l < j and the new strategies Sk for k ≥ j.
To illustrate this complicated definition here is a picture of this part of the

tree in the simpler case of only two P- requirements.

(N2,Γ0, Γ1)

wfh1h0g0-(P0,Λ0)

s-(P1,Γ1)

l-(N2,Λ0,FM1)e -(N2,Λ0,Γ1)

g1-(P1,Λ1)

s- (N2,Γ0,Λ1)



The tree under outcome hj is built in a similar fashion.
T (αˆhj) = (Pj+1, Γj+1) . . . T (αˆhjˆoj+1ˆoi−2) = (Pi−1, Γi−1), where ok ∈

{ek, lk} for j + 1 ≤ k ≤ i − 2.
Hence all strategies Sk for k > j start their work from the beginning, building

a new functional Γk.
T (αˆhjˆoj+1ˆoi−1) = (Ni, S0, . . . , FMj , . . . , Si−1), where Sk = Γk if ok = ek

and Sk = FMk if ok = lk for every k such that j < k < i.
T (αˆf) = (Pi, Γi)
T (αˆw) = (Pi, Γi)
Say S = (Pi, Γ ), and α = α′ˆf or α = α′ˆw, and T (α′) = (Ni, S0, S1, . . . , Si1).

It follows that this is not the case described and (Pi, Γ ) appears for the first time,
and then

T (α ê) = (Ni+1, S0, . . . , Si−1, Γi)
T (α l̂) = (Ni+1, S0, . . . , Si−1, FMi).

3.1 Interaction between strategies

In order to prevent unwanted interaction between the different strategies on
different nodes we will do the following:

Different P-strategies define and extract different A-markers at stages of the
construction. Extraction of markers for one P-strategy may influence the validity
of axioms for another P-strategy. Again we deal with this problem by separating
the A-markers for the different possible strategies. We have countably many
different nodes in the tree of outcomes, whose values are P-strategy . For each
such node α we define an infinite computable set Aα, from which the strategy
T (α) can choose A-markers. If α �= β then Aα ∩ Aβ = ∅.

Similarly we define separate non-intersecting sets Dα and Xα for the different
nodes on the tree which are labelled with N - strategies, from which they choose
their thresholds and witnesses.

As usual we give higher priority to nodes that are to the left or higher up in
the tree of strategies. This is achieved by two forms of initialization.

1. On each stage initialization is performed on all nodes that are bigger than
the last node visited on that stage. We initialize a (P, Γ )-node by setting
Γ = ∅, all markers being undefined .
A (P, Λ)-node is initialized by setting Λ = ∅, again, with all markers unde-
fined.
An (N , S1, S2, . . . , Si)-node is initialized by cancelling all thresholds and the
witness. The next time it is visited, it starts from Initialization.

2. The second case when initialization is performed is the following:
Every strategy α with T (α) = (Ni, S1, . . . , Sj , . . . , Si−1) has a threshold dj

for each strategy Sj �= FMj . The active Pj-strategy at α will be the biggest
Pj-strategy β ⊂ α.
For each j ∈ {i − 1, i − 2, . . . 0} in that order we perform Checkj at the
beginning of each α-true stage s. Suppose the previous α-true stage is s−
Checkj : If an Aj-marker for an element n ≤ dj has been extracted by the
active Pj-strategy at a stage t such that s− < t ≤ s. Then



(a) Initialize all strategies below α′s outcomes that assume that dj is per-
manent, i.e. below outcomes w, f, hk where k < i and gl where l ≤ j.

(b) If dj ∈ K then shift the values of the thresholds dj and dl, where l ≤ j.
(c) If at stage s− α had not yet started an attack, or if the attack initiated a

nonactive stage for strategies below outcomes gl where l ≤ j, then cancel
the current witness and start from Initialization.

(d) If at stage s− α had started an attack, initiating a nonactive stage for
strategies below gl where l > j, then continue to evaluate Result.

It will be useful to define a notion of dependency between the different N -
strategies. This is important for the synchronization of the attacks.

Definition 4. 1. A node α with T (α) = (Ni, S0, S1, . . . Si−1) depends on node
β ⊂ α, if α ⊇ βˆgj for some j.

2. A node α is independent if it is not dependant on any node β ⊂ α.

In case α is dependent, let insα be the biggest node on which it depends.
The α must time its attacks with the attacks performed by β. That is, whenever
α is ready to attack, it waits for a β-nonactive stage, and attacks on that stage.
All the rest of the activity by α is performed only on active stages. Note that if
β ĝj is on the true path, then there will be infinitely many β-nonactive stages
on which β ĝj is visited.

3.2 The construction

Suppose α is a P-node. We will denote with Mα, mα, Zα and zα: Γα, γα, Uα and
uα respectively if α is a (PΘ, Γ )-strategy and Λα,λα,Wα and wα respectively if
α is a (PΘ, Λ)-strategy. The same notation is valid for an N -requirement and
the corresponding Si-strategy.

On each stage s of the construction we build inductively a string δs ∈ D(T )
of length s, by visiting nodes from the tree starting from the root and acting
according to their corresponding strategies. Each visited node will will select its
outcome, determining the next node to be visited and a right boundary R.

δs(0) = ∅ and R∅ = ∞.
Let δs � n = α. And let s− be the previous α-true stage.

1. T (α) = (Pi, Γ ) on active stages we perform the actions as stated in the main
module. δs(n + 1) = l at non-expansionary stages. At expansionary stages
δs(n + 1) = e.
At nonactive stages no actions are performed. The outcome is os−. The right
boundary Rαˆδs(n+1) is the same as the boundary for α.

2. T (α) = (Pi, Λ) on active stages we perform the actions as stated in the main
module. δ(n + 1) = s.
At nonactive stages no actions are performed, δ(n + 1) = s.
The right boundary Rαˆδs(n+1) is the same as the boundary for α.

3. T (α) = (Ni, S0, . . . , Si−1)



– Initialization
On active stages:
Each strategy Sj �= FMj picks a threshold if it is not already defined.
The different thresholds must be in the following order:

di−1 < di−2 < · · · < d0 < R

Strategy Sj picks its threshold so that it is bigger than any threshold it

has picked before and the length of agreement l(ΘUj ,W j

j , E).
After all thresholds have been chosen, the strategy picks a witness x ∈ E,
bigger than any witness used until now and such that d0 < x. Then waits
until l(E, Θ

Uj ,W j

j ) > x for all j < i. δ(n+1) = w, working below R = Rα.

On the first stage on which l(E, Θ
Uj ,W j

j ) > x for all j < i, extract all A-
markers for all axioms defined for all thresholds dj in the corresponding
active operator Sj , cancel all j-markers n ≥ dj and let zj(dj) > θj(x),
where zj = uj if Sj = Γj and zj = wj if Sj = Λj .
For every element y ≤ x, y ∈ E, enumerate in the list Axiomsj the
current valid axiom from Θj that has been valid longest.
Go to honestification at the next stage. Notice that this guarantees
that any axiom 〈n, Zn, An〉 enumerated in Sj for an element n ≥ dj ,
n ∈ K, will have the property that for any y ≤ x, x ∈ E, with axiom
〈y, Uy, Wy〉 ∈ Axiomsj , we will have that Zy ⊂ Zn, where Z = U , if
Sj = Γj and Z = W if Sj = Λj .
δ(n + 1) = h, working below R = Rα.

– Honestification
On active stages:
Scan all strategies from the list S0 . . . Si−1 in turn (j = 0, 1, . . . i − 1).
Perform Honestificationj from the main module for each Sj �= FMj .
If the outcome of Honestificationj is w go on to the next strategy. If
it is h, then for all k > j extract all A-markers of axioms defined for
dk and define zk(dk) > θk(x). Cancel all k-markers for n ≥ dk. The
outcome is δ(n + 1) = hj working below R = min(Rα, γ(dj))). Start
from Honestification at the next stage.

– Waiting.
If all outcomes of all Honestificationj-modules are w, i.e all enumera-
tion operators are honest, then wait for x ∈ ΨA

i with use(Ψ, A, x) < Rα.
f(n + 1) = w, working below R = Rα. Return to Honestification at
the next stage.

– Attack

(a) If α is dependant, then wait for a insα - nonactive stage. δ(n+1) = w,
working below R = Rα.

(b) If x ∈ ΨA, all operators are honest, then extract x from E and re-
strain A on use(Ψ, A, x). This starts a nonactive stage for the strate-
gies below the most recently visited outcome gj (if none has been



visited until now, then g0) working below the boundary it worked in
before. The only thing that they can do at this stage is attack with
their own witnesses.

– Result

Wait until the length of agreement has returned for all strategies and
they have been visited at an expansionary stage s with ap

Uj ,Wj
s > θj(x).

Let the attacker x′ at this stage be the least element extracted during
the attack with entry 〈x′, Uj(x′), W j(x′)〉 in the list Axiomsj , and let
L be the largest restraint imposed on A during the attack. Note that
if α is dependant then the attacker for this strategy and the ins(α) is
the same. Scan all strategies S0, . . . Si−1 in turn, starting with S0 and
perform the corresponding Result(j) on each.

Result(j):

• If Sj = FMj or Sj = Λj , then go to Result(j + 1).
• If Sj = Γj and one of the following two conditions is true:

(a) There was a change in Wj(x′), i.e Wj(x′) � Wj [s].
(b) For some k < j an A-marker m(n) of an element n, where n < dk

was extracted by the active Pk-strategy and m(n) < L.

Then extract γj(dj) from A. In addition for k < j cancel the thresh-
olds dk. For l > j cancel all A-markers for dl and extract them from
A. Cancel the witness. Start from Initialization at the next stage.
δ(n + 1) = gj , working below R = min(x, Rα).

• Otherwise the attack is successful. Go to Result(j + 1).

Result(i) is reached only in case all attacks were successful.
Then δ(n + 1) = f , working below R = Rα. Return to Result(0) at the
next stage.

3.3 The true path

The true path is defined to be the leftmost path of nodes on the tree that are
visited infinitely many times. Such a path exists, because the tree is finitely
branching. More precisely it has the following properties:

Definition 5. The true path f is a maximal linearly ordered subset of D(T )
such that:

1. ∀n
∞
∃ s(f � n ⊆ δs)

2. ∀n∃sn∀s > sn(δs �<L f � n)

We prove that the strategies along the true path satisfy their requirements.
To do this we have to first establish that these nodes eventually do not get
initialized. The leftmost property of the true path deals with the first case of
initialization, but not the second. So we prove the following lemma.



Lemma 1. For every n there is a stage sn such that f � n does not get initialized
after stage sn.

Proof. We will prove this by induction on the number n.
The first case n = 0 is trivial, as the root of the tree is never initialized.
Assume that the lemma is true for numbers k ≤ n. Let s1 be a stage such

that at stages t > s1, f � n is not initialized and δt ≮L f � (n + 1). We will
consider the different cases depending on the type of the strategy f � n.

1. T (f � n) = (Pi, Si), where Si ∈ {Γi, Λi}. In this case the strategy f � (n+1)
will not be initialized at further stages and sn+1 = s1.

2. T (f � n) = (Ni, S0, . . . , Si−1). Now there are different cases according to the
outcome o along the true path. Starting from the most left, we will examine
each of them.
If o = gi−1, then after stage s1 the threshold di−1 can only change if di−1 /∈
K, and in this case we will choose the next threshold to be di−1 +1. As K is
infinite there will be a stage s2 ≥ s1 after which di−1 will remain fixed. Let
s3 be a stage after which K � (di−1 +1) remains unchanged, i.e. no numbers
n ≤ di−1 enter K after stage s3. At this stage there are finitely many axioms
enumerated in Γ for elements n ≤ di−1, n ∈ K. And at further stages
no new axioms are enumerated for these elements. The markers of these
finitely many axioms are the only ones whose extraction from A will force
f � n ĝi−1 to be initialized. Let s4 be a stage by which all of the finitely
many markers that get extracted from A are already extracted. Then at
stages t > sn+1 = max(s1, s2, s3, s4), f � (n + 1) will not be initialized.
If o = gj , then similarly after some stage s2 ≥ s1 all thresholds dk for
k ≥ j will remain fixed, as in order to cancel dk we need to pass through
an outcome gl with l > k and hence to the left of gj . But this will not
happen according to our choice of stage s1. Let s3 be a stage after which
K � (max(dj , . . . di−1) + 1), does not change. Again, by that time there are
finitely many axioms enumerated in each of the operators Zk, j ≤ k ≤ i− 1,
for elements n /∈ K. Hence there are finitely many markers whose extraction
from A could initialize f � (n + 1). Let s4 be a stage by which all of these
finitely many markers that ever get extracted from A are already extracted.
Then after stage sn+1 = max(s1, s2, s3, s4), we have that f � (n+1) will not
be initialized.
If o ∈ {w, s, hj |j < i}, then after stage some stage s2 ≥ s1 all thresh-
olds remain unchanged and there is a certain stage s3 after which K �
(max(d0, . . . , di−1) + 1) remains unchanged, and a stage s4, after which no
more mj-markers for elements less than or equal to dj will be extracted from
A. Then after stage sn+1 = max(s1, s2, s3, s4), f � (n+1) will not be initial-
ized. ��

We turn our attention to the P-requirements. First we establish that P-
strategies along the true path will succeed in finding a true axiom for each of
the elements n ∈ K.



Proposition 4. Let Θi(Ui, Vi) = E and α ⊂ f .

1. Suppose α = (Pi, Γi). And suppose that for some element n ∈ K the current
U -marker and the γ-marker for each m ≤ n is not changed by any other
strategy. Then α will stop changing the current marker eventually, and then
n ∈ ΓUi,A

i .
2. Suppose α = (Pi, Λi). And suppose that for some element n ∈ K the current

W -marker and the λ-marker for all m ≤ n are not changed by any other
strategy. Then α will stop changing the current marker eventually and then
n ∈ ΛW i,A

i .

Proof. The proof is by induction on n. Suppose the lemma is true for all m < n.
Then:

1. Suppose u(n) remains the same after stage t, the axioms for elements m < n
do not change anymore and any such m ∈ K is already in Kt and all markers
that get extracted due to m are already extracted. We will use what we know
about the approximation to the set U (we are omitting the index i as we
will be talking only about the set Ui,W i, Θi), namely that it is Good and
Σ2. There will be a stage t1 > t such that:

Good: (∀t > t1)[t ∈ G ⇒ U � u(n) = Ut � u(n)].

Σ2: (∀s > t1)[U � u(n) ⊆ Us].

We proved that Us ⊕ W s is a good approximation to U ⊕ W and hence
that if x ∈ ΘU,W , then there is a stage s such that ∀t > s(x ∈ ΘUt,W t)
and if x /∈ ΘU,V then on good stages t x /∈ ΘU,V . It follows that as E =
ΘU,V for any number x there will be a stage s such that on all good stages
t > s, l(ΘU,V [s], E[s]) > x. The last thing to mention is that aps grows
unboundedly.
So there will be a good stage t2 > t1 at which n < l(ΘU,W , E) and u(n) <
apt2 . At this stage we will examine the current axiom for n in Γ , say
〈n, Un, AG � m + 1〉. If it is valid, then Un ⊂ Ut2 = U � u(n). And hence at
all stages s > t2, we have Un ⊂ Us. If it is not valid, then we will enumerate
a new axiom 〈n, Ut2 � u(n), AG � γ(n) + 1〉, and for this axiom we will have
that at all stages s > t2, Ut2 � u(n) ⊂ Us. In both cases the marker γ(n) will
not be moved at any later stage. And the axiom remains valid forever, and
hence n ∈ ΓU,A

2. Suppose w(n) remains constant after stage t1, the axioms for elements m < n
do not change anymore and any m ∈ K is already in Kt and all markers that
get extracted due to m are already extracted. We can find a stage t2 > t1
such that:

Good: (∀t > t2)[t ∈ G ⇒ W � w(n) = W t � w(n)].

Stable: (∀s > t2)[aps > w(n)].



In fact after stage t2 the approximation to W � w(n) will remain constant.
Then on the next α-true stage t3 > t2 we will examine the current axiom for
n in Λ, say 〈n, Wn, AL � m + 1〉. If it is valid then it will be valid forever.
If it isn’t valid, then we will enumerate a new axiom 〈n, W t3 � w(n), AL �
λ(n) + 1〉, and this axiom will remain valid forever. ��

We now need to establish that the if the influence of the N -strategies on a
P-strategy is infinitary, then the P-strategy is satisfied trivially by E �= ΘU,W .

Proposition 5. 1. Let α ⊂ f be the biggest (Pj , Γ )-strategy. If γj(n) moves
off to infinity, then the following condition holds:

If ΘU,W
j = E then there is an outcome gj along the true path.

2. Let α ⊂ f be the biggest Pj-strategy. It builds a function Mj. If mj(n) moves

off to infinity then Θ
Uj ,W j

j �= E.

Proof. 1. Assume that Θ
Uj ,W j

j = E. Let n be the smallest element whose γj-
marker moves off to infinity, and let s0 be a stage after which the markers
for n′ < n do not change and are already extracted from A, if they ever get
extracted.
If n ∈ K then there will be a stage s at which n enters K. After that stage
no more axioms for n are enumerated in Γj , hence the marker γj(n) will
remain constant. Hence n /∈ K.
There are finitely many permanent thresholds dj ≤ n. If γj(n) moves off to
infinity, then this must be due to a marker of some threshold moving off to
infinity.
Hence, according to our choice of n as the least element with unbounded
γj-marker, n = dj for some strategy along the true path. The thresholds
that belong to strategies to the left are not accessible after a certain stage
and the threshold that belong to strategies to the right of the true path are
cancelled at every true stage.
Suppose the strategy is (Ni, S0, . . . Si−1) along the true path.
The true outcome can not be gk with k > j, because then dj would not be
permanent.
Outcomes f and w do not move neither u(dj) nor γj(dj) infinitely often,
hence γj(dj) would be bounded.
Outcomes gk with k < j and hk for k < j are followed by a new strategy
(Pj , Γj) and hence are also impossible according to our assumption.
Outcome hj will prove that Θ

Uj ,Vj

j (x) �= E(x).
Outcomes hk for k > j, do not move γj(dj).
Hence the only possible outcome is gj .

2. Assume, in order to get a contradiction, that ΘU,W
j = E. Let n be the least

element whose marker moves off to infinity. If M = Γj , then according to
the previous case there will be a strategy N along the true path with true
outcome gj , followed by another Pj-strategy. This contradicts α being the
biggest one.



Hence M = Λj . Let s0 be a stage after which the markers for n′ < n do not
change and are extracted from A, if they ever get extracted.
If n ∈ K then there will be a stage s at which n enters K and after which
the λj(n) remains the same. Hence n /∈ K.
And as in the previous case it is clear that n = dj for some threshold and
some strategy (Ni, S0, . . . Λj . . . Si−1) along the true path.
The true outcome cannot be gk with k > j, because then dj would not be
permanent.
Outcomes f and w do not move wj(dj) or λj(dj) infinitely often, hence
λj(dj) would be bounded.
Outcomes gk with k < j and hk for k < j are followed by a new Pj-strategy
and hence are impossible according to our assumption.
Outcome hj is impossible due to our assumption that E = Θ

Uj ,W j

j .
Outcomes hk, for k ≥ j, are only accessible at stages at which wj(dj) does
not change. Hence if they are true then λj(dj) will eventually come to rest.
This means there are no possible outcomes, which gives the required contra-
diction. ��

Corollary 1. Every Pi-requirement is satisfied.

Proof. If ΘUi,W i

i �= E, the the requirement is trivially satisfied. Suppose we have
ΘUi,W i

i = Ei, so that there are infinitely many expansionary stages. Let α ⊂ f
be the biggest (Pi, M)-strategy along the true path. By Propositions 4 and 5 all
markers m used to build the operator M are bounded.

For each n we prove that K(n) = MZ,A(n), where Z = Ui if M = Γi and
Z = W i if M = Λi.

If n /∈ K then n would be extracted from MZ,A at least once for every α-true
expansionary stage. Hence every axiom in M for n is eventually invalidated.

If n ∈ K, then Proposition 4 proves that n ∈ MZ,A. ��

We turn our attention to the N -requirements, examining first the interactions
between them.

Lemma 2. Let α ⊂ f be an Ni requirement along the true path. And let s be a
stage after which α is not initialized anymore. Then

1. None of the nodes to the right or to the left of α extract elements from A
that are less than Rα after stage s.

2. None of the Nj-nodes above α extract elements from A that are less than Rα

after stage s.
3. Suppose β ⊂ α is a Pj-node such that there is another Pj-node β′, with

β ⊂ β′ ⊂ α. Then β does not extract elements from A that are less than Rα

after stage s.

Hence after stage s the only strategies above α that extract elements from A that
are less than the right boundary are the P- strategies that are still active.



Proof. 1. The nodes to the left of α are not accessible and do not extract any
elements at all. Strategies to the right are initialized every time we visit α.
P- strategies choose their markers bigger than Rα and N -strategies work
with new thresholds whose markers are defined after this visit and hence are
bigger than any number mentioned, in particular bigger than Rα.

2. Notice that if β ⊂ α, then Rα ≤ Rβ .
We prove this case with induction on the length of α.
l(α) = 0 is trivial.
Let α be of length n > 0 and let β be the greatest N -node above α.
According to the inductive hypothesis none of the Ni-nodes above β enu-
merates elements less than Rβ ≥ Rα.
We have a few cases depending on the true outcome o of β.
Note that if β extracts elements from A, then they are markers of thresholds.
Let o = gi−1 with boundary R = min(x, Rβ) = x. Then Si−1 = Γi−1. At
every β-true stage on which it has this outcome, thresholds dj , for j < i− 1
are cancelled and then redefined to be bigger than x. Their markers are
chosen on a later stage and hence are bigger than R.
Also all A-markers for di−1 are extracted from A. Any new axiom that enters
Γi−1 for di−1, will have an A-marker defined after this stage and hence will
be bigger than x.
Similarly o = gj with boundary R = x. Then after stage s outcomes to the
left will not be accessible. Every time we visit β and it has this outcome,
the thresholds dk for k > j are cancelled and redefined bigger than x. All
markers for thresholds dl, l ≤ j are cancelled and extracted from A. Hence
any new axiom that enters Zl will have A-marker m(dl) > x.
Say o = h0 with R = min(m(d0), Rβ). Then after stage s outcomes to the
left are not accessible, and the witness and all thresholds remain constant.
At every β-true stage on which we have this outcome all A-markers for dj

where j < i are extracted from A and are redefined at the next stage to be
bigger than R.
Say o = hj with R = min(m(dj), Rβ).
Then after stage s the outcomes to the left are not accessible and the markers
for the thresholds dk with k < j are not extracted by β.
The A-markers for dl where l ≥ j are redefined whenever we visit hj , hence
are bigger than the right boundary.
If the true outcome of β is f or w and α is not initialized anymore, then β
does not extract any more elements at all.

3. Let γ be the Nk-node that initiates the cancellation of strategy Pj below β.
Hence the outcome along the true path for γ is o = hl for l ≤ j or o = gl for
l ≤ j.
Notice that in both cases dj remains unchanged after stage s, otherwise α
would be initialized. Every time we visit hl or gl, all A-markers for dj are
extracted from A and a new marker is redefined at the next stage to be
bigger than Rα ≤ Rγˆo ≤ m(dl). Hence if β extracts an element less than



Rα it must be a marker of an element n < dj . In which case α would be
initialized. ��

We claimed that the right boundary R moves off to infinity. Here we give a
formal proof.

Proposition 6. For every node along the true path limsR = ∞

Proof. We prove this statement by induction on the length of the node β ⊂ f .
The caselength(β) = 0 is trivial because then T (β) = N0, and R = ∞.
If β is a successor of a P-strategy α, then it preserves the boundaries that it

receives from α and by the inductive hypothesis the statement is true for Rβ .
The only case that remains to be examined is when β is a successor of an

N -strategy α. Let α ⊂ f be the strategy (Ni, S0, . . . , Si−1) and let the lemma
be true for Rα. We will examine the different possibilities for the true outcome
o of α. Let s be a stage such that β = α ô is not initialized at any stage t ≥ s.

1. o = w or o = f . Then the right boundary Rβ = Rα is unbounded according
to the induction hypothesis.

2. If o = gj , then the boundary is Rβ = min(x, Rα). Every time we visit
gj , x is redefined to be bigger. And by induction limsRα = ∞ and hence
lims min(Rα, x) = ∞.

3. o = hj . Then the right boundary R = min(m(dj), Rα) will grow unbound-
edly, because every visit of hj is accompanied by redefining m(dj). ��

Given an Ni-strategy α = (Ni, S0 . . . Si−1) along the true path with true
outcome f , it is easy to verify in the case that an attack is j-successful whether
Sj = Γj or Sj = FMj . If Sj = Λj though the success depends on the actions
of the instigator for α. We prove that our construction ensures j-success for the
last witness x of α.

Lemma 3. Suppose α ⊂ f , T (α) = (Ni, S0 . . . Si−1) and Sj = Λ. And let α
begin an attack with witness x at stage s > s|α|. Then at the next stage, at which
α is accessible, there is a W j � θj(xα)-change or α’s outcome is a g-outcome or
else α is restarted.

Proof. Suppose Λi1 . . . Λik
are all the Λ-strategies among S0 . . . Si1 . Then we

have a list on nodes βi1 . . . βik
such that βi1 ĝi1 ⊂ . . . βık ĝik

⊂ α and insα =
βik

. . . insβi2
= βi1 .

At stage s all of the strategies βi1 . . . βi2 start an attack with the same at-
tacker x′. As α is eventually visited again this attack turns out to be unsuccessful
for each of the listed strategies so they eventually have outcome o = g.

Suppose βi1 has outcome gk. Here the choice of stage s guarantees that k ≤ i1
as any other g-outcome would initialize α. If gk is chosen due to the first clause
of the Resultk then there is a change in W k � θk(x′). Then if k < i1 the next
time we visit α and we re-evaluate the Resultk the first clause will be valid and
α would have outcome at least gk and this proves the lemma.



If it is chosen due to the second clause then some clause of Resultk, then for
some l < k ≤ i1 the active Pl-strategy at β which is necessarily a Γ strategy
and is the same as the active Pl-strategy at α (call it δ) extracted an A-marker
m(n) < L for n < dl,β . If n < dl,α then on the next α-true stage Checkl

would restart α or α would have outcome gm for some m > l thus proving the
lemma. If n > dl,α, then due to the activity at α the axiom for n in Γl, say
〈n, Un, A � m(n)〉, has the property that Ul(x′) ⊂ Un, and this would be proof
that W l(x′) � W , since axioms are extracted only on expansionary stages.
Hence, when we next visit α it would have outcome at least gl thus proving the
lemma.

The only other possibility is that βi1 has outcome gi1 due to the first clause
in Resulti1 , thus we have obtained proof that there is a change in W i1 � θi1(x

′)
and can move on inductively to βi2 . ��

Corollary 2. Every Ni-requirement is satisfied.

Proof. Let α be the last Ni requirement along the true path. We will prove that
it satisfies Ni.

α has true outcome w or f or else there will be a successive copy of Ni along
the true path.

In the first case there is a stage s1 after which α has only outcome w without
passing through any other outcome. Let s2 ≥ s1 be a stage after which αˆw is
not initialized or restarted. Then the thresholds remain constant after stage s2

and so does the witness x. α waits forever for ΨA(x) = 1 below Rα, and Rα

grows unboundedly by Proposition 6, giving ΨA(x) �= E(x).
Let the true outcome be f . Then after a certain stage the witness x remains

constant. Indeed every time we cancel a witness, we initialize α f̂ either by
restarting α or by passing through a g-outcome. Let s be the stage of the attack.
Then x ∈ ΨA with use(Ψ, A, x) < Rα,s. Hence by Lemma 2 none of the strategies
to the left, right and above, except for the active P-strategies at α, will extract
elements from A.

The active P-strategies at α do not extract any markers below the restraint
either. Indeed if a marker m(n) < use(Ψ, A, x) for some element n < dj is
extracted from A, then the witness x would be cancelled. On the other hand
when α attacked with x, it received all required permissions.

It is clear that if Sj = Γj the permission is correct and permanent. Otherwise
we would have an outcome to the left of f . By Lemma 3 if Sj = Λj the permission
is correct, otherwise the witness would be cancelled.

Strategies below α f̂ are accessible for the first time after initialization after
the stage of the attack. Hence all their A-markers would be defined after the
stage of the attack and would be greater than the restraint on A. Every new
threshold is bigger than the thresholds used by α, and their markers will also
have been moved above the restraint. Hence strategies below α f̂ will never
injure x ∈ ΨA.

Hence Ni is satisfied. ��
This completes the proof of the theorem. ��
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