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1. Introduction

In classical computability theory the main underlying structure is that of the
natural numbers or equivalently a structure consisting of some constructive objects,
such as words in a finite alphabet. In the 1960’s computability theorists saw it
as a challenge to extend the notion of computable to arbitrary structure. The
resulting subfield of computability theory is commonly referred to as computability
on abstract structures. One approach towards this is the theory of computability in
admissible sets of the hereditarily finite superstructure HF(A) over a structure A.
The development of computability on ordinals was initiated by Kreisel and Sacks
[43, 42], who investigated computability notions on the first incomputable ordinal,
and then further developed by Kripke and Platek [44, 58] on arbitrary admissible
ordinals and by Barwise [6], who considered admissible sets with urelements. The
notion of Σ-definability onHF(A), introduced and studied by Ershov [16, 17] and his
students Goncharov, Morozov, Puzarenko, Stukachev, Korovina, etc., is a model of
nondeterministic computability on A. A survey of results on HF-computability and
on abstract computability based on the notion of Σ-definability can be found in [18,
95]. Montague [53] took a model theoretic approach to generalized computability
theory, considering computability as definability in higher order logics.

The approach towards abstract computability that ultimately lead to the results
discussed in this article starts with searching for ways in which one can identify
abstract computability on a structure internally. Let A be an arbitrary abstract
structure. There are many different internal ways to define a class of functions that
can be considered as the analog of classical computable functions. Different models
of computation on A give rise to different classes of computable functions: PC(A)
denotes the functions that are prime computable in A, introduced by Moschovakis
[54]. REDS(A) is the set of functions computable by means of recursively enu-
merable definitional schemes, introduced by Friedman and Shepherdson [21, 65].
Finally, we have the search computable functions, denoted by SC(A), and also
introduced by Moschovakis [54]. Gordon [34] proved the equivalence of search com-
putability with Montague’s approach and with computability in admissible sets.
Prime computability has a deterministic (sequential) character. REDS is nonde-
terministic (parallel) and allows searches on the set of natural numbers. Search
computability is also nondeterministic, however here one is allowed to perform a
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search among arbitrary elements of the domain of the structure. For every struc-
ture A we have PC(A) ⊆ REDS(A) ⊆ SC(A). In general these inclusions do not
reverse.

Another natural way to study computability on a countable first-order struc-
ture is to consider an external approach. Every enumeration of the domain of a
structure gives rise to an isomorphic structure on the natural numbers, called its
representation. Fraisse [19] and Lacombe [45] suggest the notion of ∀-recursiveness:
a function falls in this class if every enumeration of the domain of the given structure
transforms this function into a function on the natural numbers that is recursive
in the diagram of the corresponding representation. The equivalence between ∀-
recursiveness and search computability on countable (total) structures with equality
is proved by Moschovakis [56].

In the 1970s Skordev initiated the development of algebraic recursion theory, pre-
sented in his monograph [66]. The main goal of this program is to further clarify the
connections between the two basic approaches to abstract computability: the inter-
nal approach, based on specific models of computation, and the external approach,
which defines the computable functions through invariance relative to all enumer-
ations of a structure, in the more general setting of partial structures, structures
whose functions and relations can be partial. To find natural external analogues
for partial structures we must extend classical relative computability to partial
functions. Here as well, there are two different approaches: one corresponding to
deterministic computational procedures and one corresponding to arbitrary effec-
tive ones. The first one can be mathematically described as relative µ-recursiveness:
a partial function ϕ is µ-recursive relative to partial functions ϕ1, . . . , ϕn if ϕ can
be obtained from ϕ1, . . . , ϕn, the constant 0, the successor function S, and the
projection functions, using superposition, primitive recursion and the minimization
operation µ. The other notion is called relative partial recursiveness and it can be
described via enumeration reducibility: the graph of ϕ is enumeration reducible to
the graphs of ϕ1, . . . , ϕn. If we restrict these notions to total functions then they
coincide. However there are easy examples of partial objects for which they do
not. Let ϕ be the characteristic function of the complement of the halting set K
and ψ be the partial function that equals zero when the argument is in K and is
not defined otherwise. Then ϕ is partial recursive relative to ψ but not µ-recursive
relative ψ.

In 1977 Skordev conjectures that the partial functions which are invariantly
computable in all computable presentations of a countable partial structure A on the
natural numbers are exactly the ones that are search computable on A. Soskov [69,
71, 70] modifies and extends this hypothesis to give a full classification. He proves
that the invariantly partial computable functions in all total representations of
A are exactly SC(A), the invariantly partial computable functions in all partial
representations of A are exactly REDS(A) and the invariantly µ-recursive functions
in all partial representations of A are exactly PC(A).

The next theme investigated in this context is a reducibility between a certain
class of abstract structures, considered natural for the purposes of abstract com-
putability. These are partial two-sorted relational structures, with an abstract sort
and the sort of the natural numbers. Partial functions can be represented through
their graphs, provided that we have included equality and non-equality among the
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basic predicates. The reducibility is defined between structures with the same ab-
stract sort: a structure A is s-reducible to a structure B if all the basic predicates of
A are search computable in B. The properties of this reducibility are very similar
to the properties of enumeration reducibility. The obtained results [5, 7, 36] about
the structure of the s-degrees have natural analogs in the enumeration degrees. On
the other hand many of the techniques used in this area, could be adapted to study
the enumeration degrees. This leads Soskov to transfer his focus towards degree
theory, where he explored the ideological connections between one of the models of
abstract computability, search computability, and enumeration reducibility. Soskov
and his students [72, 73, 74, 77] develop the theory of regular enumerations and
apply it to the enumeration degrees, obtaining a series of new results, mainly in
relation to the enumeration jump.

The relationship between enumeration degrees and abstract models of com-
putability inspires a new direction in the field of computable structure theory.
Computable structure theory uses the notions and methods of computability theory
in order to find the effective contents of some mathematical problems and construc-
tions. One of the fundamental problems is to characterize the abstract structures
from the point of view of their computability theoretic complexity and definability
strength. A well studied measure of the computability theoretic complexity of a
given structure is the notion of Turing degree spectrum. The Turing degree spec-
trum, introduced by Jockusch and Richter [60, 61], is the set of all Turing degrees
of the diagrams of the representations (the isomorphic copies) of the structure. In
recent years the Sofia school in computability lead by Soskov has been exploring
computable structure theory in the more general setting obtained by considering
partial structures with the underlying computation model given by enumeration
reducibility and measure of complexity given by their enumeration degree spectra.
In this article we will outline this line of research.

2. Enumeration reducibility

Enumeration reducibility gives a general way to compare the positive information
in two sets of natural numbers. It is introduced by Friedberg and Rogers [20] in
1959. Enumeration reducibility relates to relative partial recursiveness in the same
way that Turing reducibility relates to relative µ-recursiveness, the reducibility that
captures both positive and negative information between two sets.

A set A is enumeration reducible to a set B if there is an effective uniform
way, given by an enumeration operator, to obtain an enumeration of A given any
enumeration of B. The enumeration operators are interesting in themselves, as
they give the semantics of the type free λ-calculus in graph models, suggested by
Plotkin [59] in 1972. The interest in enumeration reducibility is also supported
by the fact that the structure of the enumeration degrees contains the structure
of the Turing degrees without being elementary equivalent to it. Contemporary
definability results [8, 30, 29, 92] in the theory of the enumeration degrees show
that the structure is useful for the study of the structure of Turing degrees.

Definition 1. Let A and B be sets of natural numbers. The set A is enumeration
reducible to the set B, written A ≤e B, if there is a c.e. set W , such that:

A = W (B) = {x | (∃D)[〈x,D〉 ∈W & D ⊆ B]},

where D is a finite set coded in the standard way.
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The definition above associates an effective operator on sets to every c.e. set, the
aforementioned enumeration operator. The set A ⊕ B = {2n | n ∈ A} ∪ {2n + 1 |
n ∈ B} is a least upper bound of A and B with respect to ≤e. Two sets A and
B are enumeration equivalent (A ≡e B) if A ≤e B and B ≤e A. The equivalence
class of a set A under this relation is its enumeration degree de(A). The set De
consisting of all enumeration degrees, together with the naturally induced partial
order and least upper bound operation is the upper semi-lattice of the enumeration
degrees. It has a least element 0e consisting of all computably enumerable sets.

Let A+ = A⊕A. The set A+ codes in a positive way the positive and negative
information about a set A. This suggests a relationship between Turing reducibility,
enumeration reducibility and the relation “c.e. in”, formally expressed as follows.

Proposition 1. Let A and B be sets of natural numbers.

(1) A ≤T B if and only if A+ ≤e B+.
(2) A is c.e. in B if and only if A ≤e B+.

A set A is called total if and only if A ≡e A+. Examples of total sets are the
graphs of total functions. Proposition 1 gives rise to a natural embedding of the
Turing degrees into the enumeration degrees ι : DT → De, defined by ι(dT (A)) =
de(A

+) [49, 57]. An enumeration degree is total if it contains a total set. The
enumeration degrees in the range of ι coincide with the total enumeration degrees.

The pioneering work on the enumeration degrees dates back to Case [9] and
Medvedev [49]. In particular, Case shows that De is not a lattice as a consequence
of the exact pair theorem and Medvedev proves the existence of quasi-minimal
degrees: a degree is quasi-minimal if it bounds no nonzero total enumeration degree.
The following theorem by Selman shows that the total enumeration degrees play
an important role in the structure: an enumeration degree can be characterized by
the set of total degrees above it.

Theorem 1. [64] For any A,B ⊆ N the following are equivalent:

(1) A ≤e B;
(2) {X | B is c.e. in X} ⊆ {X | A is c.e. in X};
(3) {x ∈ De | x is total & de(B) ≤ x} ⊆ {x ∈ De | x is total & de(A) ≤ x}.

Finally, we give the definition of a jump operator for the enumeration degrees,
originally due to Cooper and studied by McEvoy [12, 48]. Let EA = {〈e, x〉 | x ∈
We(A)}. The set A′ = E+

A is called the enumeration jump of A and de(A)′ = de(A
′).

The enumeration jump is monotone and agrees with the Turing jump JT in the
following sense: JT (A)+ ≡e (A+)′.

We will use Soskov’s jump inversion theorem for the enumeration jump:

Theorem 2. [73] For every enumeration degree a there exists a total enumeration
degree b, such that a ≤ b and a′ = b′.

We can iterate the enumeration jump along all computable ordinals. We will
identify every ordinal with its notation. In particular we will write α < β instead
of α <o β. If α is a limit ordinal then by {α(p)}p∈N we will denote the unique
strongly increasing sequence of ordinals with limit α, determined by the notation
of α, and write α = limα(p). For every computable ordinal α the α-th iteration
of the enumeration jump a(α) is defined in a way similar to that one used in the
definition the α-th iteration of the Turing jump, see [74]. Let A(α+1) = (A(α))′,
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and if α = limα(p) is a limit ordinal then A(α) = {〈p, x〉 | x ∈ A(α(p))}. Again
it turns out that both definitions are consistent on the total enumeration degrees.
Using the technique of regular enumerations Soskov and Baleva extend Theorem 2
for the computable ordinals. Here is a simple version of their result.

Theorem 3. [74] Let B be a set of natural numbers and let Q be a total set, such
that Q ≥e B(α). Let A be such that A+ ≤e Q and A 6≤e B(β) for some β < α.
There exists a total set F such that:

(1) B ≤e F ,
(2) A 6≤e F (β), and
(3) F (α) ≡e Q.

3. Enumeration degree spectra

The enumeration degree spectrum DS(A) of a countable structure A is intro-
duced by Soskov [75] as the set of all enumeration degrees generated by the pre-
sentations (homomorphic copies) of A on the set of the natural numbers. Let
A = (N;R1, . . . , Rk) be a countable relational structure. Here we consider the re-
lations as sets instead of zero-one-valued functions. In the context of enumeration
reducibility this corresponds to partial functions, i.e. the relations are true on cer-
tain elements and not defined on others. As A is countable we may assume that
the domain of A is N. An enumeration of A is a total surjective mapping of N onto
N. Given an enumeration f of A and a subset of A of Na, let

f−1(A) = {〈x1, . . . , xa〉 | (f(x1), . . . , f(xa)) ∈ A}.

Denote by f−1(A) = f−1(R1) ⊕ · · · ⊕ f−1(Rk) ⊕ f−1(=) ⊕ f−1(6=). If f is the
identity then we refer to f−1(A) as D(A)—the positive atomic diagram of A.

Definition 2. [75] The enumeration degree spectrum of A is the set

DS(A) = {de(f−1(A)) | f is an enumeration of A}.

If a is the least element of DS(A), then a is called the enumeration degree (e-
degree) of A.

One noticeable difference with the standard definition of Turing degree spectra is
that in the definition of the enumeration spectra we use the surjective enumerations,
instead of bijective enumerations. Consider the structure A = (N; =, 6=) if we define
the degree spectrum of A by taking into account only the bijective enumerations,
then it will be equal to {0e}, while if we take all surjective enumerations, then
DS(A) will consist of all total enumeration degrees. Fortunately, this difference
does not affect the notion of e-degree of a structure since for every enumeration f
of A there exists a bijective enumeration g of A such that g−1(A) ≤e f−1(A). On
the other hand it allows us to show that the enumeration degree spectrum is always
closed upwards with respect to total degrees, i.e. if a ∈ DS(A), b is a total e-degree
and a ≤ b then b ∈ DS(A). This can be seen as follows: if g is an enumeration of A
and F is a total set such that g−1(A) ≤e F then we can define a new enumeration f
of A, which mimics g on the even numbers: f(n/2) = g(n) and codes F on the odd
numbers, by mapping all of them to one of two distinct members of A depending
on membership in F . In general, however, the enumeration degree spectra are not
closed upwards as we shall see next.
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Just like Turing reducibility can be expressed in terms of enumeration reducibil-
ity, the Turing degree spectrum [61, 40] of a structure A corresponds to the enu-
meration degree spectrum of a structure, denoted by A+, which codes in a pos-
itive way both the positive and negative facts about the predicates in A. If
A = (N, R1, . . . , Rk) then let A+ = (N, R1, . . . , Rk, R1, . . . , Rk). The image of
the Turing degree spectrum of A is exactly DS(A+).

Note, that DS(A+) consists only of total enumeration degrees. A structure A is
called total if for every enumeration f of A the set f−1(A) is total. In general, if
A is a total structure then DS(A) = ι(DST (A)), so if A is a total structure then
A and A+ have the same enumeration degree spectrum. Note that, however, not
all structures whose degree spectrum consist only of total enumeration degrees are
total. Consider for example, the structure A = (N;GS ,K), where GS is the graph
of the successor function and K is the halting set. Then DS(A) consists of all
total degrees. On the other hand if f = λx.x, then f−1(A) is a c.e. set. Hence
K 6≤e f−1(A). Clearly K ≤e (f−1(A))+, so f−1(A) is not a total set.

A natural question arises here: if DS(A) consists of total degrees does there
exist a total structure B such that DS(A) = DS(B)? In his last paper [81] Soskov
proves the following general result, giving a much stronger relationship between
Turing degree spectra and enumeration degree spectra:

Theorem 4. [81] For every structure A there exists a total structure M such that
DS(M) = {a | a is total ∧ (∃x ∈ DS(A))(x ≤ a)}.

We will return to explain the methods developed for the proof of this result in
the last section of this paper. Here we turn to some important examples of degree
spectra.

Slaman [67] and independently Wehner [101] give an example of a structure
whose Turing degree spectrum consists of all nonzero Turing degrees. Translated
into our terms this gives a structure A such that DS(A) = {a | a is total and 0e <
a}. Kalimullin [39], building on Wehner’s result, transfers these ideas to enumera-
tion degree spectra.

Theorem 5. [39] There is a structure A such that DS(A) = {a | a ∈ De & a > 0e}.

Kalimullin has a different definition of enumeration degree spectra : for a count-
able structure A he considers the set of the enumeration degrees of full diagrams of
isomorphic copies of A with domain a subset of N. He denotes this set by e-SP (A)
and shows that for every structure A there is a structure P (A) such that DS(P (A))
is the upwards closure of e-SP (A) in the enumeration degrees.

Following Knight [40] we define the α-th jump spectrum and α-th jump degree
of a structure for computable ordinals α:

Definition 3. Let α < ωCK1 . Then the α-th jump spectrum of A is the set

DSα(A) = {de(f−1(A)(α)) | f is an enumeration of A}.

If a is the least element of DSα(A), then a is called the α-th jump degree of A.

We will leave examples of structures with or without α-th jump degree for Sec-
tion 6, where we also investigate the possibilities of defining the jump of a structure.
Next we consider the co-spectrum of a structure, a characteristic that plays espe-
cially well with enumeration degrees.
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4. Co-spectra

Let A be a nonempty set of enumeration degrees the co-set of A is the set co(A)
of all lower bounds of A. Namely

co(A) = {b | b ∈ De & (∀a ∈ A)(b ≤ a)}.

For every A ⊆ De the set co(A) is a countable ideal. We will see that every
countable ideal can be represented as co-set of the spectrum of some structure A.

Definition 4. Let A be a countable relational structure.

(1) The co-spectrum CS(A) of a structure A is the co-set of DS(A), i.e. the
set of all lower bounds of the enumeration degree spectrum of the structure
A. If CS(A) has a greatest element, then it is the co-degree of A.

(2) For every α < ωCK1 the co-set of DSα(A) is CSα(A), the α-th jump co-
spectrum of A. If CSα(A) has a greatest element, then it is the α-th jump
co-degree of A.

4.1. Examples. If a structure A has a degree a then a is also its co-degree. The
reverse is not always true. We have already seen one such example: Kalimullin’s
structure A with degree spectrum DS(A) consisting of all nonzero enumeration
degrees clearly has no enumeration degree, but has co-degree 0e. As a second
example, consider Richter’s [61] result on linear orderings: the Turing degree spec-
trum DST (A) always contains a minimal pair. Thus the co-degree of DS(A+) is
always 0T , and non-computable linear orderings have co-degree but no degree. (In
fact, Richter gives conditions in terms of enumeration reducibility for when a first
order theory has a model with no degree). Knight [40] extends Richter’s result to
show that the only possible first jump Turing degree of a linear ordering is 0′T . An
analysis of her proof shows that the first jump co-spectrum of a linear ordering
consists of all Σ0

2 enumeration degrees, and so the first jump co-degree is always 0′e,
even though not every linear ordering has a first jump degree.

There are also structures with no co-degree. For example, consider A = (N;GΨ,
P ), where Ψ is a function such that Ψ(〈n, x〉) = 〈n, x + 1〉 and the relation P (x)
is defined and true if (∃t)(x = 〈0, t〉) or (∃n)(∃t)(x = 〈n + 1, t〉 & t ∈ ∅(n+1)). For
every X ⊆ N we have that de(X) ∈ CS(A) iff (∃n)(X ≤e ∅(n)). It follows that
CS(A) consists of all arithmetical degrees and hence has no greatest element, i.e.
A has no co-degree.

The co-degree of a structure is closely related to what Knight [41] and Montalbán
[52] call the “enumeration degree of a structure”. A set X ⊆ N is the “enumeration
degree” of a structure A if every enumeration of X computes a copy of A, and
every copy of A computes an enumeration of X. Thus by Selman’s theorem the
enumeration degree of X is the co-degree of the structure A+. This co-degree,
however has an additional property: DS(A+) is exactly the set of total enumeration
degrees above de(X). Thus, examples of structures with “enumeration degree”
translate to examples of structures with co-degree and there are many of those:
Given X ⊆ N, consider the group GX =

⊕
i∈X Zpi , where pi is the i-th prime

number. Then GX has “enumeration degree” X, as we can easily build GX given
any enumeration of X, and for the reverse direction, we have that n ∈ X if and
only if there is an elements g ∈ GX of order pn. Montalbán [52] proves that if
a class K of structures is axiomatized by some computable infinitary Πc

2 sentence
and every structure A in K is existentially atomic, i.e. an atomic structure with all
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types generated by existential formulas, then every structure in K has “enumeration
degree” given by its ∃-theory.

A further example of this sort is given, when one considers torsion free abelian
groups of rank 1, i.e. subgroups of (Q,+,=). Downey and Jockusch [13] analyze
the computability theoretic properties of such groups. Using results that go back
to Baer, they discover a way to associate a set S(G), called the characteristic of G,
to every torsion free abelian group G of rank 1, so that the Turing degree spectrum
of G is precisely {dT (Y ) | S(G) is c.e. in Y }. On the other hand, they show that
for every set of natural numbers S there is a torsion free abelian group G of rank 1,
such that S(G) ≡1 S. They knew from Richter [61] that this meant that not all such
groups have a degree. Coles, Downey and Slaman [11] use a forcing construction
to show that, however, every such group has first jump degree.

Soskov [75] considers the problem from the point of view of enumeration re-
ducibility. Any subgroup of the rationals can be seen as a total structure, as the
only relation involved is the graph of addition, which is a total function. Let G be
such a group and let sb = de(S(G)). It follows that

DS(G) = {b | b is total and sb ≤e b}.

It is an easy consequence of Selman’s theorem that sb is the co-degree of G. Fur-
thermore, G has degree if and only if sb is total. The result of Coles, Downey and
Slaman now follows from Theorem 2. There is a total enumeration degree f ≥ sb
with f ′ = s′b and so the first jump spectrum of G consists of all total enumeration
degrees greater than or equal to s′b, in particular s′b is the first jump degree of G.

Another consequence of this example is that every principal ideal of enumeration
degrees is a co-spectrum of a structure, namely the co-spectrum of some torsion free
abelian group of rank one. To generalize this result to arbitrary countable ideals
we need a characterization of the co-spectrum of a structure.

4.2. Normal forms. Soskov [75] gives two characterizations of CSα(A) in terms
of the structure A, one in terms of forcing and one in terms of definability. The
first characterization is inspired by the fact that the members of CS(A) are exactly
the degrees of the domains of the search computable functions ranging over the
natural numbers and by the well known results by Ash, Knight, Manasse and
Slaman [4] and by Chisholm [10]. We note that independently Ash and Knight
[3] also characterize the elements of the co-spectrum for certain structures: they
showed that for a computable structure A a set A ⊆ N is c.e. relative to f−1(A)
for every bijective enumeration f of A if and only if for some tuple a in A, the set
A is enumeration reducible to the existential type of a.

The natural forcing partial order associated with enumerations of a given struc-
ture A with domain N consists of finite functions from N to N ordered by extension,
called finite parts. An enumeration f of A is α-generic for a computable ordinal
α if for every computable ordinal β < α and for every set S of finite parts such
that S ≤e D(A)(β) the enumeration f meets or avoids S. By transfinite induction
Soskov then defines the relations τ 
α Fe(x) and τ 
α ¬Fe(x) for every com-
putable ordinal α, so that if f is α-generic then x ∈ (f−1(A))(α) if and only if
there is a finite function τ � f , such that τ 
α Fe(x) and if f is (α + 1)-generic
then x /∈ (f−1(A))(α) if and only if there is a finite function τ � f , such that
τ 
α ¬Fe(x).
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Definition 5. A set A ⊆ N is forcing α-definable in the structure A if there exist
finite part δ and a natural number e s.t.

A = {x | (∃τ ⊇ δ)(τ 
α Fe(x))}.

Soskov shows that CSα(A) consists of the enumeration degrees of the forcing
α-definable sets.

Theorem 6. [75] A set A ⊆ N is forcing α-definable in A if and only if A ≤e
f−1(A)(α) for every enumeration f of A.

The second characterization uses positive computable infinitary Σα formulas,
denoted by Σ+

α , whose structure follows that of the forcing relation. These for-
mulas can be considered as a modification of the ones introduced by Ash [2].
Let L be the first order language of the structure A. A Σ+

α formula with free
variables among X1, . . . , Xl is a c.e. infinitary disjunction of elementary Σ+

α for-
mulas with free variables among X1, . . . , Xl which are defined by transfinite in-
duction on α as follows. The elementary Σ+

0 formulas are those of the form
∃Y1 . . . ∃Ymθ(X1, . . . , Xl, Y1, . . . , Ym) where θ is a finite conjunction of atomic predi-
cates of L. For α = β+1 an elementary Σ+

α formula is of the form ∃Y1 . . . ∃YmΨ(X1,
. . . , Xl, Y1, . . . , Ym), where Ψ is a finite conjunction of Σ+

β formulas and negations

of Σ+
β formulas with free variables among X1, . . . , Xl, Y1, . . . , Ym.

For α = limα(p) a limit ordinal the elementary Σ+
α formulas are of the form

∃Y1 . . . ∃YmΨ(X1, . . . , Xl, Y1, . . . , Ym), where Ψ is a finite conjunction of Σ+
α(p) for-

mulas with free variables among X1, . . . , Xl, Y1, . . . , Ym.1

Definition 6. A set A ⊆ N is formally α-definable in a structure A if there exists
a computable function f(x) with values indices of Σ+

α formulas Φf(x) with free
variables among W1, . . . ,Wr and parameters t1, . . . , tr ∈ |A| such that for every
natural number x the following equivalence holds:

x ∈ A ⇐⇒ A |= Φf(x)(W1/t1, . . . ,Wr/tr).

Theorem 7. [75] A set A ⊆ N is forcing α-definable in a structure A iff it is
formally α-definable in A.

Using these normal forms, as promised, we can represent every countable ideal
of enumeration degrees I as the co-spectra of a structure. Fix such an ideal I, and
let b0 ≤ b1 ≤ · · · ≤ bk . . . be a countable sequence, generating I. Fix Bk ∈ bk, for
each k. Consider the structure A = (N;Gf , σ,=, 6=), where
f(〈i, n〉) = 〈i+ 1, n〉 and σ = {〈i, n〉 | n = 2k + 1 ∨ n = 2k & i ∈ Bk}.
To show that I ⊆ CS(A) it is sufficient to see that Bk ≤e g−1(A) for every

enumeration g of A and each k. For every x using the pre-image of Gf we can find
the pre-image of the natural number 〈x, 2k〉 and enumerate x in Bk if the pre-image
of 〈x, 2k〉 is in the pre-image of σ. The reverse direction requires quite a bit more
work, and relies on an analysis of the formally 0-definable in A sets.

Theorem 8. [75] Every countable ideal I of enumeration degrees is a co-spectrum
of a structure.

1Note, that this indexing does not quite match the usual definition of computable infinitary
formulas, namely level zero in this definition corresponds to level one in the usual definition.
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4.3. Structural properties of spectra and co-spectra. Now that we know that
every countable ideal of enumeration degrees is the co-spectrum of a structure, we
might wonder if we can characterize spectra in a similar way: is every set of degrees
that is upwards closed with respect to total elements the enumeration spectrum of
a structure? The answer is, of course, ‘No’. One way to see this is via the notion
of a base and its relationship to the existence of a degree. A subset B ⊆ A of a set
of enumeration degrees A is a base of A if (∀a ∈ A)(∃b ∈ B)(b ≤ a). Using generic
enumerations and an argument much like that used in Selman’s theorem we can
show the following.

Theorem 9. [75] A structure A has an e-degree if and only if DS(A) has a count-
able base.

Figure 1. An upwards closed set with respect to total degrees
which is not a degree spectra of a structure

In particular the union of two cones above incomparable degrees cannot be the
enumeration degree spectrum of a structure (just like it cannot be the Turing degree
spectrum of a structure). Nevertheless, degree spectra play well with co-spectra
and behave structurally with respect to their elements just like the cone of total
degrees above a fixed enumeration degree. This is not too surprising, as a further
easy application of Selman’s theorem shows that the co-spectrum of A depends
only on the total elements of the spectrum of A, i.e CS(A) = co(DS(A)t), where
DS(A)t = {a | a is total & a ∈ DS(A)}.

Our first more elaborate example of this phenomenon is an analogue, and in fact
a generalization, of a result of Rozinas [62], stating that for every a ∈ De there
exist total f1, f2 below a′′ which are a minimal pair above a.

Theorem 10. [75] Let α < ωCK1 and let b ∈ DSα(A). There exist total elements
f0 and f1 of DS(A) such that :

(1) f0
(α) ≤ b and f1

(α) ≤ b;

(2) f0
(β) and f1

(β) do not belong to CSβ(A) for β < α;
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(3) co({f0(β), f1
(β)}) = CSβ(A) for every β + 1 < α.

This property does not hold for arbitrary sets that are upwards closed with
respect to total degrees. Consider the finite lattice L consisting of the elements a,

a ∧ c b ∧ ca ∧ b

b ca

f0 f1

>

⊥

Figure 2. An upwards closed set with no minimal pair

b, c, a ∧ b, a ∧ c, b ∧ c, >, ⊥ such that > and ⊥ are the greatest and the least
element of L, respectively, a > a ∧ b, a > a ∧ c, b > a ∧ b, b > b ∧ c, c > a ∧ c
and c > b ∧ c. The lattice L can be embedded in the enumeration degrees (see for
example [46]). Then A = {d ∈ De | d ≥ a ∨ d ≥ b ∨ d ≥ c} is a set that does not
satisfy the minimal pair property, because co(A) = {⊥}, but no pair of elements in
A has greatest lower bound ⊥.

The next property is analogue of the existence of a quasi-minimal enumeration
degree proved by Medvedev [49]. Let A be a set of enumeration degrees. The
degree q is quasi-minimal with respect to A if:

• q 6∈ co(A).
• If a is total and a ≥ q, then a ∈ A.
• If a is total and a ≤ q, then a ∈ co(A).

Theorem 11. [75] For every structure A there exists a quasi-minimal with respect
to DS(A) degree.

To prove this theorem Soskov introduces the notion of a partial generic enumeration
ϕ of A, generic enumeration in the forcing partial order consisting of finite functions
from N to N ∪ {⊥}, where ⊥ represents partiality. He then shows that if ϕ is a
partial generic enumeration of A then de(ϕ

−1(A)) is quasi-minimal with respect to
DS(A).

Since every countable ideal of enumeration degrees is a co-spectrum of a structure
as a corollary we receive a result of Slaman and Sorbi :
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Corollary 1. [68] Let I be a countable ideal of enumeration degrees. There exists
an enumeration degree q such that

(1) If a ∈ I then a <e q.
(2) If a is total and a ≤e q then a ∈ I.

The technique of partial generic enumerations is further developed by Ganchev,
Soskov and A. Soskova in [22, 24, 84]. Soskov and A. Soskova also investigate
further properties of the notion of a quasi-minimal degree in [91]. They show that
for every countable structure A there are uncountably many quasi-minimal degrees
with respect to DS(A). The proof relies on a diagonalization: for every countable
sequence {Xi} of sets that are not forcing 0-definable, (such as the members of
a quasi-minimal degree), there is a partial generic enumeration of the structure
omitting all Xi. Their main find is however a characterization of the first jump
spectra in terms of the jumps of quasi-minimal degrees:

Theorem 12. [91] The first jump spectrum of every structure A consists exactly
of the enumeration jumps of the quasi-minimal with respect to DS(A) degrees.

When one applies the theorem above to any computable structure, one obtains
directly McEvoy’s jump inversion theorem:

Corollary 2. [48] For every total e-degree a ≥e 0′e there is a quasi-minimal degree
q with q′ = a.

The final property of quasi-minimal degrees that we will mention here, is inspired
by the well-known fact from enumeration degree theory, which states that every
total enumeration degree is the least upper bound of two quasi-minimal e-degrees.
One way to see this is to go through Jockusch’s semi-recursive sets. Recall that a set
is semi-recursive if it is a left cut in some computable linear ordering. Jockusch [37]
showed that every nonzero Turing degree contains a semi-recursive set A, such that
both A and A are not c.e. In the context of enumeration reducibility this translates
to: every total enumeration degree a is the least upper bound of two nonzero e-
degrees de(A) and de(A), where A is a semi-recursive set. Arslanov, Cooper and
Kalimullin [1] showed that if A is a semi-recursive set such that A and A are not
c.e., then the e-degrees of A and its complement A are quasi-minimal. If we restrict
our attention only to total degrees above 0′e then once again, this property turns
out to be a special case of a general fact about quasi-minimal degrees of structures:

Theorem 13. [91] For every element a of the jump spectrum of a structure A there
exist quasi-minimal with respect to DS(A) degrees p and q such that a = p ∨ q.

5. Abstract generalized enumeration reducibilities

5.1. Definability on a structure. Another way to characterize the complexity
of a structure A is to analyze the definable sets in A. This gives a finer measure as
it may happen that two structures have the same degree spectra but greatly differ
in their definability power and model theoretic properties. Let α be a computable
ordinal and A = |A|. A set B ⊆ Aa is Σcα+1 definable on a structure A if there

is a computable infinitary Σcα+1 formula ϕ(X̄, Z̄) and parameters t̄ ∈ A such that
B = {s̄ | A |= ϕ(s̄, t̄)}. A set B ⊆ Aa is relatively intrinsically Σ0

α+1 in a structure
A if for each (B, X) ' (A, B) the set X is Σ0

α+1 in the atomic diagram D(B),

which in our terms means that f−1(B) ≤e f−1(A+)(α) for every enumeration f
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of A. Ash, Knight, Manasse and Slaman [4] and independently Chisholm [10]
prove that these two notions coincide. Soskov and Baleva [76] give an analogue
of the relatively intrinsically Σ0

α sets on a structure A from the point of view of
enumeration reducibility: For every computable ordinal α a set B ⊆ Aa, is relatively
α-intrinsic on the structure A if for every enumeration f of A the set f−1(B) is
enumeration reducible to (f−1(A))(α). Soskov and Baleva show that the α-intrinsic
sets are exactly the ones definable by computable inifinitary Σ+

α+1 formulas with
parameters.

Having moved to this setting, they go one step further and consider the following
generalization in the spirit of Ash [2]. For two subsets B and C of A and two
computable ordinals α and β Ash defines that B is relatively α, β-intrinsic on A with
respect to C if for all enumerations f such that f−1(C) is enumeration reducible to
f−1(A)(β), f−1(B) is enumeration reducible to f−1(A)(α). In other words, consider
not all enumerations of A but only those enumerations which “assume” that B is
relatively β-intrinsic. Soskov and Baleva generalized this notion with respect to a
sequence of sets {Bγ}γ≤ζ of subsets of A.

Definition 7. A subset B of Aa is relatively α-intrinsic on A with respect to the
sequence B = {Bγ}γ≤ζ if for every enumeration f of A such that

(∀γ ≤ ζ)(f−1(Bγ) ≤e (f−1(A))(γ)) uniformly in γ, the set f−1(B) is enumera-

tion reducible to (f−1(A))(α).

The authors give a normal form of these sets first in terms of a forcing construc-
tion. To give a syntactic characterization, they redefine the infinitary computable
Σ+
α+1 formulas, taking into account the sequence B. For every γ they add a new

unary predicate Pγ for the set Bγ . This predicate is included positively at level γ of
the hierarchy. For example for α = β + 1 an elementary Σ+

α formula is in the form
∃Y1 . . . ∃YmΨ(X1, . . . , Xl, Y1, . . . , Ym), where Ψ is a finite conjunction of Pα(Xi) or
Pα(Yj) or Σ+

β formulas and negations of Σ+
β formulas with free variables among

X1, . . . , Xl, Y1, . . . , Ym.

Theorem 14. [76] A subset B of Aa is relatively α-intrinsic on A with respect
to the sequence B = {Bγ}γ≤ζ if and only if B is definable in A by a computable
infinitary Σ+

α -formula with parameters, constructed with respect to the sequence B.

The authors also give an abstract version of the Theorem 3. To formulate it we
need the following definition :

Definition 8. For any computable ordinal α ≤ ζ the jump sequence P(B) =
{Pα}α<ζ of the sequence B is defined inductively as follows:

• P0 = B0, for α = 0;
• Pα = (Pβ)′ ⊕Bα, for α = β + 1;
• For α = limα(p), denote by P<α = {〈p, x〉 : x ∈ Pα(p)} and let Pα =
P<α ⊕Bα.

The abstract jump inversion says that for every B ⊆ A which is not Σ+
α - definable

on A and each total set Q ≥e A+ ⊕ Pξ, where ξ = max(α + 1, ζ) there exists an
enumeration f of A satisfying the following conditions: f ≤e Q, the enumeration
degree of f−1(A) is total, for all γ ≤ ζ, f−1(Bγ) ≤e (f−1(A))(γ) uniformly in γ,

(f−1(A))(ξ) ≡e Q and f−1(B) 6≤e (f−1(A))(α).
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5.2. Joint spectra and Relative spectra. The results described so far lead
Soskov and A. Soskova to the goal of generalizing the notion of degree spectrum
of a structure to the degree spectrum of sequences of structures. Initially, they
consider the case when the sequence is finite and introduce two generalizations: the
joint spectrum [82, 83, 84] and the relative spectrum [85, 86].

Fix countable structures A0, . . . ,An.

Definition 9. The joint spectrum of A0, . . . ,An is the set DS(A0,A1, . . . ,An) =
{a | a ∈ DS(A0),a′ ∈ DS(A1), . . . ,a(n) ∈ DS(An)}.

So, the joint spectrum is the set of all enumeration degrees of the DS(A0),
such that for all i ≤ n their ith enumeration jump is in DS(Ai). The k-th jump
joint spectrum DSk(A0, . . . ,An) and the k-th co-spectrum are defined similarly to
DSk(A) and CSk(A). In this case as well DSk(A0, . . . ,An) is closed upwards with
respect to total degrees. The k-th co-spectrum of the sequence A0, . . . ,An depends
only on the first k members.

Theorem 15. For every k ≤ n we have that CSk(A0, . . . ,Ak) = CSk(A0, . . . ,An).
Moreover for every set B of natural numbers de(B) ∈ CSk(A0, . . . ,Ak) if and only
if for every k + 1 enumerations f0, . . . , fk, of A0, . . . ,Ak respectively, the set B ≤e
P(f−1

0 (A0), . . . , f−1
k (Ak)).

Here P(f−1
0 (A0), . . . , f−1

k (Ak)) is the kth jump sequence of the given sequence.
Soskov and A. Soskova [82] give a syntactical normal form for the members of the

degrees in the set CSk(A0, . . . ,An). This time they use many-sorted Σ+
k infinitary

computable formulas with different sorts for every structure Ai. A. Soskova [83, 84]
shows that the structural properties of co-spectra are preserved. The analog of the
minimal pair theorem holds here as well: for any sequence of structures A0, . . . ,An,
there exist enumeration degrees f and g in DS(A0, . . . ,An), such that for any
enumeration degree a and k ≤ n:

a ≤ f (k) & a ≤ g(k) ⇒ a ∈ CSk(A0, . . . ,An).

Furthermore, A. Soskova proves the existence of quasi-minimal degree q with re-
spect to DS(A0,A1, . . . ,An). The proof techniques are based on regular enumera-
tions introduced in [73] and partial generic enumerations used in [75].

The second generalization defines the relative spectrum of a structure with re-
spect to finitely many structures. Consider a structure A and finitely many struc-
tures A1, . . . ,An. We will restrict the class of enumerations of A to these enumer-
ations of A which “assume” that each Ai is relatively intrinsically Σ0

i+1 in A: An
enumeration f of A is n-acceptable with respect to the structures A1, . . . ,An if
f−1(Ai) is enumeration reducible to f−1(A)(i) for each i ≤ n.

Definition 10. The relative spectrum of the structure A with respect to A1, . . . ,
An is the set
RS(A,A1, . . . ,An) = {de(f−1(A)) | f is an n-acceptable enumeration of A}.

The elements of the co-spectrum of the k-th relative spectrum are the enumer-
ation degrees which contain a set which is enumeration reducible to the k-th jump

sequence Pfk of the sequence f−1(A), f−1(A1), . . . , f−1(Ak), for every k-acceptable
enumeration of A with respect to the structures A1, . . . ,Ak. The normal form of
these sets is given [85, 86] using a forcing construction. In this case as well there is
an analog of the minimal pair theorem and the existence of quasi-minimal degree.
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The co-spectra of the joint spectra and the relative spectra coincide, but there are
examples of sequence of structures for which the k-th co-spectra for k > 0 differ.

As we have seen the structural properties of the degree spectra and co-spectra
obtained remain true when one relativizes to consider finite sequences of structures.
The main question here is whether these generalizations give rise to new sets of
degrees, or is it the case that for every finite sequence of countable structures there
exists one structure whose degree spectrum is exactly the relative spectrum or the
joint spectrum of the given sequence. An answer to this question will be given in
the last section of this paper.

5.3. Omega-enumeration reducibility. In 2006 Soskov initiates the study of
uniform reducibility between sequences of sets and the induced structure of the
ω-degrees. Soskov, Ganchev and M. Soskova obtain many results, providing sub-
stantial proof that the structure of the ω-degrees is a natural extension of the
structure of the enumeration degrees, with a jump operation that has interesting
properties and with natural new members, which turn out to be extremely useful for
the characterization of certain classes of enumeration degrees. These investigations
appear in [77, 78, 27, 26, 23, 25, 24, 28, 92, 79].

The jump class of the sequence X = {Xn}n<ω of sets of natural numbers is the
set JX = {dT (B) | (∀n)(Xn is c.e. in B(n) uniformly in n)}. The definition of
ω-enumeration reducibility between sequences of sets is an analogue of Selman’s
characterization Theorem 1 of enumeration reducibility.

Definition 11. The sequence X is ω-enumeration reducible to the sequence Y
(X ≤ω Y) if JY ⊆ JX .

Let X = {Xn}n<ω and Y = {Yn}n<ω be sequences of sets of natural numbers.
X ≤e Y if for all n, Xn ≤e Yn uniformly in n. This reducibility is useful in many
considerations, however it does not quite characterize ω-enumeration reducibility.
The true characterization was given by Soskov and Kovachev:

Theorem 16. [77] X ≤ω Y ⇐⇒ X ≤e P(Y).

Clearly“≤ω” is a reflexive and transitive relation on the set S of all sequences of
sets of natural numbers and induces the equivalence relation ≡ω. For every sequence
X the set dω(X ) = {Y | Y ≡ω X} is the ω-enumeration degree of the sequence X
and Dω = {dω(X ) | X ∈ S} is the structure of the ω-enumeration degrees. The
relation ≤ω induces a partial ordering of Dω with least element 0ω = dω(∅ω), where
∅ω is the sequence with all members equal to ∅. Dω is further an upper semi-lattice,
with least upper bound induced by X ⊕ Y = {Xn ⊕ Yn}n<ω. There is a natural
embedding of the enumeration degrees into the ω-enumeration degrees. Given a set
A of natural numbers denote by A ↑ ω the sequence {Ak}k<ω, where A0 = A and
for all k ≥ 1, Ak = ∅. The embedding is κ : De → Dω by κ(de(A)) = dω(A ↑ ω).

For every X ∈ S the ω-enumeration jump of X is X ′ = {Pn+1(X )}n<ω. We have
that J ′X = {a′ | a ∈ JX }. The jump operator is monotone and it induces a jump
operation on the ω-enumeration degrees. It agrees with the jump operation on De
and the embedding κ. It turns out that the ω-enumeration degrees behave in an
unusual way with respect to the considered jump operation. In [27] Soskov and
Ganchev prove the following strong jump inversion theorem: for every n ∈ N and
for a(n) ≤ b there exists a least ω-enumeration degree x ≥ a such that x(n) = b.
So we can define an operation Ina on the upper cone with a least element a(n)
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such that Ina (b) is the least solution x of this system: x ≥ a such that x(n) = b.

Let on = In0ω
(0

(n+1)
ω ), i.e. on denotes the least ω-enumeration degree, such that

o
(n)
n = 0

(n+1)
ω . We have 0′ω = o0 ≥ o1 ≥ · · · ≥ on ≥ . . . . The sequence is strictly

decreasing but it does not converge to the least degree 0ω. The authors proved
the existence of almost zero nontrivial degrees which are nonzero and below all on.
A nontrivial almost zero ω-enumeration degree contains a sequence R such that
(∀n)(Pn(R) ≡e ∅(n)), but non-uniformly.

A. Soskova [89] generalizes the enumeration degree spectrum with respect to an
infinite sequences of sets using ω-enumeration reducibility. Let B = {Bn}n<ω be a
sequence of sets of natural numbers and A be a countable structure on the natural
numbers.

Definition 12. The ω-degree spectrum of the structure A with respect to the se-
quence B is the set

DS(A,B) = {de(f−1(A)) | f - enumeration of A s.t. {f−1(Bn)} ≤ω {f−1(A)(n)}}.

The ω-co-spectrum of DS(A,B) is the set Ocsp(A,B) of ω-enumeration degrees,
which are lower bounds of the ω-spectrum.

Note that if B is the sequence of empty sets then DS(A,B) = DS(A). The
set Ocsp(A,B) is in this case a new meaningful notion and we will denote it by
Ocsp(A).

Most properties of co-spectra, such as the existence of minimal pairs and quasi-
minimal degrees, hold for the ω-co-spectra, but not all. For every structure A and
n > 0 if c ∈ DSn(A) then CSn(A) is the co-set of A = {a | a ∈ DS(A) & a(n) = c}.
Vatev [96] shows that there is a structure A, a sequence B and c ∈ DSn(A,B) such
that if A = {a ∈ DS(A,B) | a(n) = c} then CS(A,B) 6= co(A).

A. Soskova gives a characterization of the k-th ω-co-spectrum of a structure
(the co-set of the k-th jump ω-spectrum) in terms of definability via computable
sequence {Φγ(n,x)}n,x<ω of formulas such that for every n, Φγ(n,x) is a Σ+

n+k in-
finitary computable formula with parameters. This set is also characterized as the
least ideal of ω-enumeration degrees containing the k-th jumps of elements of the
ω-co-spectrum. The set I = CS(A,B) is a countable ideal. By the minimal pair the-
orem there exist total enumeration degrees f,g in DS(A,B), such that CS(A,B) =
I(fω) ∩ I(gω) where I(fω) and I(gω) are the principal ideals of ω-enumeration de-
grees with greatest elements fω = κ(f) and gω = κ(g), the images of f and g under
the embedding κ of De in Dω. Denote by I(k) the least ideal, containing all k-th
ω-jumps of the elements of I. Ganchev [23] proves that if I = I(fω) ∩ I(gω) then

I(k) = I(f(k)
ω ) ∩ I(g

(k)
ω ) for every k. But I(fω

(k)) ∩ I(g
(k)
ω ) = CSk(A,B) for each

k. Thus I(k) = CSk(A,B), i.e. the k-th omega co-spectrum is a minimal ideal
containing the k-th jumps of elements of the ω-co-spectrum.

Using this result Ganchev, A. Soskova and Vatev show another difference between
co-spectra and ω-co-spectra: There is a countable ideal I of ω-enumeration degrees
for which there is no structure A and sequence B such that I = CS(A,B). Let

A = {0ω,0′ω,0′′ω, . . . ,0(n)
ω , . . . }.

and consider the countable ideal I generated by A. Assume now that there is
a structure A and a sequence B such that I = CS(A,B) and let f and g be a
minimal pair of total enumeration degrees for DS(A,B). It follows that I(n) =
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I(f
(n)
ω ) ∩ I(g

(n)
ω ) for each n. But fω ≥ 0

(n)
ω and gω ≥ 0

(n)
ω for each n. If F ∈ f

and G ∈ g are total, then F ≥T ∅(n) and G ≥T ∅(n) for each n. By Enderton and
Putnam (1970) [15], Sacks (1971) [63] : F ′′ ≥T ∅(ω) and G′′ ≥T ∅(ω) and hence

f′′ ≥T 0
(ω)
T and g′′ ≥T 0

(ω)
T . Then κ(ι(0

(ω)
T )) ∈ I(f ′′ω) ∩ I(g′′ω), but κ(ι(0

(ω)
T )) /∈ I ′′

since all elements of I ′′ are bounded by 0
(k+2)
ω for some k. Hence I ′′ 6= I(f ′′ω)∩I(g′′ω),

a contradiction.
Inspired by this Vatev [96] investigates the principal ideal case. He shows that for

every principal ideal of ω-enumeration degrees I there is sequence B and a structure
A such that I = CS(A,B).

6. Jump of a structure

The idea of the jump of a structure is first considered by Soskov and his student
Baleva [5] in the context of s-reducibility between structures, a reducibility based on
relative search computability. Given a structure A the goal is to define a structure
A′ so that A′ knows the sets definable by computable infinitary Σc1 formulas in
A. The idea to define such a structure resurfaced in computable structure theory
in the period 2002–2010 independently in the work of Soskov and Soskova [90],
Montalbán [50] and Stukachev [93, 94]. Soskov and A. Soskova [90] define the
jump A′ of the structure A by considering the Moschovakis’ extension of A together
with a predicate, an analogue of the halting set, which codes all sets definable by
computable infinitary Σc1 formulas with parameters. This changes the domain of
the structure, but keeps the language finite. Montalbán’s approach was to keep the
domain of the structure the same and to add a complete set of relations definable by
computable infinitary Πc

1 formulas. This can possibly make the language infinite,
however Montalbán [50, 51, 35] gives some examples of structures, such as linear
orderings and Boolean algebras, where the complete set of relations is finite and
natural. Stukachev’s approach is in terms of Σ-definability in hereditarily finite
extension of the structure. We will focus on the approach taken by Soskov and
Soskova.

Let A = (A;R1, . . . , Rn) be a countable structure and let equality be among the
predicates R1, . . . , Rs. Following Moschovakis [55] we define an extension of A as
follows. Let 0̄ be a new element, such that 0̄ 6∈ A and let A0 = A∪{0̄}. Let 〈., .〉 be
a pairing function such that none of the elements of A0 is a pair. The set A∗ is the
closure of A0 under 〈., .〉 and functions L(〈s, t〉) = s and R(〈s, t〉) = t are decoding
functions. We next represent the basic relations in A∗ by unary relations in A∗ as
follows: R∗i (〈s1, . . . , ski〉) = Ri(s1, . . . , ski).

Definition 13. Moschovakis’ extension [55] of A is the structure

A∗ = (A∗, R∗1, . . . , R
∗
n, A0, G〈.,.〉, GL, GR).

It is straightforward to check that for any countable structure A the structure
A∗ has the same complexity as A, namely DS(A) = DS(A∗). The advantage to
considering A∗ is that in it we can code a copy of the natural numbers N∗ in A∗

by induction: 0̄∗ = 0̄ and (n+ 1)
∗

= 〈0̄, n̄∗〉. Using N∗ we can now represent the
graph of every finite part τ : N→ A as an element τ∗ of A∗. Let

KA = {〈δ∗, ē∗, x̄∗〉 : (∃τ ⊇ δ)(τ 
0 Fe(x))}.
Soskov and A. Soskova define the jump only for total structure A+. In light of
Theorem 4 there is a natural way to extend this definition to non-total structures.
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Definition 14. The jump of the structure A+ is the structure

A′ = ((A+)∗,KA, A
∗ \KA).

Note, that the structure A′ is also total. The next property can be viewed as a
correctness statement: it reaffirms that this definition of the jump of a structure
is truly an analog of the jump operator on sets of natural numbers. The main
technique used in its proof is once again that of generic enumerations.

Theorem 17. [88, 90]2 For every countable structure A, DS1(A+) = DS(A′).

Another proof of this theorem was published independently by Montalbán [50].
Montalbán called it in [51] the second jump inversion theorem. Both proofs are
essentially the same, even though the great differences in the underlying setting
make them look quite different.

Vatev [98, 99] extends the jump of a structure to the α-th jump of a struc-
ture for arbitrary computable ordinal α. Vatev’s approach relies on the notion of
conservative extension. This notion provides a finer way to compare the relative
definability between two structures at arbitrary levels of the Σcα-hierarchy. Given
two countable structures A and B with |A| ⊆ |B| and α, β computable ordinals the
structure B is an (α, β) conservative extension of A if for every enumeration g of
B there is an enumeration f of A such that {〈x, y〉 | f(x) = g(y)} is Σ0

β in g−1(B)

and f−1(A)(α) ≤T g−1(B)(β), and the opposite, for every enumeration f of A there
is an enumeration g of B such that {〈x, y〉 | f(x) = g(y)} is Σ0

α in f−1(A) and
g−1(B)(β) ≤T f−1(A)(α). He proved that if B is an (α, β) conservative extension
of A then (∀X ⊆ |A|)(X ∈ Σcα(A) ⇐⇒ X ∈ Σcβ(B)). He showed furthermore that

A(α+1) is (β+ 1, β) conservative extension of A(α) and from here it follows that the
Σcα+1 definable in A∗ subsets of A∗ are exactly the Σcα definable sets in A′. More
generally, he shows that for any computable ordinals α, β the Σcβ+1 definable sets

in A(α) are exactly the Σcβ definable sets in A(α+1).
Naturally, once we have a jump of a structure, the question of jump inversion

arises: Given a structure B with DS(B) consisting of total degree above 0′e, is
there a structure C such that DS1(C) = DS(B). Soskova and Soskov prove an even
more general statement. For every structure B, denote by DSt(B) the set of total
elements in DS(B). (In particular, if B is total then DS(B) = DSt(B).)

Theorem 18. [87, 88, 90] Let A and B be structures such that DS(B)t ⊆ DSn(A).
Then there exists a structure C such that DS(C) ⊆ DS(A) and DSn(C) = DS(B)t.

The proof of Theorem 18 uses the method of Marker extensions, which will be
discussed in detail in Section 7. This method is also used by Stukachev [93, 94] for
similar jump inversion theorem for his notion of the jump of a structure based on Σ-
definability. Downey and Knight [14] prove, using a fairly complicated construction,
that for every computable ordinal α there exists a structure A (a linear ordering, in
fact) such that A has α-th jump degree equal to 0(α), but no β-th jump degree for
any β < α. Now we can obtain this theorem for the finite ordinals as an application
of Theorem 18. Consider a structure B such that DS(B) consists of total elements

above 0
(n)
e and has no least element, and such that 0

(n+1)
e is the least element of

DS1(B). Let A be any total computable structure. Clearly DS(B) ⊆ DSn(A). By
Theorem 18 there exists a structure C such that DSn(C) = DS(B). Therefore C

2Theorem 17 was first announced by Soskov during his LC talk in Münster in 2002.
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does not have a n-th jump degree and so no k-th jump degree for k ≤ n. On the

other handDSn+1(C) = DS1(B) and hence the (n+1)-th jump degree of C is 0
(n+1)
e .

Why does such a structure B exist? Consider a degree q that is quasi-minimal

relative to 0
(n)
e and with q′ = 0

(n+1)
e . Let B = G be the torsion free abelian group

of rank 1 such that sG = q. Recall that DS(G) = {a | sG ≤e a and a is total} and
the first jump degree of G is s′G.

The next natural questions is if one can extend the jump inversion theorem to
every constructive ordinal α. Goncharov, Harizanov, Knight, McCoy, Miller and
Solomon [32] show that this is true if α is a computable successor ordinal, even
though they do not state their result in terms of the jump of a structure. This
result was useful later on, for instance Greenberg, Montalbán and Slaman [33] use
it to build a structure whose spectrum consists of the non-hyperarithmetic degrees.
Vatev [99, 98, 100] proves the α-jump inversion theorem for a computable successor
ordinal α based on the construction in [32].

The problem of jump inversion for α = ω, or, in general, any computable limit
ordinal remains open for longer. In one of his last papers Soskov [80] finally proves
that there is a good reason for that.

Theorem 19. [80] There is a total structure A with DS(A) ⊆ {b | 0(ω)
e ≤ b} for

which there is no structure M with DSω(M) = DS(A).

The proof relies on an analysis of the ω-jump co-spectrum of a structure. Soskov
shows that every member of a ∈ CSω(M) is bounded by a total b, which is also a
member of CSω(M). To see this, let R ∈ a and a ∈ CSω(M). It follows from Theo-
rem 7 that the set R is Σcω definable in M and hence there is a computable function
γ and parameters t1, . . . , tm of |M| such that x ∈ R ⇐⇒ M |= Fγ(x)(t1, . . . , tm).
Each Fγ(x) is a computable Σcω formula, i.e. a c.e. disjunction of computable Σcn+1

formulas, where n < ω, and so there is a computable function δ(n, x) such that for
all n and x, δ(n, x) yields a code of some computable Σcn+1 formula Fδ(n,x) and
x ∈ R ⇐⇒ (∃n)(M |= Fδ(n,x)(t1, . . . , tm)).

Let Rn = {x | x ∈ N ∧M |= Fδ(n,x)(t1, . . . , tn)} and let b = de(P<ω({Rn})).
Note that b is a total enumeration degree. It is easy to see that for every enumer-
ation f of M we have that {Rn} ≤e {f−1(M)(n)} uniformly in n. It follows that
P({Rn}) ≤e {f−1(M)(n)} and so P<ω({Rn}) ≤e f−1(M)(ω), i.e. b ∈ CSω(M).
On the other hand x ∈ R ⇐⇒ (∃n)(x ∈ Rn) and so R ≤e

⊕
nRn ≤e P<ω({Rn}).

Thus a ≤e b
To complete the proof of Theorem 19, let A be a total structure with co-spectrum

CS(A) = {a | a ≤e y}, where y is some quasi-minimal above 0
(ω)
e degree. We have

already seen that such an A exists, as every principal ideal is the co-spectrum of a

total structure. Then DS(A) ⊆ {a | 0(ω)
e ≤e a}, but DS(A) cannot be the ω-jump

spectrum of any structure M. If we assume otherwise then CSω(M) = CS(A) and
so y must be bounded by a total enumeration degree b ∈ CS(A). Since y is the
greatest element of CS(A), b = y contradicting the choice of y.

7. Generalized Marker extensions for sequences of structures

The last paper by Soskov [81] settles a series of questions relating to the con-
nections between Turing degree spectra, enumeration degree spectra and spectra of
sequences of structures. The main technique is that of Marker extensions. Marker’s
method [47] is originally used in model theory. The computable content of this
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construction is established in the work of Goncharov and Khoussainov [31]. Soskov
gives a more general version of this approach.

We introduce Soskov’s ideas with a simple example. Consider a countable struc-
ture A. A set Y ⊆ |A| is relatively intrinsically c.e. in A if for every enumeration f
of A we have that f−1(Y ) is c.e. in f−1(A), or equivalently if Y is definable by some
computable infinitary Σc1 formula. In this definition A is treated as a total object,
in particular f−1(A) is treated as a total oracle. Alternatively, we can consider sets
Y ⊆ |A|, such that Y is (relatively intrinsically) enumeration reducible to A, i.e.
for every enumeration f of A we have that f−1(Y ) ≤e f−1(A), or equivalently if Y
is definable by some positive computable infinitary Σ+

1 formula. In the second case
f−1(A) is treated as a partial oracle. These two notions are in general different,
but to what extent? Are there classes of sets that can be characterized as the ones
that are enumeration reducible to a fixed structure, but cannot be characterized as
the sets that are relatively intrinsically c.e. in any structure. If we move away from
computable structure theory and view the analogous question simply in terms of
the relations ≤e and “c.e. in” the question becomes: is it true that for every set
A there is a set M such that {Y | Y ≤e A} = {Y | Y is c.e in M}? The answer
to this last question is clearly “no”, as there are sets A that are not enumeration
equivalent to any total set. So are there truly partial structures in this same sense?
Soskov [81] reveals that surprisingly computable structure theory differs from de-
gree theory in this respect: for every structure A, there is a structure M, such that
for every Y ⊆ |A|, Y ≤e A if and only if Y is c.e. in M.

For simplicity let A = (A;R) and R ⊆ A is infinite. The 0-th Marker extension
M of A is constructed as follows. Consider an infinite countable set X disjoint from
A and a bijection h : R → X. Let M(a, x) be true if and only if h(a) = x. Let
M = (A ∪ X;A,X,M), where A and X are unary predicates. Note that R is Σ0

1

definable in M since R(a)⇔ (∃x ∈ X)M(a, x). Now consider any set Y ⊆ A such
that Y ≤e A. It is straightforward to check that for every enumeration f of M
f−1(Y ) is c.e. in f−1(M) : Indeed, using a computable in f−1(M) bijection from
N to f−1(A) we can transform f into an enumeration g of the structure A. Now
we have that g−1(Y ) ≤e g−1(A) = g−1(R), and f−1(R) is c.e. in f−1(M). Since
we can pass between f and g using oracle f−1(M) it follows that f−1(Y ) is c.e. in
f−1(M).

For the reverse direction, we show that if Y �e A then Y is not relatively
intrinsically c.e. in M, i.e. that there is an enumeration f of M such that f−1(Y )
is not c.e. in f−1(M). Let g be an enumeration of A such that g−1(Y ) �e g−1(A).
We construct f so that f(2n) = g(n). To fill in f(2N) we construct a bijection
k : f−1(R) → 2N + 1 and complete f by f(2n + 1) = h(f(k−1(2n + 1))). Note
that then we will have f−1(M) ≡e f−1(M) ≡e Gk and f−1(Y ) ≡e g−1(Y ). We
construct k using forcing so that statements of the form x ∈ Γe(G

+
k ) are decided

at finite stages. For σ : f−1(R) → 2N + 1 we say that σ 
 x ∈ Γe(G
+
k ) if there

exists v, such that 〈x, v〉 ∈ Γe and for every u ∈ Dv we have u = 2〈a, x〉 and
σ(a) = x or u = 2〈a, x〉 + 1 and σ(b) = x for some b 6= a. Then the set {x | ∃σ ⊇
τ(σ 
 x ∈ Γe(G

+
k ))} is enumeration reducible to g−1(A). We use this to ensure

that g−1(Y ) 6= Γe(G
+
k ) and thus Y is not c.e. in M.

Let ~A = {An}n<ω be a sequence of structures, where An = (An;Rn1 , R
n
2 , . . . R

n
mn

).

An enumeration f of ~A is a bijection from N → A =
⋃
nAn. For every n let
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f−1(An) = f−1(An) ⊕ f−1(Rn1 ) · · · ⊕ f−1(Rnmn
) and let f−1(~A) be the sequence

{f−1(An)}n<ω.
In this setting we can talk about a sequence of sets that is relatively intrinsically

ω-enumeration reducible to ~A : a sequence {Yn}n<ω of subsets of A, such that for

every enumeration f of ~A, {f−1(Yn)} ≤ω f−1(~A). Soskov and Baleva [76] and A.
Soskova [89] show that sequence of this kind also have a syntactic characterization:
Yn is uniformly in n definable by a positive computable infinitary Σ+

n+1 formula
with predicates only from the first n structures, such that the predicates for the n-
th appear for the first time at level n+ 1 positively. We can compare this notion to
the following: say that a sequence {Yn}n<ω of subsets of A is relatively intrinsically
c.e. in a structure M with A ⊆ |M| if for every enumeration f of M the set f−1(Yn)
is Σ0

n+1(f−1(M)) uniformly in n.

The key idea is to generalize Marker extensions to the sequence ~A. First we
must define the n-th Marker extension of a predicate. Let A = (A;R1, . . . , Rk) and
R ⊆ Am. The n-th Marker extension of R is a structure Mn(R) defined as follows.
Consider new infinite disjoint countable sets X0, X1, . . . Xn called companions.
Fix bijections: h0 : R→ X0

h1 : (Am ×X0) \Gh0 → X1

. . .
hn : (Am ×X0 ×X1 · · · ×Xn−1) \Ghn−1

→ Xn.

Let Mn = Ghn and Mn(R) = (A ∪X0 ∪ · · · ∪Xn;X0, X1, . . . Xn,Mn). Notice,
that R is Σ0

n+1 definable in Mn(R) since for ā ∈ Am we have

R(ā) ⇐⇒ (∃x0 ∈ X0)(Gh0(ā, x0))

and for all k < n, x0 ∈ X0, . . . , xk ∈ Xk we have

Ghk
(ā, x0, . . . , xk) ⇐⇒ (∀xk+1 ∈ Xk+1)¬Ghk+1

(ā, x0, . . . , xk, xk+1).

Next we define M(~A) for the sequence of structures ~A = {An}n<ω.

(1) For every n construct the n-th Marker extensions of An, Rn1 , . . .Rnmn
with

disjoint companions.
(2) For every n let Mn(An) = Mn(An) ∪Mn(Rn1 ) ∪ · · · ∪Mn(Rnmn

).

(3) Set M(~A) to be (
⋃
nMn(An))+ with additional predicate for A =

⋃
nAn

and A.

Note that M(~A) is a total structure.

Soskov [81] describes the relationship between the enumerations of ~A and M =

M(~A): It is not too difficult to see that for every enumeration f of M(~A) there is

an enumeration g of ~A such that:

(1) the set {〈x, y〉 | f(i) = g(j)} is computable in f−1(M).

(2) Pn(g−1(~A)) ≤e (f−1(M))(n) uniformly in n.

(3) P<ω(g−1(~A)) ≤T (f−1(M))(ω).

The reverse relationship requires an elaborate forcing construction: For every

enumeration g of ~A and Y �ω g−1(~A) there is an enumeration f of M:

(1) the set {〈x, y〉 | f(i) = g(j)} is computable.

(2) P<ω(g−1(~A)) ≡e (f−1(M))(ω).
(3) Y is not c.e. in f−1(M).
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Our simple example is transformed to the following general theorem:

Theorem 20. [81] A sequence Y of subsets of A is relatively intrinsically ω-

enumeration reducible to ~A if and only if Y is relatively intrinsically c.e. in M(~A).

The structure M = M(~A) has very interesting properties. The first one consid-
ered in [81] is a characterization its co-spectrum.

Theorem 21. (1) The n-th co-spectrum of M is

CSn(M) = {de(Y ) | for every enumeration g of A, Y ≤e Pn(g−1(~A))}.
(2) The ω-co-spectrum of M is

Ocsp(M) = {dω(Y) | for every enumeration g of A, Y ≤ω g−1(~A)}.

Theorem 21 allows us to construct examples of structures with interesting prop-
erties in an easy way. Let R = {Rn} be a sequence of sets. Consider the sequence
~AR, where A0 = (N;GS , R0), here GS is the graph of the successor function, and
for all n ≥ 1, An = (N;Rn). Then it is not too hard to see that for every n we

have that CSn(M(~AR)) = {de(Y ) | Y ≤e Pn(R)} and for each enumeration g of N
R ≤ω g−1(~AR).

When one takes R to be an almost zero sequence, we obtain a structure M(~AR)

with n-th co-degree 0
(n)
e , but no n-th jump degree for any n. Indeed, recall that an

almost zero sequenceR is one that is not ω-enumeration reducible to 0ω, but has the
property that Pn(R) ≡e ∅(n) for every n. If we assume that the n-th jump degree

of M = M(~AR) exists, then it must be 0
(n)
e , so there is an enumeration f of M such

that (f−1(M))(n) ≡e ∅(n). However this would mean that there is an enumeration

g of N such that for all k ≥ n, Pk(R) ≤e Pk(g−1(~AR)) ≤e (f−1(M))(k) uniformly
in k, and for k ≤ n, Pk(R) ≤e ∅(n), contradicting the fact that dω(R) �ω 0ω.

Next Soskov [81] turns to investigate the properties of the spectra of Marker
extensions. There are two ways in which one can define the spectrum of a sequence

of structures. The first one is to treat ~A within an underlying structure with domain⋃
nAn and consider enumerations f of A and the sequences {f−1(An)}n<ω. The

other possibility is to consider different enumerations: fn an enumeration of An for
every n, giving rise to a sequence {f−1

n (An)}. We can then collect all ω-enumeration
degrees of such sequence as a measure of complexity, or better yet, collect all Turing
degrees (or total enumeration degrees) in the jump class of one such sequence. For
a set C let EC denote all enumerations of the set C. The relative spectrum of a

sequence ~A is the set

RS(~A) = {dT (B) | ∃g ∈ EA(g−1(An) ∈ Σ0
n+1(B) uniformly in n)}.

The joint spectrum of the sequence ~A is the set

JS(~A) = {dT (B) | ∃{gn}n<ω(gn ∈ EAn
& g−1

n (An) ∈ Σ0
n+1(B) uniformly in n)}.

Note that in general RS(~A) 6= JS(~A). For example, for the sequence of structures
~AR obtained from an almost zero sequence R where A0 = (N;GS , R0) and for

all n ≥ 1, An = (N;Rn) we have that 0T ∈ JS(~AR) \ RS(~AR). However, if the

structures in the sequence ~A have disjoint domains then the notions coincide.
These two notions can be seen as generalizations of ω-spectra and of joint spectra

and relative spectra for finitely many structures. Recall that when these notions
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were investigated the main unanswered question was wether or not they give rise
to new sets of degrees, or if the basic notion of degree spectrum already captures
these sets. The next theorem unravels this mystery.

Theorem 22 (Soskov [81]). Let ~A = {An}n<ω be a sequence of structures.

(1) There exists a structure M such that DST (M) = RS(~A).

(2) There exists a structure M such that DST (M) = JS(~A).

The proof of this theorem relies on a generalization of a result by Goncharov
and Khoussainov [31].

Lemma 1. Let R be a Σ0
n+1 set of natural numbers possessing an infinite com-

putable subset S. Then there exist functions κ0, . . . , κn such that the graph of κn is
computable and κ0 is a bijection of R onto N; κ1 is a bijection of N2 \Gκ0 onto N;
. . .κn is a bijection of Nn+1 \Gκn−1 onto N.

Theorem 4 is a special case of Theorem 22 applied to the sequence ~A where
A0 = A and for every n > 0 we have the trivial structure An = (A; =). To illustrate
the main idea consider once again the example that we gave at the beginning of this
section. We had a structure A = (A;R) for which we built the Marker extension
M = (A ∪X;X,A,M). Assume that R is infinite, (if not we can instead use the
Marker extension of the structure obtained by adding one more element ⊥ to the
domain of A and replace R by a R⊥ = {(m,n) | R(m) ∨ n = ⊥}). We showed
that if f is any enumeration of M then we can build an enumeration g of A, such
that g−1(A) ≤e f−1(M)+. Fix an enumeration g of A and a total set Y such
that g−1(A) ≤e Y . We can use the same trick as before: We construct f so that
f(2n) = g(n). To fill in f(2N) we construct a bijection k : f−1(R) → 2N + 1 and
complete f by f(2n + 1) = h(f(k−1(2n + 1))). Then f−1(M) ≡e f−1(M) ≡e Gk.
To construct Gk we use Lemma 1 relativized to Y . It follows that DS(M+) = {y |
y is total and y ≥ x for some x ∈ DS(A)}.

Soskov gives several further applications of Theorem 22. He shows that the
ω-enumeration degrees can be embedded into the Muchnick degrees generated by

spectra of structures. To see this consider again the sequence ~AR obtained from

a sequence of sets R. Recall that for every enumeration g of ~AR, we have that

R ≤ω g−1(~AR). It follows that RS(~AR) is exactly the jump class of the se-

quence R and hence DST (M(~AR)) = {dT (B) | R is c.e. in B}. This induces
the desired embedding as by definition we have that R ≤ω Q if and only if
{dT (B) | R is c.e. in B} ⊇ {dT (B) | Q is c.e. in B} and this is true if and only

if DST (M(~AR)) ⊇ DST (M(~AQ)).
As a final application of these results we show how to build a structure M

whose spectrum consists of all Turing degrees, which are non-lown for every n. The
previously known related examples are given by Kalimullin [38], who constructs for
each low degree b a structure A with DST (A) = {x | x 6≤T b} and by Goncharov
et al., [32] who construct for every n a structure with spectrum consisting of all
non-lown Turing degrees.

The construction relies on Wehner’s [101] technique. Let F be a countable family
of sets of natural numbers. An enumeration of F is a set U ⊆ N2 such that:

(1) For every a, the set {n | (a, n) ∈ U} ∈ F .
(2) For every F ∈ F there is an a such that {n | (a, n) ∈ U} = F .
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Let AF = (A;S,Z, I) where A = F × N2; Z = {(F, x, 0) | F ∈ F , x ∈ N},
S = {((F, x, n), (F, x, n + 1)) | F ∈ F , x, n ∈ N} and I = {(F, x, n) | n ∈ F}.
Wehner shows that there is a uniform way to compute an enumeration of F in any
isomorphic copy B of AF and that there is a uniform way to compute an isomorphic
copy B of AF in any enumeration of F . Consider the relativized version of Wehner’s
family: FX = {{n} ⊕ F | F is finite and F 6= WX

n } for X ⊆ N. No enumeration
of FX is c.e. in X. Furthermore, if B �T X then one can compute uniformly in B
and X an enumeration of FX .

Finally, let ~A be the sequence of structures where An = AF∅(n) . Let M be such

that DST (M) = JS(~A). If dT (B) ∈ DST (M) then B(n) computes an enumeration

of F∅(n)

and hence B(n) �T ∅(n). If B(n) �T ∅(n) for every n then as ∅(n) ≤T B(n)

uniformly in n, it follows that B(n) computes an enumeration of F∅(n)

.

Theorem 23 (Soskov [81]). There is a structure M with

DST (M) = {b | ∀n(b(n) � 0
(n)
T )}.

The untimely death of Ivan Soskov left this area not fully explored. We hope
that with this exposition, we will attract the interest of researchers who will join
us in developing this line of investigation further.
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