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Abstract. We give an alternative definition of the enumeration jump oper-

ator. We prove that the class of total enumeration degrees and the class of
low enumeration degrees are first order definable in the local structure of the

enumeration degrees.

1. Introduction

The main focus in degree theory, established as one of the core areas in Com-
putability Theory, is to understand a mathematical structure, which arises as a
formal way of classifying the computational strength of an object. The most stud-
ied examples of such structures are that of the Turing degrees, DT , based on the
notion of Turing reducibility, as well as its local substructures, of the Turing degrees
reducible to the first jump of the least degree, DT (≤ 0T

′), and of the computably
enumerable degrees, R. In investigating such a mathematical structure among the
main question that we ask is: how complex is this structure. The complexity of a
structure can be inspected from many different aspects: how rich is it algebraically;
how complicated is its theory; what sets are definable in it; does it have nontrivial
automorphisms. The question about definability, in particular, is interrelated with
all of the other questions, and can be seen as a key to understanding the natural
concepts that are approximated by the corresponding mathematical formalism. Re-
search of the Turing degrees has been successful in providing a variety of results on
definability. For the global theory of the Turing degrees, among the most notable
results is the definability of the jump operator by Slaman and Shore [20]. The
method used in the proof of this result, as well as many other definability results
in DT , leads Slaman and Woodin to conjecture that every definable set in second
order arithmetic is definable in DT . This is a consequence of their Biinterpretability
conjecture, which is shown to be equivalent to the rigidity of DT [21].

In the local theory Nies, Shore and Slaman [15] show a weakening of the biin-
terpretability conjecture for the computably enumerable degrees and obtain from
it the first order definition of the jump classes Hn and Ln+1 in R, for every nat-
ural number n. Recently Shore [18] has shown that the same weakening of the
biinterpretability conjecture holds in the ∆0

2 Turing degrees, and so the classes Hn
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and Ln+1 for every natural number n are definable in DT (≤ 0T
′) as well. One

class of degrees which has managed to elude every attempt at definability in both
local structures is that of the low1 degrees, L1, the degrees whose jump is the least
possible degree, 0T

′.
Another approach for understanding a structure, often used in mathematics,

is to place this structure in a richer context, a context which would reveal new
hidden relationships. The most promising candidate for such a larger context is
the structure of the enumeration degrees, introduced by Friedberg and Rogers [5].
This structure is induced by a weaker form of relative computability: a set A
is enumeration reducible to a set B if every enumeration of the set B can be
effectively transformed into an enumeration of the set A. The induced structure of
the enumeration degrees, De, is an upper-semilattice with jump operation and least
element. The Turing degrees can be embedded in the enumeration degrees via the
standard embedding ι which maps the Turing degree of a set A to the enumeration
degree of A ⊕ A. This embedding preserves the order, the least upper bound and
the jump operation. The range of ι is therefore a substructure of De, which is
isomorphic to DT . This structure will be denoted by T OT and its elements will be
called the total enumeration degrees. An important question, which immediately
arises in this context, first set by Rogers [16], is whether T OT is first order definable
in De. Rozinas [17] proves that every enumeration degree is the greatest lower
bound of two total enumeration degrees, thus the total enumeration degrees are an
automorphism base for De. This gives further motivation for studying the issue
of the definability of T OT in De, as it would provide a strong link between the
automorphism problem for the structures of the Turing degrees and the enumeration
degrees. If T OT is definable in De then a nontrivial automorphism of De would
yield a nontrivial automorphism of DT .

Definability in the enumeration degrees has had its successes as well. Kalimullin
[12] has shown that the enumeration jump is definable in De. The method used
in his proof is significantly less complex than that used to prove the corresponding
result in the Turing degrees. The definition of the enumeration jump is closer to
the much sought natural definition, see Shore [19], and is based on the first order
definability of a relativized version of the notion of a Kalimullin pair, K-pair. Here
we will give an alternative proof of the definability of the enumeration jump, which
does not use relativization and we see as more natural in a sense that will be made
precise.

The jump operation gives rise to a local structure in the enumeration degrees,
Ge, consisting of all enumeration degrees that are reducible to the first jump, 0e

′,
of the least degree, 0e. As ι preserves the jump operation, it follows that T OT ∩Ge
is a structure, which is isomorphic to DT (≤ 0T

′), the local structure of the Turing
degrees. In [6] we have shown that K-pairs are first order definable in Ge, providing
the first step in the investigation of the definability theme for the local structure
of the enumeration degrees. The local definition of K-pairs unlocked numerous
further results in the study of Ge. For example in [6] we show that the classes
of the upwards properly Σ0

2 enumeration degrees and the downwards properly Σ0
2

enumeration degrees are first order definable in Ge and in [8] we show that the
first order theory of true arithmetic can be interpreted in Ge, using coding methods
based on K-pairs.
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In this article we give two more examples of sets of degrees with natural first
order definitions in Ge. The first one gives a positive answer to the local version
of Rogers’ question. We show that the set of total Σ0

2 enumeration degrees is first
order definable in Ge.

The second example supplies further evidence that studying the structure of the
Turing degrees within the larger context of the enumeration degrees can provide us
with more insight. We show that the set of low enumeration degrees is first order
definable in Ge. Combined with the local definability of the total enumeration
degrees this gives the first instance of a local first order definition of an isomorphic
copy of the low Turing degrees.

2. Preliminaries

We refer to Cooper [3] for a survey of basic results on the structure of the
enumeration degrees and to Sorbi [22] for a survey of basic results on the local
structure Ge. We outline here basic definitions and properties of the enumeration
degrees used in this article.

Definition 1. A set A is enumeration reducible (≤e) to a set B if there is a c.e.
set Φ such that:

A = Φ(B) = {n | ∃u(〈n, u〉 ∈ Φ & Du ⊆ B)},
where Du denotes the finite set with code u under the standard coding of finite sets.
We will refer to the c.e. set Φ as an enumeration operator.

A set A is enumeration equivalent (≡e) to a set B if A ≤e B and B ≤e A. The
equivalence class of A under the relation ≡e is the enumeration degree de(A) of A.
The structure of the enumeration degrees 〈De,≤〉 is the class of all enumeration
degrees with relation ≤ defined by de(A) ≤ de(B) if and only if A ≤e B. It has a
least element 0e = de(∅), the set of all c.e. sets. We can define a least upper bound
operation, by setting de(A) ∨ de(B) = de(A⊕B).

The enumeration jump of a set A is defined by Cooper [2].

Definition 2. The enumeration jump of a set A is denoted by Je(A) and is defined
as KA ⊕ KA, where KA = {〈e, x〉| x ∈ Φe(A)}. The enumeration jump of the
enumeration degree of a set A is de(A)′ = de(Je(A)).

By iterating the jump operation, we define inductively the n-th jump of a degree
a for every n: a0 = a and an+1 = (an)′.

Definition 3. A set A is called total if A ≡e A ⊕ A. An enumeration degree is
called total if it contains a total set. The collection of all total degrees is denoted
by T OT .

As noted above, the structure T OT is an isomorphic copy of the Turing degrees.
The map ι, defined by

ι(dT (A)) = de(A⊕A)

is an embedding of DT in De, which preserves the order, the least upper bound and
the jump operation.

The local structure of the enumeration degrees, denoted by Ge, is the substruc-
ture with domain, consisting of all enumeration degrees, which are reducible to 0e

′.
As noted above, the elements of Ge are the enumeration degrees which contain Σ0

2

sets, or equivalently, which consist entirely of Σ0
2 sets.



4 H. GANCHEV AND M. SOSKOVA

Definition 4. A set A will be called low if Je(A) ≡e Je(∅). An enumeration degree
a ∈ Ge is low, if a′ = 0e

′.

3. Semi-recursive sets

In this section we will examine the properties of semi-recursive sets in the context
of enumeration reducibility. This analysis extends the one that can be found in
Arslanov, Cooper and Kalimullin [1].

Definition 5. We say that a set of natural numbers A is semi-recursive if there is
a total computable selector function sA : N × N → N, such that for any x, y ∈ N,
sA(x, y) ∈ {x, y} and whenever {x, y} ∩A 6= ∅, sA(x, y) ∈ A.

Jockusch [11] showed that every nonzero Turing degree contains a semi-recursive
set A, such that both A and A are not c.e. In the context of enumeration reducibility
this property can be translated as follows. A nonzero enumeration degree t is total
if and only if there is a semi recursive set A, which is not c.e. or co-c.e. such that

t = de(A) ∨ de(A).

Thus if we could show that the pairs of enumeration degrees of a semi-recursive sets
and its complement are first order definable, then we would be able to define the
class of total enumeration degrees. This fact motivates the study of the structural
properties of semi recursive sets.

Our first discovery is that we can limit our investigations of semi-recursive sets
to the study of semi-recursive sets of a particular kind. We describe these below.

Let A be a set of natural numbers. We view the characteristic function of A as
an infinite binary string χA, the (n+ 1)-th element of which, χA(n), is determined
by the membership of n in A. Namely, χA(n) = 0 if n /∈ A and χA(n) = 1 if n ∈ A.
We will denote by χ � n the initial segment of χA of length n.

Finite binary strings are naturally ordered by the lexicographical ordering. Let
σ and ρ be finite binary strings. We say that σ is to the left of ρ, denoted by
σ <L ρ, if there is a finite binary string τ , such that τ ∗ 0 ⊆ σ and τ ∗ 1 ⊆ ρ. We
can extend this relation to make it reflexive and linear as follows: σ ≤L ρ if σ ⊆ ρ
or σ <L ρ.

Denote the length of a finite binary string σ by |σ|. If σ is a finite binary string
and χ is an infinite binary string then σ ≤L χ and σ <L χ will be shorthand for
σ ≤L χ � |σ| and σ <L χ � |σ| respectively. The set of all finite binary strings to
the left of or along χA will be denoted by LA:

LA = {σ ∈ 2<ω | σ ≤L χA}.
The complement of LA, will be denoted by RA. Note that RA can be described as
follows.

RA = LA = {σ ∈ 2<ω | σ �L χA � |σ|} = {σ ∈ 2<ω | χA � |σ| <L σ}.
Both sets LA and RA are easily shown to be semi-recursive, as the relation

≤L is a computable linear ordering on finite binary strings. The selector function
sLA

simply outputs the smaller, with respect to ≤L, of its two arguments. In
the context of enumeration reducibility, the following properties make the pair
{LA, RA} particulary useful.

Proposition 1. For every set of natural numbers A the following holds.

(1) LA ≤e A;
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(2) RA ≤e A;
(3) LA ⊕RA ≡e A⊕A;
(4) A is semi-recursive if and only if A ≤1 LA, i.e. if there is a total computable

injective function g, such that n ∈ A if and only if g(n) ∈ LA.

Proof. Let A be a set of natural numbers. For every finite binary string σ let
Dσ = {n < |σ| | σ(n) = 1}. We note here that if Dσ ⊆ A then σ ≤L χA. If
we assume otherwise: σ �L χA then there is a finite string τ of length n, which
is a prefix of both σ and χA, and such that σ(n) = 1 and χ(n) = 0. But then
n ∈ Dσ \A. Note that the reverse is not necessarily true.

(1) A finite string σ is in LA if and only if there is a τ , of the same length as
σ, such that σ ≤L τ and Dτ ⊆ A. Indeed, if σ ∈ LA and σ is of length n,
then τ = χA � (n + 1) is such a string. If on the other hand σ ≤L τ and
Dτ ⊆ A then τ ≤L χA and hence by transitivity σ ≤L χA.

(2) Here it is worth noting that RA ∪{σ | σ ⊆ A} is 1-equivalent to LA via the
computable permutation which maps a finite string σ to its mirror image
σ, inverting every bit. Thus σ ∈ RA if and only if there exists τ such that
σ <L τ and Dτ ⊆ A.

(3) From (1) and (2) it follows that LA⊕RA ≤e A⊕A. On the other hand for
every natural number n, n ∈ A if and only if there is a string σ of length
n such that σ ∗ 0 ∈ LA and σ ∗ 1 ∈ RA. Finally n ∈ A if and only if there
is a string σ of length n+ 1 ending in 1 in LA, such that for every string τ
of length n+ 1, if σ <L τ then τ ∈ RA.

(4) Suppose A is semi-recursive with a selector function sA. Then for every
n we build a string σn of length n + 1, ending in 1, as follows. For every
m < n:

σn(m) =

{
0 , if sA(n,m) = n

1 , if sA(n,m) = m.

We claim that n ∈ A if and only if σn ∈ LA. Suppose that n ∈ A then for
every m ≤ n, σn(m) = 1 implies m ∈ A by the properties of the selector
function. So if n ∈ A then Dσn ⊆ A and hence σn ≤L χA.

If n /∈ A then σn(m) = 0 implies m ∈ A by the properties of the selector
function. Thus Dσn

⊆ A and hence σn ∈ LA. Here σn is, as in (2), the
mirror image of σn. Thus σn ∈ RA ∪ {σ | σ ⊆ χA}. As σn(n) = 1 and
n /∈ A, it follows that σn * χA, so σn ∈ RA = LA. This shows that
A ≤1 LA via the function g, defined by g(n) = σn.

On the other hand if A ≤1 LA via a computable injective function g
then we can construct the selector function for A, using g and the selector
function for LA:

sA(x, y) = g−1(sLA
(g(x), g(y))).

�
We note here that the first three properties are in fact a proof of Jockusch’s

theorem for all sets A whose Turing degree is not computably enumerable. The
fourth property in Proposition 1 shows that up to enumeration equivalence all
semi-recursive sets can be regarded of the form LA for some A.

In terms of structure, the enumeration degrees of a semi-recursive A and its
complement behave as a minimal pair in a very strong sense. Arslanov, Cooper
and Kalimullin [1] showed that for every set of natural numbers X:
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(de(A) ∨ de(X)) ∧ (de(A) ∨ de(X)) = de(X).

Unfortunately this statement cannot be reversed. In fact the class of enumeration
degrees for which the statement can be reversed brings us to the next topic: K-pairs.

4. K-pairs and the definability of the enumeration jump

In this section we will define the notion of a K-pair, give examples of this no-
tion, discuss basic properties and give an alternative first order definition of the
enumeration jump.

Definition 6. Let A and B be sets of natural numbers. The pair {A,B} is a
Kalimullin pair1 (K-pair) if there is a c.e. set W , such that:

A×B ⊆W & A×B ⊆W.

As a first example of a K-pair consider a c.e. set U and an arbitrary set of
natural numbers A. Then U and A form a K-pair via the c.e. set U × N. K-pairs
of this sort are considered trivial and we will not be interested in them. A K-pair
{A,B} is nontrivial if A and B are not c.e.

Non-trivial K-pairs exist. As anticipated, if A is semi-recursive, then {A,A} is
a K-pair. Indeed let sA be the selector function for A and let

sA(n,m) =

{
n , if sA(n,m) = m

m , if sA(n,m) = n.

Now consider the c.e. set W = {(sA(n,m), sA(n,m)) | n,m ∈ N} and notice that

A×A ⊆W and A×A = A×A ⊆W .
Kalimullin [12] has shown that the enumeration degrees of K-pairs are precisely

the degrees which satisfy the strong minimal-pair property described in the previous
section. He shows that the property of being a K-pair is degree theoretic and first
order definable in the global structure. A pair of sets {A,B} is a K-pair if and only
if

∀x ∈ De[ x = (x ∨ de(A)) ∧ (x ∨ de(B)) ].

Thus we can lift the notion of a K-pair to the enumeration degrees. A pair of
enumeration degrees a and b shall be called a K-pair if every member of a forms a
K-pair with every member of b. By K(a,b) we will denote the first order formula,
which is true of a and b if and only if they form a K-pair.

Some additional properties of K-pairs, that will become important later, are
listed below. A proof of these properties can be found in [12].

Proposition 2. Let A and B be a nontrivial K-pair.

(1) A ≤e B and A ≤e B ⊕ Je(∅). Similarly B ≤e A and B ≤e A⊕ Je(∅);
(2) The enumeration degrees de(A) and de(B) are incomparable and quasimin-

imal, i.e. the only total degree bounded by either of them is 0e.
(3) The class of enumeration degrees of sets that form a K-pair with A is an

ideal.

1Kalimullin’s original term for this notion is e-ideal.
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To show that the jump is definable, Kalimullin then introduces a relativized
version of a K-pair. If U is a set of natural numbers then A and B form a K-pair
over U if there is a set W ≤e U such that A×B ⊆W and A×B ⊆W . His proof
of the definability of K-pairs also relativizes: a pair of sets {A,B} is K-pair over a
set U if and only if

∀x ∈ De[ x ∨ de(U) = (x ∨ de(U) ∨ de(A)) ∧ (x ∨ de(U) ∨ de(B)) ].

A triple of degrees a,b and c, such that each pair {a,b}, {a, c} and {b, c} is a
nontrivialK-pair (over u) will be called aK-triple (over u). The first order definition
of the enumeration jump given by Kalimullin is equivalent to the following. For
every enumeration degree u ∈ De, u′ is the greatest enumeration degree, which can
be represented as the join of a K-triple over u.

Here we give an alternative definition of the enumeration jump, which does not
use the relativized version of a K-pair and is in that sense simpler. The proof of
this result is for the most part an application of the properties of K-pairs of the
form {LA, RA} for some A, discussed above.

Theorem 1. For every nonzero enumeration degree u ∈ De, u′ is the largest among
all least upper bounds a ∨ b of nontrivial K-pairs {a,b}, such that a ≤ u.

Proof. First we observe that if the sets A and B form a nontrivial K-pair then
A ⊕ B ≤e Je(A). This follows from the fact that KA ≡e A and so by the third
property in Proposition 2, KA and B form a nontrivial K-pair. By the first property
of Proposition 2, B ≤e KA, so A⊕B ≤e KA ⊕KA = Je(A).

Now fix a nonzero enumeration degree u and a nontrivial K-pair {a,b} such that
a ≤ u. Then a ∨ b ≤ a′ ≤ u′ by the monotonicity of the jump operation. This
establishes the first direction of the proof.

The second direction must be split in two cases. Suppose that u is not low.
Fix U ∈ u. Then LKU

⊕ RKU
≡e KU ⊕ KU ≡e Je(U) by the third property in

Proposition 1 and LKU
≤e U by the first property in Proposition 1. As U is not

low and RKU
= LKU

, neither of the two sets LKU
or RKU

is c.e. Let l = de(LKU
)

and r = de(RKU
). Then {l, r} is a nontrivial K-pair, such that l ≤ u and l∨r = u′.

Now suppose u is low. Then we cannot guarantee that LKU
and RKU

form
a nontrivial K-pair. However here we can use Theorem 4 from [7] which proves
that for every nonzero ∆0

2 enumeration degree a there exists a nontrivial ∆0
2 K-pair

{b, c}, such that a∨ b = b∨ c = 0e
′. Now as every low enumeration degree is ∆0

2,
we can apply this theorem to u and obtain a nontrivial K-pair {b, c}, such that
u ∨ b = b ∨ c = 0e

′. Finally we apply the property K(b, c) to u and get:

u = (b ∨ u) ∧ (c ∨ u) = 0e
′ ∧ (c ∨ u) = (c ∨ u),

hence c ≤ u. �
We note here that this definition has the disadvantage, that it cannot be applied

to define 0e
′ in a simple way. A definition of 0e

′ can still be obtained, from the
facts that 0e

′ is the least possible enumeration jump and that there are nonzero
low degrees.

An immediate corollary of the proof of the alternative definition of the enumer-
ation jump operation is McEvoy’s jump inversion theorem [14].

Corollary 1 (McEvoy). For every total degree a ≥ 0e
′ there is a quasi-minimal

enumeration degree b, such that b′ = a′.
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5. Maximal K-pairs and the local definability of the total degrees

Let us consider again the special case of a K-pair given by a semi-recursive non
c.e. set and its non-c.e. complement, say {A,A}. This K-pair can be considered as
a maximal K-pair, in the sense that there is no K-pair {C,D}, such that A ≤e C
and A ≤e D and one of these reductions is strict. Indeed suppose there were such
a pair {C,D}, and suppose for definiteness that A <e D. By the third property
of Proposition 2, as A ≤e C and {C,D} is a K-pair, A would also form a K-pair
with D. By the first property of Proposition 2, D ≤e A, contradicting the strong
inequality A <e D.

Definition 7. We say that {A,B} is a maximal K-pair if for every K-pair {C,D},
such that A ≤e C and B ≤e D, we have A ≡e C and B ≡e D.

Using the second property in Proposition 2, we can restate Jockusch’s theorem
about the existence of semi-recursive sets once again as follows:

Corollary 2. Every nonzero total set is enumeration equivalent to the join of the
components of a maximal K-pair.

The first order definability of the total enumeration degrees would then follow, if
it were true that maximality is the additional structural property needed to capture
K-pairs of the form {A,A}. If this were true than we can further argue that the
definition of the enumeration jump given by Theorem 1 is natural as follows:

Consider the relation c.e. in between Turing degrees defined by: x is c.e. in u
if there are sets X ∈ x and U ∈ u, such that X is c.e. in U .

Proposition 3. Let x and u be Turing degrees such that u is nonzero. Then x
is c.e. in u if and only if there is a K-pair {A,A} such that de(A) ≤e ι(u) and
ι(x) = de(A) ∨ de(A).

Proof. Suppose that x is c.e. in u. Let X ∈ x and U ∈ u be sets, such that
X is c.e in U . X is c.e. in U if and only if X ≤e U ⊕ U . Consider the K-pair
{LX , RX}. By Proposition 1, LX ≤e X ≤e U ⊕ U and LX ⊕RX ≡e X ⊕X. Thus
de(LX) ≤ de(U ⊕ U) = ι(u) and de(LX)⊕ de(RX) = de(X ⊕X) = ι(x).

Suppose ι(x) = de(A)∨ de(A) for some K-pair {A,A} such that de(A) ≤e ι(u).
Again let X ∈ x and U ∈ u. Then A ≤e U ⊕ U and hence A is c.e. in U . On the
other hand A⊕A ≡e X ⊕X, hence A ≡T X. Thus x is c.e. in u. �

Thus if every maximal K-pair is of the form {A,A} for some A then the total
degrees would be definable and the relation c.e. in between nonzero total degrees
would be definable. The definition of the enumeration given in Theorem 1 restricted
to the total degrees can then be read as u′ is the largest total enumeration degree
which is c.e. in u.

In the local structure of the enumeration degrees, we can implement this plan
in full. Let us consider maximal K-pairs of Σ0

2 enumeration degrees. The universal
quantifier in the first order definition of K-pairs makes it nontrivial to show that
their definability is preserved when restricted to the local structure Ge. In [6] we
show that this is nevertheless true.

Theorem 2 ([6]). There is a first order formula LK, such that for any Σ0
2 sets A

and B, {A,B} is a non-trivial K-pair if and only if Ge |= LK(de(A),de(B)).

Thus to prove that the class of total degrees is first order definable in Ge, it
suffices to show that the join of every maximal K-pair of Σ0

2 sets is enumeration
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equivalent to a total set. We prove something stronger. We prove that every
nontrivial K-pair {A,B} can be extended to a maximal K-pair of the form {C,C}.

Theorem 3. For every nontrivial Σ0
2 K-pair {A,B} there is a Σ0

2 K-pair {C,C},
such that A ≤e C and B ≤e C.

The proof of Theorem 3 is presented below. We can now combine Corollary 2,
Theorem 2 and Theorem 3 to establish:

Theorem 4. The set of total Σ0
2 enumeration degrees is first order definable in Ge.

Proof. Consider the formula:

T OT (x) ⇐⇒ x = 0e ∨ ∃a∃b[LK(a,b) & x = (a ∨ b) &

∀c∀d(LK(c,d) & c ≥ a & d ≥ b→ c = a & d = b)]

A Σ0
2 enumeration degree x is total if and only if Ge |= T OT (x). �

5.1. Extending to maximal K-pairs. To prove Theorem 3 we will use the fol-
lowing dynamic characterization of K-pairs. It is stated in [12], however it is not
formally proved there, so we supply our own proof for it.

Lemma 1 (Kalimullin). A pair of non-c.e. Σ0
2 sets {A,B} is a K-pair if and only

if there are ∆0
2 approximations {Ai}i<ω to A and {Bi}i<ω to B, such that:

∀i(Ai ⊆ A ∨ Bi ⊆ B).

Proof. Let A and B be Σ0
2 sets. Suppose that A and B form a nontrivial K-pair

in Ge. The first property in Proposition 2 implies that A and B are ∆0
2 sets, as

A,B ≤e Je(∅) and hence are also Σ0
2.

Fix ∆0
2 approximations {Âi}i<ω and {B̂i}i<ω to A and B respectively. Without

loss of generality we may assume that there are infinitely many stages i, such that
Âi ⊆ A and that there are infinitely many stages i, such that B̂i ⊆ B. Indeed
every ∆0

2 approximation can be transformed effectively into a ∆0
2 approximation

with the requested property. This can be seen for example in Lachlan and Shore
[13]. Stages i at which Âi ⊆ A will be called good stages for A. Similarly Stages

i at which B̂i ⊆ B will be called good stages for B. We assume furthermore that
Â0 = B̂0 = ∅

Let W be a c.e. set such that

A×B ⊆W & A×B ⊆W.

Fix a Σ0
1 approximation {Wi}i<ω to W . From the given approximations to A

and B we construct the required approximations {Ai}i<ω and {Bi}i<ω as follows:

Set A0 = Â0 and B0 = B̂0. Suppose that we have defined As = Âis and

Bs = B̂js . At stage s+ 1 find the greatest pair 〈i, j〉 < s, such that is ≤ i , js ≤ j

and Âi × B̂j ⊆Ws. Set As+1 = Ai and Bs+1 = B̂j .
To see that {As}s<ω and {Bs}s<ω are the required approximations we argue as

follows. For every s, As × Bs ⊆ Ws ⊆ W . As A× B ⊆ W , it follows that As ⊆ A
or Bs ⊆ B.

By our choice of approximations to A and B with infinitely many good stages
and the fact that A × B ⊆ W , it follows that the sequences {is}s<ω and {js}s<ω
are unbounded. Indeed fix is and js. Fix good stages for A and B, respectively,
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such that i > is and j > js. Then Ai × Bj ⊆ A × B ⊆ W , hence there is
a stage s∗ such that Ai × Bi ⊆ Ws∗ . Then by construction is∗ ≥ i > is and
js∗ ≥ j > js. A straightforward consequence of this is that {Ai}i<ω and {Bi}i<ω
are ∆0

2 approximations to A and B.
For the opposite direction fix ∆0

2 approximations {Ai}i<ω to A and {Bi}i<ω to
B, such that:

∀i(Ai ⊆ A ∨ Bi ⊆ B).

Consider the c.e. set W , defined by:

W =
⋃
i<ω

Ai ×Bi.

We show that W is the c.e. set witnessing that A and B form a K-pair. Fix
〈a, b〉 ∈ A × B. Let ia be a stage, such that a ∈ Ai for all i > ia and let jb
be a stage, such that b ∈ Bj for all j > jb. Then let s = max(ia, jb). Then

〈a, b〉 ∈ As×Bs ⊆W . On the other hand if 〈a, b〉 ∈ A×B then for every i, we have
that a /∈ Ai or b /∈ Bi. It follows that for every i, 〈a, b〉 /∈ Ai×Bi, hence 〈a, b〉 ∈W .
�

Approximations to sets, which form a nontrivial K-pair, with the property above
will be called K-approximations.

Now we can start the proof of Theorem 3.

Proof. Fix a nontrivial Σ0
2 K-pair {A,B} and let {Ai}i<ω and {Bi}i<ω be their

respective ∆0
2 K-approximations. We build two Σ0

2 sets C and D which will satisfy
the following requirements:

(R1) A = {x | ∃j[2〈x, j〉 ∈ C]}, B = {x | ∃j[2〈x, j〉+ 1 ∈ D]};
(R2) C and D are ∆0

2;
(R3) C = D;
(R4) {C,D} is a K-pair.

To ensure that these requirements are met, we construct respective Σ0
2 approxi-

mations {Ci}i<ω and {Di}i<ω, which will have the following properties:

(P1) Ai = {x | ∃j[2〈x, j〉 ∈ Ci] and Bi = {x | ∃j[2〈x, j〉 + 1 ∈ Di]. Assuming
that the constructed approximations are ∆0

2 this will ensure that A ⊇ {x |
∃j[2〈x, j〉 ∈ C]} and B ⊇ {x | ∃j[2〈x, j〉+ 1 ∈ D]}.

(P2) ∀i[Ai 6⊆ A⇒ Di ⊆ D] and ∀i[Bi 6⊆ B ⇒ Ci ⊆ C]. This property will ensure
that the constructed approximations are ∆0

2, i.e. (R2) holds. Indeed, if
we assume that for some d 6∈ D the set I(d) = {i | d ∈ Di} is infinite,
then {Ai}i∈I(d) is a c.e. approximation to A contradicting that A is not
c.e. Furthermore together with (P1) it ensures the inclusions A ⊆ {x |
∃j[2〈x, j〉 ∈ C]} and B ⊆ {x | ∃j[2〈x, j〉 + 1 ∈ D]}. The argument is
similar: there are infinitely many stages i, such that Bi * B, otherwise Bi
would turn out c.e. So for every x ∈ A we can find a stage i such that
x ∈ Ai and Bi * B. By (P1) there is a number j, such that 2〈x, j〉 ∈ Ci.
By (P2) Ci ⊆ C. The second inclusion is proved in a similar way.

(P3) ∀i[Ci ∩Di = ∅] and every natural number is eventually enumerated in one
of the sets. This will ensure (R3);

(P4) ∀i[Ci ⊆ C ∨Di ⊆ D]. This will ensure (R4).
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Note that the property (P2) is a consequence of properties (P1) and (P4), so
let us consider in more detail what the property (P4) is expressing. Suppose that
x 6∈ C, but for some i, x ∈ Ci. Then i is a bad stage for C, i.e. Ci * C, and we
must ensure that all the elements in Di are ultimately enumerated in D. Thus from
this point on the element x is connected to all elements in Di, in the sense that we
should not enumerate x in Dk at a further stage k > i unless we also ensure that
Di ⊆ Dk. This suggests the following relations for every stage j:

rj(x, y) ⇐⇒ ∃i ≤ j[x ∈ Ci & y ∈ Di].

The main property (MP) of the construction is as follows: for every stage j and
every x and y, if rj(x, y), then

x ∈ Dj =⇒ y ∈ Dj and y ∈ Cj =⇒ x ∈ Cj .

Note that (MP) automatically ensures that the two constructed approximations
have the K-pair property. The construction must therefore ensure that (P1), (P3)
and (MP) are true. The other properties are implied by these.

5.1.1. Construction. We introduce the following piece of notation: with cai we shall
denote the natural number 2〈a, i〉, and by dbi the natural number 2〈b, i〉 + 1. If
a ∈ Ai we shall say that cai is a follower of a, and similarly if b ∈ Bi we shall say
that dbi is a follower of b. Note that by the properties of the construction we will
have that a ∈ A if and only if at least one of its followers is in C and b ∈ B if and
only if at least one of its followers is in D. During the construction each follower
will have one of the following two states: free or not free. Intuitively a follower is
free if it is not currently enumerated in either of the sets C or D. By Free we
denote the set of all followers that are currently free.

The construction will be carried out in stages. Every stage consists of two parts
- Extracting and Adding. We shall describe the construction formally and supply
a brief description of the intuition for every action. The main intuition of the
construction is that followers caj want to end up in the set D and followers dbj want

to end up in the set C. A follower caj remains in the set C (dbj remains in the set
D ) only if it is forced to do so by other followers to which it is connected.

Start of construction.
We set C0 = {ca0 | a ∈ A0} and D0 = {db0 | b ∈ B0}. At stage i > 0 we construct

Ci and Di by modifying Ci−1 and Di−1 respectively as follows:
Initially we set Ci = Ci−1 and Di = Di−1.

Part 1: Extracting

(E1) For all caj ∈ Ci such that a 6∈ Ai we extract caj from Ci.

For all dbj ∈ Di such that b 6∈ Bi we extract daj from Di.

Intuition: This action ensures that {a | ∃j[caj ∈ Ci]} ⊆ Ai and that {b |
∃j[dbj ∈ Di]} ⊆ Bi.

(E2) For all dbj ∈ Ci such that {cak | ri−1(cak,d
b
j)} 6⊆ Ci we extract dbj from Ci.

For all caj ∈ Di such that {dbk | ri−1(caj ,d
b
k)} 6⊆ Di we extract caj from Di.

Intuition: The follower dbj is only allowed to remain in Ci if all of the
elements to which it has been connected at a previous stage, i.e. {cak |
ri−1(cak,d

b
j)} are still in Ci. These elements we can consider as requested in
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Ci by dbj . If one of these requests cannot be fulfilled (due to the properties of

Ai for example and rule (E1)), dbj must also be extracted from Ci. Similar
reasoning is applied to followers caj and their membership to Di. These
actions ensure that the main property of the construction is true.

(E3) For all caj ∈ Ci such that {dbk | ri−1(caj ,d
b
k)} ∩ Ci = ∅ we extract caj from

Ci.
For all dbj ∈ Di such that {cak | ri−1(cak,d

b
j)} ∩Di = ∅ we extract dbj from

Di.

Intuition: A follower caj was forced into Ci−1 because of a request by some

dbk, to which it is connected. However at this stage the follower that made
this request is not any longer in Ci, (it was extracted under (E2) as one of
its other requests was not fulfilled). In other words caj is not requested any
longer in Ci, so it is free to leave and attempt entering Di.

All extracted elements become free.

Part 2 (Adding)

(A1) For all free dbj such that {cak | ri−1(cak,d
b
j)} ⊆ Ci∪Free and {a | ri−1(cak,d

b
j)} ⊆

Ai we enumerate dbj and {cak | ri−1(cak,d
b
j)} in Ci.

All enumerated elements become not free.
For all free caj such that {dbk | ri−1(caj ,d

b
k)} ⊆ Di∪Free and {b | ri−1(caj ,d

b
k)} ⊆

Bi we enumerate caj and {dbk | ri−1(caj ,d
b
k)} in Di.

All enumerated elements become not free.

Intuition: This is the action that allows followers dbj to enter Ci and re-
spectively caj to enter Di. This can be done only if all of their requests
can be fulfilled at the same time. These requests must also not injure the
actions of rule (E1).

(A2) For all a ∈ Ai we enumerate cai in Ci.
For all b ∈ Bi we enumerate dbi in Di.

All enumerated elements become not free.

Intuition: This action ensures that {a | ∃j[caj ∈ Ci]} ⊇ Ai and that {b |
∃j[dbj ∈ Di]} ⊇ Bi and together with (E1), property (P1).

(A3) For all a, j ≤ i such that a 6∈ Aj we enumerate caj ∈ Di.

For all b, j ≤ i such that b 6∈ Bj we enumerate dbj ∈ Ci.
Intuition: This action handles elements that are not followers. As our aim
is to construct D as C, these elements also need to be enumerated in one of
the two constructed sets. Note that even elements are enumerated in Di and
odd elements are enumerated in Ci. At the following stage an even number
caj , which was enumerated in Di under this action, cannot be extracted
under rules (E1) and (E3). Furthermore as caj has never been enumerated

into an approximating set to C, the set {dak | ri(caj ,dbk)} is empty, so it
cannot be extracted under rule (E2). Thus this element remains in Dk

at all further stages k > i. Similar reasoning is applied to odd numbers,
enumerated in Di under this action.

End of construction.



DEFINABILITY VIA KALIMULLIN PAIRS IN THE STRUCTURE OF THE ENUMERATION DEGREES13

5.1.2. Verification of the construction. We prove that the described construction
produces sets C and D, which have the properties listed as (P1)-(P4) and (MP).
We start with the easiest property: (P1).

Proposition 4. For every i, Ai = {a | ∃j[caj ∈ Ci]} and Bi = {b | ∃j[dbj ∈ Di]}.

Proof. The claims of the proposition follow directly from rules (E1), (A1) and (A2).
Indeed (A2) guarantees the inclusion ⊆, as Ai = {a | cai ∈ Ci} and Bi = {b | dbi ∈
Di}. On the other hand (E1) and (A1) enforce that Ai ⊇ {a | ∃j[caj ∈ Ci]} and

Bi ⊇ {b | ∃j[dbj ∈ Di]}.
�

The following proposition is a direct consequence of the construction. We state
it nevertheless for completeness.

Proposition 5. For all i, Ci ∩Di = ∅.

Next we turn to the main property of the construction (MP). One particular
case of it will be used frequently in the rest of the proof and we will state and prove
it here separately.

Proposition 6. If caj is a follower and caj ∈ Di then {dbk | ri(caj ,dbk)} ⊆ Di;

If dbj is a follower and dbj ∈ Ci then {cak | ri(cak,dbj)} ⊆ Ci.

Proof. We prove the first statement. The second statement is proved similarly. Let
caj be a follower, (i.e. a ∈ Aj), such that caj ∈ Di. If caj is enumerated in Di at stage

i under rule (A1) then by construction the set {dbk | ri(caj ,dbk)} is also enumerated
in Di. As no more elements are extracted from Di after the execution of step (A1),
it follows that {dbk | ri(caj ,dbk)} ⊆ Di.

The other possibility is that caj ∈ Di−1 and during stage i, caj is not extracted
from Di. But then the prerequisites of rule (E2) are not valid for caj at stage i and

hence before starting the execution of (E3) it is true that {dbk | ri(caj ,dbk)} ⊆ Di.

During the execution of (E3) it is the case that for every dbk ∈ {dbk | ri(caj ,dbk)},
caj ∈ {cαl | ri−1(cαl ,d

b
k)} ∩Di. By (E3) this intersection must be empty in order to

extract dbk from Di, so none of the elements in {dbk | ri(caj ,dbk)} are extracted from

Di during the execution of (E3). Thus finally {dbk | ri(caj ,dbk)} ⊆ Di.
�

We are now ready to prove the main property (MP).

Lemma 2 (Main Lemma). Let x and y be natural numbers, such that ri(x, y), for
some natural number i. Then the following two conditions are true.

(C1) x ∈ Di =⇒ y ∈ Di.
(C2) y ∈ Ci =⇒ x ∈ Ci.

Proof. The claim of the lemma is trivial when either x or y are not followers, as
every such element is only enumerated once under (A3) in its corresponding set and
is never extracted. For followers x and y we shall consider three different cases.

Case 1. x = caj and y = dbk. This is a direct consequence of Proposition 6.

Case 2. x = caj and y = cαl (or x = dbk and y = dβl ). Let s be the least natural
number for which rs(x, y). We shall prove simultaneously claims (C1), (C2)
and that

(1) {dbk | ri(y,dbk)} ⊆ {dbk | ri(x,dbk)}
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by induction on i ≥ s. For i = s claims (C1) and (C2) are trivially true,
as by the definition of the relation rs and the choice of s we have x ∈ Cs
and y ∈ Ds. For claim (1) suppose that dbk is such that rs(y,d

b
k). Since

y ∈ Ds, Proposition 6 implies that dbk ∈ Ds and hence from x ∈ Cs we
obtain rs(x,d

b
k).

Now let i > s. In order to prove (C1) suppose that x ∈ Di. Then
according to Proposition 6, {dbk | ri(x,dbk)} ⊆ Di. Now using the induction
hypothesis for (1) and that {dbk | ri−1(x,dbk)} ⊆ {dbk | ri(x,dbk)} we obtain
{dbk | ri−1(y,dbk)} ⊆ Di. As by Proposition 5 we have that Di ∩ Ci = ∅, it
follows that at stage i when we reach step (E3), {dbk | ri(y,dbk)} ∩ Ci = ∅,
which implies that y /∈ Ci. This means that if y is not already in Di, it is
free during the execution of (A1) and we would enumerate it in Di.

In order to prove (C2) suppose that y ∈ Ci. Then there is a dbk ∈ Ci
such that ri−1(y,dbk), since otherwise y would have been extracted under
(E3). From the induction hypothesis for (1) we obtain that ri−1(x,dbk) and
hence x ∈ Ci by Proposition 6.

Finally let us prove (1). We consider two cases. First suppose that
y /∈ Ci. Then {dbk | ri(y,dbk)} = {dbk | ri−1(y,dbk)}. On the other hand
{dbk | ri−1(x,dbk)} ⊆ {dbk | ri(x,dbk)} and now the claim follows from the
induction hypothesis. Secondly let y ∈ Ci. Then

{dbk | ri(y,dbk)} = {dbk | ri−1(y,dbk)} ∪ {dbk | dbk ∈ Di}.

On the other hand by (C2) we have x ∈ Ci and hence

{dbk | ri(x,dbk)} = {dbk | ri−1(x,dbk)} ∪ {dbk | dbk ∈ Di}

and again the claim follows from the induction hypothesis.
Case 3. x = dbk and y = caj . Let s be again the least stage for which rs(x, y). In

particular x ∈ Cs and y ∈ Ds. We shall prove simultaneously (C1), (C2)
and for all i ≥ s:

(2) {dβl | ri(y,d
β
l )} ⊆ {dβl | ri(x,d

β
l )}

(3) {cαl | ri(cαl , x)} ⊆ {cαl | ri(cαl , y)}

by induction on i. For i = s claims (C1) and (C2) are trivial. In order

to prove (2) suppose that dβl is such that rs(y,d
β
l ). Then according to

Proposition 6, dβl ∈ Ds and hence rs(x,d
β
l ). The proof of (3) is analogous.

Now let i > s. In order to prove (C1) suppose that x ∈ Di. Then
according steps (E3) and (A1) of the construction there is a cαl ∈ Di, such
that ri−1(cαl , x). The induction hypothesis for (3) implies ri−1(cαl , y). Now
from claim (C1) of Case 2 and cαl ∈ Di we obtain y ∈ Di. The proof of
(C2) is analogous.

Now let us prove (2). Suppose that for some dβl , ri(y,d
β
l ). We shall

consider two cases. First suppose that y /∈ Ci. Then it should be the case

ri−1(y,dβl ) which together with the induction hypothesis implies ri−1(x,dβl )

and hence ri(x,d
β
l ). Now let y ∈ Ci. If ri−1(y,dβl ) we reason in the same

way as above, so suppose that ri−1(y,dβl ) is not true. Then it should be the

case dβl ∈ Di. On the other hand (C2) implies x ∈ Ci and hence ri(x,d
β
l ).

Claim (3) is proved analogously.
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�
Next we show that property (P2) is true.

Proposition 7. For every i the following holds:

• Ai 6⊆ A =⇒ Di ⊆ D;
• Bi 6⊆ B =⇒ Ci ⊆ C.

Furthermore

• a ∈ Ai \A =⇒ cai ∈ D;
• b ∈ Bi \B =⇒ dbi ∈ C.

Proof. Fix an i such that Ai 6⊆ A and let a ∈ Ai \ A. Consider the follower cai .
According to (A2) cai ∈ Ci, so that for all y ∈ Di, ri(c

a
i , y) and hence rj(c

a
i , y) for

j ≥ i. Let s1 > i be the least stage, such that for all j ≥ s1, a 6∈ Aj (such stage
exists since {Ai}i<ω is a ∆0

2 approximation). Then according to rule (E1) for each
j ≥ s1, cai /∈ Cj and hence for j ≥ s1, {dbk | rj(cai ,dbk)} ∩ Cj = ∅. Thus for j ≥ s1,
{dbk | rj(cai ,dbk)} ⊆ Dj ∪Free. Now consider the set {b | ∃k[rj(c

a
i ,d

b
k)]}. Note that

as for all j ≥ s1, cai /∈ Cj , it follows that this set is finite and does not change. We
claim that

(4) {b | ∃k[rj(c
a
i ,d

b
k)]} ⊆ B.

Indeed, rj(c
a
i ,d

b
k) implies that for some l, cai ∈ Cl and dbk ∈ Dl, and in the par-

ticular a ∈ Al and b ∈ Bl. Thus Al * A, so that by our choice of K-approximations
to A and B, it must be true that Bl ⊆ B and hence b ∈ B.

Fix the least stage s2 ≥ s1, such that for all j ≥ s2, {b | ∃k[rj(c
a
i ,d

b
k)]} ⊆ Bj

(such a stage exists in virtue of (4)). Then for j ≥ s2, {dbk | ∃k[rj(c
a
i ,d

b
k)]} ⊆

Dj ∪ Free and {b | ∃k[rj(c
a
i ,d

b
k)]} ⊆ Bj , so that (A1) implies cai ∈ Dj . Thus

cai ∈ D.
Finally since for all y ∈ Di and all j ≥ s2, rj(c

a
i , y), Lemma 2 implies Di ⊆ Dj

and hence Di ⊆ D.
�

Corollary 3. {Ci}i<ω and {Di}i<ω are ∆0
2 approximations to C and D respec-

tively.

Proof. Towards a contradiction assume that {Di}i<ω is not a ∆0
2 approximation to

D. Then there is an element y 6∈ D such that the set I(y) = {i | y ∈ Di} is infinite.
Every i ∈ I(y) is a bad stage for D and hence according to Proposition 7 it is a
good stage for A. Since I(y) is infinite,

A = {a | ∃i[i ∈ I(y) & a ∈ Ai]}.
On the other hand I(y) is computable and hence A is c.e. contrary to what is given.

Similarly one proves that {Ci}i<ω is a ∆0
2 approximations to C. �

Corollary 4. A = {a | ∃j[caj ∈ C]} and B = {b | ∃j[dbj ∈ D]}.

Proof. By Proposition 4 for every i, Ai = {a | ∃j[caj ∈ Ci]} and Bi = {b | ∃j[dbj ∈
Di]}. Hence if a /∈ A there is a stage ia such that a /∈ Ai for all i > ia and hence
for all j and all i > ia, caj /∈ Ci. This yields A ⊇ {a | ∃j[caj ∈ C]}.

Now let a ∈ A. Let ia be a stage such that a ∈ Ai for all i > ia. Let j > ia be
a stage such that Bj * B. Such a stage exists, as if we assume otherwise, i.e. that
for all j > ia, Bj ⊆ B, it would follow that B is c.e. contrary to what is given. At
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stage j, as a ∈ Aj , caj ∈ Cj by (A2). By Proposition 7, as Bj * B, Cj ⊆ C. So

caj ∈ C and A ⊆ {a | ∃j[caj ∈ C]}. That B = {b | ∃j[dbj ∈ D]} is proved similarly.
�

To complete the verification of the construction in the last two propositions we
prove that properties (P3) and (P4) are true.

Proposition 8. D = C.

Proof. First we claim that C ∩ D = ∅. Indeed, at each stage the rules of the
construction guarantee the Ci ∩Di = ∅. This together with the fact that {Ci}i<ω
and {Di}i<ω are ∆0

2 approximations implies C ∩D = ∅.
Next we prove that C ∪D = N. Fix a natural x ∈ N. Suppose that x is not a

follower. Without loss of generality we may assume that x = cai for some natural
numbers i and a. Then at stage s = max{i, a}, x is enumerated in Ds under rule
(A3). It is never extracted from D. Indeed it could be extracted at a stage j only
under rule (E2), because this is the only rule which extracts an even number from
D. However the set {dbk | rj−1(x,dbk)} = ∅ so rule (E2) does not apply. Thus
x ∈ D.

Now suppose that x is a follower. If x = cai for some a 6∈ A, or x = dbi for some
b 6∈ B then according to Proposition 7, x ∈ D or x ∈ C respectively. So let x = cai
for some a ∈ A and suppose that x /∈ C. Then according to Proposition 7 for every
j if x ∈ Cj , then Bj ⊆ B. Thus if rj(x,d

b
k), then b ∈ B. Let s1 be the least stage,

such that for j ≥ s1, x /∈ Cj . Then for j ≥ s1 we have rj(x,d
b
k) ⇐⇒ rs1(x,dbk).

Furthermore Proposition 6 implies that for j ≥ s1, {dbk | rj(x,dbk)} ∩ Cj = ∅ and
hence {dbk | rj(x,dbk)} ⊆ Dj ∪ Free. Let s2 ≥ s1 be the least stage such that for
j ≥ s2, {b | ∃k[rj(x,d

b
k)]} ⊆ Bj . Then at stage s2, x is enumerated in Ds2 under

rule (A1) and is never extracted from D.
Analogously we may prove that if x = dbk for some b ∈ B and x /∈ D then x ∈ C.

�

Proposition 9. For every i, either Ci ⊆ C or Di ⊆ D.

Proof. Suppose that for some i, Ci 6⊆ C and let x ∈ Ci \C. Fix a stage s such that
for each j ≥ s, x ∈ Dj (such a stage exists since D = C and the approximation
to D is ∆0

2). Take an arbitrary y ∈ Di. Then for each j ≥ i, rj(x, y) and hence
according to claim (C1) of Lemma 2 we obtain that for j ≥ s, y ∈ Dj . Thus y ∈ D
and hence Di ⊆ D.

�
This completes the proof of Theorem 3. �

5.2. Weakly semi-recursive sets. The constructed maximalK-pair is of the form
{C,C}, just as the ones from our initial examples, coming from a semi-recursive
set and its complement. It would be natural to wonder if the sets produced by
this construction are semi-recursive as well and in that line of thought, do all K-
pairs of the form {C,C} consist of semi-recursive sets. In pursuit of this answer we
come to a generalization of the notion of a semi-recursive set, weakly semi-recursive
sets. Jockusch and Owings [10] have already defined this notion and used it in a
completely different context - the theory of bounded queries.

Definition 8. We say that a set of natural numbers, A, is weakly semi-recursive if
there is a computable selector function sA : N×N→ N, such that: for any x, y ∈ N,
if {x, y}∩A 6= ∅ and {x, y}∩A 6= ∅ then sA(x, y) is defined and sA(x, y) ∈ {x, y}∩A.
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Every semi-recursive set is weakly semi-recursive. Furthermore every c.e. set
is weakly semi-recursive. The selector function for a c.e. set works as follows: on
every input (x, y) it starts approximating the c.e. set until one of the arguments
appears in the approximation, and outputs this argument. It is not difficult to
construct a c.e. set, which is not semi-recursive: for every pair of elements 2e and
2e+1, one waits until (if ever) the e-th partial computable function ϕe is defined on
argument (2e, 2e+1) and diagonalizes against it by enumerating in the constructed
set an element from {2e, 2e+ 1} \ {ϕe(2e, 2e+ 1)}.

Proposition 10. For every set of natural numbers A the following are equivalent:

(1) A is weakly semi-recursive.
(2) {A,A} form a K-pair.

Proof. Suppose that A is weakly semi-recursive with selector function sA. Consider
the set W = {〈a, b〉 | sA(a, b) ↓= a}. Then A×A ⊆W and A×A ⊆W .

If on the other hand {A,A} form a K-pair witnessed by W then the graph of
the selector function sA is {〈〈a, b〉, a〉 | 〈a, b〉 ∈W}. �

Finally we show that in this case as well, up to enumeration equivalence, all
weakly semi-recursive sets, just as all semi-recursive sets, can be regarded of the
form LA.

Proposition 11. If A is weakly semi-recursive then A ≡e LA.

Proof. By Proposition 1 we only need to show that A ≤e LA. Let sA be the selector
function for A. Consider the enumeration operator Γ, defined as follows:

Γ = {〈n, σ〉 | |σ| = n+ 1 & σ(n) = 1 & ∀m < n(σ(m) = 0→ sA(n,m) ↓= n)}

Then A = Γ(LA) can be seen as follows. If n ∈ A then 〈n, χA � (n + 1)〉 ∈ Γ and
χA � (n + 1) ∈ LA. Suppose that n ∈ Γ(LA) via the pair 〈n, σ〉 ∈ Γ. Towards a
contradiction assume that n /∈ A. We will show that every prefix τ ⊂ σ is an initial
segment of χA by induction on its length. Suppose that for τ = σ � m we have that
τ ⊆ χA. If τ ∗ 1 ⊆ σ then as τ ∗ 1 ∈ LA and τ ∗ 1 is the rightmost extension of the
rightmost string in LA of length |τ |, τ ∗ 1 ⊆ χA. If τ ∗ 0 ⊆ σ, i.e. σ(m) = 0, then
sA(n,m) ↓= n and as n /∈ A by the properties of a selector function m /∈ A, hence
τ ∗ 0 ⊆ χA. Thus σ ⊆ χA and σ(n) = 1 provides the anticipated contradiction. �

Thus the statement of Theorem 3 can be further strengthened:

Corollary 5. For every nontrivial Σ0
2 K-pair {A,B} there is a semi-recursive set

C, such that A ≤e C and B ≤e C.
The class of nonzero enumeration degrees, which contain ∆0

2 non-c.e. and non-co
c.e. semi-recursive sets is first order definable in Ge.

Proof. Let {A,B} be a nontrivial K-pair of Σ0
2 enumeration degrees. By Theorem

3 there is a Σ0
2 K-pair {C,C}, such that A ≤e C and B ≤e C. By Proposition 10

the set C is weakly semi-recursive. By Proposition 11 we have that C ≡e LC . Thus
A ≤e LC and hence B ≤e LC = RC .

Thus a is the enumeration degree of a ∆0
2 non c.e., non co-c.e semi-recursive set

A if and only if a is half of a maximal Σ0
2 K-pair.

�
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5.3. Relativization. Zooming out from the local structure and looking at the
whole structure of the enumeration degrees, this is what we have so far.

From the definition of the enumeration jump of a set A, as KA ⊕KA, it follows
immediately that the jump of every enumeration degree is total. By Friedberg’s
Jump Inversion Theorem every total enumeration degree greater than or equal to
0e
′ belongs to the range of the enumeration jump operator. This together with the

definability of the enumeration jump operator in De yields the first order definition
of the total degrees above 0e

′. Thus by Theorem 4 the total degrees comparable
with 0e

′ are first order definable in De.
Furthermore the proof of Theorem 4 can be relativized above any total degree.

Consider again the relativized version of a K-pair: a pair of sets A and B form a
K-pair over a set U if there is a set W ≤e U , such that

A×B ⊆W & A×B ⊆W.

Recall that this property is also degree theoretic and first order definable by:

∀x[x ∨ u = (x ∨ a ∨ u) ∧ (x ∨ b ∨ u)].

In [7] we relativize the dynamic characterization of K-pairs as follows:

Lemma 3 ([7]). Let G be a total set and let B and C be Σ0
2(G) sets. B and C

form a K-pair over G if and only if B and C have Σ0
2(G) approximations {Bi}i<ω

and {Ci}i<ω such that for every i either Bi ⊆ B or Ci ⊆ C.

Thus we can relativize the construction in the proof of Theorem 3 and obtain
the following theorem:

Theorem 5. For every total enumeration degree a the class T OT ∩ [a,a′] is first
order definable in De with parameter a.

6. Local definability of the low enumeration degrees

Now we turn to the local definability of the low enumeration degrees. The low
enumeration degrees have been characterized in terms of the arithmetical complex-
ity of the degrees that they bound. Cooper and McEvoy [4] show that an enumer-
ation degree a is low if and only if every b ≤ a is ∆0

2. Giorgi, Sorbi and Yang
[9] show that this characterization can be strengthened for the total enumeration
degrees.

Definition 9. A Σ0
2 set A is called downwards properly Σ0

2 if for every non c.e.
set B, such that B ≤e A, B is not ∆0

2. A degree a is downwards properly Σ0
2 if it

contains a downwards properly Σ0
2 set.

Giorgi, Sorbi and Yang show that every non-low total Σ0
2 enumeration degree

bounds a downwards properly Σ0
2 enumeration degree.

In [6] we show that the class of downwards properly Σ0
2 degrees is first order

definable in Ge.

Theorem 6. [6] A Σ0
2 degree is downwards properly Σ0

2 if and only if it does not
bound any nontrivial K-pair.

Giorgi, Sorbi and Yang’s result combined with the local first order definability
of the classes of the total enumeration degrees and the downwards properly Σ0

2

enumeration degrees already gives the first order definition of the low total enu-
meration degrees in Ge. We could complete the proof of the definability of the low
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degrees simply by applying Soskov’s Jump Inversion Theorem [23] which implies
that a degree is low if and only if it is bounded by a low total degree.

To get a simpler definition we will first generalize the result by Giorgi, Sorbi and
Yang.

Theorem 7. Every non-low Σ0
2 enumeration degree bounds a downwards properly

Σ0
2 enumeration degree.

Proof. Let A be a member of a non-low Σ0
2 enumeration degree. Consider the K-

pair LKA
and RKA

. Then by Proposition 1, LKA
⊕RKA

≡e KA⊕KA = Je(A). As
LKA

≤e KA ≡e A, LKA
is a Σ0

2 set. On the other hand, as A is not low, RKA
is

not a Σ0
2 set, and so LKA

cannot be c.e. If we assume that LKA
is not downwards

properly Σ0
2 then by Theorem 6 LKA

bounds a nontrivial K-pair {C,D}. By Part
3 of Proposition 2, {C,D,RKA

} form a K-triple with C ⊕ D ⊕ RKA
�e ∅′. This

contradicts Kalimullin’s definition of the enumeration jump [12], which proves that
0e
′ is the largest enumeration degree, which can be represented as a K-triple. Thus

LKA
is downwards properly Σ0

2 and bounded by A. �
Thus a degree is low if and only if it does not bound any downwards properly

Σ0
2 enumeration degree. Incorporating Theorem 6 this translates into a characteri-

zation of lowness in terms of the downwards density of K-pairs: a degree is low if
and only if every degree below it bounds a nontrivial K-pair.

Theorem 8. The set of low enumeration degrees is first order definable in Ge.

Proof. The low enumeration degrees are defined in Ge by the following formula:

LOW (x) ⇐⇒ ∀b ≤ x∃c ≤ b∃d ≤ b(LK(c,d))].

�
The definition of the total enumeration degrees below 0e

′ given in Theorem 4,
combined with the statement of Proposition 3 allows us to define the set

C = {〈x,u〉 | x,u ∈ T OT & u 6= 0e& ι−1(x) c.e. in ι−1(u)}.
Combining this with the definability of the low enumeration degrees, we could

obtain a first order definition of set of total enumeration degrees which are images of
low Turing degrees, c.e. in some nonzero low Turing degree. Unfortunately the next
theorem reveals that this set is not very interesting. It also gives a characterization
of the ∆0

2 Turing degrees by an unexpected method.

Theorem 9. A Turing degree x is a ∆0
2 Turing degrees if and only if x is c.e. in

some low Turing degree.

Proof. One direction is obviously true: if x is c.e. in a low Turing degree, then x
is ∆0

2. So let us concentrate on the opposite direction.
Suppose that x is a ∆0

2 Turing degree. If x is c.e. then it is c.e. in 0T . Suppose
that x = dT (X) is not c.e. Then the enumeration degree ι(x) = de(X⊕X) contains
no Π0

1 set. Consider the sets LX and RX . It follows that neither of these sets is
c.e., as otherwise LX ⊕ RX would be enumeration equivalent to a Π0

1 set, and by
Proposition 1 LA ⊕ RA ≡e X ⊕ X. Now we show that LX is low. To see this
we use a familiar trick. As KLX

≡e LX it follows from Proposition 2 that KLX

forms a K-pair with RX , so KLX
≤e RX ⊕ Je(∅). Now Je(LX) = KLX

⊕KLX
≤e

LX ⊕RX ⊕ Je(∅) ≡e Je(∅).
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By Soskov’s Jump Inversion Theorem [23] there is a low total degree ι(u) such
that de(LX) ≤ ι(u). Note that as ι preserves the jump operation the Turing
degree u is also low. So ι(x) is the least upper bound of a maximal K-pair
{de(LX),de(RX)} such that de(LX) ≤ ι(u). By Proposition 3 it follows that
x is c.e. in u.

�
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