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Abstract. In this paper we prove that every nonzero ∆0
2 e-degree is

cuppable to 0′e by a 1-generic ∆0
2 e-degree (so low and nontotal) and

that every nonzero ω-c.e. e-degree is cuppable to 0′e by an incomplete
3-c.e. e-degree.

1 Introduction

Intuitively, we say that a set A is enumeration reducible to a set B, denoted as
A ≤e B, if there is an effective procedure to enumerate A, given any enumeration
of B. More formally, A ≤e B if there is a computably enumerable set W such
that

A = {x : (∃u)[〈x, u〉 ∈ W & Du ⊆ B]}
where Du is the finite set with canonical index u.

Let ≡e denote the equivalence relation generated by ≤e and let [A]e be the
equivalence class of A — the enumeration degree (e-degree) of A. The degree
structure 〈De,≤〉 is defined by setting De = {[A]e : A ⊆ ω} and setting [A]e ≤
[B]e if and only if A ≤e B. The operation of least upper bound is given by
[A]e ∨ [B]e = [A ⊕ B]e where A ⊕ B = {2x : x ∈ A} ∪ {2x + 1 : x ∈ B}.
The structure De is an upper semilattice with least element 0e, the collection
of computably enumerable sets. Gutteridge [9] proved that De does not have
minimal degrees (see Cooper [1]).

An important substructure of De is given by the Σ0
2 e-degrees i.e. the e-

degrees of Σ0
2 sets. Cooper [2] proved that Σ0

2 e-degrees are the e-degrees below
0′e, the e-degree of K. An e-degree is ∆0

2 if it contains a ∆0
2 set, a set A with

a computable approximation f such that for every element x, f(x, 0) = 0 and
lims f(x, s) exists and equals to A(x). Cooper and Copestake [5] proved that

? Soskova is supported by the Marie Curie Early Training grant MATHLOGAPS
(MEST-CT-2004-504029).

?? Wu is partially supported by a a start-up grant No. M48110008 and a research grant
No. RG58/06 from NTU.



below 0′e there are e-degrees that are not ∆0
2. These e-degrees are called properly

Σ0
2 e-degrees.

In this paper we are mainly concerned with the cupping property of ∆0
2 e-

degrees. An e-degree a is cuppable if there is an incomplete e-degree c such that
a ∪ c = 0′e. In [6], Cooper, Sorbi and Yi proved that all nonzero ∆0

2 e-degrees
are cuppable and that there are noncuppable Σ0

2 e-degrees.

Theorem 1. (Cooper, Sorbi and Yi [6]) Given a nonzero ∆0
2 e-degree a, there

is a total ∆0
2 e-degree c such that a ∪ c = 0′e, where an e-degree is total if it

contains the graph of a total function. Meanwhile, noncuppable e-degrees exist.

In this paper we first prove that each nonzero ∆0
2 e-degree a is cuppable to

0′e by a non-total ∆0
2 e-degree.

Theorem 2. Given a nonzero ∆0
2 e-degree a, there is a 1-generic ∆0

2 e-degree b
such that a∪b = 0′e. Since 1-generic e-degrees are quasi-minimal and 1-generic
∆0

2 e-degrees are low, b is nontotal and low.

Here a set A is 1-generic if for every computably enumerable set S of {0, 1}-
valued strings there is some initial segment σ of A such that either S contains
σ or S contains no extension of σ. An enumeration degree is 1-generic if it
contains a 1-generic set. Obviously, no nonzero e-degree below a 1-generic e-
degree contains a total function and hence 1-generic e-degrees are quasi-minimal.
Copestake proved that a 1-generic e-degree is low if and only if it is ∆0

2 (see [7]).
Our second result is concerned with cupping ω-c.e. e-degrees to 0′e. A set

A is n-c.e. if there is an effective function f such that for each x, f(x, 0) = 0,
|{s + 1 | f(x, s) 6= f(x, s + 1)}| ≤ n and A(x) = lims f(x, s). A is is ω-c.e. if
there are two computable functions f(x, s), g(x) such that for all x, f(x, 0) = 0,
|{s + 1 | f(x, s) 6= f(x, s + 1)}| ≤ g(x) and lims f(x, s) ↓= A(x).

An enumeration degree is n-c.e. (ω-c.e.) if it contains an n-c.e. (ω-c.e.) set.
It’s easy to see that the 2-c.e. e-degrees are all total and coincide with the Π1

e-degrees, see [3]. Cooper also proved the existence of a 3-c.e. nontotal e-degree.
As the construction presented in [6] actually proves that any nonzero n-c.e. e-
degree can be cupped to 0′e by an (n + 1)-c.e. e-degree, we will prove that any
nonzero ω-c.e. e-degree is cuppable to 0′e by a 3-c.e. e-degree.

Theorem 3. Given a nonzero ω-c.e. e-degree a, there is a 3-c.e. e-degree b such
that a ∪ b = 0′e.

This is the strongest possible result. We explain it as follows. Consider the
standard embedding ι of DT to De given by: ι(degT (A)) = dege(χA) where χA

denotes the graph of the characteristic function of A. It is well-known that ι is
an order-preserving mapping and that the Π1 enumeration degrees are exactly
the images of the Turing c.e degrees under ι. Consider a noncuppable c.e. degree
a. ι(a) is Π1, hence ω-c.e., and ι(a) is not cuppable by any Π1 e-degree, as ι
preserves the least upper bounds. Therefore, no 2-c.e. e-degree cups ι(a) to 0′e.

We use standard notation, see [4] and [10].



2 Basic ideas of Cooper-Sorbi-Yi’s cupping

In this section we describe the basic ideas of Cooper-Sorbi-Yi’s construction
given in [6]. Let {As}s<ω be a ∆0

2 approximation of the given ∆0
2 set A which

is assumed to be not computably enumerable. We will construct two ∆0
2 sets

B and E (auxiliary) and an enumeration operator Γ such that the following
requirements are satisfied:

S : ΓA,B = K
NΦ : E 6= ΦB

The first requirement is the global cupping requirement and it guarantees
that the least upper bound of the degrees of A and B is 0′e. Here ΓA,B denotes
an enumeration operation relative to the enumerations of A and B.

The second group of requirements NΦ, where Φ ranges over all enumeration
operators, guarantees that the degree of B is not complete. Indeed, we have a
witness — the degree of E is not below that of B.

To satisfy the global requirement S we will construct by stages an enumera-
tion operator Γ such that K = ΓA,B . That is, at stage s we find all x < s such
that x ∈ Ks but x 6∈ ΓA,B [s], the approximation of ΓA,B at stage s, we define
two markers ax (bound of the A-part) and bx (bound of the B-part and bx ∈ B)
and enumerate x into ΓA,B via the axiom 〈x,As ¹ ax + 1, Bs ¹ bx + 1〉. If x
leaves K later, we can make this axiom invalid by extracting bx from B or by
a change (from 1 to 0) of A on As ¹ ax + 1. Intuitively we must use A-changes
in the definition of Γ since otherwise B would be complete, contradicting the
N -requirements. Since A is not in our control, if A does not provide such changes
then we have to extract bx out of B. We call this process the rectification of Γ
at x.

Note that after stage s, at stage t > s say, if x ∈ Kt but At ¹ ax + 1 6⊆ At or
Bs ¹ bx + 1 6⊆ Bt then we need to put x into ΓA,B by enumerating a new axiom
into Γ . If this happens infinitely often then x is not in ΓA,B and we cannot
ensure that ΓA,B(x) = K(x). To avoid this at stage t, when we re-enumerate
x into ΓA,B , we keep ax the same as before, but let bx be a bigger number.
We put bx[t] into B and extract bx[s] from B ( we want only one valid axiom
enumerating x into ΓA,B ). Assuming that the G-strategies also do not change
ax after a certain stage, as A is ∆0

2 there can be only finitely many changes in
A ¹ ax and hence we will eventually stop enumerating axioms for x in Γ .

Now we consider how to satisfy a NΦ-requirement. We use variant of the
Friedberg-Muchnik strategy. Namely, we select x as a witness, enumerate it into
E and wait for x ∈ ΦB . If x never enters ΦB then NΦ is satisfied. Otherwise we
will extract x from E, preserving B ¹ φ(x) where φ(x) denotes the use function
of the computation ΦB(x) = 1.

The need to preserve B ¹ φ(x) conflicts with the need to rectify Γ . To avoid
this before choosing x the NΦ-strategy will first choose a (big) number k as its
threshold and try to achieve bn > φ(x) for all n ≥ k. For elements n < k, S will
be allowed to rectify Γ at its will. Whenever K changes below k + 1 we reset
this NΦ-strategy by cancelling all associated parameters except for this k. Since



k is fixed such a resetting process can happen at most k + 1 many times, so we
can assume that after a stage large enough this NΦ-strategy will never be reset
anymore.

If k enters K, the threshold is moved automatically to the next number in K.
Since K is infinite, eventually, the threshold will stop changing its value. This
threshold will be the real threshold of the corresponding NΦ-strategy.

In order to be able to preserve some initial segment of B for the diagonal-
ization, NΦ will first try to move all markers bn for elements n ≥ k above the
restraint. A useful A-change will facilitate this. In the event that no such useful
change appears we will be able to argue that A is c.e. contrary to hypothesis.
To do this we will have an extra parameter U , aimed to construct a c.e. set
approximating A.

The NΦ-strategy works as follows at stage s:
Setup: Define a threshold k to be a big number. Choose a witness x > k and
enumerate it in E.
K-Check: If a marker bn for an element n ≤ k has been extracted from B
during Γ -rectification then restart the attack.
Attack:

1. If x ∈ ΦB go to step 2. Otherwise return to step 1 at the next stage.
2. Approximate A by As ¹ ak at stage s. Extract bk[s] from B. Cancel all

markers an and bn for n ≥ k. Define ak new, bigger than any element seen
so far in the construction. Go to step 3.

3. Initialize all strategies of lower priority. If a previous approximation of A
defined at stage t < s is not true then enumerate bk[t] back in B, extract x
from E and go to step 4, otherwise go back to step 1.

4. While the observed change in A is still apparent, do nothing. Otherwise
enumerate x back in E and extract bk[t] from B, go back to step 3.

If after a large enough stage the strategy waits at 1 or 4 forever then the
NΦ-requirement is obviously satisfied. In the latter case ΦB(x) = 1 6= 0 = E(x)
and the construction of Γ will never change the enumeration of ΦB(x) = 1 since
all γ-markers are lifted to bigger values by the changes of A below ak[s]+1. This
strategy will not go from 1 or 4 back to 3 infinitely often and hence the NΦ-
requirement is satisfied. Otherwise as A is ∆0

2 it would pass through 2 infinitely
often. Let t1 < t2 < · · · < tn < · · · be the stages at which this strategy passes
through 2. Then for each i, Ati ¹ ak[ti] + 1 ⊂ A. By this property we argue that
A is computably enumerable as follows: for each x, x is in A if and only if x is
in Ati for some i, or

x ∈ A ⇔ ∃i(x ∈ Ati).

This contradicts our assumption on A.

3 Cupping by 1-generic degrees

In this section we give a proof of Theorem 2. That is, given an non-c.e. ∆0
2 set

A, we will construct a ∆0
2 1-generic B satisfying the following requirements:



S : ΓA,B = K;
Gi : (∃λ ⊂ B)[λ ∈ Wi ∨ (∀µ ⊇ λ)[µ /∈ Wi]].

If all requirements Gi together with the global requirement S are satisfied
then B will have the intended properties. It is well known that the degree of a
1-generic set can not be complete.

Definition 1. The tree of outcomes will be a perfect binary tree T . Each node
α ∈ T of length i will be labelled by the requirement Gi. We will say that α is a
Gi-strategy.

At stage 0 B = ∅, Γ = ∅, Uα = ∅ for all α and all thresholds and witnesses
will be undefined.

At stage s we start by rectifying Γ and then construct a path through the
tree δs of length s visiting all nodes α ⊂ δs and performing actions as stated in
the construction.

The Γ -rectification module for satisfying the global S requirement is as fol-
lows:

Γ -rectification module. Scan all elements n < s and perform the following
actions for the elements n such that ΓA,B(n) 6= K(n):

– n ∈ K.
1. If an ↑, define an = an−1 + 1(if n= 0, define an = 1). Note that this is

the only case when the Γ -module changes the value of an. Once defined
an can only be redefined due to a G-strategy. The idea is that eventually
G-strategies will stop cancelling an, so that we can approximate A ¹ an

correctly and obtain a true axiom for n.
2. If bn ↓ then extract it from B and cancel all markers bn′ for n′ > n.
3. Define bn to be big, i.e a number greater than any number mentioned in

the construction so far, and enumerate it in B.
4. Enumerate in Γ the axiom 〈n,A ¹ an + 1, {bm|m ≤ n}〉.

– n /∈ K
Then find all valid axioms in Γ for n – 〈n, A ¹ a + 1,Mn〉 and extract the
greatest element of Mn from B.

Construction of δs. We will define δs(n) for all n < s by induction on n.
Suppose we have already defined δs ¹ i = α working on requirement GW . We
will perform the actions assigned to α and choose its outcome o ∈ {0, 1}. Then
δs(i) = o.

α will be equipped with a threshold k and a witness λ, a finite binary string.
When α is visited for the first time after initialization it starts from Setup. At
further stages it always performs Check first. If the Check does not empty Uα

then it continues with the Attack module from where it was directed to at the
previous α-true stage. Otherwise it continues with the Setup to define λ again
and then proceeds to step 1 of Attack.



Setup: If a threshold has not been defined or is cancelled then define k to be big
– bigger than any element appeared so far in the construction. If a witness has not
yet been defined choose a binary string λ of length bk +1 so that λ = B ¹ bk +1.

Check: If a marker bn for an element n ≤ k has been extracted from B during
Γ -rectification at a stage t such that s− < t ≤ s where s− is the previous α-true
stage then initialize the subtree below α, empty U .

If k /∈ K then define k to be the least k′ > k such that k′ ∈ K. I nitialize the
subtree below α, empty U .

If bk has changed since the last α-true stage and λ * B then define λ to be
B ¹ bk. Do not empty U.

Attack:

1. Check if there is a finite binary string µ ⊇ λ in W . If not then the outcome is
o = 1. Return to step 1 at the next stage. If there is such a µ then remember
the least one and go to step 2.

2. Enumerate in the guess list U a new entry 〈As ¹ ak, µ, bk〉. Extract bk from
B. Let µ̂ be the string µ but with position bk = 0. For all elements n > |λ|
such that µ̂(n) is defined let B(n) = µ̂(n). Cancel all markers an and bn for
n ≥ k. Define ak to be bigger. Note that µ̂ ⊂ B and at the next stage Check
will define a new value of λ to be B ¹ bk + 1 so that λ ⊇ µ̂. Go to step 3.

3. Initialize all strategies below α. Scan the guess list U for errors. The entries
in the guess list will be of the following form 〈Ut, µt, bt〉 where Ut is a guess
of A and bt is the marker that was extracted from B when this guess was
made at stage t. Note that to make µt ⊂ B we only need to enumerate bt in
B. If there is an error in the guess list, i.e. some Ut * As, then enumerate bt

in B and go to step 4 with current guess G = 〈Ut, µt, bt〉 where t is the least
index of an error in U . If all elements are scanned and no errors are found
go back to step 1.

4. If the current guess G = 〈Ut, µ, bt〉 has the property Ut * As then let the
outcome be o = 0. Come back to step 4 at the next stage. Otherwise extract
bt from B. If the Γ -rectification module has extracted a marker m for an
axiom that includes bt in its B−part since the last stage on which this
strategy was visited then enumerate m back in B. Go back to step 3.

The Proof. Define the true path f ⊂ T to be the leftmost path through the
tree that is visited infinitely many times, i.e. ∀n∃∞t(f ¹ n ⊆ δt) and ∀n∃tn∀t >
tn(δt 6<L f ¹ n).

Lemma 1. For each strategy f ¹ n the following is true:

1. There is a stage t1(n) > tn such that at all f ¹ n-true stages t > t1(n) Check
does not empty U .

2. There is a stage t2(n) > t1(n) such that at all f ¹ n-true stages t > t2(n)
the Attack module never passes through step 3 and hence the strategies below
f ¹ n are not initialized anymore, B is not modified by f ¹ n, and the markers
an for any elements n are not moved by f ¹ n



Proof. Suppose the two conditions are true for m < n. Let f ¹ n = α. Let t0 be
an α-true stage bigger than t2(m) for all m < n and tn.

Then after stage t0 α will not be initialized anymore.
After stage t0 all elements n < k have permanent markers an. Indeed none

of the strategies above α modify them anymore according to the induction hy-
pothesis, strategies to the left are not accessible anymore and strategies to the
right are initialized on stage t0, hence the next time they are accessed they will
have new thresholds greater than k.

The threshold k will stop shifting its value as K is infinite and we will even-
tually find the true threshold k ∈ K.

As A is ∆0
2, eventually all A ¹ an for element n < k will have their final value

and so will K ¹ k. Hence there is a stage t1(n) > t0 after which no markers bn for
elements n ≤ k will be extracted from B by the Γ -rectification and the Check
module at α will never empty U again.

To prove the second clause suppose that the module passes through step 3
infinitely many times and consider the set V =

⋃
L(U) where L(U) denotes

the left part of entries in the guess list U , that is the actual guesses at the
approximation of A. By assumption A is not c.e. hence A 6= V .

If V * A then there is a least stage t′ and element p such that p ∈ Ut′\A
and all Ut for t < t′ are subsets of A. Let tp > t2 be a stage such that the ∆0

2

approximation of A settles down on p, i.e. for all t > tp, At(p) = A(p) = 0. Then
when we pass through step 3 after stage tp we will spot this error, go to step 4
and never again return to step 3.

If V ⊂ A, let p be the least element such that p ∈ A\V . Every guess in
U is eventually correct and returns to step 1. To access step 3 again we pass
through step 2, i.e. we pass through step 2 infinitely often. As a result ak grows
unboundedly and will eventually reach a value greater than p. As on all but
finitely many stages t, p ∈ At, p will enter V . ¤
Corollary 1. Every Gi-requirement is satisfied.

Proof. Consider the Gi-strategy α = f ¹ i. Choose a stage t3 > t2(i) from
Lemma 1, after which the Attack module is stuck at step 1 or step 4, we have a
permanent value for ak and A ¹ ak remains unchanged. Then so will the marker
bk and we will never modify λ again and λ ⊆ Bt at all t > t3.

If the module is stuck at step 1 we have found a string λ such that λ ⊂ B
and no string µ ⊃ λ is in the set Wi.

If the module is stuck at step 4 we have found a string µ from the guess
G = 〈Ut, µ, bt〉 which is in Wi. It follows from the construction that µ ⊂ B.
The current markers bn, for n ≥ k at stage t were cancelled and bk[t] = bt was
extracted from B. Any axiom defined after stage t has b-marker greater than
|µ|. Hence the Γ -rectifying procedure will not extract any element below the
restraint B ¹ |µ| from B. It does not extract markers of elements n < k. If n ≥ k
and n ∈ K then its current marker is greater than |µ|. If n > k and n /∈ K
then any axiom defined before stage t is invalid, because its b-marker is already
extracted from B at a previous stage t0 < t or else it has an A-component that
contains as a subset Ut * A. ¤



Lemma 2. The S-requirement is satisfied.

Proof. At each stage s we make sure that Γ is rectified. For elements n < s, we
have ΓA,B(n)[s] = K(n)[s]. This is enough to prove that n /∈ K ⇒ n /∈ ΓA,B .
Indeed if we assume that n ∈ ΓA,B then there is an axiom 〈n,An,Mn〉 ∈ Γ and
An ⊆ A, Mn ⊂ B. Hence this axiom is valid on all but finitely many stages. But
according to our construction we will ensure Mn * B on infinitely many stages,
a contradiction.

To prove the other direction, n ∈ K ⇒ n ∈ ΓA,B , we have to establish that
the N -strategies will stop modifying the markers an and bn eventually. Indeed
the markers can be modified only by N -strategies with thresholds k < n. The
way we choose each threshold guarantees that there will be only finitely many
nodes on the tree with this property. The nodes to the left of the true path will
eventually not be accessible anymore and the nodes to the right will be cancelled
and will choose new thresholds, bigger then n. Lemma 1 proves that every node
along the true path will eventually stop moving an and bn by property 2.

Suppose the markers are not modified after stage t1. After stage t1, an has a
constant value. As A is ∆0

2 there will be a stage t2 > t1 such that for all t > t2
A ¹ an[t] = A ¹ an. At stage t2 + 1 we rectify Γ . If n ∈ ΓA,B then there is
an axiom 〈n, An,Mn〉 in Γ such that An ⊂ A ¹ an and at all further stages
this axiom will remain valid, so the Γ -rectifying procedure will not modify it
again. Otherwise it will extract a b-marker for the last time and enumerate an
axiom 〈n, A ¹ an, M ′

n〉 that will be valid at all further stages. In both cases we
have found an axiom for n that is valid on all but finitely many stages, hence
n ∈ ΓA,B . ¤

Lemma 3. B is ∆0
2.

Proof. We need to show that for each n, n can be put in and moved out from
B at most finitely times. To see this fix n and consider the Gi-strategy along
the true path that has a threshold ki > n. As we have already established in
Corollary 1 there is a stage t3 > t2(i), after which we will never modify λi again
and λ ⊆ Bt on all t > t3. As n < |λi| then Bt(n) will remain constant on all
stages t > t3. This means that B(n) changes at most t3 many times. ¤

4 Cupping the ω-c.e. degrees

In this section we give a proof of Theorem 3. Suppose we are given an ω-c.e. set
A with bounding function g. We will modify the construction of the set B so
that it will turn out to be 3− c.e.. The requirements are:

S : ΓA,B = K
NΦ : E 6= ΦB

The structure of the axioms enumerated in Γ will be more complex. Again we
will have an a-marker an for each element n, but instead of just one marker bn

we will have a set of b-markers Bn of size gn+1 where gn =
∑

x<an
g(x) together



with a counter cn that will tell us which element we should extract if we need to.
Every time A ¹ an changes we will extract from B a different element – the cn-th
element bn ∈ Bn and then add 1 to cn to ensure that each element in B will be
extracted only once. If we need to restore a computation due to the N -strategies
we will enumerate the extracted marker back in B, hence B is 3−c.e.. Note that
if a restored computation has to be destroyed again, we will need to extract a
different marker from B. This could destroy further computations. That is why
will always try to restore the last computation ΦB(x).

Γ -rectification module. Scan all elements n < s and perform the following
actions for the elements n such that ΓA,B(n) 6= K(n):

– n ∈ K.

1. If an ↑ then define an = an−1 + 1(if n = 0, define an = 1).
2. If Bn ↓. Extract the cn-th member of Bn. Move the counter cn to the

next position cn + 1. Cancel all Bn′ for n′ > n.
3. If Bn ↑ then define a set of new markers Bn of size gn + 1 where gn =∑

x<an
g(x) and a new counter cn = 1 and enumerate Bn in B.

4. Enumerate in Γ the axiom 〈n,As ¹ an + 1,
⋃ {Bn′(cn′)|n′ ≤ n}〉 where

Bn′(cn′) is the set of all elements in Bn′ with positions greater than or
equal to cn′ .

– n /∈ K

Then find all valid axioms in Γ for n – 〈n, At ¹ a + 1,Mn〉 where Mn =⋃ {Bn′ |n′ ≤ n} and extract the least member of Bn that has not yet been
extracted from B. Increment the counter cn that corresponds to the set of
markers Bn.

Construction of δs. Setup: If a threshold has not been defined or is can-
celled then define k to be big, bigger than any element appeared so far in the
construction. If a witness has not yet been defined choose x > k and enumerate
it in E.

Check: If a marker from Bn for an element n < k has been extracted from B
during Γ -rectification at a stage t, s− < t ≤ s where s− is the previous α-true
stage, then initialize the subtree below α, empty U .

If k /∈ K then shift it to the next possible value and redefine x to be bigger.
Again initialize the subtree below α and empty U .

Attack:

1. Check if x ∈ ΦB . If not then the outcome is o = 1, return to step 1 at the
next stage. If x ∈ ΦB go to step 2.



2. Initialize all strategies below α. Scan the guess list U for errors. If there is
an error then take the last entry in the guess list, say the one with index t:
〈Ut, Bt, ct〉 ∈ U and Ut * As. Enumerate the (ct − 1)-th member of Bt back
in B. Extract x from E and go to step 4 with current guess G = 〈Ut, Bt, ct〉.
If all elements are scanned and no errors are found go to step 3.

3. Enumerate in the guess list U a new entry 〈As ¹ ak, Bk, ck〉. Extract the
ck-th member of Bk from B and move ck to the next position ck +1. Cancel
all markers an and Bn for n ≥ k. Define ak new, bigger than any element
seen so far in the construction. Go to back to step 1.
Note that this ensures that our guesses at the approximation of A are mono-
tone. Hence if there is an error in the approximation, this error will be
apparent in the last guess. This allows us to always use the computation
corresponding to the last guess. We will always be able to restore it.

4. If the current guess G = 〈Ut, Bt, ct〉 has the property Ut * As then let
the outcome be o = 0. Come back to step 4 at the next stage. Otherwise
enumerate x back in E and extract the ct-th member of Bt from B and move
the value of the counter to ct + 1. If at this stage during the Γ -rectification
procedure a different marker m for an axiom that contains Bt was extracted
then enumerate m back in B. Go back to step 1.

The Proof. The construction ensures that for any n, at any stage t, at most one
axiom in Γ defines ΓA,B(n). Generally, we extract a number from Bn to drive n
out of ΓA,B . When an N -strategy α acts at step 3 of the Attack module, at stage
s say, α needs to preserve ΦB(xα). All lower priority strategies are initialized and
an element b1 in Bkα is extracted from B to prevent the S-strategy from changing
B on φ(xα). Note that all axioms for elements n ≥ kα contain Bkα . So at stage s,
when we extract b1 from B, n is driven out of ΓA,B . As in the remainder of the
construction, at any stage, we will have either that A has changed below an or
B has changed on Bn, these axioms will never be active again. As the Γ -module
acts first, it may still extract a marker m from an axiom for n > kα if A ¹ an has
changed back and thereby injure B ¹ φ(xα). But when α is visited it will correct
this by enumerating m back in B and extracting a further element b2 ∈ Bkα from
B to keep Γ true. This makes our N -strategies and the S-strategy consistent.
We comment here that such a feature is also true in the proof of Theorem 2, but
there we do not worry about this as we are constructing a ∆0

2 set. In the proof
of Theorem 3, this becomes quite crucial, as we are constructing B as a 3-c.e.
set, and we have less freedom to extract numbers out from B.

The construction ensures that B is a 3 − c.e. set. First we prove that the
counter cn never exceeds the size of its corresponding set Bn and therefore we
will always have an available marker to extract from B if it is necessary.

Lemma 4. For every set of markers Bn and corresponding counter cn at all
stages of the construction cn < |Bn| and the cn-th member of Bn is in B.

Proof. For each set of markers Bn only one node along the true path can enu-
merate its elements back into B. Indeed if Bn enters the guess list Ut at some



node α on the tree then at stage t, Bn is the current set of markers for n and n
is the threshold for α. When α enumerates Bn in its Ut, it cancels the current
markers for the element n. Hence Bn does not belong to any Uβ

t′ for t′ ≤ t and
any node β or else Bn will not be current and Bn will not enter Uβ

t′′ at any stage
t′′ ≥ t and any node β as it is not current anymore.

We ensure that n being a threshold is in K, hence after stage t the Γ -
rectification procedure will not modify B ¹ Bn. Before stage t while the markers
were current the counter cn was moved only when the Γ -rectification procedure
observed a change in A ¹ an, i.e some element that was in A ¹ an at the previous
stage is not there anymore. After stage t α will move the marker cn once at entry
in Ut and then only when it observes a change in A ¹ an, i.e Un = A ¹ an[t]
was a subset of A at a previous step but is not currently. Altogether cn will be
moved at most gn + 1 < |Bn| times.

Otherwise Bn belongs to an axiom which contains the set Bk for a particular
threshold k and n /∈ K. Then again its members are enumerated back in B only
in reaction to a change in A ¹ an. ¤

We will now prove that Lemma 1 is valid for this construction as well. Note
that this construction is a bit different, therefore we will need a new proof. The
true path f is defined in the same way.

Lemma 5. For each strategy f ¹ n the following is true:

1. There is a stage t1(n) > tn such that at all f ¹ n-true stages t > t1(n) Check
does not empty U .

2. There is a stage t2(n) > t1(n) such that at all f ¹ n-true stages t > t2(n) the
Attack module never passes through step 2 and hence the strategies below α
are not initialized anymore, B is not modified by f ¹ n, and the markers an

for any elements n are not moved by f ¹ n

Proof. Suppose the two conditions are true for m < n. Let f ¹ n = α. Let t0 be
an α-true stage bigger than t2(m) for all m < n and tn.

Then after stage t0 α will not be initialized anymore. The proof of the the
existence of stage t1(n) satisfying the first property is the same as in Lemma 1.

To prove the second clause suppose that the module passes through step 2
infinitely many times and consider the set V =

⋃
L(U) where L(U) denotes the

left part of entries in the guess list U . By assumption A is not c.e. hence A 6= V .
If V * A then there is element p such that p ∈ V \A. Let tp > t2 be a

stage such that the approximation of A settles down on p, i.e. for all t > tp,
At(p) = A(p) = 0. Then when we pass through step 2 after stage tp we will spot
this error, go to step 4 and never again return to step 1.

If V ⊂ A, let p be the least element such that p ∈ A\V . Every guess in U
is eventually correct and allows us to move to step 3, i.e. we pass through step
3 infinitely often. As a result ak grows unboundedly and will eventually reach a
value greater than p. As on all but finitely many stages t, p ∈ At, p will enter
V . ¤



Corollary 2. Every Ni-requirement is satisfied.

Proof. Let α ⊂ f be an Ni-strategy. As a corollary of Lemma 5 there is a stage
t3 > t2(i) after which the Attack module is stuck at step 1, and hence x /∈ ΦB ,
but x ∈ E. Or else the module is stuck at step 4, in which case x ∈ ΦB and
x /∈ E. Indeed step 4 was accessed with G = 〈Ut, Bt, ct〉, belonging to the last
entry in the guess list 〈Ut, Bt, ct〉. At stage t we had x ∈ ΦB [t]. The current
markers bn , for n ≥ k were cancelled and bk[t] was extracted from B. Hence the
Γ -rectifying procedure will not extract any element below the restraint B ¹ φ(x)
from B. It does not extract markers of elements n < k. If n ≥ k and n ∈ K then
its current marker is greater than φ(x). If n > k and n /∈ K then any axiom
defined before stage t is invalid, because one of its b-markers is extracted from
B at a previous stage or else it has an A-component Ut * A. Any axiom defined
after stage t has b-markers greater than φ(x).

After stage t, if α modifies B it will be in the set of markers Bt, and when
step 4 is accessed we have Bt ⊂ B. ¤

Lemma 2 is now valid for Theorem 3 as well, hence all requirements are
satisfied and this concludes the proof of Theorem 3.

Acknowledgments:We thank an anonymous reviewer for pointing out an in-
accuracy in the previous version of this paper.
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