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A fundamental goal of computability theory is to understand the way that
objects relate to each other in terms of their information content. We wish to
understand the relative information content between sets of natural numbers,
how one subset of the natural numbers Y can be used to specify another one X.
This specification can be computational, or arithmetic, or even by the application
of a countable sequence of Borel operations. Each notion in the spectrum gives
rise to a different model of relative computability. Which of these models best
reflects the real world computation is under question.

The most widely used and studied model is the one based on computation:
a set of natural numbers A is Turing reducible to set of natural numbers B if
there is an effective procedure, by which given a natural number n and using the
answers to finitely many membership questions to the oracle B we can correctly
decide whether or not n is a member of A. By identifying sets that can be reduced
to each other we obtain the partial order of the Turing degrees. Computable sets
have least information content and form the least Turing degree 0T . There is a
natural way to combine the information content of two sets of natural numbers, A
and B are combined into A⊕B = {2n | n ∈ A}∪{2n+ 1 | n ∈ B}, so that every
pair of Turing degrees has a least upper bound. Finally, using a relativization
of the halting problem, for every Turing degree dT (A) we can find a degree
which is strictly more complex, namely dT (KA), where KA is the halting set,
relativized to A, which we call the jump of the Turing degree dT (A), and denote
by dT (A)′. Thus the structure of the Turing degrees is an upper semi-lattice
with least element and jump operation: DT = (DT ,≤T ,0T ,∨,′ ).

In this article we will examine the structure of the Turing degrees in the
context, provided by a slightly weaker form of reducibility, based on the notion
of enumeration rather than computation. This reducibility was introduced by
Friedberg and Rogers [6] in 1959. A set of natural numbers A is enumeration
reducible to a set of natural numbers B, if we can effectively transform any
enumeration of the set B into an enumeration of the set A. There is a very
close relationship between Turing reducibility and enumeration reducibility. To
see this recall that an equivalent way of saying that A ≤T B is to say that
both A and the complement of A can be enumerated using oracle B, or in other
words A ⊕ A is computably enumerable in B. Going deeper into the definition
of c.e. in, we can say that there is a c.e. set W , whose members are pairs 〈n, u〉
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of a natural number and a code for a finite set Du, so that A ⊕ A can be
represented as the set

{
n | ∃u(〈n, u〉 ∈W & Du ⊆ B ⊕B)

}
. In this definition

the oracle set B ⊕ B and the reduced set A ⊕ A have a very specific structure:
they both contain all of the positive information about a set in their even part
and all the negative information about the same set in their odd part. If we
drop this requirement on the structure of the reduced set, we obtain a definition
of the relation c.e. in. If we consider a more general form of this definition, by
dropping the structural requirements on both the oracle and reduced set, we
obtain a definition of enumeration reducibility.

Definition 1. Let A and B be sets of natural numbers. A ≤e B if and only if
there is a c.e. set W , such that A = W (B) = {x | ∃u(〈x, u〉 ∈W ∧Du ⊆ B)}.
The set W will be called an enumeration operator.

From this analysis we immediately obtain the following relationship:

Proposition 1. Let A and B be sets of natural numbers.

1. A is c.e. in B if and only if A ≤e B ⊕B.
2. A ≤T B if and only if A⊕A ≤e B ⊕B.

Enumeration reducibility carries its own structure. By identifying sets that
are enumeration reducible to each other, i.e. enumeration equivalent, we obtain
the set of enumeration degrees De. This is a partial order, where de(A) ≤e de(B)
if and only if A ≤e B. The least element 0e consists of all computably enumerable
sets. The way in which we obtained a least upper bound for Turing degrees, gives
a least upper bound in the enumeration degrees, de(A ⊕ B) = de(A) ∨ de(B).
Thus De = (De,≤e,0e,∨) is as well an upper semi-lattice.

Proposition 1 yields a standard embedding ι : DT → De of the Turing
degrees into the enumeration degrees, which preserves the order and the least
upper bound. This embedding is defined by ι(dT (A)) = de(A ⊕ A). The image
of the Turing degrees under this embedding is the set T OT of total enumera-
tion degrees. The substructure T OT of the total enumeration degrees plays a
central role in the study of the enumeration degrees. Selman [21] showed that
enumeration reducibility can be characterized by the following:

Theorem 1. Let A,B ⊆ ω. A ≤e B if and only if

{X | B is c.e. in X} ⊆ {X | A is c.e. in X} .

Translated in terms of enumeration reducibility using the first part of Proposition
1, this means that every enumeration degree is entirely characterized by the set
of total degrees above it. In particular the set of total enumeration degrees is an
automorphism base for the structure of the enumeration degrees.

We are still missing one ingredient for a complete analogy between the two
structures: a jump operation, that agrees with the Turing jump under the stan-
dard embedding. The candidate for an analog of the halting set, which first
comes to mind is Ke

A = {〈n, e〉 | n ∈We(A)}. A closer look at this set shows



that this first choice is not satisfactory, as Ke
A is of the same enumeration degree

as A. This is not too surprising, in the Turing case the reason that the halting
set is not computable comes from the fact that the complement of the halting set
diagonalizes against all possible computations. In contrast to the Turing degrees,
the enumeration degrees are not closed under complement. This is why, to get a
jump operation, which actually jumps up, we need to use the complement of Ke

A.
Thus we define A′ = Ke

A ⊕Ke
A. We will call sets A, such that A ≡e A⊕A, total

sets. Total sets are always members of total degrees. Examples of total sets are
graphs of total functions, from where the term total originates, and as we just
saw - jumps of sets, by definition. In the reverse direction we have the following
jump inversion theorem by Soskov [28].

Theorem 2. For every enumeration degree x there exists a total enumeration
degree a, such that x ≤e a and x′ = a′.

It is not hard to see that this definition of the enumeration jump meets our
requirements - it agrees with the Turing jump under the standard embedding ι.
Thus the structure of the enumeration degrees provides a richer context in which
we can study the structure of the Turing degrees. In this article we will argue that
there are cases in which this approach is useful, shedding light on phenomena
that can be observed, but not well explained by viewing the structure of the
Turing degrees alone.

1 Computable model theory

Our first example comes from a theorem by Coles, Downey and Slaman [3]. For
every set of natural numbers A, consider the set C(A) = {X | A is c.e. in X}. It
follows from a result by Richter [19] that sets of this form do not always have
a member of least Turing degree. Coles, Downey and Slaman show that if you
instead look at C(A)′ = {X ′ | A is c.e. in X}, then this set always has a member
of least Turing degree.

Theorem 3. For every sets A the set: C(A)′ = {X ′ | A is c.e. in X} has a
member of least degree.

They call this degree the least jump enumeration of A. The proof constructs
this least jump enumeration using forcing with finite conditions.

The motivation for this result comes from computable model theory, and
the notion of degree spectrum, used to characterize different structures. Fix a
countable relational structure A = (N, R1 . . . Rk). The degree spectrum of A,
denoted by DST (A), is the set of Turing degrees of the diagrams of structures
B ∼= A. If DST (A) has a least member, it is the (Turing) degree of A. Sometimes
the spectrum of a structure does not behave nicely, and it is useful and more
informative to consider the jump spectrum of a structure. The jump spectrum
of A is DS′

T (A) = {d′ | d ∈ DST (A)}. If DS′
T (A) has a least member, it is the

(Turing) jump degree of A.



Now we will consider one particular instance of this characterization problem.
A torsion free abelian group G of rank 1 is (up to isomorphism) a subgroup of
the additive group of the rational numbers (Q,+,=). Fix such a group G. For
every prime number p and element a ∈ G we introduce the notion the p-height
of a in G as follows:

hp(a) =

{
the largest k, such that pk|a in G;
∞, if ∀k(pk|a in G) .

Here pk|a in G if there exists b ∈ G such that pk.b = a.

Example: If G = Q then for all nonzero a and all p, hp(a) =∞, because for
all k, pk. a

pk
= a. If G = Z then for all nonzero a and all but finitely many p,

hp(a) = 0.

In fact it is not difficult to see that in any torsion free abelian group G of
rank 1 we have that for nonzero elements a, b and for all but finitely many prime
numbers p, hp(a) = hp(b). We can therefore assign to every element a ∈ G an
infinite sequence of numbers: χ(a) = (hp0(a), hp1(a), . . . hpn(a), . . . ), which we
will call the characteristic of a. So different elements of G have characteristics,
which differ at only finitely many places, i.e. they are equivalent with respect
to the equivalence relation in ωω which places sequences that differ in finitely
many positions in the same equivalence class. The type of G, denoted χ(G) is
the equivalence class of χ(a) for any a 6= 0 in G. Baer showed that first of
all there are torsion free abelian groups of rank 1 of every possible type. But
more importantly he proved that two torsion-free abelian groups of rank 1 are
isomorphic if and only if they have the same type. Thus a torsion free abelian
group of rank one is completely characterized by its type. And it turns out that
this type can also be used to characterize the degree spectrum of every such
group.

Let S(G) = {〈i, j〉 | j ≤ the i-th element of χ(G)}. Here we are actually tak-
ing any nonzero element of G and using its characteristic to represent G. Note
that S(G) does not depend on the choice of this element, up to many-one equiv-
alence. Downey and Jockusch (see [3]) had shown that the degree spectrum of G
is precisely {dT (Y ) | S(G) is c.e. in Y }. Thus the result by Coles , Downey and
Slaman can be restated as follows: Every torsion-free abelian group G of rank
1 has a jump degree. So we know this fact, but just from the world of Turing
degrees it is not easy to explain the reason for this fact to be true. We now turn
to the wider context of the enumeration degrees and view the same problem
there.

Let us fix a countable relational structure A = (N, R1 . . . Rk). Soskov [29]
introduced the notion of enumeration degree spectrum. The enumeration de-
gree spectrum of A, denoted by DSe(A), is the set of e-degrees of the positive
diagrams of structures B ∼= A. If DSe(A) has a least member, it is the (enumer-
ation) degree of A. The enumeration jump degree spectrum of A, denoted by
DS′

e(A), is the set of enumeration jumps of elements in DSe(A). If DS′
e(A) has

a least member, it is the (enumeration) jump degree of A.



We immediately observe that just like Turing degrees embed into the enumer-
ation degree via the standard embedding ι, we have a connection between the
Turing degree spectrum and the enumeration degree spectrum of structures. Let
A be any structure. Consider the structure A+ = (N, R1, R1 . . . Rk, Rk). Firstly
note that DSe(A+) consists entirely of total enumeration degrees. Secondly note
that the positive diagram of A+ is enumeration equivalent to the diagram of A.
Thus:

DSe(A+) = {ι(a) | a ∈ DST (A)} = ι(DST (A)).

A has Turing degree a if and only if A+ has enumeration degree ι(a). Similarly
DS′

e(A+) = {ι(a)′ | a ∈ DST (A)} = {ι(a′) | a ∈ DST (A)} = ι(DS′
T (A)) and A

has Turing jump degree a if and only if A+ has enumeration jump degree ι(a).
Soskov [29] considers the co-spectrum of a structure, the of enumeration de-

grees which are lower bounds to the enumeration degree spectrum of a structure.
He shows that every countable ideal of enumeration degrees can be realized as
the co-spectrum of a structure. The easier case of this theorem is when the ideal
is a principal ideal. Soskov shows that every principal ideal (a) is the co-spectrum
of a torsion free abelian group of rank one, G. The top element of this ideal a
is precisely the enumeration degree of the type of the group S(G). He further
makes the following observation.

Let G be a torsion-free abelian group of rank 1. The only relation in the
language (apart from equality) is the graph of the total function + which can
also enumerate its negative instances thus DSe(G) = {ι(a) | a ∈ DST (G)} ={
de(Y ⊕ Y ) | S(G) is c.e. in Y

}
. We can apply the first part of Proposition 1

to simplify the description of the enumeration degree spectrum of G. Denote
de(S(G)) by sG - the type degree of G. The enumeration degree spectrum of G
is:

DSe(G) = {a | a ∈ T OT & sG ≤e a} .

Now it is clear when a group has a degree and when not. G has an enumer-
ation degree (and hence G has a Turing degree) if and only if the enumeration
degree sG is total. This follows from Selman’s Theorem 1, as every enumeration
degree is completely characterized by the set of total degrees above it. Further-
more, if G has an enumeration degree then it is precisely sG.

Consider the enumeration jump spectrum of G.

DS′
e(G) = {a′ | a ∈ T OT & sG ≤e a} .

By the monotonicity of the enumeration jump all members of DS′
e are greater

than or equal to s′G. By Soskov’s Jump Inversion Theorem 2 there is a total
degree a ≥ sG such that a′ = s′G. Thus the enumeration jump spectrum of G al-
ways has a least element and it is s′G. This gives an alternative, more informative
proof of the result by Coles, Downey and Slaman.

In recent work Soskov has shown a different application of properties of enu-
meration degrees to computable model theory. In this case the theme is jump
inversion of spectra of structures. It had been previously shown [12] that for
every successor ordinal α if the Turing degree spectrum of a structure A lies in



the cone above 0α then there is a structure B, whose α-th jump spectrum is the
spectrum of A. The case for limit ordinals was not known. In [27] Soskov shows
that ω-jump inversion is not always possible. The reason for this negative result
is seen when one considers the co-set, the set of lower bounds, of the image of
the ω-th jump spectrum of a structure: it is shown that every member of this
co-set is bounded by a total enumeration degree in the same co-set. Thus an
example of a structure for which ω-jump inversion fails is given by a torsion free
abelian group G of rank one, such that de(S(G)) is not total and above 0ωe .

2 Definability of the jump operator

A major theme in degree theory has been the definability theme. Among the
most notable definability results in the Turing degrees is Shore and Slaman’s
[23] proof of the first order definability of the Turing jump operator. The proof
of this theorem relies on two main ingredients - the definability of the double
jump and a proof of the following structural property: for every Turing degree a
which is not ∆0

2 there is a Turing degree g such that a∨g = g′′. Since any ∆0
2 de-

gree a ≤ 0′
T obviously does not satisfy this property (a∨g ≤ 0′

T ∨g ≤ g′ < g′′),
this gives a first order definition of 0′

T . Relativizing, one gets the definition of
the jump operation for every Turing degree degree modulo the definability of the
double jump. The first ingredient is proved with a forcing construction, known
as Kumabe-Slaman forcing. The definability of the double jump relies on Slaman
and Woodin’s [26] analysis of the automorphism group of the Turing degrees.
Slaman and Woodin show that every countable relation on the Turing degrees
can be coded by finitely many parameters, the Coding Theorem. This shows in
particular that one can interpret the theory of second order arithmetic in the
Turing degrees, an earlier result due to Simpson [24]. Then using methods from
set theory, Slaman and Woodin show that every automorphism of the Turing
degrees has an arithmetic presentation, that it is completely determined by its
action on one element and that it fixes the cone above 0′′

T . Further they show
that the biinterpretability conjecture is true modulo finitely many parameters
and from this obtain that every relation in the Turing degrees which is induced
by a degree invariant relation on 2ω, which is definable in second order arith-
metic, is definable in DT using parameters. If the relation is in addition invariant
under automorphisms, then it is definable without parameters. This gives the
definability of the double jump. As is stated in [23], this makes the definition of
the double jump, and hence the jump operation, in the Turing degrees very far
from natural. It cannot be stated in terms of a structural property, similar to
the one used for the definition of 0′

T from the double jump. In the enumeration
degrees this is not the case. And the reason for this is the existence of pairs of
enumeration degrees with very special properties.

Recall Jockusch’s [15] definition of a semi-recursive set. A set of natural num-
bers A is semi-recursive if there is a total computable selector function sA, such
that sA(x, y) ∈ {x, y} and if {x, y}∩A 6= ∅ then sA(x, y) ∈ A. For example for ev-
ery set A the set of finite binary strings, which are to the left of the characteristic



function of A in the usual lexicographical ordering, LA = {σ ∈ 2<ω | σ ≤L χA},
is semi-recursive. Given two finite binary strings the selector function always
picks the one which is smaller with respect to ≤L. Jockusch [15] showed that in
fact for every non-computable set B there is a semi-recursive set A ≡T B such
that both A and A are not c.e.

Arslanov, Cooper and Kalimullin [2] noticed that the enumeration degrees
of semi-recursive sets have very interesting structural properties. If A is a semi-
recursive set then de(A) and de(A) form a minimal pair in a very strong sense:

(∀x ∈ De)((de(A) ∨ x) ∧ (de(A) ∨ x) = x).

It is then natural to wonder if this statement can be transformed into an
if and only if statement. Kalimullin showed that it can, but first we need to
introduce a generalization of semi-recursive sets.

Definition 2. A pair of sets A,B is called a K-pair if there is a c.e. set W ,
such that A×B ⊆W and A×B ⊆W .

A trivial example of a K-pair is {A,U}, where A is arbitrary and U is c.e..
The c.e. set witnessing this is N×U . If A is a semi-recursive set, then {A,A} is
a K-pair, witnessed by the set W = {〈x, y〉 | sA(x, y) = x} .

Kalimullin [16] showed that the notion of K-pairs captures precisely the
strong minimal pair property that semi-recursive sets have.

Theorem 4. A pair of sets A,B are a K-pair if and only if their enumeration
degrees a and b satisfy: K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).

K-pairs are unique to the structure of the enumeration degrees. They are
always quasi-minimal, i.e. the only total degree below either of them is 0e. A
consequence of the existence of nontrivial K-pairs in De, which are not below
0′
e, is that the Slaman-Shore property used to define the Turing jump fails in

the enumeration degrees: there is a degree a �e 0′
e, such that for every degree g,

a∨g <e g′′. This shows that there are no K-pairs in the structure of the Turing
degrees. And furthermore there is no hope that the enumeration jump can be
defined using a similar technique to the one used for the definition of the Turing
jump.

Nevertheless Kalimullin [16] showed that the enumeration jump is first order
definable by a very natural structural property. He showed that 0′

e is the largest
degree which can be represented as the least upper bound of a triple a,b, c, such
that K(a,b), K(b, c) and K(c,a). Using a relativized version of K-pairs, he then
obtained the definability of the jump operator in De. An alternative definition,
which does not even use relativization is given by Ganchev and Soskova [7].

Theorem 5. For every nonzero enumeration degree u ∈ De, u′ is the largest
among all least upper bounds a∨b of nontrivial K-pairs {a,b}, such that a ≤e u.

As a consequence of this result we obtain that the set of total degrees a above
0′
e is also first order definable in De: a degree above 0′

e is total if and only if it
is the jump of some enumeration degree.



3 The local structures

Two important substructures of the Turing degrees are the local structure of
the Turing degrees DT (≤ 0′

T ), consisting of all ∆0
2 Turing degrees and its sub-

structure R, consisting of the of the computably enumerable degrees, i.e. Turing
degrees which contain c.e. sets. The local structure of the enumeration degrees
De(≤ 0′

e), consists of all Σ0
2 enumeration degrees. Recall that ι : DT → De pre-

serves the jump, hence DT (≤ 0′) embeds in De(≤ 0′
e). It is not difficult to show

that ι(R) is precisely the substructure of the Π0
1 enumeration degrees. Thus

the two local substructures of the Turing degrees live inside the local structure
of the enumeration degrees. The three structures are different both in terms
of the proper inclusions between their domains and in terms of their theories.
Cooper [4] showed that De(≤ 0′

e) is dense, hence not elementary equivalent to
DT (≤ 0′

T ). Ahmad [1] showed that the diamond can be embedded in De(≤ 0′
e),

hence the theory of the local structure of the enumeration degrees differs also
from the theory of the c.e. Turing degrees.

One possible advantage of the embeddability of the Turing structures into
De(≤ 0′

e) is that algebraic results proved about the larger structure reveal more
information about the smaller structures. We next describe an instance of this
idea. A pair of degrees a,b form a splitting of c if a < c, b < c and a ∨ b = c.
The existence of various splittings and non-splittings in a structure is important
if one wishes to understand its two quantifier theory, i. e. the set two quantifier
sentences true in the structure. The history of splitting results for the c.e. degree
goes hand in hand with the evolution of the methods used to prove them, in
particular the priority method. Harrington [13], generalizing a result by Lachlan
[17], showed that there exists a c.e. Turing degree a < 0′

T , i.e. an incomplete
c.e. degree, such that no pair of c.e. degrees above a are a splitting of 0′

T . This
came to be known as Harrington’s non-splitting theorem and the method used
in its proof as the monster priority method. Later on a similar method was
used by Harrington and Shelah [14] to show the undecidability of the theory of
the c.e. degree. Cooper and Soskova [5] pushed this result further to its limit, by
considering this structural property within the local structure of the enumeration
degrees. By Sack’s splitting theorem, relativized to any ∆0

2 Turing degree it
follows that there is a ∆0

2 splitting of 0′
T above any incomplete Turing degree.

So the only question, which remained unanswered was if one can find a splitting
consisting of one c.e. member and one ∆0

2 member above any incomplete c.e.
degree. Cooper and Soskova [5] showed that this is not true:

Theorem 6. There exists a Π0
1 enumeration degree a <e 0′

e, such that no pair
of a Π0

1 and Σ0
2 e-degrees above a are a splitting of 0′

e.

So transferring back, via the inverse of the standard embedding ι, there is a c.e.
Turing degree a <T 0′

T , such that no pair of a c.e. degree and a ∆0
2 degree above

a are a splitting of 0′
T . This method was then extended in [31] to show that the

full analog of Harrington’s non-splitting theorem holds in the local structure of
the enumeration degrees.



Theorem 7. There is an incomplete Σ0
2 enumeration degree above which 0′

e

cannot be split.

The definability theme for the local structures has also been widely explored.
Here one cannot talk about definability of the jump operator, but one can look at
a hierarchy of classes of degrees defined in terms of the strength of their jumps.

Definition 3. Let n ≥ 1

1. The class of lown degrees is Ln = {a ≤ 0′ | an = 0n}.
2. The class of highn degrees is Hn =

{
a ≤ 0′ | an = 0n+1

}
The definability of the classes Ln+1 and Hn for all n ≥ 1 in R was shown

by Nies, Shore and Slaman [18] and in DT (≤ 0′) by Shore[22]. The proofs of
these theorems have the same flavor as the proof of the definability of the jump
operation. First it is shown that the theory of first order arithmetic can be
interpreted inR and DT (≤ 0′). This is then used to show that there is a definable
way of mapping a degree a to a set A in every coded model of arithmetic so that
A′′ ∈ a′′. Thus every relation which is invariant under double jump and definable
in first order arithmetic is definable in the corresponding degree structure. An
additional argument, building on top if the first one is then devised to show
that H1 is also first order definable. These methods are however not sufficiently
powerful to capture the definability of the low degrees, L1, in either structure.
The definability of L1 in DT (≤ 0′

T ) or in R remains open.
Now lets turn to the local structure of the enumeration degrees De(≤ 0′

e).
The first quite important question to settle concerns the complexity of the the-
ory of the local structure, more precisely the question of whether or not one can
interpret the theory of true arithmetic in De(≤ 0′

e). Slaman and Woodin [25]
prove a coding theorem for the global structure, showing that Th(De) is com-
putably isomorphic to second order arithmetic and a limited effective version of
the coding theorem, that is enough to show that the local theory is undecidable,
but not sufficient to characterize its complexity fully.

Theorem 8. Every uniformly low antichain can be coded by parameters in the
local structure De(≤ 0′

e).

Ganchev and Soskova [9] notice that K-pairs can be used to obtain precisely
this kind of antichains. In fact every half of a nontrivial K-pair is a uniform low
bound to an antichain {ai}i∈ω of e-degrees such that if i 6= j then {ai,aj} is a
K-pair. Thus if the property “a and b form a K-pair” is first order definable in
the local structure, then one could use Theorem 8 to show that the theory of
first order arithmetic can be interpreted in De(≤ 0′

e).
Unfortunately Kalimullin’s global definition of K-pairs given in Theorem 4

starts with a universal quantifier. It is not clear and still open if this formula,
interpreted in the local structure, is still a first order definition of the true K-
pairs. However, using an additional structural property of the members in De(≤
0′
e), which is reminiscent of Theorem 7 and proved by a similar technique as the

one used there, Ganchev and Soskova [8] prove that K-pairs in the local structure
of the enumeration degrees form a definable class.



Theorem 9. There is a first order formula LK(x, y), which defines the K-pairs
in De(≤ 0′

e).

This enables Ganchev and Soskova [10] to complete the original idea for
interpreting arithmetic in the local structure.

Theorem 10. The first order theory of De(≤ 0′
e) is computably isomorphic to

first order theory of true arithmetic.

The definability of K-pairs in the local structure, turned out to be a key un-
locking the definability of many other classes, including the downwards properly
Σ0

2 enumeration degrees, the upwards properly Σ0
2 enumeration degrees. Extend-

ing a result of Giorgi, Sorbi and Yang [11], Ganchev and Soskova [7] show that
in addition the class L1 is first order definable, by a very natural property.

Theorem 11. An enumeration degree a is low1 if and only if every degree b ≤e
a bounds a K-pair.

So in contrast to the Turing structures DT (≤ 0′
T ) and R, where only L1

cannot be shown to be definable, here in the local structure of the enumeration
degrees we can show that this class is definable by a very natural property and
it is not known whether or not the other jump classes are definable. The next
result tips the scale in favor of De(≤e 0′

e) at least in terms of richness of definable
classes.

Recall that a semi-recursive set A and its complement A form a special ex-
ample of K-pair. In terms of structure this K-pair has one additional property -
it is maximal. A K-pair {a,b} is maximal if there does not exists a K-pair {c,d},
with a < c or b < d. Ganchev and Soskova [7] show that in the local structure
of the enumeration degrees maximality is precisely the structural notion which
captures K-pairs of a semi-recursive set and its complement. By Jockusch’s theo-
rem there is a non c.e. and non co-c.e. semi-recursive set in every Turing degree.
In e-degree terms this means that a nonzero enumeration degree is total if and
only if it can be represented as the least upper bound of a maximal K-pair.

Theorem 12. The class of total enumeration degrees is first order definable in
De(≤ 0′

e).

4 An open question

From what we have said so far, it follows that the set of total degrees that are
comparable with 0′

e is first order definable in De. The open question of interest
to us, first set by Rogers [20], concerns the definability of the class of all total
enumeration degrees.

As noted above it follows from Selman’s Theorem 1 that the class of total
enumeration degrees is an automorphism base for the De. Thus the definability
of the total enumeration degrees would link the two major open problems: the
existence of nontrivial automorphism for the Turing degrees and the existence



of a nontrivial automorphism of the enumeration degrees. A positive answer to
the second question would yield a positive answer to the first question.

One possible solution to the definability of the total degrees would be to
extend the characterization that proves the definability of the total degrees in
the local structure. Jockusch’s result for the existence of semi-recursive sets is
valid for every Turing degree, hence one direction is already known to be true:
every nonzero total set is enumeration equivalent to the join of the components
of a maximal K-pair. The first order definability of the total enumeration degrees
would then follow, if it were true that maximality is the additional structural
property needed to capture K-pairs of the form {A,A}.

This definition would then relate in a nice way to the definition of the enumer-
ation jump given in Theorem 5. Consider the relation c.e. in between Turing
degrees defined by: x is c.e. in u if there are sets X ∈ x and U ∈ u, such that X
is c.e. in U . Ganchev and Soskova [7] show that if x and u are Turing degrees
such that u is nonzero then x is c.e. in u if and only if there is a K-pair {A,A}
such that de(A) ≤e ι(u) and ι(x) = de(A) ∨ de(A). Thus if every maximal K-
pair is of the form {A,A} for some A then the total degrees would be definable
and the relation c.e. in between nonzero total degrees would be definable. The
definition of the enumeration jump given in Theorem 5 restricted to the total
degrees can then be read as u′ is the largest total enumeration degree which is
c.e. in u. The natural definition of the total enumeration degrees proposed above
remains currently out of reach.

In recent work Soskova [30] has investigated how much of the techniques for
the analysis of the automorphism group of the Turing degrees by Slaman and
Woodin [26] can be applied to study the automorphism group of the enumeration
degrees. The obtained results bring the definition of the class of total enumer-
ation degrees one step closer - namely a parameter away. The obtained results
mirror the originals, it is shown that the automorphism group of the enumera-
tion degrees is at most countable, every member has an arithmetic presentation
and that there is an automorphism basis consisting of a single element. It is fur-
ther shown that every relation in the enumeration degrees which is induced by a
degree invariant relation on 2ω, definable in second order arithmetic, is definable
in De using parameters. As a consequence we obtain that:

Theorem 13. The class of total enumeration degrees is definable with parame-
ters in the structure of the enumeration degrees.
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