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Abstract. We investigate the extent to which Slaman and Woodin’s frame-

work for the analysis of the automorphism group of the structure of the Turing
degrees can be transferred to analyze the automorphism group of the structure

of the enumeration degrees.

1. Introduction

A goal of computability theory is to give a mathematical account of a structure,
which arises as a formal way of classifying the relative computational strength of
objects. The most studied example of such structures is that of the Turing degrees,
DT , arising from the notion of Turing reducibility. To understand such a structure
we study its complexity: how rich is it algebraically; how complicated is its theory;
what relations are first order definable in it; does it have nontrivial automorphisms.
In the study of DT we find that all these questions are interrelated in a very strong
way. The definability of the jump operator by Slaman and Shore [15] relies on
a method used by Slaman and Woodin [17] to analyze the automorphism group
of DT , Aut(DT ). This analysis reveals a strong connection between the definabil-
ity properties of the structure of the Turing degrees and second order arithmetic,
leading to Slaman and Woodin’s famous Biinterpretability conjecture. Even though
this analysis does not give a complete answer to the question of the existence of
nontrivial automorphisms of DT , it sheds light on the properties of Aut(DT ): it is
shown that the group is at most countable, in fact that all its members are arith-
metically definable and every automorphism is completely determined by its action
on a single element.

A different approach to the analysis of the structure of the Turing degrees is to
study it within a richer context, a context which would hopefully reveal new hidden
relationships. Such a context is the structure of the enumeration degrees, De. This
structure is as well an upper semi-lattice with jump operation, induced by a weaker
form of relative computability: a set A is enumeration reducible to a set B if every
enumeration of the set B can be effectively transformed into an enumeration of the
set A. The Turing degrees as an upper semi-lattice with jump operation can be
embedded in the enumeration degrees, and thus can be studied as a substructure of
the enumeration degrees, the substructure T OT of the total enumeration degrees.
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Working in De is different. The enumeration degrees are not closed under com-
plement. This makes coding and relativization significantly more complicated. On
the other hand in De we find that certain definability results have more natural
proofs. Kalimullin [8] discovered the existence of pairs of enumeration degrees,
called K-pairs, with structural properties reminiscent of structural properties of
generic Turing degrees, and showed that the class of such pairs of enumeration
degrees is first order definable in De, by a simple Π1 statement in the language
of lattices. The existence of K-pairs is unique to the structure of the enumeration
degrees. In fact their existence in the structure DT would contradict the precise
property of the Turing degrees that allows Slaman and Shore to extract the defi-
nition of the Turing jump from the automorphism analysis. This shows that the
method devised by Slaman and Woodin to investigate Aut(DT ) cannot be trans-
ferred directly to analyze Aut(De). Still, the first step has been made. In [16]
Slaman and Woodin prove the Coding Theorem for the structure De, and as a con-
sequence show that the first order theory of De is computably isomorphic to that
of second order arithmetic.

Kalimullin [8] showed that the first order definability of the enumeration jump
follows nevertheless from the existence of K-pairs. A consequence to this is the first
order definability of the total enumeration degrees above 0e

′. Ganchev and Soskova
[4] bring down the definition of K-pairs to a local level, showing that the notion
is still definable in the local structure of the enumeration degrees bounded by 0e

′.
In [6] they combine K-pairs and the Coding Theorem to show that the first order
theory of the local structure is computably isomorphic to first order arithmetic.
In [3] Ganchev and Soskova investigate maximal K-pairs and show that within the
local structure the total degrees are first order definable. The question of the global
definability of T OT , set first by Rogers [12], remains unanswered and seems to play
a central role in this puzzle. Rozinas [13] showed that T OT is an automorphism
base for De. Thus if T OT were definable then a negative answer to the question
of the rigidity of De would yield a negative answer to the same question for DT .

We will outline how to adapt Slaman and Woodin’s framework to investigate
the properties of Aut(De). We shall show that Aut(De) is at most countable, that
its members are arithmetically definable and that De has an automorphism base
consisting of a single element. This analysis in De brings us one step closer to the
definability of T OT , namely one parameter away from it.

2. Preliminaries

The notions and definitions that will be used in this article come from various
parts of logic and we will not be able to give definitions and outline their basic
properties. We hope to be able to give sufficient references, to books and articles,
where these notions are explained in detail. A main reference for this article is the
Slaman and Woodin’s manuscript [17]. We will give definitions to all notions that
are not defined in [17] and are used below.

Definition 1. A set A is enumeration reducible (≤e) to a set B if there is a c.e.
set Γ such that:

A = Γ(B) = {n | ∃u(〈n, u〉 ∈ Γ & Du ⊆ B)},

where Du denotes the finite set with code u under the standard coding of finite sets.
We will refer to the c.e. set Γ as an enumeration operator.
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A set A is enumeration equivalent (≡e) to a set B if A ≤e B and B ≤e A. The
equivalence class of A under the relation ≡e is the enumeration degree de(A) of A.
The structure of the enumeration degrees 〈De,≤〉 is the class of all enumeration
degrees with relation ≤ defined by de(A) ≤ de(B) if and only if A ≤e B. It has a
least element 0e = de(∅), the set of all c.e. sets. We can define a least upper bound
operation, by setting de(A) ∨ de(B) = de(A⊕B).

The enumeration jump of a set A, denoted by A′, is defined by Cooper [1]
as KA ⊕ KA, where KA = {〈e, x〉| x ∈ Γe(A)}. The enumeration jump of the
enumeration degree of a set A is de(A)′ = de(A

′).
For more on the structure of the enumeration degrees we refer to Cooper [2].

2.1. The substructure of the total enumeration degrees.

Definition 2. A set A is called total if A is enumeration equivalent to the graph
of the total function χA, the characteristic function of A. Equivalently A is total if
A ≡e A ⊕ A. An enumeration degree is called total if it contains a total set. The
collection of all total degrees is denoted by T OT .

As noted above, the structure T OT is an isomorphic copy of the Turing degrees.
The map ι, defined by

ι(dT (A)) = de(A⊕A)

is an embedding of DT in De, which preserves the order, the least upper bound and
the jump operation. To distinguish between total sets and non-total sets we will
identify total functions with their graphs and use total functions to denote total
sets.

The following theorems provide the strong uniform connections between total
degrees and non-total degrees. The uniformity is usually not explicitly stated in
the original articles, however it follows from the given proofs.

Theorem 1 (Soskov[19]). For every natural number n there exists an enumeration
operator ΓJITn

such that for every X, and total set Y with Xn ≤e Y , ΓJITn
(X⊕Y )

is (the graph of) a total function f such that X ≤e f and fn ≡e ∅n ⊕ f ≡e Y
uniformly in X and Y .

Note that Theorem 1 shows that the class of the total enumeration degrees above
0e
′ coincides with the range of the enumeration jump operator. Thus the definabil-

ity of this class follows from the definability of the enumeration jump operator.

Theorem 2 (Rozinas[13]). There exist enumeration operators ΓT1
and ΓT2

, such
that for every set X, ΓT1(X ′′) = f and ΓT2(X ′′) = h are total functions such that
de(X) = de(f) ∧ de(h).

Proof. Let ΓT1(X ′′) = ΓJIT1(X ⊕ X ′) = f . We know that f ′ = X ′ and hence
f ′′ = X ′′ and that X ≤e f . To obtain ΓT2 we apply Sorbi’s Lemma 2.1 from
[18], observing that the construction of a total function h such that de(X) =
de(f) ∧ de(h) is uniformly computable from f ′′, which is uniformly equivalent to
X ′′. We outline this proof below. Let H = {σ ∈ 2<ω | if σ(〈n, z〉) = 1 then n ∈ X}.
Note that H is computable from X and hence from f ′′ = X ′′. Now we construct h
as the union of a monotone sequence {σs}s<ω ⊆ H. Set σ0 = ∅. At stage s = 2〈i, j〉
we have two cases: if there is an extension τ ⊇ σ and an x, such that τ ∈ H,
x ∈ Γi(τ) and x /∈ Γj(f), then we set σs+1 = τ . Otherwise we set σs+1 = σs. f

′′

can carry out this step computably. From this action it follows that if Γi(h) = Γj(f)
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then Γj(f) = {x | ∃τ ⊇ σs(τ ∈ H& x ∈ Γi(τ))} ≤e X. At an odd stage s = 2n+ 1
we make sure that X ≤e h: if n ∈ X we extend σs to σs+1 such that for some least
z, σs+1(〈n, z〉) = 1; if n /∈ X then σs+1 = σs. �

2.2. K-pairs and generic degrees. In parallel to Rozinas’ Theorem 2, which
shows that every enumeration degree is the meet of two total degrees, we have a
theorem which shows that every total enumeration degree is the join of two non-
total degrees. This theorem relies on the following notion.

Definition 3 (Kalimullin [8]). 1 A pair of sets {A,B} is a K-pair relative to a set
U , or for short a KU -pair, if there is a set W ≤e U , such that A × B ⊆ W and
A×B ⊆W . If U is c.e. then {A,B} is called a K-pair.

The class of K-pairs has been studied extensively in [8, 4, 6, 3]. We describe
some of their more basic properties below and give some examples.

If A is enumeration reducible to U then for every B, {A,B} is a KU -pair, a
trivial KU -pair. If {A,B} are a nontrivial KU -pair then A, B and U are related in
the following way:

B ≤e A⊕ U and B ≤e A⊕ U ′.
If we fix one component of a nontrivial KU -pair, A, and consider all sets, which

form a KU -pair with A, then we obtain an ideal bounded by A ⊕ U . Thus for a
nontrivial KU -pair {A,B} we obtain the following characterization of the jumps of
the components: noting that KB ≡e B and hence also forms a KU -pair with A,
we obtain that KB ⊕KB = B′ ≤e A ⊕ A ⊕ U ′. In particular if U <e A,B ≤e U ′
then A and B are low over U , i.e. A′ = B′ = U ′. Furthermore both A and B are
of quasiminimal degree with respect to U , i.e. every total set reducible to either
A or B is reducible to U . Both of these properties are reminiscent of properties of
1-generic sets and enumeration reducibility.

A more interesting example of a nontrivial K-pair is {A,A}, where A is semi-
recursive. Recall that a set A is semi-recursive if there is a computable selector
function sA : N×N→ N, such that for all natural numbers x, y if {x, y}∩A 6= ∅ then
sA(x, y) ∈ A. Jockusch [7] introduced this notion and showed that every Turing
degree contains a semi-recursive set, such that neither it, nor its complement is
c.e. It follows that every nonzero total enumeration degree is the join of a pair
of non-total, in fact quasiminimal enumeration degrees. Note that K-pairs of the
form {A,A} are maximal: A is the largest with respect to ≤e set that can form a
K-pair with A and vice versa. Thus every total degree is the least upper bound of
a maximal K-pair.

Kalimullin [8] showed that a pair of sets {A,B} is a K-pair relative to a set U if
and only if their enumeration degrees a,b and u satisfy the following very strong
minimal-pair property:

Ku(a,b)↔ ∀x((u ∨ a ∨ x) ∧ (u ∨ b ∨ x) = u ∨ x).

This property makes KU -pairs very useful for coding relations which are con-
tained in intervals (u,u′), an idea applied in [6], where a standard model of arith-
metic is coded below 0e

′. In this article we will need to code a larger variety of
relations, and thus need a more universally applicable method for coding - gener-
icity.

1The original term for this notion is U-e-ideal.
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We will use the genericity notion that comes from the study of Turing degrees,
we will use images of Cohen generic sets under the standard embedding ι. To make
it explicit that we are dealing with a total set, we will refer to it as a total function
and mean its graph. Thus an n-generic with respect to B function g will be a total
binary function with the property that for every Σ0

n(B) set of finite binary strings
W , there is an initial segment σ ⊆ g, such that σ ∈W or no extension of σ is in W .
The truth of every Σ0

n(B) statement about g is forced by some final initial segment
of g. We refer to Chapter 2 of [17] for an extensive analysis of forcing in arithmetic.
The following two properties are direct translations of well known statements in the
context of Turing reducibility, through the order- and jump-preserving embedding
ι.

Proposition 1. (1) Let g be n-generic relative to a total set B. Then (g ⊕
B)n ≡e g ⊕Bn.

(2) For every n there exists an enumeration operator ΓGn such that for every
total set X, ΓGn

(Xn) is the characteristic function of an n-generic relative
to X set.

Given a total function g, we can split it into countably many total functions
{gi}i<n, where gi(n) = g(〈i, n〉). If g is n-generic relative to B then for every i 6= j,
gi in n-generic relative to B ⊕ gj . This property in the context of Turing degrees
allows us to use 1-genericity relative to a set B in order to construct antichains
which can distinguish between elements Turing reducible to B. A similar property
is true in the enumeration degrees, however the fact that enumeration reducibility is
not closed with respect to complement requires us to raise the amount of genericity
needed.

Proposition 2. Let g be 2-generic relative to a total set B. Denote by gi the
function defined by gi(n) = g(〈i, n〉).

(1) Let A1 and A2 be sets that are enumeration reducible to B. For every i and
finite set F if A1 ⊕ gi ≤e A2 ⊕

⊕
j∈F gj then A1 ≤e A2 and i ∈ F .

(2) Let A ≤e B and i 6= j. Then A⊕ gi and A⊕ gj is a minimal pair above A.

Proof. (1) Suppose towards a contradiction that gi = Γ(A2 ⊕
⊕

j∈F gj) and

that i /∈ F . We adopt the same notation for finite binary functions as for
infinite binary functions: given a string σ, let σi(n) = σ(〈i, n〉). Consider
the set W = {σ | ∃x(σi(x) = 0 & x ∈ Γ(A2 ⊕

⊕
j∈F σj))}. The set W is

Σ0
1(B). By our choice of g and by our assumptions it follows that no initial

segment of g is in the set W . Hence there is an initial segment σ ⊆ g,
which has no extension in the set W . Since g is 2-generic it follows that
{x | gi(x) = 1} is infinite. Let x be larger than the length of σi, such that
gi(x) = 1. By our assumption x ∈ Γ(A2 ⊕

⊕
j∈F gj) and hence there is a

final initial segment τ ⊆ g such that τi(x) = 1 and x ∈ Γ(A2 ⊕
⊕

j∈F τj).
Furthermore σ ⊆ τ as τ is an initial segment of g with larger domain. Now
consider the binary string τ∗ defined by inverting τ at bit 〈i, x〉. Then
τ∗ ⊇ σ. Furthermore as i /∈ F we have that

⊕
j∈F τj =

⊕
j∈F τ

∗
j and

τ∗i (x) = 0, i.e. τ∗ ∈W , contradicting our choice of σ.
Now suppose that A1 = Γ(A2 ⊕

⊕
j∈F gj). Consider the set W =

{σ | ∃x(x /∈ A1 & x ∈ Γ(A2 ⊕
⊕

j∈F σj))}. The statement “x /∈ A1”

is a Π0
1 statement relative to B. Thus the set W is Σ0

2(B). By our choice
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of g and our assumption it follows that no initial segment of g is in the
set W . As g is 2-generic relative to B, there is an initial segment σ ⊆ g,
which has no extension in W . It follows that we can enumerate A1 by
{x | ∃τ ⊇ σ(x ∈ Γ(A2 ⊕

⊕
j∈F τj))}, i.e. A1 ≤e A2.

(2) Suppose that Γ(A ⊕ gi) = Λ(A ⊕ gj). Consider the set W = {σ | ∃x(x ∈
Γ(A ⊕ σi) & ∀τ ⊇ σ(x /∈ Λ(A ⊕ τj)))}. The set W is once again Σ0

2(B).
Hence by our assumptions no initial segment of g is in W . Hence there
is an initial segment σ ⊆ g, which has no extension in W . Now let U =
{x | ∃τ ⊇ σ(x ∈ Γ(A⊕ τi))}. We claim that Λ(A⊕ gj) = U ≤e A. Clearly
Λ(A ⊕ gj) is a subset of U . Towards a contradiction suppose that x is in
U \ Λ(A ⊕ gj). The statement “ x /∈ Λ(A ⊕ gj)” is a Π0

1(B) statement
about g which is forced by some initial segment of g, say µ. Furthermore
this statement depends only on µj . Consider a finite binary string τ , such
that τ ⊇ σ and x ∈ Γ(A ⊕ τi) . Then from µ and τ we can create a new
extension σ∗ of σ, which has σ∗i = τi and σ∗j = µj . This extension would
be an element of W , contradicting the choice of σ.

�

3. Effective Coding and Decoding theorems

Slaman and Woodin [16] showed that every countable relation on enumeration
degrees can be uniformly defined in De using parameters. We will need to know a
precise bound on these parameters in terms of a presentation of the given relation.
The following notion was introduced in [6].

Definition 4. Let R ⊆ Dne be a countable relation on enumeration degrees. We
will say that a relation R is e-presented beneath a set A if there is a set W ≤e A
such that R = {(de(Wi1(A)), . . . ,de(Win(A))) | (i1, . . . , in) ∈W}. W will be called
a presentation of R.

Theorem 3 (Effective Coding Theorem). For every n there is a formula ϕn,
such that for every countable relation on enumeration degrees R ⊆ Dne which is
e-presented beneath R there are parameters p̄ below de(R)′′ such that

R = {(x1, . . . ,xn) | De |= ϕn(x1, . . . ,xn, p̄)}.

Proof. We will assume that R is total. If not by Theorem 1 we can replace R by
a total set above it with the same jump, noting that if R is e-presented beneath a
set R then it is e-presented beneath any other set, enumeration above the original.
The proof of the Coding Theorem usually goes through the following three steps:
Step 1: Coding antichains. Slaman and Woodin [16] show that antichains, which
are uniformly enumeration reducible to a low set, can be coded by parameters below
0e
′. More precisely they show that for every antichain A uniformly bounded by

a member of a low degree a, there are parameters p1 and p2, such that x ∈ A
if and only if x ≤e a and x is minimal among the e-degrees with the property
∃y(y ≤ (x ∨ p1) & y ≤ (x ∨ p2) & y � x). Hence relativizing this theorem, given
any total set f we can code antichains, which are uniformly reducible to a set that
is low with respect to f by parameters below f ′.
Step 2: Finding a useful antichain. A useful antichain {gi}i<ω is one with the
following property: for every A,B ≤e R and k ∈ N, if A⊕ gi ≤e B ⊕ gj1 ⊕ · · · ⊕ gjk
then A ≤e B and i ∈ {j1, . . . , jk}. By Proposition 2 a 2-generic with respect to R
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function g will provide us with a useful antichain. Furthermore by Proposition 1,
such a g can be obtained so that g ≤e R′′ and (g ⊕R)′ ≤e g ⊕R′ ≤e R′′. Thus by
Step 1 we can code antichains uniformly reducible to g⊕R with parameters below
R′′.
Step 3: Representing R using antichains. For an arbitrary i ∈ N denote by Div(i)
the divisor and by Rem(i) the remainder resulting from the division of i by n. We
use the useful antichain G = {gi} obtained from a 2-generic with respect to R set
g to code the following three kinds of antichains:

(1) We divide G into n antichains: for 1 ≤ k ≤ n denote by G(k) the antichain
G(k) = {gi | Rem(i) = k}. G(k) is an antichain, uniformly below g, hence
definable by parameters below R′′.

(2) We represent the k-th projection of R, R(k), by an antichain: denote by
W (k) the set {i | ∃i1, . . . , ik−1, ik+1, . . . , in((i1, . . . , ik−1, i, ik+1, . . . , in) ∈
W )}. Then by the properties of the 2-generic function g, the set G(k) +
R(k) = {gi ⊕Wj(R) | Div(i) = j ∈ W (k) & Rem(i) = k} is an antichain,
uniformly bounded by g⊕R. Hence the antichain G(k)+R(k) = {x⊕y | x ∈
G(k) & y ∈ R(k)} is definable by parameters below R′′.

(3) Finally consider the set GW = {gi1 ⊕ · · · ⊕ gin | Rem(ik) = k, for 1 ≤
k ≤ n and (Div(i1), . . . , Div(in)) ∈ W}. This is also easily seen to be an
antichain uniformly below g ⊕ R. Hence GW = {de(Y ) | Y ∈ GW } is also
definable by parameters below R′′.

The usefulness of the antichain G thus allows us to code the relation R us-
ing the three types of antichains defined above as follows: (x1, . . . ,xn) ∈ R ↔
∃y1 . . . ∃yn(x1 ∨y1 ∈ G(1) +R(1) & . . . & xn ∨yn ∈ G(n) +R(n) & y1 ∨ · · · ∨yn ∈
GW ). �

Theorem 4. (Decoding Theorem) Let R be a countable relation on enumeration
degrees, which is coded by parameters p̄. Let de(P ) be an upper bound on these
parameters. Then there is a presentation W of the relation R, such that W ≤e P 5.

Proof. This proof follows Slaman and Woodin’s proof of the Decoding Theorem
[17]. We will calculate the complexity of the presentation of R given by the set W :

W = {(i1, . . . , in) | (de(Wi1(P )), . . . ,de(Win(P ))) ∈ R}.

By using the same trick as in the previous theorem, we may assume again that P
is a total set. The relation i ≤e j defined by Wi(P ) ≤e Wj(P ) is Σ0

3(P ). The rest
of the proof is an easy calculation. We will use i ⊕ j to express Wi(P ) ⊕Wj(P ).
Note that the index k of an operator Wk, such that Wk(P ) = Wi(P ) ⊕Wj(P ) is
obtained effectively from i and j. Consider the relation AC(i, a, p1, p2), expressing
the fact that de(Wi(P )) is in the antichain coded by de(Wa(P )),de(Wp1(P )) and
de(Wp2(P )). We need to say that i ≤e a and ∃y such that y ≤e i⊕ p1, y ≤ i⊕ p2

and y �e i, a Σ0
4(P ) statement. Then we need to say that i is minimal with this

property, a Π0
4(P ) statement. AC(i, a, p1, p2) is a ∆0

5(P ) statement.
For each of the antichains G(k), G(k) + R(k), where 1 ≤ k ≤ n, and GW we

know the indices of the operators, which applied to P , produce representatives
of coding parameters. Denote these by pG(k), pG(k)+R(k) and pGW respectively.

Thus to express that (i1, . . . , in) is in the set W , we need to say that there exist
y1 . . . , yn, such that the conjunction of the AC(yk, pG(k)), AC(ik⊕ yk, pG(K)+R(k)),

where 1 ≤ k ≤ n, and AC(y1 ⊕ · · · ⊕ yn, pGW ) is true. Therefore W is Σ0
5(P ). By
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McEvoy [10] this yields W ≤e (P ⊕ P )5. By our assumption that P is total, hence
enumeration equivalent to P ⊕ P , W ≤e P 5. �

The set obtained by the Decoding Theorem is the most complicated possible
presentation of the relation R. Notice that for a one-place relation R to be e-
presented beneath a set A we only require that there is set W ≤e A which contains
for every member of the relation R at least one index of an operator, which applied
to A produces a set in the enumeration degree of that member. The set W obtained
by the Decoding Theorem contains for every member of R all possible indices of
operators which applied to A produce a set in the e-degree of that member.

We will use the Coding Theorem and Decoding Theorem to transfer information
through an automorphism of De. Here are two examples of applications of these
theorems.

Example 1: In some cases we can find a more efficient bound on the coding param-
eters. This efficiency is given by optimizing Step 2 from the proof above. Instead
of using a generic set to obtain a useful antichain we use an antichain which is
itself a K-system, a countable set of sets of natural numbers, such that every pair
of distinct elements in it is a K-pair. In [5] it is shown that a K-system can be
obtained uniformly below any nonzero ∆0

2 set.
Let X be any set of natural numbers. Consider the structure 〈N, 0, s,+, ∗, X〉,

the standard model of arithmetic with one additional predicate for membership in
the set X. In [6] it is shown that a standard model of arithmetic can be represented
by a combination of countable relations of enumeration degrees below 0e

′, which
can furthermore be coded by parameters below 0e

′. The domain of this standard
model is an antichain, uniformly bounded by a low set A, which is half of a ∆0

2

nontrivial K-pair {A,B}. The pair {A⊕X,B ⊕X} is a KX -pair. We may assume
that it is a nontrivial KX -pair or that A ≤e X, as by symmetry we can use a model
coded below A or a model coded below B. In both cases (A ⊕X)′ ≡e X ′. In the
first case by the properties of jumps of nontrivial KX -pairs X ′ ≤e (A ⊕ X)′ ≤e
B ⊕B ⊕X ′ ≤e ∅′ ⊕X ′ ≡e X ′. In the second case A⊕X ≡e X.

Denote by n̂ the enumeration degree which serves as a representative of the
natural number n in the coded model. Thus in order to represent 〈N, 0, s,+, ∗, X〉,
we only need to code additionally one more antichain: {n̂ | n ∈ X}. This antichain
is uniformly bounded by the set A⊕X, a set which is low over X, so applying Step
1 of the Effective Coding Theorem, relative to a total set f , such that X ≤e f and
X ′ ≡e f ′, given by Theorem 1, we obtain parameters which code this antichain
bounded by X ′.

If on the other hand 〈N, 0, s,+, ∗, X〉 is coded by parameters bounded by the
degree of a set P then by the Decoding Theorem we have representations W0 =
{i | de(Wi(P )) = 0̂}, Ws = {(i, j) | ŝ(de(Wi(P ))) = de(Wj(P ))} and WX =
{i | de(Wi(P )) = n̂ & n ∈ X} and they are all enumeration reducible to P 5. Then
the set X is also enumeration reducible to P 5, namely X = {n | ∃α ∈ ω<ω(|α| =
n+ 1 & α(0) ∈W0 & ∀k < n((α(k), α(k + 1)) ∈Ws) & α(n) ∈WX)}.
Example 2: In other cases we will be content with obtaining an arithmetical bound
to the coding parameters. Let C be a countable set of enumeration degrees, e-
presented beneath C via W . The aim of this example is to code a counting of C,
i.e. a structure of the form 〈N, 0, s,+, ∗, C, ψ〉 consisting of a standard model of
arithmetic, the countable set of degrees C and some bijection ψ : N → C below
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Cnc for some fixed number nc. To code such a structure again we have parameters
below 0e

′ coding the same standard model of arithmetic as in Example 1, with
domain an antichain, {n̂}n<ω, uniformly bounded by a low set A, which is half
of a K-pair. By the coding lemma, we can code C with parameters below C ′′.
To define a counting of C, which is e-presented arithmetically in C we need to
define a function f : N → W , such that the range of f is a still a presentation
of C and such that for all i 6= j, Wf(i)(C) 6≡e Wf(j)(C). Such a function can be

defined arithmetically in C, in fact below C3. Finally we code the two-place relation
ψ = {(de(Wf(i)(C)), î) | i < ω} , which is e-presented beneath A ⊕ C3. By the

coding lemma we can find parameters below (A ⊕ C3)′′ which code this relation.
As A ⊕ C3 is low over C3, (A ⊕ C3)′′ ≡e C5. Thus there are parameters that are
below C5 and code this structure.

Suppose we have two such structures,

〈N1, 01, s1,+1, ∗1, C1, ψ1〉 and 〈N2, 02, s2,+2, ∗2, C2, ψ2〉,
both coded by parameters below P . Then the relation C1 → C2 = {(x,y) | x ∈
C1 & y ∈ C2 & ψ−1

1 (x) = ψ−1
2 (y)} is arithmetically presented relative to P . Let

W0i
,Wsi ,WCi

and Wψi
for i = 1, 2 be Σ0

5(P ) sets representing the correspond-
ing relations, coded by parameters below P . Then C1 → C2 is presented by the
set {(i, j) | ∃n∃α1, α2 ∈ ω<ω(|α1| = |α1| = n + 1 & α1(0) ∈ W01

& α2(0) ∈
W02 & ∀k < n((α1(k), α1(k+ 1)) ∈Ws1 & (α2(k), α2(k+ 1)) ∈Ws2) & (α1(n), i) ∈
Wψ1 & (α2(n), j) ∈Wψ2)}. Hence it is presented by parameters below P 5.

4. Jump ideals in De
Definition 5. A set of enumeration degrees I ⊆ De is a jump ideal if it is down-
wards closed, closed under least upper bound and closed under the jump operation.

The first order definition of the enumeration jump for nonzero degrees u proved
in [3] is given by the formula ϕJ (u,u′) expressing that u′ is the maximal element
in the set Ju = {v | ∃a,b(K(a,b) & a ≤ u & v = a ∨ b)}. This definition turns
out to be absolute between jump ideals in De.
Theorem 5. Let I ⊆ De be a jump ideal. For every element u ∈ I we have the
following equivalence:

I |= ϕJ (u,u′)↔ De |= ϕJ (u,u′).

Proof. First we observe that the formula defining K-pairs is absolute. If {a,b} ⊆ I
is a pair of enumeration degrees such that De |= ∀x((a ∨ x) ∧ (b ∨ x) = x), i.e. a
K-pair in De, then as I is an ideal I |= ∀x((a ∨ x) ∧ (b ∨ x) = x) as well. Suppose
that {a,b} ⊆ I is not a K-pair. Kalimullin [8] has shown that there are witnesses
x,y ≤e a′∨b′ for this fact, i.e. De |= y ≤ a∨x & y ≤ b∨x & y � x. As I is a jump
ideal and a,b ∈ I, it follows that x,y ∈ I and I |= y ≤ a∨x & y ≤ b∨x & y � x.
Thus {a,b} ⊆ I is a K-pair in De if and only if I |= K(a,b).

To complete the proof we observe that if u ∈ I then Ju ⊆ I, as Ju is contained
in the degrees bounded by u′. The maximal element of the set Ju is the same in I
and in De. �

Theorem 6. Let I and J be jump ideals in De, such that I ⊆ J . Let ρ : J → J
be an automorphism of J . Then ρ � I is an automorphism of I. Furthermore
there is a fixed number na, such that if I is countable and e-presented beneath I
and I ∈ J then ρ � I is e-presented beneath Ina .
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Proof. To prove the first statement we use Example 1 from the previous section.
Fix x ∈ J , X ∈ x and Y ∈ ρ(x). The structure 〈N, 0, s,+, ∗, Y 〉 can be coded by
parameters p̄ below ρ(x)′. By the definability of the jump in J , ρ(x)′ = ρ(x′). As
ρ is an automorphism of J , ρ−1(p̄) are parameters which code the same structure
and ρ−1(p̄) ≤ x′. It follows that Y ≤ (X ′)5 = X6 and hence if x ∈ I then
ρ(x) = de(Y ) ∈ I. That ρ−1(x) is bounded by x6 is proved by the same argument,
using the automorphism ρ−1.

Now suppose that I is countable and e-presented beneath I. Then by our second
example there is a counting of I, 〈N1, 01, s1,+1, ∗1, I, ψ1〉 which is coded by param-
eters p̄, bounded by Inc and hence members of J . Then ρ(p̄) must code a count-
ing of ρ(I), 〈N2, 02, s2,+2, ∗2, ρ(I), ψ2〉. Furthermore for every natural number n,
ρ(n̂1) = n̂2, i.e. the element representing the natural number n in the first struc-
ture is mapped by ρ to the element representing n in the second structure. Hence if
n̂1, is mapped by ψ1 to x, then n̂2 is mapped by ψ2 to ρ(x). Now ρ(p̄) is bounded
by ρ(de(I

nc)). As we have already seen in the previous paragraph ρ(de(I
nc)) is

bounded by (Inc)6 = Inc+6. Thus Inc+6 is a bound on both p̄ and ρ(p̄). It follows
that the relation I → ρ(I) = {(x,y) | x ∈ I & y ∈ ρ(I) & ψ−1

1 (x) = ψ−1
2 (y)} is

e-presented beneath (Inc+6)5 = Inc+11. But this relation is precisely the graph of
ρ � I. Thus na = nc + 11. �

Definition 6. (Slaman and Woodin [17]) Let I ⊆ De be countable jump ideal.
An automorphism ρ : I → I is called persistent if for every x ∈ De there is a
countable jump ideal J and an automorphism ρ1 : J → J such that {x} ∪ I ⊆ J
and ρ1 � I = ρ.

Let I be a countable jump ideal e-presented beneath I. By Theorem 6 every
persistent automorphism ρ of I is arithmetically presented relative to I. Indeed, let
ρ1 be an extension of ρ to an automorphism of a countable jump ideal J containing
I. Then ρ1 � I = ρ is e-presented beneath Ina . Theorem 6 furthermore shows that
every automorphism π of De, restricted to a countable jump ideal I, is a persistent
automorphism of I. We will be able to show eventually that the opposite is true
as well, every persistent automorphism of a countable ideal can be extended to a
global automorphism. The first step is given by the following.

Theorem 7. Let I ⊆ J be countable jump ideals in De. Every persistent auto-
morphism of I can be extended to a persistent automorphism of J .

Proof. The proof follows [17]. Towards a contradiction suppose that ρ is a persistent
automorphism of I, which cannot be extended to a persistent automorphism of
J . Fix J to be a set such that J is e-presented beneath J . By our assumption
for every automorphism ρi of J which extends ρ and is arithmetically presented
relative to J there is an xi ∈ De such that ρi does not extend to an automorphism
of a countable jump ideal containing xi. There are countably many arithmetic
presentations relative to J . Fix x to be an enumeration degree larger than all such
xi. Then by the persistence of ρ we can extend it to an automorphism ρ1 of a
countable jump ideal containing x ∨ de(J). Then ρ1 � J is an automorphism of
J , with an arithmetic in J presentation, which extends to an automorphism of a
countable jump ideal containing all xi, contradicting our choice of xi. �

Theorem 8. The statement “There exists a countable jump ideal I ⊆ De and
a persistent automorphism ρ : I → I which is not the identity on I.” is a Σ1

2

statement.
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Proof. Suppose that I and R, i and r are given. To say that Wi(I) is a presentation
of a jump ideal I is a statement arithmetic in I. We need to say that I is downwards
closed, closed under least upper bound and closed under jump. To express that the
ideal is closed under jump, for example, we need to say that for every x ∈ Wi(I)
there exists a y ∈Wi(I) such that (Wx(I))′ ≡e Wy(I). The last statement is clearly
arithmetic in I. Similarly to say that Wr(R) is an automorphism ρ of I, which is
not the identity, is arithmetic in I and R.

To say that ρ is a persistent automorphism it is enough to say that for every
J and every j, if Wj(J) is a presentation of a jump ideal J beneath J , which
contains I as a subset, there exists r1, such that Wr1(Jna) is a presentation of
an automorphism ρ1 of J , which in turn extends ρ. Indeed if ρ is a persistent
automorphism of I, then for every J , ρ will extend to an automorphism ρ1 of a
jump ideal containing de(J). If J is a jump ideal e-presented beneath J then by
Theorem 6 the restriction of ρ1 to J is an automorphism of J , e-presented beneath
Jna . If on the other hand the statement is true of I and R then ρ is persistent,
as for every x there is a countable jump ideal J containing x and I, namely the
closure of I ∪ {x} under ≤, ∨ and ′. This countable ideal is e-presented beneath a
set J , e.g. we can list representatives of the countably many elements of J and set
J to be their uniform upper bound.

Pasting all of this together, the statement can be restated as ∃I∃R∀J , followed
by an arithmetic statement involving I,R and J . �

5. Generic Extensions

In this section we connect the notion of a persistent automorphism of a countable
jump ideal in De with the notion of a global automorphism of De. For this we will
need to use notions from set theory and refer to Kunen [9] for definitions and
notation. The statements in this section and their proofs are identical to the ones
found in the original analysis by Slaman and Woodin [17]. We outline the main
steps below.

We will be working with well-founded ω-models of the fragment of ZFC which
includes only instances of replacement and comprehension where the defining for-
mulas are Σ1. We denote this fragment by T . The precise definition of T is not
important, as long as it is finitely axiomatizable and sufficiently powerful to let us
carry out the finitely many proofs involved in this analysis. If M = 〈M,∈M〉 is a
model of T then in it we can define NM, the standard model of arithmetic in the
sense of M and DMe , the enumeration degrees in the sense of M. The model is
well-founded if ∈M is a well founded binary relation (with no infinite descending
sequences), and it is an ω-model if NM is isomorphic to the standard model of
arithmetic. By the Mostowski Collapse Lemma (see [9]) any such model is isomor-

phic to a standard model 〈M′,∈〉, i.e. a model in which ∈M′=∈. In this model

NM′ = N and DM′e is a jump ideal in De.

Proposition 3. Let M⊆ N be standard ω-models of T and I ∈M and ρ ∈ N . If
M |= (I ⊆ De is a countable jump ideal) and N |= (ρ is a persistent automorphism
of I) then ρ ∈M and M |= (ρ is a persistent automorphism of I).

Proof idea: We work inside the model N . All statements about De discussed in the
previous paragraphs are true of DNe in N . M, an inner model of N , knows that I is
a countable jump ideal, hence there is a set I ∈M such that I is e-presented beneath
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I. Every persistent automorphism ρ of I is arithmetically presented relative to I.
As M is a standard ω-model of T , any relation which is e-presented beneath an
element of M is also a member of M . Finally if x ∈ DMe then in M there is a
countable jump ideal J ⊇ I ∪{x}. By the persistence of ρ in N , ρ can be extended
to an automorphism ρ1 of J . So we are in the initial position: M |= (J ⊆ De is a
countable jump ideal), and ρ1 is a persistent automorphism of J in N . It follows
that ρ1 ∈M, thus in M as well ρ is persistent.

Definition 7 (Slaman and Woodin [17]). Let I ⊆ De be a jump ideal and ρ : I → I
be an automorphism. ρ is generically persistent if there is a generic extension V [G]
of V in which I is countable and ρ is persistent.

Proposition 4. If ρ is a generically persistent automorphism of the jump ideal
I ⊆ De, then ρ is persistent in every generic extension of V in which I is countable.

Proof idea: By Theorem 8 the property “Wr(R) is a presentation of a persistent
automorphism of the jump ideal represented by I” is Π1

1 and thus by Shoenfield’s
absoluteness lemma [14] absolute between well founded models of ZFC. Assume
that there are two forcing partial orders P and P1 in V and two conditions: p ∈ P ,
forcing I to be countable and ρ to be persistent and p1 ∈ P1, forcing I to be
countable. Consider a generic extension V [H], in which the powersets of both
partial orders P and P1 are countable. Then in V [H] we can construct two generic
filters: G, containing p, generic with respect to all of the countably many dense sets
in P , and G1 containing p1, generic with respect to all of the countably many dense
sets in P1. Now V [G] and V [G1] are inner models of V [H]. All of these models are
standard ω-models of T . In V [G] I is countable and ρ is persistent. Let I be such
that I is e-presented beneath I and R be such that ρ is e-presented beneath R in
V [G]. Then there is an r, such that Wr(R) is a presentation of ρ in V [G], hence in
V [H]. In V [G] it is true that Wr(R) is a presentation of a persistent automorphism
of the jump ideal represented by I, a statement which is absolute between V [G]
and V [H], hence in V [H] as well ρ is persistent. Now since I is countable in V [G1],
by Proposition 3 we have that ρ ∈ V [G1] and V [G1] |= (ρ is persistent).

Theorem 9. If π is an automorphism of De, then π is generically persistent.

Proof idea: Let λ be an ordinal such that π ∈ Vλ and Vλ is a model of T . Consider
a countable structure H, elementary equivalent to Vλ with respect to the language
containing a constant for π. LetM be its transitive collapse. NowM is a countable
standard ω-model of T , such that DMe is a countable jump ideal in De and πM is
the restriction of π to DMe . FurthermoreM is elementary equivalent to Vλ. By the
properties of forcing and truth, the statement (π is generically persistent) can be
expressed by a closed statement in the language containing π as a constant. Hence
πM is generically persistent in M if and only if π is generically persistent in Vλ.
Let P ∈ M be the partial order to generically add a counting of DMe to M and
fix a generic filter G with respect to P . M[G] is a model of (DMe is countable).
The restriction of π to a countable jump ideal is a persistent automorphism of that
ideal. Hence by Proposition 3, M[G] must be a model of (πM is persistent). By
Proposition 4 πM is generically persistent and hence π is generically persistent as
well.

Theorem 10. Suppose that V [G] is a generic extension of V . Suppose that π ∈
V [G] is an automorphism of the enumeration degrees in V . If π is generically
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persistent in V [G] then π is constructible from the powerset of the natural numbers
in V (i.e. π ∈ L(R)). In particular every automorphism of the enumeration degrees
in constructible from the powerset of the natural numbers in V .

Proof idea: Consider the forcing partial order P = Coll(DVe , ω) to add a generic
counting H of DVe to V [G]. This forcing partial order consists of finite functions
from DVe to ω, ordered by inclusion and is therefore a member of L(R). In V [G][H]
π is persistent. Hence by Proposition 3 π is a member of every inner model of
V [G][H] in which De is countable. In particular π ∈ L(R)[H]. Thus for every
P -generic H, π ∈ L(R)[H]. It follows that π ∈ L(R).

Theorem 11. Let I be a countable jump ideal in De and ρ a persistent automor-
phism of I. Then ρ can be extended to an automorphism of De.

Proof idea: Let G be a generic counting of De. Then in V [G], DVe is a countable
jump ideal and by Theorem 7, ρ can be extended in V [G] to a persistent automor-
phism π of DVe . Then π is persistent in V [G]. Every persistent automorphism is
generically persistent. By Theorem 10, π is an element of L(R), in particular π is
in V .

Corollary 1. The existence of a nontrivial automorphism of De is equivalent to a
Σ1

2 statement and therefore absolute between well-founded models of ZFC.

Proof. By Theorem 8 the property “There exists countable jump ideal I ⊆ De and
a persistent automorphism ρ : I → I which is not the identity on I ” is a Σ1

2

property, hence absolute between well founded models of ZFC. By Theorem 11 this
property is equivalent to the existence of a nontrivial automorphism of De. �

Corollary 2. If π is a nontrivial automorphism of De and V [G] is a generic

extension of V then π can be extended to an automorphism of DV [G]
e in V [G].

Proof idea: Extend V [G] to V [G][H] by adding a counting of DV [G]
e . In V [G][H]

extend π to a persistent automorphism π1 of DV [G]
e . By Theorem 10, π1 ∈ L(RV [G]),

hence π1 ∈ V [G].

6. Arithmetically representing automorphisms of De
In this section we will show that every automorphism of De has an arithmetic

presentation. It follows that there are at most countably many distinct members
of Aut(De). For this we will need the following theorem proved by Soskov and
Ganchev [20], building on a result of Richter [11].

Theorem 12 (Soskov, Ganchev [20]). Every automorphism of De is the identity
on the cone above 0e

4.

Proof. Richter [11] showed that if a and b are Turing degrees such that the struc-
tures ({x | a ≤T x},≤T ,′ ) and ({x | b ≤T x},≤T ,′ ) of the Turing cones above
a and b in the language which includes the jump operation are isomorphic, then
a2 ≤T b3.

Suppose that π is an automorphism of De. The set of total enumeration degrees
above 0e

′ is first order definable, hence π restricted to the total enumeration degrees
in the cone above 0e

′ induces an automorphism of the Turing degrees above 0′T .
Let x be an enumeration degree and let y = π(x). Then π(x′) = y′ and hence the
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Turing cone above ι−1(x′) is isomorphic to the Turing cone above ι−1(y′). Applying
Richter’s result and noting that ι preserves the jump operation, we get x3 ≤ y4.

Now suppose that c is a total enumeration degree above 0e
4. Then by Theorem

1 there exists a total enumeration degree f such that c = f4 = f ∨ 0e
4. Then

π(c) = π(f ∨ 0e
4) = π(f) ∨ 0e

4 ≤ π(f)3 ∨ 0e
4 ≤e f4 ∨ 0e

4 = f4 = c. Now consider
the automorphism π−1 and note that by the definability of the total enumeration
degrees above 0e

′, π(c) must also be total and above 0e
4. A symmetric argument

gives the reverse inequality, hence π(c) = c.
Finally if x is an arbitrary degree above 0e

4, by Theorem 2 there are total
enumeration degrees f and g, such that x = f ∧ g. Applying the argument from
the previous paragraph, we get that π(x) = π(f ∧ g) = π(f) ∧ π(g) = f ∧ g = x. �

Theorem 13. Let π be an automorphism of De. There exists an enumeration
operator Γ such that for every 8-generic f , π(de(f)) = de(Γ(f ⊕ ∅4)).

Proof. Let Pω1 be the partial order to add ω1 many Cohen reals (the set of finite
functions p : ω1×ω → {0, 1}). Let G be generic with respect to Pω1 . We can view G
as an ω1-sequence of mutually Cohen generic sets of natural numbers. By Corollary

2 we can extend the automorphism π to π∗ : DV [G]
e → DV [G]

e and by Theorem 10
π∗ is constructible from the reals RV [G] in the model V [G]. This means that the
relation π∗ can be defined by a formula ϕ using parameters: RV [G], a parameter
X ∈ RV [G] and an ordinal γ. First we “eliminate” the parameter X by moving to
a model which has X as an element. As X ∈ V [G] it has a name τX in V and it is
forced by some condition p in Pω1

that:

(1) τX ∈ 2ω.

(2) The relation {v | Lγ(RV [G]) |= ϕ(v, τX)} is an automorphism of DV [G]
e ,

which extends π.

The condition p, being a finite function p : ω1×ω → {0, 1}, can only specify facts
about finitely many of the elements in the ω1-sequence of reals G, i.e. there is a
countable ordinal β such that p specifies facts only about the first β-many elements
of G. By the homogeneity of Cohen forcing (see [17]) we can represent V [G] as
V [G1][G2], where G1 is the countable sequence of the first β-many elements in G and
G2 is the rest of the sequence, which in turn can be viewed as an ω1-sequence of
reals, and at the same time as an Pω1

generic filter over V [G1]. X is now an element
of V [G1] and we can replace it in the formula ϕ by a constant. Now in V [G1] the
empty condition forces the statement “the relation {v | Lγ(RV [G]) |= ϕ(v,X)} is an

automorphism of DV [G]
e , which extends π”.

Let g be (the characteristic function of ) any Cohen generic over V [G1] real,
which is an element of V [G]. By the homogeneity of Cohen forcing we can further
represent V [G] = V [G1][g][G3], where G3 is Pω1

-generic over V [G1][g].
By Soskov and Ganchev’s Theorem 12 π∗ is the identity on the cone above 0e

4.
Thus π∗(de(g)) ≤ π∗(de(g)⊕ 0e

4) = de(g)⊕ 0e
4. Let Π∗(g) ∈ π∗(de(g)). There is

an enumeration operator Γ, such that Π∗(g) = Γ(g⊕∅4). Thus Γ(g⊕∅4) ∈ π∗(de(g))
is true and hence must be forced in V [G1] by some condition p ∈ P1 × Pω1 . This
condition cannot depend on its ω1-part. This is because the value of Γ(g ⊕ ∅4)
depends only on g and is not affected by G3 and the term, which defines π∗, depends
only on RV [G] which is invariable under finitely many changes in G. Indeed, if we
assume that there were a condition q ∈ P1 × Pω1

with the same value as p on P1,
which forces a different value for π∗(de(g)) then we can extend q to a generic filter
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G∗ which is the same as G except on the finitely many values determined by q. Then
V [G] = V [G∗], in particular RV [G] = RV [G∗] and we would get a contradiction with
the fact that the relation {v | Lγ(RV [G]) |= ϕ(v,X)} is a function, as two different

pairs, both with first component de(g), satisfy ϕ in Lγ(RV [G]). We can furthermore
incorporate the finite condition p in the definition of Γ. If g is any generic over V [G1]
function, let gp be the function obtained by appending g to the condition p. Then
gp is also generic over V [G1], extends p and has the same enumeration degree as
de(g). Thus π∗(de(g)) = π∗(de(gp)) and hence Γ(gp ⊕ ∅4) ∈ π∗(de(g)). We can
effectively redefine Γ, so that it has the property Γ(f) = Γ(fp), for every total
function f . (Here fp is defined from f and p in the same way as gp was defined
from g and p). Thus it is forced by the empty condition that Γ(g⊕∅4) ∈ π∗(de(g))
for every g, which is Cohen generic over V [G1].

The final step is to show that this equation reflects back to all sufficiently generic
sets in V . We use the following technical tool, introduced in [17].

Definition 8 (Slaman, Woodin [17]). Let X and Y = Yeven⊕Yodd be sets of natural
numbers. We define total function C(X,Y ) as follows.

C(X,Y )(n) =

{
Yeven(n−m) if Yodd(n) = 0 and |Yodd � n| = m

X(m) if Yodd(n) = 1 and n is the m-th element of Yodd.

In [17] it is shown that the genericity properties of the second argument of the
functional C transfer to its output. In particular if Y is n-generic then so is C(X,Y )
and if Y is Cohen generic over V [G1] then so is C(X,Y ). Furthermore if X and Y are
total sets then the following equivalence is easily seen to hold C(X,Y )⊕Y ≡e X⊕Y .

Let f be an 8-generic in De and g1 and g2 be generic over V [G1], such that g1 and
g2 and f are mutually 8-generic. Then by Proposition 2 the enumeration degrees
g1 and g2 of g1 and g2 form a minimal pair above the enumeration degree f of f :

f = (g1 ∨ f) ∧ (g2 ∨ f).

Let c(f, g1) = de(C(f, g1)) and c(f, g2) = de(C(f, g2)). Then we have

f = (c(f, g1) ∨ g1) ∧ (c(f, g2) ∨ g2).

This structural property is preserved by π∗, thus

π∗(f) = (π∗(c(f, g1)) ∨ π∗(g1)) ∧ (π∗(c(f, g2)) ∨ π∗(g2)).

Consider the following statement.

Γ(x⊕ ∅4) ≡e (Γ(C(x, y1)⊕ ∅4)⊕ Γ(y1 ⊕ ∅4)) ∧ (Γ(C(x, y2)⊕ ∅4)⊕ Γ(y2 ⊕ ∅4)).

This is a Π0
8 statement true of all triples of total functions x, y1 and y2, which are

sufficiently mutually generic, e.g. mutually generic over V [G1]. It must therefore be
forced by the empty condition in the partial order to add three Cohen generic reals.
But a Π0

8 statement forced by the empty condition is true of all mutually 8-generic
total functions. As f , g1 and g2 are mutually 8-generic, we obtain the equality:

Γ(f ⊕ ∅4) ≡e (Γ(C(f, g1)⊕ ∅4)⊕ Γ(g1 ⊕ ∅4)) ∧ (Γ(C(f, g2)⊕ ∅4)⊕ Γ(g2 ⊕ ∅4)).

The right-hand side of the equation is a set, which is member of the enumeration
degree π∗(f), hence so is the left-hand side. As f ∈ V and π∗ is an extension of π,
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it follows that π(f) = π∗(f). Finally we obtain Γ(f ⊕∅4) ∈ π(f) for every 8-generic
f .

�

Corollary 3. Let π be an automorphism of De. There exists an arithmetic formula
ϕ such that ϕ(X,Y ) is true if and only if π(de(X)) = de(Y ). There are therefore
at most countably many automorphisms of De.

Proof. The proof is divided in three steps:

(1) By Theorem 13 there is an enumeration operator Γ, such that for every
8-generic real f , π(de(f)) is represented by Γ(f ⊕ ∅4). Thus if f is 8-
generic then ϕ(f, Y ) is true if and only if Y is enumeration equivalent to
Γ(f⊕∅4). This is an arithmetical relationship between f and Y . Using this
preliminary result we move towards an arithmetical definition of ϕ, which
works for all X, not just the 8-generic total functions.

(2) We expand the definition to include arbitrary total sets. Let b be a total
enumeration degree and B ∈ b a total set. We apply Proposition 1 to obtain
the characteristic function g of an 8-generic set relative to B uniformly from
B8. We split g into two mutually 8-generic sets relative to B, g1 and g2:
for every natural number n, g1(n) = g(2n) and g2(n) = g(2n+ 1). Now we
use the same trick:

π(b) = (π(c(B, g1)) ∨ π(g1)) ∧ (π(c(B, g2)) ∨ π(g2)) =

(de(Γ(C(B, g1)⊕ ∅4))⊕ de(Γ(g1 ⊕ ∅4))) ∧ (de(Γ(C(B, g2)⊕ ∅4))⊕ de(Γ(g2 ⊕ ∅4))).

The last line gives an arithmetical relationship between B and any mem-
ber of the enumeration degree π(b).

(3) Finally let X be an arbitrary set of degree x. By Theorem 2 there are
enumeration operators ΓT1

and ΓT2
, such that ΓT1

(X ′′) and ΓT2
(X ′′) are

total sets with greatest lower bound X. Then π(de(X)) is the greatest lower
bound of π(de(ΓT1

(X ′′))) and π(de(ΓT2
(X ′′))), representatives of which can

be found arithmetically in ΓT1(X ′′) and ΓT2(X ′′) respectively and hence
arithmetically in X.

�

Definition 9. An automorphism base for a structure S with domain S is a subset
of its domain B ⊆ S, such that for every pair of automorphisms π1 : S → S and
π2 : S → S, the following implication holds:

(∀x ∈ B(π1(x) = π2(x)))⇒ π1 = π2.

Equivalently B ⊆ S is an automorphism base if for every automorphism π : S →
S, we have that:

(∀x ∈ B(π(x) = x))⇒ π = id,

where id is the identity function on S. This can be seen by taking π(x) =
π−1

2 (π1(x)).

Corollary 4. The structure of the enumeration degrees De has an automorphism
base consisting of:

(1) A single total degree g.
(2) A single quasiminimal degree a.
(3) The enumeration degrees below 0e

8.
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Proof. (1) Fix an 8-generic total function g and let g = de(g). Suppose that
π is an automorphism of De and π(g) = g. Let Γ be the enumeration
operator representing π on 8-generic reals, given by Theorem 13. It follows
that g ≡e Γ(g ⊕ ∅4). This is an arithmetical statement of complexity Σ0

8.
As g is 8-generic, the truth of this statement must be forced by some finite
Cohen condition p. Now fix any other 8-generic function f . We define
fp by appending the characteristic function f to the finite condition p, to
make p an initial segment of fp. Now fp is still 8-generic and of the same
enumeration degree as f . The condition p is now extend by fp hence the
statement fp ≡e Γ(fp ⊕ ∅4) is true. It follows that for all enumeration
degrees f which contain an 8-generic set, π(f) = f . Since the 8-generic
functions generate all total degrees, and hence all enumeration degrees, it
follows that π is the identity. By Theorem 2 every enumeration degree is
determined by the set of total degrees above it and by Proposition 2 every
total degree is determined by the set of 2-generic degrees above it. Thus if
π(g) = g then π = id and hence the enumeration degree g of any 8-generic
g is an automorphism base.

(2) By Jockusch’s result about semi-recursive sets, discussed in Section 2.2
every nonzero total degree is the least upper bound of a maximal K-pair.
Fix an 8-generic total function g of degree g. Let {a,b} be a maximal
K-pair, such that g = a ∨ b. Finally note that b is definable from a, it
is the largest enumeration degree, which forms a K-pair with a. Thus if
π(a) = a then π(b) = b and hence π(g) = g and by Part (1) π = id .

(3) Follows directly from Part (1).
�

7. Interpreting automorphisms in De
Slaman and Woodin [17] define the notion of extendable assignment of reals and

use it show DT is biinterpretable with second order arithmetic using parameters.
We follow their ideas to obtain similar results about De.

Definition 10. An e-assignment of reals consists of

(1) A countable ω-model M of T , the finitely axiomatizable theory consisting
of the fragment of ZFC with Σ1 replacement and Σ1 comprehension;

(2) A function f and a countable jump ideal I in De such that f : DMe → I is
a bijection and for all x,y ∈ DMe , if M |= x ≥ y then f(x) ≥ f(y).

Theorem 14. If (M, f, I) is an e-assignment of reals then DMe = I.

Proof. Both DMe and I are countable jump ideals in De and f is an isomorphism
between those ideals. By Theorem 5 the enumeration jump is first order definable
in the jump ideals DMe and I by the same first order formula ϕJ . Thus f preserves
the jump: for every x ∈ DMe we have f(x′) = f(x)′. By a proof similar to that of
Theorem 6 we show that for every x ∈ DMe , there is a representative X ∈ x which
is arithmetic relative to a representative F (X) ∈ f(x). Indeed, by Example 1 of
applications of the Coding Theorem there are parameters p̄ ≤ x′, hence in DMe ,
which code a model of the structure 〈N, 0, s,+, ∗, X〉. Then f(p̄) ≤ f(x′) = f(x)′

will code the same structure. By the Decoding Theorem X is e-reducible to a
member of f(x)6 and hence x ∈ I. Thus DMe ⊆ I. Now fix y ∈ I, Y ∈ y, and
parameters q̄ ≤ y′, hence in I, which code a model of the structure 〈N, 0, s,+, ∗, Y 〉.
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Then f−1(q̄) ≤ f−1(y′) = f−1(y)′ will code the same structure. By the Decoding
Theorem Y is e-reducible to a member of f−1(y)6 and hence y ∈ DMe . So I = DMe .
�

Definition 11. An e-assignment of reals (M, f, I) is extendable if for every z ∈ De
there exists an e-assignment of reals (M1, f1, I1) such that DMe ⊆ DM1

e , I ∪ {z} ⊆
I1 and f ⊆ f1.

Theorem 15. If (M, f, I) is an extendible e-assignment then there is an automor-
phism π : De → De, such that for all x ∈ DMe , π(x) = f(x).

Proof. By Theorem 14 DMe = I. Thus f is an automorphism of the countable ideal
I. By extendability we have that for every z, f can be extended to an automor-
phism of a jump ideal, containing I and z, which is precisely the definition of a
persistent automorphism. By Theorem 11 f can be extended to a global automor-
phism π. �

Example 3. We give a third example in the series of examples of applications of the
Coding Theorem. If (M, f, I) is an e-assignment of reals, then we can interpret this
in the enumeration degrees: we can fix a countable set of enumeration degrees, that
will represent the elements of the domain ofM, i.e. fix some injection ψ : M → De,
then ψ(M) is the required countable set of enumeration degrees. We can define a
countable binary relation R∈ on these degrees exactly mimicking the relation ∈M,
i.e. R∈(ψ(x), ψ(y)) if and only if x ∈M y. Then we can represent f as a countable
binary relation on the enumeration degrees that represent the elements of DMe and
the elements of the ideal I. All of these are countable relations on degrees an so
by the Coding Theorem there are parameters m̄ , f̄ and ī coding these sets.

On the other hand the property “m̄, f̄ and ī code an e-assignment of reals” is a
definable property of m̄, f̄ and ī. We can require that R∈ coded by m̄ satisfies the
finitely many axioms of T . To ensure the coded model is an ω-model, we can require
that the definable element representing ωM is isomorphic to the domain of some
standard model of arithmetic, say the one from Example 1. By the definability
of the enumeration jump, we can require that the set coded by ī is a jump ideal.
Finally we can definably identify the element de representing DMe in the model
coded by m̄ and require that the relation coded by f̄ is a bijection between the
degrees x such that R∈(x,de) and the ideal coded by ī, which preserves ≤.

We can furthermore deduce that the property “m̄, f̄ and ī code an extendible
e-assignment of reals” is a definable property of m̄, f̄ and ī. In addition to the
requirements above we need to add that for every z there exist parameters m̄1, f̄1
and ī1, coding an e-assignment of reals, such that the set of enumeration degrees in
the model coded by m̄ is extended by the set of enumeration degrees in the model
coded by m̄1, the ideal coded by ī1 contains z and the elements of the ideal coded
by ī and that the relation coded by f̄1 extends the relation coded by f̄ .

Theorem 16. Let g be the enumeration degree of an 8-generic g ≤e ∅8. Then
the relation Bi(c̄,d), stating that “c̄ codes a model of arithmetic with a unary
predicate for D and de(D) = d” is definable in De using parameter g. Thus De is
biinterpretable with second order arithmetic using parameters.

Proof. Consider the following definable property of c̄ and d: there exist parameters
m̄, f̄ and ī, such that:



THE AUTOMORPHISM GROUP OF THE ENUMERATION DEGREES 19

(1) m̄, f̄ and ī code an extendible e-assignment of reals (M, f, I).
(2) c̄ codes a model of arithmetic with a predicate for a set D.
(3) The set D is an element of M and f(de(D)M) = d.
(4) For the set g, given by its arithmetic definition, interpreted inM, f(de(g)M) =

g.

If c̄ and d satisfy this property then by Theorem 15 f is a persistent automor-
phism of I which can be extended to a global automorphism π. As M is an
ω-model, arithmetic definitions are interpreted correctly in M, hence de(g)M = g
and de(D)M = de(D). Now π(g) = f(g) = g. As g is the degree of an 8-generic,
by Corollary 4 π is the identity. Thus d = f(de(D)) = π(de(D)) = de(D).

If c̄ and d are such that Bi(c̄,d) then we let M be any countable ω-model of
T which contains D as an element, I = DMe and f = id. By the discussion in
Example 3 there are parameters which code this model and satisfy the clauses of
the definable property. �

Corollary 5. Let R ⊆ (2ω)n be relation definable in second order arithmetic and
invariant under enumeration reducibility.

(1) The relation R ⊆ Dne defined by R(de(X1), . . . ,de(Xn))↔ R(X1, . . . , Xn)
is definable in De with one parameter g. In particular T OT is definable
with one parameter.

(2) If R is invariant under automorphisms then R is definable without param-
eters in De. In particular the hyperarithmetic jump operation is first order
definable in De.

Proof. Suppose that ϕ is the defining formula in second order arithmetic for R.
Then (x1, dots,xn) ∈ R if and only if there exist parameters c̄1, . . . , c̄n, such that:

(1) For every i ∈ {1, . . . , n}, c̄i codes model of arithmetic with a predicate for
a set Xi;

(2) The interpretation of ϕ(X1, . . . , Xn) (a formula in second order arithmetic)
is true in De.

(3) For every i ∈ {1, . . . , n}, Bi(c̄i,xi), the relation from Theorem 16.

As T OT is a relation which is induced by the enumeration degree invariant
relation Tot(X)↔ ∃Y (X ≡e Y ⊕ Y ), it follows that T OT is definable in De with
parameter the enumeration degree g of an 8-generic, used in the definition of the
relation Bi.

If R is invariant under automorphism then we can replace the third clause by
merely requiring that the set coded by ci is automorphic to xi. This achieved
without the use of parameters by a omitting the last (the fourth) clause in the
proof of Theorem 16, which gives the first order definition of the relation Bi.

Let π be an automorphism of De. Let X be a set and Π(X) ∈ π(de(X)). By
Theorem 12 for every y ≥ 0e

4, we have that π(y) = y. Hence Π(X) ≤e X4 and
X ≤e Π(X)4. Thus X and Π(X) have the same arithmetic degree. From this it
follows that the relation arithmetic equivalence is invariant under automorphism
and hence by the argument above first order definable in De. There is however a
simpler proof of this fact, which uses only the Coding Theorem and the definability
of the enumeration jump. IfX and Y have the same arithmetic degree thenX and Y
have the same hyperarithmetic jump. Thus the relation HypJ(X,Y )↔ Y ≡e OX
is invariant under automorphisms. Indeed π(de(OX)) = de(OX) as d(OX) ≥ 0e

4
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and OΠ(X) = OX , as X and Π(X) have the same arithmetic degree. By the
argument above the hyperarithmetic jump operation is first order definable in De.

�
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