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1. Introduction

Degree theory studies mathematical structures, which arise from a formal no-
tion of reducibility between sets of natural numbers based on their computational
strength. In the past years many reducibilities, together with their induced de-
gree structures have been investigated. One of the aspects in these investigations
is always the characterization of the theory of the studied structure. One distin-
guishes between global structures, ones containing all possible degrees, and local
structures, containing all degrees bounded by a fixed element, usually the degree
which contains the halting set. It has become apparent that modifying the under-
lying reducibility does not influence the strength of the first order theory of either
the induced global or the induced local structure. The global first order theories of
the Turing degrees [15], of the many-one degrees [11], of the 1-degrees [11] are com-
putably isomorphic to second order arithmetic. The local first order theories of the
computably enumerable degrees 1, of the many-one degrees [12], of the ∆0

2 Turing
degrees [14] are computably isomorphic to the theory of first order arithmetic.

In this article we consider enumeration reducibility, and the induced structure
of the enumeration degrees. Enumeration reducibility introduced by Friedberg and
Rogers [4] arises as a way to compare the computational strength of the positive
information contained in sets of naturals numbers. A set A is enumeration reducible
to a set B if given any enumeration of the set B, one can effectively compute an
enumeration of the set A. The induced structure of the enumeration degrees De is
an upper semilattice with least element and jump operation. This structure raises
particular interest as it can be viewed as an extension of the structure of the Turing
degrees. There is an isomorphic copy of the the Turing degrees in De. The elements
of this copy are called the total enumeration degrees.

The enumeration jump operation gives rise to a local substructure, Ge,consisting
of all degrees in the interval enclosed by the least degree and its first jump. Cooper
[1] shows that the elements of Ge are precisely the enumeration degrees which
contain Σ0

2 sets, or equivalently are made up entirely of Σ0
2 sets, which we call Σ0

2

degrees. This structure can in turn be viewed as an extension of the structure of
the ∆0

2 Turing degrees, which is isomorphic to the Σ0
2 total degrees.

Slaman and Woodin [16] prove that the theory of the global structure of the
enumeration degrees, De, is computably isomorphic to the theory of second order
arithmetic and show that the local theory is undecidable. In the same article
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1This result is due to Harrington and Slaman, see [13] for a published proof.
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under question 3.5 they ask whether or not the theory of the local structure, Ge, is
computably isomorphic to the theory of first order arithmetic. The same question
appears first in [2] in 1990, and then again in other articles, see [17], [3] and [18].

Recently Kent [10] has characterized the first order theory of a substructure of Ge.
He proves that the first order theory of the ∆0

2 enumeration degrees is computably
isomorphic to the theory of true arithmetic. However as there are properly Σ0

2

enumeration degrees, degrees which contain no ∆0
2 set, this does not settle the

problem for the theory of Ge.
The goal of this article is to give an answer to this longstanding question. Note

that since the degrees in Ge are the degrees of the Σ0
2 sets we can associate a natural

number a to every a ∈ Ge in such a way that the relation � on natural numbers,
defined by a � b ⇐⇒ a ≤ b, is arithmetic. Thus there is a computable translation
φ of every sentence of Ge into a sentence of arithmetic such that

Ge |= θ ⇐⇒ N |= φ(θ).

For the converse direction it is enough to show the existence of a class of definable
with parameters structures N (q) in Ge and a formula SMA, such that the following
two statements are true.

(1.1) If Ge |= SMA(q), then N (q) is a standard model of arithmetic.

(1.2) There are parameters q, such that Ge |= SMA(q).

The methods used to prove this result rely on the notion of a K-pair, introduced
by Kalimullin [9] and used to show the definability of the enumeration jump opera-
tion. In [5] we show that K-pairs are first order definable in Ge. In Section 3 we use
this result to improve the local version of Slaman and Woodin’s coding lemma [16],
showing that a larger class of relations can be coded with parameters in Ge. Using
this result we prove the existence of a formula SMA satisfying (1.1) and (1.2).

Finally we show the existence of a parameterless interpretation of true arithmetic.

2. Preliminaries

In this section we shall introduce all the notions and results that will be needed
throughout the paper. We start with the notion of enumeration reducibility. As
noted above, intuitively a set A is enumeration reducible to a set B, denoted by
A ≤e B if and only if there is an algorithm transforming every enumeration of B
into an enumeration of A. Formally

A ≤e B ⇐⇒ ∃i[A = Wi(B)],

where Wi is the c.e. set with Gödel index i and Wi(B) stands for the set

Wi(B) = {x | ∃〈x, u〉 ∈Wi & Du ⊆ B},
where Du is the finite set with canonical index u.

The relation ≤e is reflexive and transitive (but not antisymmetric) and so it
gives rise to a nontrivial equivalence relation ≡e defined by

A ≡e B ⇐⇒ A ≤e B & B ≤e A.

We denote de(A) = {B | A ≡e B}. The equivalence classes under ≡e are called
enumeration degrees. We shall denote by De the collection of all enumeration
degrees. The preorder ≤e on sets induces a partial order ≤ on degrees, defined by

a ≤ b ⇐⇒ ∃A ∈ a∃B ∈ b[A ≤e B].
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The degree 0e consisting of all c.e. sets is the least degree in De. Furthermore
the degree de(A ⊕ B), where A ⊕ B = {2x | x ∈ A} ∪ {2x + 1 | x ∈ B}, is the
least degree which is greater then or equal to the degrees de(A) and de(B). Thus
De = (De,≤) is an upper semilattice with least element.

Besides the join of two set, we shall need the notion of a uniform join of a system
of sets. Let I ⊆ N and let {Xi | i ∈ I} be a system of sets of natural numbers. We
define the uniform join of the system to be⊕

i∈I

Xi = {〈x, i〉 | x ∈ Xi, i ∈ I}.

The uniform join of a system {Xi | i ∈ I} is the least uniform upper bound for it,
in the sense that Xi ≤e A uniformly in i and I ≤e A if and only if

⊕
i∈I Xi ≤e A.

Note that for a finite system {Xi | i ≤ n} we have
⊕

i≤nXi ≡e X0⊕X1⊕· · ·⊕Xn.
We introduce the enumeration jump on sets by setting A′ = KA ⊕ (N \ KA),

where KA =
⊕

i<ω Wi(A). The jump operation on sets has the property A ≤e

B ⇒ A′ ≤e B
′ and hence we can define a jump operation on degrees by setting

de(A)′ = de(A′).

Furthermore A ≤e A
′ and A′ 6≤e A, so that the jump operation on degrees is strictly

monotone.
This paper is dedicated to the degrees that lie between the least degree 0e and

its first jump 0′e, i.e. the degrees in the interval [0e,0′e]. We shall denote by Ge the
substructure Ge = ([0e,0′e],≤) of De. The theory of Ge is referred to as the local
theory of the enumeration degrees. As noted above, Cooper [1] has shown that the
degrees in Ge are exactly the degrees of the Σ0

2 sets, so that the local theory of the
enumeration degrees is actually the theory of the Σ0

2 enumeration degrees.
A special role in this paper shall be played by the so called low degrees. A degree

a is low if and only if a′ = 0′e. The sets contained in a low degree are called low
sets. Thus A is a low set if and only if A′ ≡e ∅′. The low sets have the following
characterization:

A is low ⇐⇒ Wi(A) is a ∆0
2 set for every i.

In particular every low set is a ∆0
2 set.

An instance of low degrees (and sets) are the so called Kalimullin pairs, or briefly
K-pairs, of degrees in Ge (or Σ0

2 sets). We say that the pair of sets {A,B} is a K-pair
if both A and B are not c.e.2 and A × B ⊆ Wi, A × B ⊆ Wi for some i, where
A×B = {〈a, b〉 | a ∈ A, b ∈ B}. We say that the pair of degrees {a,b} is a K-pair,
if there are A ∈ a and B ∈ b, such that {A,B} is a K-pair of sets. The following
properties proved by Kalimullin [9] shall be important for us:

(1) Let {a,b} be a K-pair and a,b ≤ 0′e. Then both a and b are low.
(2) Let {a,b} be a K-pair. Then for every x

x = (a ∨ x) ∧ (b ∨ x).

In particular every K pair is a minimal pair. Furthermore if a1 ≤ a, b1 ≤ b
and {a,b} is a K-pair, so is the pair {a1,b1}.

2In the original definition this is not required, but it is useful for our goals.
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In [5] we have seen that there is a formula LK(a, b) that locally defines the
K-pairs, i.e. for arbitrary a,b ∈ Ge

{a,b} is a K-pair ⇐⇒ Ge |= LK(a,b).

Thus we have a first order definable class of low degrees in Ge, namely the class
of the degrees in Ge that are part of K-pairs. Since Jockusch [7] has proved that
each total degree is the least upper bound of a K-pair, this class is not empty.

Low degrees allow us to encode a special kind of antichains, i.e. sets of pairwise
incomparable degrees. Consider the formula SW (z,a,p1,p2) defined by

z ≤ a & z 6= (z ∨ p1) ∧ (z ∨ p2) & ∀y < z [y = (y ∨ p1) ∧ (y ∨ p2)],

i.e. z is less or equal to a and it is a minimal solution to x 6= (x ∨ p1) ∧ (x ∨ p2).
Obviously the set Z(a,p1,p2) = {z ∈ Ge | Ge |= SW (z,a,p1,p2)} is an antichain
for every choice of a, p1 and p2 in Ge. On the other hand it is not known whether
every antichain in Ge can be encoded by the formula SW . However, the following
result of Slaman and Woodin [16] will be enough for our purposes:

Theorem 1 (Slaman, Woodin [16]). Let k ≤ ω. Let A be a low set and let {Zi | i <
k} be a system of incomparable reals (i.e. for each i 6= j, Zi 6≤e Zj and Zj 6≤e Zi)
uniformly e-reducible to A. Then there are degrees p1,p2 ∈ Ge, such that for all z

Ge |= SW (z,de(A),p1,p2) ⇐⇒ z = de(Zi) for some i < ω.

The notion of a K-system introduced in [6] is a natural extension of the notion of
a K-pair. We say that the finite system of sets {A1, . . . , An} (degrees {a1, . . . ,an}),
n ≥ 2, is a K-system if any pair {Ai, Aj} ({ai,aj}) for i 6= j is a K-pair. Finite
K-systems have the following property easily derived from the definition:

Proposition 1 (GS[6]). Let {A1, . . . , An} be a finite K-system. For arbitrary
disjoint subsets R1 and R2 of {1, . . . , n}, the pair {

⊕
i∈R1

Ai,
⊕

i∈R2
Ai} is a K-

pair. Furthermore for every R1, R2 ⊆ {1, . . . , n} we have⊕
i∈R1

Ai ≤e

⊕
i∈R2

Ai ⇐⇒ R1 ⊆ R2

In order to be able to prove a property analogous to the above proposition, in
the infinite case we introduce a further uniformity condition. We say that a system
of sets {Ai|i < ω} is a uniform K-system, if ∀i[Ai 6≤e ∅] and there is a computable
function r, such that for each i 6= j

Ai ×Aj ⊆Wr(i,j), Ai ×Aj ⊆Wr(i,j),

i.e. {Ai, Aj} is a K-pair via the c.e. set Wr(i,j). The following property holds for
uniform K-systems:

Proposition 2 (GS[6]). Let {Ai | i < ω} be a uniform K-system. Then for
arbitrary disjoint computable sets R1 and R2, {

⊕
i∈R1

Ai,
⊕

i∈R2
Ai} is a K-pair.

Furthermore for every computable R1 and R2⊕
i∈R1

Ai ≤e

⊕
i∈R2

Ai ⇐⇒ R1 ⊆ R2

Proposition 1 and Proposition 2 show that every K-system of sets, either finite or
uniform, is a system of incomparable reals. Thus whenever a K-system of degrees
is bounded by a low degree it can be encoded by three parameters via the formula
SW .
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Existence of finite K-systems consisting of three sets is proven by Kalimullin [9].
The existence of uniform K-system (and thus in particular of finite K-systems of
arbitrary cardinality) is proven in [6].

Proposition 3. Let B be a non c.e. ∆0
2 set. Then there is a uniform K-system

{Ai | i < ω}, such that
⊕

i<ω Ai ≤e B.

3. Coding sets and relations in Ge

In this section we follow the lines of Slaman and Woodin’s [16] coding of count-
able sets and relations in De. The coding of arbitrary countable relations in De

relies on the following two assertions:
(i) There is a formula coding every countable antichain via parameters.
(ii) For every set A, there is a set C = {Ci | i < ω} of incomparable reals, such

that for every X,Y ≤e A and every i, j < ω

(3.1) Ci ⊕X ≤e Cj ⊕ Y ⇐⇒ i = j & X ≤e Y.

In order to prove a coding lemma for the local theory we shall need properties
analogous to (i) and (ii). The analogue of (i) is provided by the local version of the
Slaman-Woodin antichains coding theorem (Theorem 1). However, this theorem is
not as powerful as the global one. Indeed, it guarantees that a set of Σ0

2 incompa-
rable reals is definable by parameters in Ge only in the case when it is uniformly
reducible to a low set. Thus we need to prove a stronger version of (ii), namely we
need to require that the set C is uniformly reducible to a low set.

In the global theory property (3.1) is satisfied by every countable set C of reals
that are mutually Cohen generic with respect to meeting all dense sets that are
arithmetic in A. Due to the genericity of its elements, C is not bounded by A(n)

for any n and hence it is not usable in the local theory. If we relax the condition of
genericity only to the dense sets that are necessary to meet the property (3.1), we
would obtain (by means of the usual forcing argument) an antichain C, for which
the best estimated upper bound is the first jump of A which is obviously not low.
However it turns out that in Ge we can use uniform K-systems instead of generic
reals.

Lemma 1. Let {A,B} be a nontrivial K-pair and let C = {Ci | i < ω} be a uniform
K-system bounded by B. Then for every X,Y ≤e A and every i, j < ω

Ci ⊕X ≤e Cj ⊕ Y ⇐⇒ i = j & X ≤e Y.

Proof. Suppose that X,Y ≤e A and that Ci ⊕ X ≤e Cj ⊕ Y . The second
inequality implies Ci ≤e Cj ⊕ Y . On the other hand Ci ≤e Ci ⊕ Y and hence if it
was the case i 6= j, {Ci, Cj} would be a K-pair and we would have Ci ≤e Y ≤e A.
But Ci 6≤e A, so that i = j.

Thus Ci ⊕ X ≤e Ci ⊕ Y . In particular X ≤e Ci ⊕ Y . On the other hand
X ≤e X ⊕ Y . But X ≤e A and Ci ≤e B so that {X,Ci} is a K-pair. Hence
X ≤e Y .

�
Lemma 1 shows that K-systems are antichains satisfying (3.1) and thus appro-

priate for coding in Ge sets and relations bounded by a half of a nontrivial K-pair.
We will prove that there is a sufficiently large class of sets and relations definable
via parameters in Ge.
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Definition 1. Let a ∈ Ge and let R be a k-ary relation in the interval [0e,a]. We
shall say that R is e-presentable beneath a if there is an A ∈ a and a c.e. set W ,
such that

R = {(de(Wi1(A)),de(Wi2(A)), . . . ,de(Wik
(A))) | 〈i1, i2, . . . , ik〉 ∈W}.

In particular we shall say that R is e-presentable beneath a via A and W

Let R be an n-ary relation on degrees. For 1 ≤ k ≤ n let us denote by R(k) the
k-th projection of R, i.e.

R(k) = {r | ∃r1, . . . , rk−1, rk+1, . . . , rk[(r1, . . . , rk−1, r, rk+1, . . . , rk) ∈ R]}.
Note that if R is bounded by a, i.e. the domain of R is bounded by a, then R(k)
is also bounded by a. Furthermore if R is e-presentable beneath a via A and W ,
then R(k) is e-presentable beneath a via A and W (k), where

W (k) = {i | ∃i1, . . . , ik−1, ik+1, . . . , ik[〈i1, . . . , ik−1, i, ik+1, . . . , ik〉 ∈W ]}.

Theorem 2. For every n ≥ 1 there is a formula ϕn(x1, . . . ,xn,a, b,p1, . . . ,p4n+2),
such that for every half of a nontrivial K-pair a, and e-presentable beneath a n-ary
relation R, there are parameters b, p1,. . . , p4n+2, such that

(x1, . . . ,xn) ∈ R ⇐⇒ Ge |= ϕn(x1, . . . ,xn,a,b,p1, . . . ,p4n+2)

Proof. Let a be a half of K-pair and let a1 be such that {a,a1} is a K-pair. Take
a K-pair {b,b1} beneath a1. Then {a,b,b1} is a K-system and in particular {a,b}
is a K-pair. Note that since {a ∨ b,b1} is also a K-pair, a ∨ b is low.

Fix an integer n ≥ 1. For an arbitrary i ∈ N denote by Div(i) the divisor and
by Rem(i) the remainder (or residue) resulting from the division of i by n.

Let R be an n-ary e-presentable relation beneath a via A and W . Fix B ∈ b and
a uniform K-system C = {Ci | i < ω} beneath B. For 1 ≤ k ≤ n denote by C(k) the
uniform K-system C(k) = {Ci | Rem(i) = k}. Note that C(k) is uniformly beneath
B and hence the set C(k) = {de(C) | C ∈ C(k)} is definable with parameters.
From this definition we obtain the parameters p1, . . . ,p2n. We shall use C(k) to
code the projections R(k).

Let C(k) + R(k) = {Ci ⊕ Wj(A) | Div(i) = j ∈ W (k) & Rem(i) = k} for
1 ≤ k ≤ n. Clearly C(k) + R(k) is uniformly reducible to A ⊕ B. Furthermore,
Lemma 1 yields that C(k)+R(k) is a set of incomparable reals. Thus C(k)+R(k) =
{de(Y ) | Y ∈ C(k) +R(k)} is uniformly definable via parameters in Ge. This gives
us parameters p2n+1 . . .p4n. Besides Lemma 1 yields

∀x ≤ a [ x ∈ R(k) ⇐⇒ ∃c ∈ C(k)(c ∨ x ∈ C(k) + R(k)) ],

and hence each of the projections R(k) is uniformly definable via parameters.
In order to code the relation R we shall need one more antichain. Consider the

set

CW = {Ci1⊕· · ·⊕Cin
| Rem(ik) = k, for 1 ≤ k ≤ n and 〈Div(i1), . . . , Div(in)〉 ∈W}.

We claim that CW is a system of incomparable reals uniformly beneath B. Indeed,
suppose that Ci1 ⊕ · · · ⊕Cin ≤e Cj1 ⊕ · · · ⊕Cjn for some Ci1 ⊕ · · · ⊕Cin ∈ CW and
Cj1⊕· · ·⊕Cjn ∈W . Hence, according to Proposition 2, {i1, . . . , in} ⊆ {j1, . . . , jn}.
On the other hand Rem(i1) = Rem(j1) = 1,. . . , Rem(in) = Rem(jn) = n, so that
i1 = j1,. . . , in = jn. Thus the set CW = {de(C) | C ∈ CW } is an antichain uniform
in b and so is definable with parameters b,p4n+1 and p4n+2.
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Finally letX1, . . . , Xn ≤e A be such that there is a Ci1⊕· · ·⊕Cin ∈ CW , such that
for each 1 ≤ k ≤ n, Cik

⊕Xk is enumeration equivalent to some Cjk
⊕WDiv(jk)(A) ∈

C(k)⊕R(k). Then Lemma 1 yields ik = jk and Xk ≡e WDiv(ik)(A) for 1 ≤ k ≤ n.
But 〈Div(i1), . . . , Div(in)〉 ∈W and hence (de(X1), . . . ,de(Xn)) ∈ R.

Thus for arbitrary x1, . . . ,xn ≤ a, the n-tuple (x1, . . . ,xn) is an element of the
relation R if and only if

∃c1 ∈ C(1) . . . ∃cn ∈ C(n)[∀1 ≤ k ≤ n(ck∨xk ∈ C(k)+R(k))] & c1∨· · ·∨cn ∈ CW ].

�

4. Interpreting true arithmetic in Ge

Let us fix a finite axiomatization PA− of arithmetic in the language {+,×, <},
such that every model of PA− has a standard part. Let BPA− be the class of all
models of PA−. For arbitrary N ∈ BPA− and x ∈ N let us denote by LN(x) the
set of all elements of N less or equal to x in N, i.e.

(4.1) LN(x) = {z ∈ N | N |= z ≤ x}

We have the following characterisation of the standard models of PA− in BPA− .

Lemma 2. Let A ⊆ BPA− be a class of models of PA−, containing a standard
model of arithmetic. Then for arbitrary N1 ∈ BPA− , N1 is a standard model of
arithmetic, if and only if for every x1 ∈ N1 and every N2 ∈ A, there is an x2 ∈ N2

such that the sets LN1(x1) and LN2(x2) have the same cardinality.

Proof. Since every model of PA− has a standard part, N1 is a standard model
of arithmetic if and only if the set LN1(x) is finite for every x1 ∈ N1. Suppose
that N1 ∈ BPA− is a standard model of arithmetic and let x1 ∈ N1. Then the set
LN1(x1) has finite cardinality, say n. Take an arbitrary N2 ∈ A. Since N2 has a
standard part, then there is an x2 ∈ N2, such that LN2(x2) has cardinality n.

For the converse direction suppose that N1 ∈ BPA− is such that for every x1 ∈ N1

and every N2 ∈ A, there is x2 ∈ N2, such that the sets LN1(x1) and LN2(x2) have
the same cardinality. Since there is a standard model of arithmetic in A, then the
set LN1(x1) is finite for arbitrary x1 ∈ N1 and hence N1 is also standard.

�
Fix a formula θPA− expressing the following facts for an arbitrary degree a and

parameters bN , pN , b+, p+, b×, p×, b< and p< (we shall denote such a list of
parameters by q):

• The relations R+ = {(x,y, z) | Ge |= ϕ3(x,y, z,a,b+,p+)} and R× =
{(x,y, z) | Ge |= ϕ3(x,y, z,a,b×,p×)} are (the graphs of two) binary op-
erations on RN = {x | Ge |= ϕ1(x,a,bN ,pN )}.
• The relation R< = {(x,y) | Ge |= ϕ2(x,y,a,b<,p<)} is a binary relation

on RN .
• (RN ; R+,R×,R<) is a model of PA−. We shall denote this model by

N(a,q).
Thus for every a ∈ Ge the formula θPA− defines a class N (a) of models of PA−

bounded by a.
Now suppose that a is a half of a nontrivial K-pair. We claim that the class

N (a) is nonempty and contains a standard model of arithmetic. Indeed, fix an
independent system of reals X = {Xi | i < ω} uniform in A ∈ a and denote by
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xi the degree of Xi. Let RXN = {xi | i < ω}, RX+ = {(xi,xj ,xi+j) | i, j < ω},
RX× = {(xi,xj ,xi×j) | i, j < ω} and RX< = {(xi,xj) | i < j < ω}. It is clear
that these relations are e-presentable beneath a and hence they are definable via
parameters. Furthermore (RXN ; RX+ ,R

X
× ,R

X
<) is a standard model of arithmetic.

Let N1 and N2 be two models in N (a) coded by q1, and q2 respectively. For any
x1 ∈ N1 and x2 ∈ N2 we shall say that (x1,q1) ≈ (x2,q2) if and only if there are
parameters b≈ and p≈ for the formula ϕ2, such that the relation R≈ = {(z1, z2) |
Ge |= (z1, z2,a,b≈,p≈) is the graph of a bijection from LN1(x1) into LN2(x2) (in
particular the sets LN1(x1) and LN2(x2) have the same cardinality).

Note that if x1 and x2 represent the same standard natural number then (x1,q1) ≈
(x2,q2). Indeed, in this case the sets LN1(x1) and LN2(x2) have the same finite
cardinality, so that the set LN1(x1) ∪ LN2(x2) is finite and hence e-presentable
beneath a. Therefore every bijection from LN1(x1) onto LN2(x2) is e-presentable
beneath a and hence definable by the formula ϕ2. Thus (x1,q1) ≈ (x2,q2).

Now for every half of a nontrivial K-pair a we can select the standard models
of arithmetic in N (a) in the following way: A model N1 ∈ N (a) coded via the
parameters q1 is a standard model of arithmetic if and only if for every x ∈ N1 and
every N2 ∈ N (a) (coded by, say, q2), there is a y ∈ N2, such that (x,q1) ≈ (y,q2).
Thus we have proven the following theorem.

Theorem 3. There is a formula SMA such that for every half a of a nontrivial
K-pair the following assertions hold:

(i) For every choice of parameters q, if Ge |= SMA(a,q), then N(a,q) is a
standard model of arithmetic.

(ii) There are parameters q, such that Ge |= SMA(a,q).

Thus we have defined a class of standard models of arithmetic in Ge, namely

NGe = {N(a,q) | a is a half of a K-pair and Ge |= SMA(a,q)}.

Hence for every arithmetical sentence θ, N |= θ if and only if for every K-pair {a,b}
there are parameters q, such that Ge |= SMA(a,q) and N (a,q) |= θ. From here
we obtain the computable translation of the arithmetical sentences into sentences
of Ge.

The results so far can be extended to a definition of a parameterless standard
model of arithmetic in Ge. In order to do this, it is enough to show that the
equivalence relation on tuples of the form (x,a,q), where a is a half of a K-pair,
Ge |= SMA(a,q) and x ∈ N(a,q), defined by

(x1,a1,q1) ' (x2,a2,q2) ⇐⇒ x1 and x2 represent the same natural number,

is definable without parameters in Ge.
First of all note that if a1,a2 ≤ a for some half of K-pair a we have

(x1,a1,q1) ' (x2,a2,q2) ⇐⇒ (x1,q1) ≈ (x2,q2),

for arbitrary q1 and q2, satisfying Ge |= SMA(a1,q1) and Ge |= SMA(a2,q2).
Thus we can compare all standard models bounded by a fixed half of K-pair. We
extend this result by means of the following lemma.

Lemma 3. Let A0 and A1 be non c.e. ∆0
2 sets. Then there is a K-pair {B0, B1}

such that B0 ≤e A0 and B1 ≤e A1.
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Proof. Kallimulin [8] has proved the statement in the case A0 = A1. Since the
proof in the case A0 6= A1 is analogous, we give here only a sketch.

Fix ∆0
2 good approximations {As

0} and {As
1} of A0 and A1 respectively. Define

by induction on s the following computable sequences V s
0 and V s

1 of finite sets:
• Set V 0

0 = V 0
1 = ∅.

• Suppose that V s
0 and V s

1 are defined. If V s
i (As

i ) \ V s
i (As+1

i ) = ∅ for i ≤ 1,
set V̂ s

i = V s
i . Otherwise let k be the least natural number for which there is

an x and an i ≤ 1, such that 〈k, x〉 ∈ V s
i (As

i ) \V s
i (As+1

i ) = ∅. Set V̂ s
i = V s

i

and
V̂ s

1−i = V s
1−i ∪ {〈〈r, y〉, ∅〉 | r ≥ k & 〈r, y〉 < s}.

For each e, s and i ≤ 1, denote by l(i, e, s) the length of agreement
between V s

i (As
i ) and W s

e (here {W s
e } is a fixed c.e. approximation of We).

For each i ≤ 1 choose the least ei such that l(i, ei, s) > max{l(i, ei, k) | k <
s}. If such an ei does not exist set V s+1

i = V̂ s
i . Otherwise set

V s+1
i = V̂ s

i ∪ {〈〈ei, y〉, {y}〉 | 〈ei, y〉 < s}.

It is clear that the sets Vi =
⋃
V s

i for i ≤ 1 are c.e. We set Bi = Vi(Ai).
Now from the construction of V0 and V1 it follows that B0 and B1 are not c.e.
Furthermore the sequences {V s

0 (As
0)} and {V s

1 (As
1)} are ∆0

2 approximations to B0

and B1 respectively, having the following property for arbitrary i and s:(
V s

i (As
i ) \ V s+1

i (As+1
i )

)
∩ ω[k] 6= ∅ ⇒ ω[≥k] � s ⊆ V1−i(A1−i).

Kalimullin [8] has proved that the above property is a sufficient condition for
{V0(A0), V1(A1)} to be a K-pair.

�
Now let us turn to the proof of the definability in Ge of the relation '. Let a1 and

a2 be arbitrary halves of K-pairs and let q1 and q2 be such that Ge |= SMA(a1,q1)
and Ge |= SMA(a2,q2). Let x1 ∈ N(a1,q1) and x2 ∈ N(a2,q2) represent the same
natural number. Fix a K-pair {b1,b2} such that b1 ≤ a1, b2 ≤ a2 and b1 ∨ b2 is
half of a K-pair (we can obtain such b1 and b2 applying Lemma 3 and the trick used
in the proof of Theorem 2). Let q11 and q22 be such that Ge |= SMA(b1,q11) and
Ge |= SMA(b2,q22) and let x11 ∈ N(b1,q11) and x22 ∈ N(b2,q22) represent the
same natural number as x1 and x2. Since b1 ∨ b2 is half of a K-pair, (x11,q11) ≈
(x22,q22). On the other hand b1 ∨ a1 = a1 and a1 is a half of a K-pair so that
(x1,q1) ≈ (x11,q11). Analogously (x22,q22) ≈ (x2,q2).

Thus we obtain that (x1,a1,q1) ' (x2,a2,q2) if and only if there are b1, b2,
q11, q22, x11 and x22 such that

(i) {b1,b2} is a K-pair, b1 ≤ a1, b2 ≤ a2 and b1 ∨ b2 is half of a K-pair.
(ii) Ge |= SMA(b1,q11) and Ge |= SMA(b1,q11).
(iii) x11 ∈ N(b1,q11) and x22 ∈ N(b2,q22)
(iv) (x1,q1) ≈ (x11,q11), (x11,q11) ≈ (x22,q22) and (x22,q22) ≈ (x2,q2).
Thus the relation ' is definable in Ge and we can build a parameterless standard

model of arithmetic.
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